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Abstract
Kinematic calibration of robots is an effective way to guarantee and promote their performance characteristics. There
are many mature researches on kinematic calibration, and methods based on MDH model are the most common ones.
However, when employing these calibration methods, it occasionally happens that the objective function cannot converge
during iterations. Through analyzing robotic forward kinematics, we found out that the Cartesian coordinates of the end-
point are affine to length-related MDH parameters, where linear and nonlinear parameters can be separated. Thanks to the
distinctive characteristic of the MDH model, the kinematic calibration problem can be converted into a separable nonlinear
least squares problem, which can further be partitioned into two subproblems: a linear least squares problem and a reduced
problem involving only nonlinear parameters. Eventually, the optimal structural parameters can be identified by solving this
problem iteratively. The results of numerical and experimental validations show that: 1) the robustness during identification
procedure is enhanced by eliminating the partial linear structural parameters, the convergence rate is promoted from 68.98%
to 100% with different deviation vector pairs; 2) the initial values to be pre-set for kinematic calibration problem are fewer
and 3) fewer parameters are to be identified by nonlinear least squares regression, resulting in fewer iterations and faster
convergence, where average runtime is reduced from 33.931s to 1.874s.

Keywords Kinematic calibration · Robustness · Separable nonlinear least squares · Positioning accuracy

1 Introduction

As essential ingredients of intelligent manufacturing,
industrial robots have been widely employed in a broad
array of fine-processing scenarios, such as arc welding [1,
2], robotic grasping [3] and machining [4, 5], which requires
ultra-accurate positioning of robots. Unfortunately, since
the deviations of rod lengths and zero offsets of each joint
are introduced during the manufacturing and assembling
procedure, the absolute positioning and orientation errors of
robotic end-points are unevenly distributed in the Cartesian
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space [6, 7]. Hence, it is urgent to identify the structural
parameters of robots through kinematic calibration. There
are numerous mature methods and algorithms in the field
of kinematic calibration [8–10]. However, in practice, it
occasionally happened that the objective function of these
kinematic calibration methods cannot render to convergence
in some situations. The problem we encountered is actually
a convergence analysis problem of nonlinear least squares.

It is critical for an optimization problem to choose a
suitable model, and it will directly relate to the convergence
of the objective function. Considering kinematic calibration
of robots, three basic characteristics should be required
to meet: completeness, continuity and minimality [11]. So
far, there have been several mature modelling theories, and
the Denavit-Hartenberg (DH) modelling method [12] is the
widely recognized as one of the most well-understood and
commonly employed since it has the minimum parameter
set representing the location of joint frames. However, it
was found out by Hayati [13] that when two consecutive
joint axes of robots are nearly parallel or parallel, even
a slight change in the geometric structure of robots will
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lead a tremendous deviation in the DH model parameters,
and thus it is not continuous. Since then, researchers
have modified the modelling approach to overcome the
singularity problem, which could be mainly divided into
two categories: product of exponential (POE) based model
and modified DH (MDH) model. POE based model directly
describes the geometry of each joint axis through six
parameters, which is singularity-free [14–16]. Nevertheless,
there are internal constraints in the six parameters, which
will increase the complexity and reduce the robustness
of the identification process [17]. Moreover, most robotic
controllers have no corresponding compensation interface
for POE parameters [18]. Likewise, to solve the singularity
problem, some extra redundant parameters were introduced
to the DH model, and the Hayati model [19] is the widely
used one by adding an angular parameter to rotate around
the Y axis of local joint frames, which is also called the
MDH model. Since all the correspondences could be found
between the robotic geometric structure and MDH model
parameters, the identified optimal structural parameters can
be readily compensated into robotic controllers. In this
paper, all derivations of robotic kinematics will be based on
MDH modelling method.

