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Highlights

• Approximate procedure to design nonlinear energy sink with a piezoelectric energy harvesting device
for reducing amplitudes of the axially moving beams.

• Grounded configuration of nonlinear energy sink piezoelectric energy harvesters model is adopted.

• Frequency-amplitude responses curves are determined by incremental harmonic balance and contin-
uation methods.

• The short time energy transfer and localization to the nonlinear energy sink from the axially moving
beam.
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Abstract

An efficient semi-numerical framework is used in this paper to analyze the dynamic model of an axially
moving beam with a nonlinear attachment composed of a nonlinear energy sink and a piezoelectric device.
The governing equations of motion of the system are derived by using the Hamilton’s principle with von
Karman strain-displacement relation and Euler - Bernoulli beam theory. The nonlinear energy sink is modeled
as a lumped - mass system composed of a point mass, a spring with nonlinear cubic stiffness and a linear
viscous damping element. The piezoelectric device is placed in the ground configuration. Frequency response
curves of the presented nonlinear system are determined by introducing the incremental harmonic balance
and continuation method for different values of material parameters. Based on the Floquet theory, the
stability of the periodic solution was determined. Moreover, the presented results are validated with the
results obtained by a numerical method as well as the results from the literature. Numerical examples show
a significant effect of the nonlinear attachment on frequency response diagrams and vibration amplitude
reduction of the primary beam structure.

Keywords: Axially moving beam, Nonlinear energy sink, Vibration attenuation, Incremental harmonic
balance, Frequency response.

1. Introduction

Vibration studies of axially moving and spinning beams have attracted considerable attention of the scien-
tific community since such models are extensively used in different industrial fields and aerospace engineering.
Some typical examples of the engineering applications include, but are not limited to, rotary drill-strings in
oil wells, drilling machines in manufacturing, Cardan shafts of automobiles, extrusion processes, deployment
of appendages in space, robotic manipulators, telescopic members of loading vehicles, machine tools and
chain-saw blades [1–3]. However, undesired vibration and instabilities can cause failures of such structures
over time and it is crucial to reduce vibration amplitudes by using passive, semi-active or active vibration
absorbers or any combination there of [4].

In a wide spectrum of engineering applications, a nonlinear energy sink (NES) is introduced as a passive
nonlinear vibration absorber. The main feature of the NES is to transfer the mechanical energy from a
primary structure to the nonlinear attachment. This concept has several advantages such as simple con-
figuration, high robustness and broadband vibration attenuation properties [4, 5]. It is well known that
linear vibration absorbers attenuate vibrations of the main structure by redistribution of its vibration energy
through spring and attached additional masses. However, NES composed of a nonlinear spring, weak damper
and a point mass has wider frequency bandwidth of attenuation due to strong nonlinear stiffness. The first
model of NES was introduced by Vakakis and his co-workers [6–8]. Afterwards, this concept evolved with the
introduction of different nonlinear characteristics such as the nonlinear cubic stiffness [6], polynomial stiffness
[9], non-smooth stiffness [10], different types of the nonlinear damping models [11], vibro-impact models [12],
chatter control [13] and multiple degrees of freedom NES systems [14, 15]. Moreover, the combination of
NES with an energy harvesting device allows conversion of mechanical energy to electrical energy as shown in
[16]. The main physical phenomenon that occurs in NES is the targeted energy transfer (energy pumping),
where a certain amount of mechanical energy given to the main structure is transiently transmitted to NES,
as shown in some experiments [17, 18].
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One particular application of NES attachments is in structural dynamic models, where the primary
structure is based on continuous elements such as strings [19], beams [20], pipes [21], plates [22] or wings
[23]. Recently, the interest in such models has increased, especially in mechanical, civil engineering and
aerospace applications for vibration suppression and control. For example, in some research work, special
attention is paid to axially-moving structures with NES [24], where the authors mostly considered linear
models for primary structures with nonlinear attachments. Moreover, the problems with nonlinear axially
moving strings or beams with NES or NES-EH models are addressed in a limited number of studies. In this
paper, our attention will be primarily focused on the application of a nonlinear model of an axially moving
beam with NES-EH device. In the series of papers, Li-Qun Chen and co-workers analyzed different structural
models with NES, starting from a new discrete NES with inertia [25, 26], axially moving beam with NES
and considered thermal shock and impulse induced vibration [27, 28], and finally vibration reduction in a
spacecraft [29]. They used both theoretical and experimental approaches in order to analyze the effects
of NES on primary structures. Zhang et al. [30] successfully controlled vibration response of an axially
moving string by introducing NES into the system, where a numerical approach was employed to obtain
the frequency response of the system. On the other hand, Zulli and Luongo [31, 32] have shown the effect
of the attached NES on the vibration of a nonlinear string model by using the perturbation multiple scales
and harmonic balance methods based on transient analyses for both the internal resonant and non-resonant
cases.

In recent years, there has been an increased effort to develop efficient energy harvesting devices [33].
Different NES configurations coupled with energy harvesting devices were addressed in the literature to
achieve both efficient vibration suppression and energy harvesting. Kremer and Liu [34] investigated energy
harvesting using a nonlinear energy sink of a specific configuration with essential non-linearity and low
damping. They studied the transient behavior of the system and demonstrated that the proposed apparatus is
capable of harvesting energy in a broadband manner. In another study, the same group of authors [35] focused
on harmonically forced responses of the system and investigated the steady-state responses analytically and
experimentally. The results have shown typical behavior for NES and broadband energy harvesting and
vibration attenuation capabilities. Zhang et al. [36] developed an energy harvester utilizing the localized
vibration energy from NES, where the electrical energy is obtained by using the direct piezoelectric effect.
Through the experimental and numerical analysis, the authors confirmed that NES based piezoelectric energy
harvester is effective in vibration suppression of the primary system with significant broadband voltage
output. Another approach in the analysis of the dynamics of a nonlinear energy sink with an integrated
piezoelectric energy harvester was applied in a paper by Li et al. [37], where the complexification-averaging
method was employed to examine vibration absorption and study the dynamic behavior of the observed
system. Another concept of energy harvesters coupled with NES was used by Blanchard et al. [38], where
vortex-induced vibration (VIV) of a cylinder is suppressed with an internal dissipation due to rotational
NES. They designed NES suggesting its application in energy harvesting from VIV in submarine flows in
order to generate electric power. Recently, Rasil Raj and Santhosh [39] studied the two-degree-of-freedom
nonlinear system acting simultaneously as a vibration absorber and an energy harvester. The authors used
the multi-harmonic balance method together with the arc-length continuation to generate frequency response
curves for different values of system parameters. They additionally contributed to this subject by performing
the optimization procedure based on genetic algorithm in combination with response surface methodology
to generate the optimal frequency response of a multi-functional energy harvesting system.