Apparently, the robotic forward kinematics model is
a typical nonlinear mapping containing trigonometric
functions of structural parameters, and the identification
process of structural parameters could be treated as a
nonlinear least squares problem. So far, the nonlinear least
squares problem has addressed plenty of attentions. With the
advantage of fast convergence, one of the most commonly
used descent methods in kinematic calibration is the Gauss-
Newton method, which can minimize the 2-norm of residual
errors based on implemented first derivatives [20]. Then,
Levenberg-Marquardt (LM) method [21] was employed to
solve the singularity problem that might be encountered
during the iterative searching for the optimal parameters
with Gauss-Newton method. Recently in [22–24], the
absolute positioning accuracy of robots could be further
enhanced by the extended Kalman filter method, which
can reduce the impact of Gaussian random errors coming
with the measurement process. However, when employing
these calibration methods, it occasionally happened that
the objective function cannot converge during iterations.
Through analyzing forward kinematics of robots, we found
that the Cartesian coordinates of the end-point are affine to
length-related MDH parameters, where linear and nonlinear
parameters can be separated. Fortunately, taking advantage
of the distinctive structure of the MDH model, the original
problem can be turned into a separable nonlinear least
squares (SNLLS) problem. Golub and Pereyra [25] firstly
proposed the SNLLS problem, and gave its solution through
a variable projection method. The key idea of the variable

projection method is to partition parameters into linear
and nonlinear part [26], among which the linear part of
parameters is searched by linear least squares, resulting
in a reduced subproblem including only the nonlinear
part [27]. Since fewer parameters are to be identified by
nonlinear least squares regression, it is crucial to increase
the likelihood of finding the global minimum from plenty
of other local minimums, and in addition, reduce the
time spent searching for the solution [28–30]. In [28],
concrete comparisons was presented on the performance
of separated algorithms combined with different descent
methods, and the influence of different Jacobian matrices
on convergence was elaborately given. Based on the
benefits described above, we are wondering if the separable
nonlinear algorithm can improve the convergence of the
robotic kinematic calibration problem, which motivates us
to compare the convergence performance of the separable
nonlinear algorithm with traditional calibration methods.

The remainder of this paper is organized as follows. In
Section 2, the separable nonlinear least squares problem
and corresponding solution will be formulated. Section 3
will give the concrete comparisons on numerical and
experimental results with different methods on absolute
positioning accuracy. Section 4 will conclude this paper. It
is worth mentioning that the main contributions lay in:

• Taking advantage of the distinctive characteristic of
MDH model, this paper proposes a separable nonlinear
least squares algorithm for robotic kinematic calibra-
tion. The robustness during identification procedure is
enhanced by eliminating the partial linear structural
parameters.

• Fewer parameters are to be identified by nonlinear least
squares regression, resulting in fewer iterations and
faster convergence. In addition, the initial values to be
pre-set for kinematic calibration problem are fewer, and
thus the convergence of kinematic calibration problem
is only related to the pre-set values of robotic nonlinear
structural parameters.

• Numerical and Experimental results including com-
prehensive comparisons substantiate the effectiveness
and superiority of the proposed SNLLS algorithm for
kinematic calibration.

2 Separable Nonlinear Least Squares
Algorithm

In this section, an equivalent MDH model with nonlinear
parameters separated will be established, and a separable
nonlinear least squares algorithm will be proposed for a
faster convergence with wider range.
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2.1 Robot-Sensor System for Calibration

The robotic end-effector is expected to attain the desired
positioning point. Unfortunately, since the deviations of rod
lengths and zero offsets of each joint are introduced during
the manufacturing and assembling procedure, the absolute
positioning and orientation errors of the tool central point
are unevenly distributed in the Cartesian space. Hence, it
is critical to promote the performance of robots through
identifying the structural parameters.

The experimental apparatus for calibration is presented
in Fig. 1, where the Cartesian coordinate of the tool
central point (TCP) is accurately measured by a laser
tracker. In Fig. 1b, the schematic diagram gives a detailed
description of each local frame establishment for a 6-DOF
robot, where red arrows represent Z-axes of their local
coordinate systems, and blue arrows denote X-axes. For
simplicity, the robotic base coordinate system {M} is set
to coincide with the 1-st joint coordinate system frame
when θ1 = 0. It is worth noting that the transformation
of {B} with respect to {M}, namely the hand-eye matrix
is unknown, and thus needs to be identified. During the
measurement procedure, the TCP successively reaches k

arbitrary configurations, whose corresponding Cartesian
coordinates should be distributed as much as possible
throughout the working space. And then, the coordinates
corresponding to each configuration are measured by the
laser tracker. In the meantime, joint angles are recorded,
which correspond to the k configurations. Finally, with the
attained data, the structural parameters can be identified by
solving the optimization problem defined in Section 2.3.

2.2 MDHModel with Nonlinear Parameters
Separated

According to robotic kinematics, considering a n-DOFs
serial robot, the Cartesian coordinate pm

t of the tool central

Fig. 1 Experimental apparatus for kinematic calibration in our lab. a
Physical map. b Schematic diagram

point with respect to the measurement frame {M} can be
analytically described as follows [31],

pm
t = f (a,α, θ, d,β) = Am

b A
b
1A

1
2 · · ·An−1

n pn
t , (1)

where f (·) is a nonlinear mapping, providing the con-
nection between MDH parameters (a,α, θ, d, β) and the
Cartesian coordinate, pm

t . Besides, the homogeneous matrix
Ai−1

i denotes the transformation and rotation from frame
{i − 1} to frame {i}, and superscript or subscript letters m
and b represent the measurement frame {M} and robotic
base frame {B}, respectively. The vector pn

t ∈ R(3) is
the Cartesian coordinate of TCP with respect to the n-th
joint frame. As mentioned in Section 2.1, the transformation
from {M} to {B}, and the Cartesian coordinate of TCP are
unknown. Hence, parameters in Am

b and pn
t should also be

identified and determined. Define that

Am
b !

[
Rb bb
O 1

]
, (2)

where

Rb =

⎡

⎣
c"c# cφs#s% − s"c% c"s#c% + s"s%

s"c# s"s#s% + c"c% s"s#c% − c"s%

−s# c#s% c#c%

⎤

⎦ ,

(3)

bb =
[
XbYbZb

]T
, (4)

and abbreviations s and c stand for trigonometric functions
sin and cos, respectively. The matrixAm

b could be expressed
by six parameters to be determined, where [Xb, Yb,Zb]
and [",#,%] are respectively transformation and rotation
coordinates from {M} to {B}. Besides, pn

t is defined as

pn
t !

[
Xt Yt Zt

]T
, (5)

the transformation matrix Ai−1
i could be expressed accord-

ing to robotic kinematics, which is elaborated in [31]

Ai−1
i !

[
Ri bi
O 1

]
, (6)

in which

Ri =

⎡

⎣
cθicβi − sθi sαi sβi −sθicαi cθi sβi + sθi sαicβi

sθicβi + cθi sαi sβi cθicαi sθi sβi − cθi sαicβi

−cαi sβi sαi cαicβi

⎤

⎦,

(7)

and

bi =

⎡

⎣
aicθi
aisθi
di

⎤

⎦ =

⎡

⎣
cθi 0
sθi 0
0 1

⎤

⎦
[
ai
di

]
, (8)

where ai , αi , θi , βi and di are MDH parameters
corresponding to i-th joint. It is worth noting that the
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rotation matrixRi is a function of αi and θi , and the position
vector bi is a function of θi , ai and di but is affine to[
ai di

]T. Thereafter, we have

xi−1 = Rixi + bi, (9)

where xi denotes the coordinate of TCP in the local
coordinate frame of the i-th joint. Then, the coordinate of
TCP in the measurement frame can be represented as

xm =Rbxb + bb = Rb(R1x1 + b1)+ bb

=Rb [R1(R2x2 + b2)+ b1]+ bb

=RbR1 · · ·Rnxn +RbR1 · · ·Rn−1bn+
RbR1 · · ·Rn−2bn−1 + · · · +Rbb1 + bb,

(10)

where xn is equivalent to pn
t = [Xt, Yt , Zt ]T, which

is the coordinate in the n-th joint frame. For calibration,
xn is constant. xm is equivalent to pm

t , which is the
Cartesian coordinate of TCP in the measurement frame. For
calibration, linear and nonlinear parameter vectors to be
identified are respectively defined as

r =
[
bb

T, a1, d1, · · · , an, dn, xnT
]T

∈ Ra×1, (11)

ω = [#,%,",α1, θ1,β1 · · ·αn, θn,βn]T ∈ Rb×1, (12)

Define

ḡ(ω) ! [I (3),g0, g1 · · · , gn] , (13)

where

gi(ω) !