The main purpose of this paper is to analyze a novel model of axially moving nonlinear beam with an
attached NES-EH device for vibration reduction purposes. Moreover, by introducing the nonlinear attach-
ment in the ground configuration the classical NES can be extended with EH capeability thus producing a
unified device for vibration control as shown in [7, 40]. In order to study the proposed nonlinear system,
we will introduce the methodology based on the IHB, Floquet stability theory and continuation methods for
obtaining the amplitude-frequency responses in the the primary resonance state. The mathematical model
of the axially moving beam is derived by using the Hamilton principle and the Euler-Bernoulli beam theory,
and it is afterwards discretized by the Galerkin method. The effect of the NES-EH attachment on the axially
moving beam is presented in frequency response diagrams and verified with the results from the literature.
In general, the proposed methodology is suitable for determination of the amplitude-frequency curves of a
strongly nonlinear system. The accuracy of the IHB method was demonstrated by comparing the results
with those obtained through direct numerical integration and fine agreement is achieved. From the physical
viewpoint, the axially moving beam with the nonlinear attachment composed of coupled NES and EH de-
vices, can be used as a tensioner in the belt drive system [41], which is an excellent example of the application
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of coupled NES-EH devices for simultaneous vibration reduction and energy harvesting purposes.

2. Problem formulation

2.1. Mechanical model
Let us consider a slender axially moving beam influenced by a transverse periodic force F (x, t), with a

NES and a piezoelectric device attached at distance d from the origin, as shown in Fig. 1. It is assumed
that the transport velocity is constant V and the attachment is modeled as a lumped - mass system. The
mechanical model of the nonlinear energy sink is composed of one nonlinear spring (of stiffness k) and one
linear dashpot element (of damping b) connected to the point mass m. Moreover, the piezoelectric device
is placed in ground configuration, where stiffness, loaded resistance and capacitance are given as kp, R, Cp,
respectively. The piezoelectric device is introduced for the EH purpose. The adopted model of the axially
moving beam is based on the Euler - Bernoulli beam theory with the following properties: YoungâĂŹs
modulus E, mass density ρ, length L, cross-section area A, the moment of inertia I, and simply supported
boundary conditions. The x-coordinate is taken along the length of the axially moving beam and the z-
coordinate is in the thickness direction of a beam. It should also be noted that the bending vibration of an
axially moving beam occurs in the thickness direction with transverse displacement denoted by w(x, t) and
axial displacement by u(x, t).
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Figure 1: Mechanical model of an axially moving beam with a nonlinear attachment, a) Nonlinear energy sink (NES), and b)
Nonlinear energy sink with an energy harvester NES-EH.

(a)

(b)

2.2. The equations of motion
In order to derive a differential equation of motion of the axially moving beam, we will introduce a few

assumptions. First, we neglect the cross-sectional rotary inertia and the shear deformation, in line with the

5

                  



Euler - Bernoulli beam theory. Secondly, we assume that the beam is influenced by the constant tension force
P during movement with constant transport speed V . We introduce two reference systems where the first
one is inertial, based on the origin with unit vectors ex, ez and the corresponding coordinates (x, z), with
the frame ex̃, ez̃ moving in the x direction with speed V . In this case, the displacement and the velocity
vector of an arbitrary point M of the axially moving beam are given as

pM (x, t) = [u(x, t) + x(t)] ex + w(x, t)ez, (1)

vM (x, t) =
dpM
dt

(x, t) = [u,t +u,x V + V ] ex + (w,t +w,x V )ez, (2)

where V =
dx

dt
. The constitutive equation is given in the following form

σxx(x, t) = Eεxx(x, t) = E

[
u,x−zw,xx +

1

2
(w,x )2

]
, (3)

where σxx(x, t) and εxx(x, t) represents the normal stress and von Karman’s strain, respectively. The differ-
ential equations of motion can be derived by introducing the Hamilton’s principle in the following form

δ

∫ t2

t1

[K − (U +W )]dt = 0, (4)

where δ is the variation operator, K and U represent the kinetic and the potential energy, respectively, and
W is the work of external forces, and these are given given as

K =
ρA

2

∫ L

0
(vM )2dx, (5)

U =
1

2

∫

V
σxxεxxdx,

W =

∫ L

0

[
1

2
P (w,x )2 − F (x, t)w

]
dx.

Introducing the relations Eq.(5) into Eq.(4), and using the methodology presented in [42, 43], we get the
following system of differential equations for the axial and transverse displacements

ρA
[
ü+ 2V u̇,x +V 2u,xx

]
− EA [u,xx +w,xw,xx ] = 0, (6)

ρA
[
ẅ + 2V ẇ,x +V 2w,xx

]
+ EIw,xxxx−

[(
P + EAu,x +

1

2
EA(w,x )2

)
w,x

]
,x = F (x, t), (7)

with the corresponding simply supported boundary conditions as shown in [43, 44]. In order to analyze the
transverse vibration of axially moving beams with NES-EH Fig. 1, we will neglect the axial vibration mode
u(x, t) by assuming a weak coupling between axial and transverse vibration modes [44, 45] and extend Eq.(7)
with additional terms through Dirac delta function and external concentrated load as shown in [16, 46],

ρA
[
ẅ + 2V ẇ,x +V 2w,xx

]
+ EIw,xxxx−

[(
P +

1

2
EA(w,x )2

)
w,x

]
,x (8)

+
{
k [w(d, t)− y(t)]3 + b [ẇ(d, t)− ẏ(t)]

}
δ(x− d) = F (x, t),

mÿ + k [y(t)− w(d, t)]3 + b [ẏ(t)− ẇ(d, t)] + kpy(t)− θ

Cp
Q(t) = 0, (9)

RQ̇(t)− θ

Cp
y(t) +

1

Cp
Q(t) = 0. (10)

Differential equations given in Eq.(8) - Eq.(10) describe the presented system with NES-EH device (see
Fig.(1)), where y(t) represents displacement of a point mass m, Q(t) is the output electrical charge and θ is
the electro-mechanical coupling coefficient as defined in [46].
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By introducing the dimensionless quantities:

t∗ = t

√
P

ρAL2
, w∗ =

w

L
, x∗ =

x

L
, y∗ =

y

L
, v∗ = V

√
ρA

P
, (11)

d∗ =
d

L
, v1 =

√
EA

P
, vf =

√
EI

PL2
, k∗ =

kL3

P
, b∗ =

b√
PρA

,

Q∗ =
Q(t)

θL
, R̃ =

CpR

L

√
P

ρA
, G̃ =

θ2L

CpP
, ε =

m

ρAL
, k̃p =

kpL

P
, F ∗ =

FL

P
,

into Eq.(8)-Eq.(10) and omitting asterisk notation yields dimensionless equations of motion of the axially
moving beam with NES-EH attachment in the following form

[
ẅ + 2vẇ,x +v2w,xx

]
+ v2

fw,xxxx−
[(

1 +
1

2
v2

1(w,x )2

)
w,x

]
,x (12)

+
{
k [w(d, t)− y(t)]3 + b [ẇ(d, t)− ẏ(t)]

}
δ(x− d) = F (x, t),

εÿ(t) + k [y(t)− w(d, t)]3 + b [ẏ(t)− ẇ(d, t)] + k̃py(t)− G̃Q(t) = 0, (13)

R̃Q̇(t)− y(t) +Q(t) = 0. (14)

In this paper, the symbol ˙(·) represents ∂(·)/∂t, (·),x is ∂(·)/∂x, (·),xx denotes ∂2(·)/∂x2 and so on for
derivatives of higher order.