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rb

⎡

⎣
cθ1 0
sθ1 0
0 1

⎤

⎦ , i = 0

[RbR1 · · ·Ri ]

⎡

⎣
cθi+1 0
sθi+1 0
0 1

⎤

⎦ , 0 < i < n

[RbR1 · · ·Rn], i = n

(14)

Thereafter, the coordinate of TCP in the measurement frame
(10) could be rewritten as

xm =gnxn + gn−1

[
an
dn

]
+ gn−2

[
an−1
dn−1

]

+ · · · + g0

[
a1
d1

]
+ bb,

(15)

which can be further simplified into

xm = ḡ(ω)r, (16)

It is worth noting that xm is nonlinear in angle-related
parameters ω, but affine in length-related parameters r .

2.3 Separated Nonlinear Least Squares Problem

For the kinematic calibration problem of serial robots, its
objective is to find the optimal structural parameters ω and

r by minimizing the following nonlinear mapping,

c1(r,ω) =
1
2

k∑

j=1

[
ym

(j) − ḡ(ω)(j)r
]2

,

= 1
2

∥Ym − G(ω)r∥2 ,
(17)

where Ym =
[
yTm

(1)
, yTm

(2) · · · yTm
(k)

]T
, and G(ω) =

[
ḡT(ω)(1), ḡT(ω)(2) · · · ḡT(ω)(k)

]T
. And ym(j) is the Carte-

sian coordinate of the TCP with respect to the frame {M}
measured highly accurately, where j = 1, 2 · · · k is the
sequence number of measurement configurations. In addi-
tion, G(ω)r is the corresponding nominal Cartesian coor-
dinate of the TCP, and ∥ · ∥ denotes the Euclidean norm.
Then, the nonlinear function c1 reflects absolute position-
ing accuracy of industrial robots. If the nonlinear structural
parameter vector ω is known, the calibration problem turns
out a typical linear least squares problem. Therefore, the
linear parameter vector r can be directly deduced as

r = G(ω)+Ym, (18)

where G(ω)+ is a Moore-Penrose inverse of G(ω).
Substituting (18) into (17), it can be obtained that

c2(ω) =
1
2

∥∥Ym − G(ω)G(ω)+Ym
∥∥
2

= 1
2

∥∥(
I − G(ω)G(ω)+

)
Ym

∥∥
2

= 1
2

∥∥(
I − PG(ω)

)
Ym

∥∥
2

= 1
2

∥∥∥P⊥
G (ω)Ym

∥∥∥
2
= 1

2
< c, c >,

(19)

where PG(ω) = G(ω)G(ω)+, P⊥
G (ω)

= I − PG(ω) and

c = P⊥
G (ω)

Ym. It is worth noting that the new objective
function c2(ω) is only related to the nonlinear parameter
vector ω. In this way, the benefits of separating linear-
nonlinear parameters are as follows, 1) the robustness
during identification procedure is enhanced by eliminating
the partial linear structural parameters; 2) Fewer parameters
are to be identified by nonlinear least squares regression,
resulting in fewer iterations and faster convergence; and
3) the initial values to be pre-set for calibration problem
are fewer. The main process of kinematic calibration is
to identify nonlinear parameters ω first through (19), and
then the linear parameters r are calculated by least squares
as shown in Eq. 18. Eventually, the objective function
of optimization problem for kinematic calibration can be
expressed as

minimize
ω

: 1
2

∥∥∥P⊥
G (ω)Ym

∥∥∥
2
, (20)

For calibration, taking the 2-norm of absolute positioning
errors as the objective function, not only can the errors be
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reduced to the greatest extent, but it is minimized that the
impact of uncertainty caused by measurement and robotic
repeatability errors during the identification procedure.

2.4 Descent Methods and their JacobianMatrix

Gauss-Newton method is the most common search method
used to solve nonlinear least squares problems, and the
iterative search process along search direction is
(κ+1)ω =(κ) ω +(κ) δ, (21)

where (κ)ω is the current nonlinear structural parameters,
and (κ+1)ω is the parameters for next iteration. Superscript
κ is the number of loop iterations. The (κ)δ is the search
direction, which could be obtained by solving

J
(
(κ)ω

)T
J

(
(κ)ω

)(κ)
δ = −J

(
(κ)ω

)T
c(ω), (22)

where J (ω) ∈ R3k×a is a Jacobian matrix, describing
the differential mapping between structural parameters
and Cartesian coordinates of the end-point. Gauss-Newton
method is a very efficient method, which can give
quadratic convergence in some special cases. However,
its convergence is hypersensitive to the initial values of
parameters to be identified. Levenberg and later Marquardt
proposed a damped least squares method, where both
rapidity and robustness are thought and made to the optimal
trade-off by introducing a damping parameter µ [32]:
(
J

(
(κ)ω

)T
J

(
(κ)ω

)
+ µI

)(κ)

δ = −J
(
(κ)ω

)T
c, (23)

whereµ is iteratively updated, whose determination rule can
be found in [32]. It can be seen from Eqs. 22 and 23 that
the crucial step is to analytically deduce the Jacobian matrix
J (ω), which is the first derivative of the error vector c (ω)
[28]. It can be calculated by

J = DP⊥
GYm = −P⊥

GDGG−Ym −
(
P⊥
GDGG−

)T
Ym,

(24)

where D is the Frechet derivative operator, and G− denotes
the symmetric generalized inverse of a matrix G.

Proof Since G is a 3k × a matrix function, the following
formulas GG−G = G and (GG−)T = GG− will suffice.
The Frechet derivative of PG can be given by

DPG = D(P 2
G) = DPGPG + PGDPG, (25)

where the two terms on the right can be derived by formulas
(28) and (29). Since PGG = G, we have

DG = D (PGG) = DPGG+ PGDG, (26)

and hence,

DPGG = DG − PGDG = P⊥
GDG, (27)

Thus, DPGPG can be deduced by

DPGPG = DPGGG− = P⊥
GDGG−, (28)

and

PGDPG = (DPGPG)
T , (29)

Substituting formulas (28) and (29) into (25), it can be
obtained that

DPG = P⊥
GDGG− +

(
P⊥
GDGG−

)T
, (30)

Obviously,

DP⊥
G = −DPG, (31)

The proof is thus completed.

Exploiting corresponding properties of the matrix P⊥
G ,

the gradient vector J Tc can be further simplified as

J Tc = −Ym
TP⊥

GDGG−Ym, (32)

Proof The right side of Eq. 22 can be expressed as

J Tc = −Ym
T

(
P⊥
GDGG− +

(
P⊥
GDGG−

)T)
P⊥
GYm

= term1 + term2,

(33)

where the two terms on the right will be elaborated
in formulas (35) and (37). Since G− is a symmetric
generalized inverse of the matrix G, it also satisfies
G−GG− = G−. Then, we have

G−P⊥
G = G− (

I − GG−)
= G− − G−GG− = 0, (34)

and hence,

term1 = −Ym
TP⊥

GDGG−P⊥
GYm = 0, (35)

As an idempotent and symmetric matrix P⊥
G , it meets the

following properties
(
P⊥
G

)T
P⊥
G =

(
P⊥
G

)2
= P⊥

G =
(
P⊥
G

)T
, (36)

Inserting (36) into the second term, we have

term2 = −Ym
T

(
P⊥
GDGG−

)T
P⊥
GYm

= −Ym
T (

DGG−)T (
P⊥
G

)T
P⊥
GYm

= −Ym
T (

DGG−)T (
P⊥
G

)T
Ym

= −Ym
T

(
P⊥
GDGG−

)T
Ym

= −Ym
TP⊥

GDGG−Ym,

(37)