3. Approximate method

3.1. The Galerkin discretization
In order to discretize the partial differential equation of the presented model of the axially moving beam

with nonlinear attachment and reduce it to a system of ordinary differential equations, we will apply the
Garlekin method [47]. The discretization process leads to a mathematical model with finite number of degrees
of freedom where the nonlinear modal coupling is taken into account. Therefore, within the framework
of this paper, the solution of the partial differential equation Eq.(8) will be approximated by expanding
the transverse displacement w(x, t) into the series of admissible functions φj(x) that satisfy the boundary
conditions, and time functions qj(t). The approximated solutions for transverse displacement w(x, t) and
external load F (x, t) are given as

w(x, t) =
N∑

j=1

qj(t)φj(x), (15)

F (x, t) =

N∑

j=1

fj(t)φj(x), (16)

where φj(x) = sin(jπx) satisfies the simply supported boundary conditions, and the time periodic function
is given as fj(t) = fj sinωt. The terms fj and ω represent amplitude and frequency of the external load,
respectively.

Inserting Eq.(15) and Eq.(16) into Eq.(12), and taking into account the orthogonality conditions, we will
obtain a system of N ordinary differential equations as follows

N∑

j=1

Mij q̈j +
N∑

j=1

Cij q̇j +
N∑

j=1

Kijqj +
N∑

j=1

N∑

r=1

N∑

g=1

K̃ijrgqjqrqg+ (17)



k




N∑

j=1

qjφj(d)− y




3

+ b




N∑

j=1

q̇jφj(d)− ẏ





φi(d) = f̃ij cos(Ωt),

where

Mij =

∫ 1

0
φiφjdx, Cij = 2v

∫ 1

0
φiφj,xdx K̃ijrg = −3

2
v2

1

∫ 1

0
φiφj,xφr,xφg,xx, dx
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Kij = (v2 − 1)

∫ 1

0
φiφj,xxdx+ v2

f

∫ 1

0
φiφj,xxxxdx,

f̃ij =

∫ 1

0
fφiφjdx, Ω = ω

√
ρAL2

P
.

By restricting the number of transverse degrees of freedom N = 2 in the series solution Eq.(15) and
Eq.(16), and after introducing weak modal damping µ11 and µ22, we obtain the reduced mathematical
model of axially moving beam with nonlinear attachment in the following form

q̈1 + µ11q̇1 − µ12q̇2 + k11q1 + k12q1q
2
2 + k13q

3
1 + 2k(q1 − y)3 + 2b(q̇1 − ẏ) = f1 cos(Ωt), (18)

q̈2 + µ21q̇1 + µ22q̇2 + k21q2 + k22q2q
2
1 + k23q

3
2 = f2 cos(Ωt), (19)

εÿ + k(y − q1)3 + b(ẏ − q̇1) + k̃py − G̃Q = 0, (20)

R̃Q̇− y +Q = 0, (21)

where we defined new parameters as

µ12 =
16v

3
, k11 = −π2(v2 − 1) + π4v2

f , k12 = 3π4v2
1, k13 =

3

8
π4v2

1,

µ21 =
16v

3
, k21 = −4π2(v2 − 1) + 16π4v2

f , k22 = 3π4v2
1, k23 = 6π4v2

1.

For simplicity, the above equations are derived for the case when the nonlinear attachment is placed at the
half of the beam’s length i.e. d = 1

2 . However, the proposed methodology gives enough information for
accurate modeling of the proposed system where the effects of the nonlinear attachment are given on the
frequency response diagrams.

3.2. The incremental harmonic balance method
In order to get the periodic response of the presented system of nonlinear differential equations Eq.(18) -

Eq.(21), we will introduce the semi-analytical technique known as the incremental harmonic balance method
(IHBM) [48–50]. One of the most important advantages of the IHBM lies in the fact that it can be easily
combined with the continuation algorithms for finding the system response for different model parameters.
In the following, we will use the IHBM to get the frequency response of the axially moving beam with a
NES-EH attachment. The first step in the IHBM is to introduce a new time scale τ = Ωt into Eq.(18) -
Eq.(21), where we get

Ω2q̈1 + µ11Ωq̇1 − µ12Ωq̇2 + k11q1 + k12q1q
2
2 + k13q

3
1 + 2k(q1 − y)3 + 2bΩ(q̇1 − ẏ) = f1 cos τ, (22)

Ω2q̈2 + µ21Ωq̇1 + µ22Ωq̇2 + k21q2 + k22q2q
2
1 + k23q

3
2 = f2 cos τ, (23)

εΩ2ÿ + k(y − q1)3 + bΩ(ẏ − q̇1) + k̃py − G̃Q = 0, (24)

R̃ΩQ̇− y +Q = 0, (25)

in which the time derivative ˙(·) will be used to represent ∂(·)/∂τ .
In the second step, we will introduce the incremental relation for generalized coordinates q1, q2, y and

Q as well as excitation frequency Ω in order to linearize the nonlinear system Eq.(18) - Eq.(21). Here,
q10, q20, y0, Q0 and Ω0 represents initial vibration state while increments in their neighborhood are given as

q1 = q10 + ∆q1, q2 = q20 + ∆q2, y = y0 + ∆y, (26)

Q = Q0 + ∆Q, Ω = Ω0 + ∆Ω.

In order to determine periodic solutions of the system Eq.(18) - Eq.(21), we can assume solutions for
q10, q20, y0 and Q0 and their increments in the form of a finite Fourier series as:

q10(τ) =
M∑

n=1

[a1n cos(2n− 1)τ + b1n sin(2n− 1)τ ] = CA1, (27)
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q20(τ) =
M∑

n=1

[a2n cos(2n− 1)τ + b2n sin(2n− 1)τ ] = CA2,

y0(τ) =
M∑

n=1

[a3n cos(2n− 1)τ + b3n sin(2n− 1)τ ] = CA3,

Q0(τ) =
M∑

n=1

[a4n cos(2n− 1)τ + b4n sin(2n− 1)τ ] = CA4,

where
C = [cos(τ) cos(3τ) . . . cos(nτ) sin(τ) sin(3τ) . . . sin(nτ)] ,

Ap = [ap1 ap3 . . . apn bp1 bp3 . . . bpn]T , (p = 1, ..., 4).

and for the increments as

∆q1 = C∆A1, ∆q2 = C∆A2, ∆y = C∆A3, ∆Q = C∆A4, (28)

where
∆Ap = [∆ap1 ∆ap3 . . . ∆apn ∆bp1 ∆bp3 . . . ∆bpn]T , (p = 1, ..., 4).