The proof is thus completed.
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Fig. 2 Schematic diagram of the
separable nonlinear least squares
algorithm for kinematic
calibration

2.5 Separable Nonlinear Least Squares Algorithm

To sum up, the pseudo code of the proposed separable
nonlinear least squares algorithm is elaborately presented
in Algorithm 1, and corresponding schematic diagram is
shown in Fig. 2. On one hand, the search direction of
the nonlinear parameter vector ω is obtained through the
separable nonlinear least squares algorithm. On the other
hand, substituting the updated nonlinear parameter vector
ω into formula (18), the linear parameter vector r can be
directly calculated by linear least squares method. With
both linear and nonlinear parameters updated, the objective
function (20), namely absolute positioning accuracy can be
eventually computed. if the number of iterations is more
thanM (a pre-set maximum iteration), or the norm of search
direction ∥δ∥2 is less than ϵ (a small tolerance), the loop will
be terminated, and the iteration number as well as the value
of objective function will be saved.

3 Numerical and Experimental Validations

In this section, a set of numerical and experimental
validations on 6R serial robots were given to verify the
robustness and effectiveness of the proposed algorithm.

3.1 Numerical Validation and Analysis

Note that ABB IRB2600 is generally employed in industrial
integrated operations, whose MDH model is presented in
Table 1. In the meantime, it can attain command points
at any orientation in the work space since it has six
independent joints. Hence, we selected ABB IRB2600

as our study subjects. In the simulation, a total of 60
target configurations were randomly generated, considering
the measurement noise, structural parameter errors and
transmission errors.

Algorithm 1 Separable nonlinear least squares algorithm
for robust calibration.

Input: joint angles: θ , nominal nonlinear parameters: (0)ω,
measured Cartesian coordinates: Ym;

Output: optimal nonlinear parameters: ω∗

initialize (0)ω,J
(
(0)ω

)
, c

(
(0)ω

)
,(0) δ, and (0)r

while ω not converge do
Separable nonlinear least squares algorithm:
DG,G,G− ←−(κ) ω,(κ) r

J
(
(κ)ω

)
= −P⊥

GDGG−Ym −
(
P⊥
GDGG−)T

Ym,

J
(
(κ)ω

)T
c
(
(κ)ω

)
= −Ym

TP⊥
GDGG−Ym,

Obtain search direction δ by Gauss-Newton method:
(κ)δ = −

(
J

(
(κ)ω

)T
J

(
(κ)ω

))+
J

(
(κ)ω

)T
c(ω),

or Levenberg-Marguardt method:
(κ)δ =−

(
J

(
(κ)ω

)T
J

(
(κ)ω

)
+µI

)+
J

(
(κ)ω

)T
c(ω),

(κ+1)ω =(κ) ω +(κ) δ,

Updating of states ω, and calculation of linear
parameters r by least squares:

(κ+1)r = G((κ+1)ω)+Ym,
Updating of states r , and objective function:
c2(ω) = 1

2

∥∥∥P⊥
G (ω)

Ym

∥∥∥
2
,

end while

The performance of the proposed algorithm in Section 2
was compared to the nonlinear least squares algorithm
presented in Algorithm 2. It can be seen in Algorithm
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Algorithm 2 Nonlinear least squares algorithm.

Input: joint angles: θ , nominal parameters: (0)l =
[(0)ω,(0) r], measured Cartesian coordinates: Ym;

Output: optimal structural parameters: l∗

initialize (0)l and J̃
(
θ ,(0) l

)