Now, by inserting relations Eq.(27) and Eq.(28) into Eq.(26) and applying the Galerkin procedure [48],
we can neglect the higher order terms to get the system of algebraic equations as




K11 K12 K13 0
K21 K22 0 0
K31 0 K33 K34

0 0 K43 K44








∆A1

∆A2

∆A3

∆A4





=





F̃1

F̃2

0
0





+





R̃1

R̃2

R̃3

R̃4





+





Ṽ1

Ṽ2

Ṽ3

Ṽ4





∆Ω, (29)

where
R̃1 = R11A1 + R12A2 + R13A3, R̃2 = R21A1 + R22A2,

R̃3 = R31A1 + R33A3 + R34A4, R̃4 = R43A3 + R44A4,

Ṽ1 = V11A1 + V12A2 + V13A3, Ṽ2 = V21A1 + V22A2,

Ṽ3 = V31A1 + V33A3, Ṽ4 = R44A4,

in which Kij ,Rij and Vij are matrices and F̃i are vectors defined in Appendix 1. The Galerkin proce-
dure [48] is introduced in order to eliminate the parameter τ through the orthogonality conditions of the
trigonometric functions.

The Eq.(29) can be written in the simplified form as

K∆A = R + V∆Ω. (30)

If we need just a single frequency response we can introduce ∆Ω = 0 into the system of linear algebraic
equations Eq.(30). In order to solve the system Eq.(30), we start with the solution process by initializing
the coefficients A in such a manner that the tangent stiffens matrix K is not a singular matrix. Then, by
using the Newton âĂŞ Raphson iterative procedure we find the solution of ∆A iteratively by solving

∆A = K−1R −→ Ai+1 = Ai + ∆Ai+1, (31)

The iterations are performed until the residue Euclidian norm ‖R‖ is smaller than a pre-set tolerance (we
adopt ζ = 10−12).

It is important to note that the corrective vector term R tends to zero when the values of coordinates
tend to the exact solutions. In order to determine amplitude - frequency responses of the system, the value
of Ω should increase with increment ∆Ω and the solution of A at the previous frequency step is used as
the initial guess for finding the solution for the current frequency. Better accuracy is achieved for smaller
increments ∆Ω.
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4. The continuation method

The drawback of the previously described procedure for simple incrementation of the excitation frequency
∆Ω in the process of obtaining the frequency response curves lies in the fact that a frequency response reaches
certain limit points (such as turning points) or solution curves are obtained in the form of loops, where
the tangent stiffens matrix K becomes a singular matrix. In such cases, the previously described simple
incremental procedure fails. In order to avoid such cases and to eliminate failures due to the limit points,
we will introduce a numerical continuation method [51, 52] known as the pseudo-arc-length continuation
technique, which traces out periodic solution branches of the proposed nonlinear system in the form of
an amplitude-frequency response. The solution process starts from an arbitrary initial state (e.g. linear
solution far away from the resonance state). Then, a point-to-point calculation is performed by using the
predictor-corrector methodology to obtain the corresponding response curves as shown in [44, 50, 51].

At the beginning of the tracing process, the incremental relation given in Eq.(30) is used to determine two
initial periodic solutions that are far away from the resonant state. Afterwards, we extend the IHBM with
augmented equation and the predictor-corrector methodology. One of the most used continuation approaches
is the pseudo-arc-length continuation method, which is able to track possible solutions including the limit
points and loops. By introducing the parameter η, the augmented equation is given as

g(X)− η = 0, (32)

where X = [A,Ω]T . By using the quadratic form of the pseudo arc-length continuation approach, as shown
in [50, 51], we adopt the following augmented equation

g(X)− η = X′T (X−Xk−1)− η = 0, (33)

where the slope is defined in terms of the two previous points Xk−1 and Xk−2 on the response curves, and
it is given as

X′ =
Xk−1 −Xk−2

‖Xk−1 −Xk−2‖
. (34)

The first predicted solution is calculated based on the first two periodic solutions obtained from IHBM

Xu = Xk−1 + ∆ηX′. (35)

In order to obtain the periodic solution, we will extend the tangent stiffness matrix by introducing the
augmenting equation and then applying the Newton-Raphson iterative procedure for the corrected solution.
By combining Eq.(30) and Eq.(33), the extended tangent stiffness matrix can be obtained in the following
form [

K V
∂g

∂A
∂g
∂Ω

]{
∆A
∆Ω

}
=

{
R

∆η − g

}
. (36)

For more details reffer to the following literature [50, 51].
It is important to note that further points are calculated by updating the values of X ′ while the value of

parameter η is considered to be zero. The parameter ∆η is adopted as the arc increment having a small value.
In the literature, one can find more details on how to set the values of the parameter ∆η [52]. In order to
determine the periodic responses of the axially moving beam with nonlinear attachments, it is important to
set the initial step size of the excitation frequency and tolerance which is related to the degree of nonlinearity
and other material parameters of the system. For higher accuracy of periodic solutions, we introduced the
tolerance of the order ζ = 10−10 which can go up to ζ = 10−16. Setting small enough tolerances leads to
amplitude-frequency solutions without any breaks in the simulation process.

5. Stability analysis of periodic solution

By considering the Floquet stability theory and the Hsu procedures developed in [44, 53, 54], stability
of a periodic solution of the axially moving beam with NES-EH attachment will be determined. Inserting
small perturbations ∆y (τ) in the neighborhood of a periodic solution y0 (τ), i.e. by letting

y = y0 + ∆y (τ) , (37)
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the stability of the periodic solution can be analyzed by introducing the linearized system of differential
equations with variable coefficients in terms of small perturbations ∆y (τ). Applying the Floquet theory in
RN , the system of nonlinear differential equations in the general form can be written as

W (y, ẏ, ÿ, τ) = 0, (38)

where y = [y1 (τ) , y2 (τ) , . . . yN (τ)] is the N - dimensional displacement vector and ẏ = dy/dτ . Inserting
Eq.(37) into Eq.(38), and after performing linearization, one can obtain the system of linear differential
equations with time dependent coefficients as

(
∂W
∂ÿ

)

0

∆ÿ (τ) +

(
∂W
∂ẏ

)

0

∆ẏ (τ) +

(
∂W
∂y

)

0

∆y (τ) = 0, (39)

in which y0 (τ) = [q10(τ), q20(τ), y0(τ), Q0(τ)]T is the periodic solution determined by the IHB procedure.
It should be noted that Eq.(39) represents the system of perturbed equations in the vicinity of the known
periodic solutions y0(τ). The stability properties of the determined periodic solutions are found through the
Hsu procedures given in [53, 54]. Transformation of Eq.(39) into the state-space form yields

dY
dτ

= P (τ)Y, (40)

where Y (τ) = [∆y,∆ẏ]T and P (τ) denotes the periodic matrix with the period T . The stability criteria
based on the Floquet theory [52, 55] for determination of the stability property of the periodic solutions
Eq.(27) is based on solving the eigenvalues of the monodromy matrix i.e. Floquet multipliers. In the case
where all values of Floquet multipliers are located inside the unit circle centered at the origin of the complex
plane, the periodic solutions are stable or asymptotically stable. On the other hand, when the Floquet
multipliers lie outside of the unit circle in the complex plane, the periodic solutions are unstable [52, 55].
The stability of the periodic solutions, depending on a location where the Floquet multipliers or a pair of
complex conjugate multipliers crosses the unit circle, one can detect different bifurcation points such as Hopf,
Saddle-node, and period of doubling bifurcations [52, 55]. In the following, it is assumed that the period
T = 2π of y0(τ) is divided into Nk sub-intervals, in which the k-th interval is ∆k = τk−τk−1 for τk = kT/Nk.
In the case when the P (τ) is the continuous periodic matrix with respect to τ , such that it can be replaced
by a constant matrix in the k-th interval for the case when Nk is chosen to be sufficiently large, as

Pk =
1

∆k

∫ τk

τk−1

P (τ) dτ, (41)

where the transition matrix can take the following form

M =

Nk∏

i=1

ePi∆i =

Nk∏

i=1


I +

Nj∑

j=1

(Pi∆i)
j

j!