while l not converge do
Nonlinear least squares algorithm:
(κ)xm = G̃

(
θ ,(κ) l

)
,

c̃((κ)l) = Ym − G̃
(
θ ,(κ) l

)
,

J̃
(
θ ,(κ) l

)
= ∂ c̃((κ)l)/∂lT = −∂G̃(θ ,(κ) l)/∂lT,

Obtain search direction δ by Gauss-Newton method:
(κ )̃δ = −

(
J̃

(
(κ)l

)T
J̃

(
(κ)l

))+
J̃

(
(κ)l

)T
c̃(l),

or Levenberg-Marguardt method:
(κ )̃δ = −

(
J̃

(
(κ)l

)T
J̃

(
(κ)l

)
+ µI

)+
J̃

(
(κ)l

)T
c̃(l),

(κ+1)l =(κ) l +(κ) δ̃,

Updating of states l, and objective function:
c̃2(ω) = 1

2

∥∥Ym − G̃ (θ , l)
∥∥
2 ,

end while

II that both linear and nonlinear parameters are treated
as nonlinear, and the first derivative of robotic forward
kinematics is deduced and treated as the Jacobian matrix.
Eventually, the optimal structural parameters are obtained
by iteratively searching the descent direction. Accord-
ing to different descent methods, Algorithm 2 can be
divided into nonlinear Gauss-Newton method and nonlin-
ear Levenberg-Marguardt method, abbreviated as NLGS
and NLLM, respectively. Likewise, separable nonlinear
Gauss-Newton method and separable nonlinear Levenberg-
Marguardt method are abbreviated as SNLGS and SNLLM,
respectively. During the robotic calibration procedure of
the actual application scenario, it is almost impossible to
know the exact transformation from {M} to {B}, and the
Cartesian coordinates of TCP with respect to frame {n}.
Hence, the initial values of Am

b and pn
t were set as I (4) and

[0, 0, 0, 1]T, respectively. And initial MDH parameters were
set to nominal values. Besides, the maximum iteration M

was set to 10000.

Table 1 MDH Parameters of an ABB 2600 robot

Joint a d θ α β

1 150 445 0 −π/2 0

2 900 0 −π/2 0 0

3 150 0 0 −π/2 0

4 0 938 0 π/2 0

5 0 0 π π/2 0

6 0 200 0 0 0

Table 2 Comparisons on convergence with various methods

Indicator NLGNNLLM SNLGN SNLLM

Avg iteration num 144.15 4595.27 13.94 26.90

Avg RMS/mm 77.579 1.493 1.493 1.493

Avg runtime/s 5.933 33.931 0.927 1.874

Convergence rate/% 92.89 68.98 100 100

Rate of convergence to minimum/% 74.35 68.98 100 100

To verify the efficiency and robustness of the proposed
algorithm, numerical validation was conducted with differ-
ent pre-set MDH parameters, θ2 and α3. A deviation vector
pair [,θ2,,α3] was added to the nominal MDH parame-
ters, where both ,θ2 and ,α3 are chosen from −3.1rad to
3.1rad with an interval of 0.1rad . Table 2 gives comprehen-
sive comparisons on convergence with different methods.
For NLGN and NLLM method, there existing situations
that the initial MDH parameters with some deviation vector
pairs added that cannot achieve a convergence, even when
the number of iterations reaches the maximum, reflecting in
convergence rates of them are 92.89% and 68.98%, respec-
tively. Besides, other deviation vector pairs with NLGN
method converge to the local minimum, instead of the global
minimum, resulting in the rate of convergence to mini-
mum of NLGN method is only 74.35%. By the way, the
calculation processes of average iteration number and aver-
age root mean squares (RMS) error exclude the deviation
vector pairs not convergent. It can be concluded that for
the separable nonlinear least squares algorithm, whether
it is Gauss-Newton method or LM method can achieve a
fast global convergence. Apparently, SNLGN method with
fewer iterations spends less time to obtain the goal than
SNLLM method.

Concrete iteration number and convergence situations
are presented in Fig. 3. In 3D colormap surfaces, there
are various deviation vector pairs [,θ2,,α3] in the ‘X-Y
plane’, and the number of iterations on the ‘Z axis’. It can
be seen that when the norm of the deviation vector pairs
is small, faster convergence can be achieved, reflecting in
the blue regions in Fig. 3a, b and d. Since the objective
functions corresponding to Algorithms 1 and 2 are different,
it is necessary to determine a physically meaningful and
universal indicator to equivalently replace the objective
functions. Here in heatmaps, the absolute positioning root
mean squares error of robots is chosen to represent the
convergence value corresponding to the objective function,
which reflects in the color scale. In addition, the deviation
vector pairs not convergent reflect in heatmaps in the form of
white dots. A very interesting phenomenon can be found in
Fig. 3 that although the convergence rate of NLLM method
is lower than that of NLGNmethod, all convergent deviation
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Fig. 3 Comparisons on convergence domain among NLGN, NLLM,
SNLGN and SNLLM methods. a 3D colormap surface of itera-
tion number required for the objective function to converge with
different pre-set deviation vector pairs with SNLGN method. b
3D colormap surface of iteration number with NLGN method.