 , (42)

in whichNj denotes the number of terms in the approximation of the constant matrixPk. From the transition
matrix M one can obtain Floquet multipliers as eigenvalues of Eq.(42) in the form

det (M− σ I) = 0. (43)

6. Numerical results

In this Section, the previously presented methodology based on IHB, the continuation technique and the
Floquet stability theory is used to determine the stable and unstable branches of the periodic responses of
the axially moving beam with coupled NES-EH attachment. The amplitude-frequency response diagrams are
used to investigate the effects of the transporting speed as well as the presence of the nonlinear attachment
on the dynamic behavior of the axially moving beam. For better understanding of the effect of nonlinear
attachment, this section will be divided into two parts. In the first part, the axially moving beam with and
without the attachments is analyzed for different values of transporting speed v and the obtained results are
compared with the results from the literature [44]. Afterwards, a detailed analyses of the effect of axially
transporting speed and transverse load on the periodic response will be shown. In the second part, we
will present the frequency and time response diagrams, where the effects of energy transfer and dissipation
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through nonlinear attachment will be studied. It should be noted that all the system parameters given in
Appendix 1 are first determined in the symbolic form and then introduced into the IHB code developed in
the Matlab software. We define the response amplitudes from Eq.(27) as

q1(τ) = A11 cos(τ + φ11) +A12 cos(3τ + φ12) + ..., (44)

q2(τ) = A21 cos(τ + φ21) +A22 cos(3τ + φ22) + ...,

y(τ) = A31 cos(τ + φ31) +A32 cos(3τ + φ32) + ...,

Q(τ) = A41 cos(τ + φ41) +A42 cos(3τ + φ42) + ...,

where
Ajk =

√
a2
ij + b2jk, φjk = tan−1(bjk/aij), j = 1, ..., 4 k = 1, ..., 5.

The system parameters of the presented axially moving beam are adopted from [56], where the value of the
axial transporting speed is adopted as v = {0.2, 0.4, 0.6, 0.8}.

When considering the nonlinear problem of the axially moving beam, where the cubic nonlinearity plays
an important role in the discretized model, three to one internal resonance can be observed. Starting from
the discretized equations Eq.(18) - Eq.(21), and neglecting the external damping parameters (µ11, µ22), the
characteristic equation for the linear system of axially moving beam takes the following form

ω4 − (k11 + k21 + µ12µ21)ω2 + k11k22 = 0. (45)

The characteristic equation is solved for v = 0.6 with the following values of natural frequencies ω1 = 2.8223
and ω2 = 9.1398. In the nonlinear system with cubic nonlinearity, the phenomenon known as internal
resonance occurs between modes when ω2 ≈ 3ω1.

6.1. Comparative study
In order to validate the extended model of axially moving beam with nonlinear attachments, the IHB,

continuation method and Floquet stability theory are used to trace the periodic responses and determine
their stability for different values of transporting speed v. It should be noted that the results obtained in
[44] are presented only for the values of transporting speed v = 0.6 and the amplitude of excitation load
f1 = 0.0055. However, in this paper, we extend the parametric analyses to different values of transporting
speed v = {0.2, 0.4, 0.6, 0.8} and higher values of excitation load amplitude f1 = 0.0077. The nonlinear
phenomenon known as nonlinear "hysteresis", with coexisting periodic orbits, is detected on the amplitude-
frequency response diagrams. For the solution process, the first five odd terms in the Fourier series (M = 5)
are adopted in Eq.(27) and Eq.(28). The Hsu procedure is adopted for approximation of the transition matrix
to analyze the stability of periodic solutions. Based on the convergence study given in [57], the transition
matrix is determined by adopting the following values of parameters: Nk = 5000 and Nj = 5.

Fig.2 shows the effect of different values of transporting speed v = {0.2, 0.4, 0.6, 0.8} on the amplitude-
frequency response for the case of an axially moving beam without a nonlinear attachment. The ordinate
axis represents the amplitudes A11 and A22 of the two most influenced modes of both displacements, while
the abscissa shows frequency ratio Ω/ω1. For the complete analysis of the amplitude-frequency response,
branches of stable and unstable periodic solutions are determined based on the Floquet stability theory.
The blue solid line represents stable periodic solutions while red point branches represents unstable periodic
solutions. Both amplitude-frequency responses, A11 and A22, show a nonlinear "hysteresis" part of the
response with coexisting multiple periodic solutions. Forward frequency sweeping, for which the frequency
ratio increases Ω/ω1 starting from some small value (Ω/ω1 = 0.6), leads to an increase of both amplitudes A11

and A22 until Ω/ω1 reaches the value where the periodic solution loses its stability due to the appearance of a
saddle-node bifurcation. This instability is detected by the calculation of Floquet multipliers, where at least
one of them crosses the unit circle in the complex plane in +1 direction. Further increase in the frequency
ratio Ω/ω1 leads to the "jump-down" effect, i.e. a dramatic decrease in the values of the response amplitude.
On the other hand, the backward frequency sweeping will start from some higher values of the frequency
ratio (Ω/ω1 = 2) and decrease while the response amplitude slowly increases. However, when the frequency
ratio reaches the value where the periodic solution loses its stability, the "jump-up" phenomena will appear
and the response amplitude will increase. This process of forward and backward frequency sweeping results
in a generation of the aforementioned "hysteresis" phenomenon with coexisting periodic solutions. For the
values of transporting speed v = 0.6, the 3:1 internal resonance can be detected (Fig.2) since the natural
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frequencies ω2 and ω1 are commensurable in ratio ω2 ≈ 3ω1. From the physical point of view, the natural
frequencies of the axially moving beam are directly dependent on the transporting speed v. Further increase
of the transporting speed until the value v = 0.8 results in increased values of the response amplitude, when
the nonlinear hysteresis phenomenon becomes more prominent.

0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

0.02

0.025

(a)

0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
10-3

(b)

Figure 2: The amplitude-frequency response curves of the axially moving beam for different values of transporting speed v
and the excitation load amplitude f1 = 0.0055. Blue solid lines represent stable branches, while the red dotted lines represent
unstable branches of the amplitude-frequency response curves. The response amplitude A11, given in the sub-figure a), and
response amplitude A22, given in the sub-figure b), are defined in Eq.(44).

Fig. 3 shows the amplitude-frequency responses of the axially moving beam without the external nonlinear
attachment, influenced by the higher values of excitation load amplitude f1 = 0.0077, varying transporting
speed v and obtained for the frequency ratio Ω/ω1 within the range 0.6−2.5. The frequency response diagrams
for amplitudes A11 and A22 shown in Fig.3 exhibit nonlinear hysteresis phenomenon showing coexisting
multiple periodic solutions. The stable and unstable branches of the periodic solutions are displaying similar
properties, as in the previous case. However, an increase of the transporting speed can cause widening of
unstable branches. Moreover, by comparing the amplitudes given in Fig. 2 and Fig. 3, it can be concluded
that an increase of the values of excitation load amplitude increases the magnitudes of response amplitudes,
which leads to an extended frequency range in which the "hysteresis" appears in the amplitude-frequency
response for all the values of transporting speed v. It should be noted that there are significant differences in
the response amplitudes for the cases with lower and higher values of excitation load f1 when the transporting
speed is equal to v = 0.6. However, these changes are obvious when the axially transporting speed reaches
the value v = 0.8, since the response amplitude A11 significantly decreases while the amplitude A22 becomes
larger.

Further, Fig.4 and Fig.5 show the effects of a NES attachment on vibration amplitudes of the axially
moving beam. Here, the response diagrams are determined for the values of excitation load f1 = 0.0055 and
f1 = 0.0077, respectively. Comparing the amplitudes (A11 and A22), one can notice a significant reduction
of their magnitudes due to the introduced NES device. Moreover, both stable and unstable branches of the
periodic solution are determined, where the blue solid lines represent stable branches, while the red points
represent unstable branches of the periodic responses. It can be observed that the introduced NES device
leads to a decrease in vibration response amplitudes more than 50% of the initial vibration amplitudes of
the pristine axially moving beam. An interesting behavior can be noticed for the case with excitation load
f1 = 0.0055, where the response amplitude A11 loop vanishes (Fig.4) while in the case of f1 = 0.0077 a
loop appears again. By analyzing the response amplitudes A11 and A22 for v = 0.6, it can be observed that
the energy transfer occurs between the first and the second vibration mode through the internal resonance
phenomena. The material parameters used in this case for tracing the frequency response diagrams are:
k = 50, b = 0.05, k̃p = 3, ε = 0.1.

Validation of the proposed solution
In order to show the correctness of the presented methodology for solving the coupled system of nonlinear

differential equations, the approximate results obtained by the IHB method are compared with the results
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Figure 3: The amplitude-frequency response curves of the axially moving beam for different values of transporting speed v and
excitation load amplitude f1 = 0.0077. The blue solid lines represent the stable branches, while the red dotted lines represent
the unstable branches of the amplitude-frequency response curves. The response amplitude A11, given in the sub-figure a), and
the response amplitude A22, given in the sub-figure b), are defined in Eq.(44).
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Figure 4: The amplitude-frequency response curves A11, A22 and A31 of the axially moving beam with the NES device. The
blue solid lines represent stable branches, while the red dotted lines represent unstable branches on the frequency response
diagrams. The response curves A11, A22 and A31 are given in sub-figures a), b) and c), respectively, for the excitation load
amplitude f1 = 0.0055.
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(a) Response amplitude A11
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(b) Response amplitude A22 (NES )
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(c) Response amplitude A31 (NES )

Figure 5: The amplitude-frequency response curves A11, A22 and A31 of the axially moving beam with the NES device. The
blue solid lines represent stable branches, while the red dotted lines represent unstable branches of the amplitude-frequency
response curves. The response curves A11, A22 and A31 are given in a), b) and c), respectively for the excitation load amplitude
f1 = 0.0077.

obtained by the Runge-Kutta method (ode45 in Matlab). The periodic solutions are depicted in the phase
plane, where the velocity is given on the ordinate axis while the displacement is on the abscissa. Fig.6
shows periodic solutions determined by solving Eq.(22) - Eq.(25), where the blue solid line represents the
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solution determined by the IHB method while the "red circles" correspond to the periodic solutions found
by direct numerical integration. It can be noticed that the periodic solutions obtained by the approximate
IHB method are in good agreement with those obtained by the numerical integration method. The following
dimensionless parameters are adopted in this analysis: v = 0.6, f1 = 0.07, k = 10, b = 0.05, k̃p = 3, ε = 0.1,
G̃ = 5, R̃ = 1, Ω = 0.9ω1. Values of other system parameters are adopted from [44]. The initial conditions
used in the numerical calculation are generated by the periodic solution obtained from the IHB method when
setting τ = 0.
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Figure 6: The periodic solutions obtained by the incremental harmonic balance (IHB) method and direct numerical integration
(NI) depicted in the phase plane. The results obtained with the IHB method are represented by the blue solid lines while the
results obtained b direct NI are represented by the red circles.

6.2. Parametric study
Here, we investigate how the transporting speed v, linear stiffness parameter k̃p, and excitation load

amplitude f1, affect the amplitude-frequency responses for amplitudes A11, A22, A31 and A41 of the presented
axially moving beam model with a NES-EH device attached. The response amplitudes A11, A22, A31 are the
amplitudes of the mechanical displacements and A41 corresponds to the output electrical charge, defined in
Eq.(44). The particular cases of the excitation load amplitude are adopted as lower f1 = 0.0055, f1 = 0.0077
and higher f1 = 0.07 values, for which significant changes of the amplitudes can be observed. Moreover,
different qualitative behavior of the frequency responses can be noticed for the moving beam with NES-EH
device presented in Figs. 7 - 11. The frequency ratio Ω/ω1 is varied in the range 0.6−2 for lower load values,
and in the range Ω/ω1 = 0.6− 4.5 for higher values of the excitation load .

Fig. 7 shows the amplitude-frequency responses for the amplitude A11 of the axially moving beam with
NES-EH and different values of transporting speed v, linear stiffness k̃p and excitation load f1. Starting
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from some small value of the frequency ratio Ω/ω1 = 0.6, which is far from the resonance state, a continuous
increase of its value increases the response amplitude A11 until the frequency ratio parameter reaches a
peak value where the periodic solution loses its stability. Amplitude A11 is very sensitive to changes in
the frequency ratio Ω/ω1, where small increase in this parameter results in a significant decrease of the
amplitude. It should be noted that for all values of transporting speed v we have similar behavior of
the frequency response curves with a pronounced stiffness hardening effect. Moreover, variation of the linear
stiffness parameter k̃p causes small changes of the amplitude A11. However, in the case when the transporting
speed is v = 0.6 and excitation load f1 = 0.0077, the response curve forms a loop where two peak amplitudes
can be observed, represented by the blue solid line on 7 (c) and (d).
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Figure 7: The amplitude-frequency response curves A11 of the axially moving beam with nonlinear NES-EH attachment for
different values of transporting speed v, and linear stiffness parameter k̃p.

Figure 8 shows the amplitude-response curves for the amplitude A22 determined for the axially moving
beam with an NES-EH attached, for different values of linear stiffness parameter k̃p, transporting speed
v and excitation load f1. It can be observed that an increase of the transporting speed v from the value
0.2 to some higher values causes a significant and qualitative changes in the amplitude-frequency response
curves near the resonance state. The value of the response amplitude A22 is the biggest for the case when
transporting speed is equal to v = 0.6. Further, an increase of the value of linear stiffness parameter k̃p for a
fixed value of transporting speed v = 0.6 leads to an increase of the area with coexisting periodic solutions,
where the response curve forms a loop. Similar behavior can be noticed in Fig.7, where the amplitude A11

has a local minimum. A detailed analysis of the response amplitudes A11 and A22 shows energy transfer
between the first two vibration modes that is caused by the internal resonance phenomena when ω2 ≈ 3ω1.
Moreover, one can notice a weak influence of parameter k̃p on the internal resonance and mode interactions.
On the other hand, the effect of the excitation load on the response amplitude A22 reflects in an increase of
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the nonlinear hysteresis region with coexisting periodic solutions.
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(c) k̃p = 0, f1 = 0.0077
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(d) k̃p = 3, f1 = 0.0077

Figure 8: The amplitude-frequency response curves A22 of the axially moving beam with nonlinear NES-EH attachments for
different values of transporting speed v and linear stiffness parameter k̃p.

Figure 9 shows traced amplitude-frequency curves of the amplitude A31 for different values of transporting
speed v and linear stiffness parameter k̃p. One can observe similar frequency responses like in the case of the
amplitude A11. However, there are some obvious differences, especially for the value of the linear stiffness
parameter equal to k̃p = 3. One can notice that an increase of transporting speed decreases the response
amplitude A31, where the hardening nonlinearity is displayed. However, when the liner stiffness parameter
is equal to k̃p = 0, the transporting speed has a similar influence on the response amplitude A31, as shown
in Fig. 7. In general, a significant reduction of amplitudes A11 and A22 by attaching the EH-NES can
be observed, where a significant increase of the response amplitude A31 indicates that a large amount of
mechanical energy is transferred to the nonlinear attachment. This implies that the main goal of attaching
the NES-EH device on the axially moving beam is fulfilled.

Figure 10 shows the results for the response amplitude A41, corresponding to the electrical degree of
freedom, in the case of the axially moving beam system with NES-EH attachment. Here we analyses the
model with lower f1 = 0.0055 and higher values f2 = 0.0077 of the external load amplitude. In Fig.10, it can
be noticed that for lower values of external load amplitude f1 = 0.0055 the response amplitude A41 increases
for an increase of the transporting speed v. However, for the higher values of excitation load f1 = 0.0077,
there are no significant changes in the peak value of the response amplitude A41 while the interval with
multiple periodic orbits is increased for an increase of the transporting speed v. On the other hand, an
increase of the linear stiffness parameter k̃p implies reduced response amplitudes, as shown in Fig.10(b).
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(b) k̃p = 3, f1 = 0.0055
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(c) k̃p = 0, f1 = 0.0077
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(d) k̃p = 3, f1 = 0.0077

Figure 9: The amplitude-frequency response curves A31 of the axially moving beam with nonlinear NES-EH attachment for
different values of transporting speed v and linear stiffness parameter k̃p.

Based on the previous, it can be concluded that the presented system can harvest more energy for larger
transporting speed and external load amplitude.

The influence of higher values of the excitation load amplitude on the amplitude-frequency response
curves A11, A22 and A31 of the axially moving beam with the attached NES-EH device is presented in
Fig. 11. The following values of material parameter values are adopted: linear stiffness parameter k̃p = 3,
excitation load amplitude f1 = 0.07, electro-mechanical coupling G̃ = 4 and R̃ = 2. It can be observed
that higher values of the excitation load lead to a significant change in the frequency response curves. By
tracing the response curves, starting from Ω/ω1 = 0.8, the values of the response amplitude A11 increase
and create a loop, while for further increase of its value the frequency response curve reaches the turning
point. After reaching its peak value, for further increase of the frequency ratio one can observe a decrease
of the response amplitude A11. However, an increase of the transporting speed v causes that the hardening
stiffness nonlinearity effect. The maximum response amplitude value remains the same for all three analyzed
cases. Nevertheless, an increase of the transporting speed v leads to an increase of the maximum value of the
response amplitude A22 and a widening of the loop (interval with multiple periodic solutions). Comparing
the amplitude-frequency response curves for A22, f1 = 0.0055 (Fig. 8) and f1 = 0.07 (Fig.11), a significant
difference between these two cases can be observed. In the case of the response amplitudes A31 and A41, one
can notice a softening stiffness nonlinearity effect. The major consequence of increasing the external load
amplitude f1 = 0.07 are much higher response amplitudes, as shown in Fig. 11.
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Figure 10: The amplitude-frequency response curves A41 of the axially moving beam with nonlinear NES-EH attachment for
different values of transporting speed v, and linear stiffness parameter k̃p.

6.3. Time response diagrams
To investigate performances of the presented model of an axially moving beam with an attached NES-

EH device in the sense of vibration suppression and energy harvesting, the corresponding time response
diagrams are presented in Figs.12 - 15. The material parameters used in this analysis are: f1 = 0.0055,
k = 10, b = 0.5, k̃p = 5, ε = 0.1, G̃ = 3, R̃ = 1, Ω = 0.95ω1. The initial conditions are adopted
as q1(0) = 0.03, q̇1(0) = 0.03, q2(0) = 0.01, q̇2(0) = 0 in each presented time simulation. The initial
conditions for the nonlinear attachment are y(0) = 0.01, ẏ(0) = 0 and Q(0) = 0. Time responses are
obtained for the coordinates q1(τ), q2(τ), y(τ) and Q̇(τ), by using the direct numerical integration (ode45
in Matlab) and solving the system equations Eq.(22) - Eq.(25) for time period T = 150. Figures 12 - 15
show time response diagrams for different values of transporting sped v = 0.2, 0.4, 0.6 and 0.8. It should be
noted the blue solid lines represent the amplitude of the primary structure without a nonlinear attachment,
the red solid lines show the amplitudes of the primary structure, and the green solid lines are related to the
amplitude of the NES mass (for Fig.12 - Fig.15, sub-figures (a) and (b)). In all cases, sub-figures (c) shows
the electric current responses during a long time integration.

One can observe that the introduced NES-EH device has a large effect on the response amplitudes, which
is displayed in the form of reduced amplitude of the primary structure. The main reason for this lies in the
transfer of mechanical energy from the excited axially moving beam structure to the NES-EH attachment,
which is then dissipated through the mechanical NES damping. Part of that energy can be captured by the
introduced EH device, as shown in sub-figures (c) (Fig.12 - Fig.15). By comparing the response amplitudes
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Figure 11: The amplitude-frequency response curves A11, A22 and A31 and A41 of the axially moving beam with nonlinear
NES-EH attachments for different values of transporting speed v, and linear stiffness parameter k̃p and excitation load f1 = 0.07.

q1(τ) and q2(τ) from Fig.12 - Fig.15, it can be observed that amplitudes of q1(τ) and q2(τ) of the system
with NES-EH device decrease much faster then those for the case with the primary structure alone. After
investigating the effects of the transporting speed v on vibration attenuation, it can be concluded that an
increase of this parameter leads to minor changes in the amplitudes q1(τ) and q2(τ) at the beginning of
the simulation. At the same time, the energy harvesting application can be analyzed through the series
of A41 response amplitude diagrams given in sub-figures (c) (Fig.12 - Fig.15). It can be observed that for
lower values of transporting speed v responses Q̇ are higher at the beginning of the simulation and then
rapidly decrease due to imposed vibration reduction through NES-EH device. On the other hand, higher
values of transporting speed v lead to higher initial response amplitudes, which after reaching the peak value
gradually decrease to some finitely small value. Based on such behavior, it can be pointed out that the
presented nonlinear attachment, such as a NES-EH device, shows great performance in energy localization
and dissipation characteristics in short time intervals.

In this study, we paid more attention to the performance of NES-EH device than those of pure NES since
there is no significant difference in their behavior when comparing their effects on the reduction of vibration
amplitudes. In this study both NES and NES-EH configurations were investigated, but the attention was
focused primarily on NES-EH since the results indicated that there was no significant difference in their
performance regarding the vibration attenuation. So it can be concluded that introducing the EH element
does not by itself improve the vibration reduction capabilities of the device. Nevertheless, compared to the
regular NES, a NES-EH has another important additional property - it can transform some of the mechan-
ical vibration energy into electrical energy, that is, such a device possesses energy harvesting capabilities.
However, the presented analysis also showed certain drawbacks of the proposed NES-EH device configuration
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Figure 12: The time response diagrams for the transporting speed v = 0.2.
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Figure 13: The time response diagrams for the transporting speed v = 0.4.
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Figure 14: The time response diagrams for the transporting speed v = 0.6.
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Figure 15: The time response diagrams for the transporting speed v = 0.8.

i.e. it demonstrated that the portion of the harvested energy is relatively small and that it depends on how
fast the NES will transfer the energy from the main structure to the attachment and dissipate it through the
mechanical damper. In spite of that, the amount of harvested electrical energy could be sufficient to supply
some small monitoring devices and sensors such as MEMS or NEMS.
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7. Conclusions

In this paper we used a semi-numerical approach to study the nonlinear periodic responses of an axially
moving beam with nonlinear attachment such as a nonlinear energy sink coupled with an energy harvesting
device. We have shown that by attaching this device onto the primary structure one can exploit both vibration
suppression and energy harvesting capabilities of the presented system. The governing equations of the
system are derived by using the Euler-Bernoulli beam theory, von KÃąrmÃąn strain-displacement relation
and Hamilton’s principle. The Galerkin method is introduced to discretize the partial differential equations
to the system of nonlinear ordinary differential equations. Two sources of nonlinearity are considered -
the geometric nonlinearity that introduces the large amplitude deflections into the system, as well as a
nonlinearity of the spring in the nonlinear energy sink device. The problem of finding the periodic responses
in the form of amplitude-frequency diagrams is resolved by using the semi-numerical IHB and continuation
method. This methodology significantly simplifies the calculation of periodic solutions compared to the
classical numerical integration methods, thus very efficiently providing the complex amplitude-frequency
responses of strongly nonlinear systems with turning points and multiple periodic solutions. Complete
set of integrals for IHB is derived in the analytic form, where the computation time for determination of
responses is significantly reduced. Application of the Floquet stability theory and the Hsu procedure to
investigate the stability of a periodic solution significantly improved the qualitative analysis of the system’s
nonlinear behavior. Considering the direct numerical integration, the time response diagrams are determined
to study the amplitude response reduction and energy localization and dissipation through the application
of the NES-EH attachment. Validation study have shown a good agreement of the results obtained by the
presented method with the results from the literature. Parametric study revealed that performance of the
nonlinear attachment becomes more prominent for an increase of the linear stiffness and transporting speed.
Moreover, it was shown that an increase of the transporting speed leads to amplification of the hardening
stiffness nonlinearity effect.

Since undesired vibration of engineering structures can be induced by various sources such as earthquakes,
acoustic noise, machine or vehicle-induced vibration or flow-induced vibration, introduction of the NES or
coupled NES-EH devices can be advantageous for vibration absorption and energy harvesting purposes.
Based on the presented results, it can be concluded that methodology used in this study can be applied to
analyze systems with higher number of structural elements and degrees of freedom with strong nonlinearities,
which can be an important step in future design of novel passive vibration control devices.
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Appendix 1: Matrix coefficients

Matrices and vectors in Eq.(22):

K11 =

∫ 2π

0

{
Ω2

0C
TC′′ + Ω0(µ11 + 2b)CTC′ +

(
k11 + k12q

2
20 + 3k13q

2
10 + 6kq2

10 − 12kq10y0 + 6ky2
0

)
CTC

}
dτ,

(46)

K12 =

∫ 2π

0

{
µ12Ω0CTC′ + 2k12q10q20CTC

}
dτ,

K13 =

∫ 2π

0

{
−2bΩ0CTC′ + 6k(−q2

10 + 2q10y0 − y2
0)CTC

}
dτ,

R11 = −
∫ 2π

0

{
Ω2

0C
TC′′ + Ω0(µ11 + 2b)CTC′ +

(
k11 + k13q

2
10 + 2kq2

10

)
CTC

}
dτ,

R12 = −
∫ 2π

0

{
−Ω0µ12CTC′ + k12q10q20CTC

}
dτ,

R13 = −
∫ 2π

0

{
−2bΩ0CTC′ + 2k

(
−3q2

10 + 3q10y0 − y2
0

)
CTC

}
dτ,

V11 = −
∫ 2π

0

{
2Ω0CTC′′ + (µ11 + 2b)CTC′

}
dτ,

V12 = −
∫ 2π

0

{
−µ12CTC′

}
dτ,

V13 = −
∫ 2π

0

{
−2bCTC′

}
dτ,

F̃1 =

∫ 2π

0

{
f1CT cos τ

}
dτ,
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Matrices and vectors in Eq.(23):

K21 =

∫ 2π

0

{
µ21Ω0CTC′ + 2k22q10q20CTC

}
dτ, (47)

K22 =

∫ 2π

0

{
Ω2

0C
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2
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2
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dτ,
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dτ,
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}
dτ,
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{
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}
dτ,
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0

{
f2CT cos τ

}
dτ,

Matrices from Eq.(24):

K31 =

∫ 2π

0

{
−bΩ0CTC′ − k(3q2
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dτ, (48)

K33 =
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Matrices from Eq.(25):

K43 = −
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