c Heatmap of the convergence values with different pre-set deviation
vector pairs with NLGN method. d 3D colormap surface of iteration
number with SNLLMmethod. e 3D colormap surface of iteration num-
ber with NLLMmethod. fHeatmap of convergence values with NLLM
method

vector pairs of NLLM method can achieve convergence to
minimum. We can reasonably guess that the non-convergent
deviation vector pairs in Fig. 3f, if there is a large enough
number of iterations, can eventually achieve convergence
to the minimum. Some of these deviation vector pairs

are verified in Fig. 4. We can conclude that if the linear
and nonlinear parameters are not separated, the rate of
convergence to minimum of NLLM method may be higher
than that of NLGN method, but it will take much more time
to realize the convergence.

Fig. 4 Calibration processes of
NLLM method on
non-convergent deviation vector
pairs within 10000 iterations
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Fig. 5 Comparisons on calibration processes among the four methods.
a Comparisons among NLGN, SNLGN and SNLLM methods with
the initial pre-set deviation vector pair [−1,−1]. b Deviation vector
pair [3,−2.8]. c Deviation vector pair [0, 0]. d Deviation vector pair
[3.1, 3.1]. (e) Calibration processes of NLLM method with deviation
vector pairs [−1,−1] and [0, 0]. f NLLM method with deviation
vector pairs [3,−2.8] and [3.1, 3.1]

In Fig. 5, to reflect the distinction in the calibration
procedure of parameter identification, iteratively calibra-
tion results with different methods are presented. A total of
four certain deviation vector pairs were chosen, which can
comprehensively reflect all situations encountered by dif-
ferent optimization methods. It can be seen in Fig. 5a that
all the three methods could render to convergence quickly
with the initial pre-set deviation vector pair of [−1,−1].
However, the objective function of NLLM method is still
far away from the global minimum even with the iter-
ation number of 10000. In Fig. 5b and f, only NLLM,
SNLGN and SNLLM methods are globally convergent,
and the absolute positioning root mean squares error of
NLGN method is convergent to 107.99mm, obviously not

the global minimum. As for the deviation vector pair of
[0, 0], all the four methods can realize global convergence.
For the deviation vector pair of [3.1, 3.1], except NLGN
method has not yet converged reaching the maximum itera-
tion number, all other methods can achieve convergence to
minimum. In addition, employing the methods with nonlin-
ear structural parameters separated, the indicator function
will not violently oscillate during the process of itera-
tively searching for the optimal structural parameters, which
could increase the robustness of parameter identification
procedure.

To sum up, both SNLGN and SNLLM methods can
achieve global convergence in the numerical validation.
Considering the runtime and convergence, SNLGN method
has the best performance among the four methods. The
main advantages of kinematic calibration based on MDH
model with nonlinear parameters separated lay in that: 1)
The robustness during identification procedure of nonlinear
parameters is enhanced by eliminating the partial linear
structural parameters; 2) Linear structural parameters can
readily be obtained by mature linear least squares; 3)
Fewer parameters are to be identified by nonlinear least
squares regression, resulting in fewer iterations and faster
convergence; and 4) the required initial values to be pre-set
for calibration problem are fewer, and the convergence of
kinematic calibration is only related to the pre-set values of
nonlinear parameters.

3.2 Experimental Validation with Various Methods

The kinematic calibration experiment was conducted on
an ABB IRB2600 robot as shown in Fig. 1a. Considering
that there might be some other unknown sources of
nonlinear noise during the measurement of robots, a set
of 100 configurations were selected and measured as
experimental data for kinematic calibration. Comparisons
on calibration processes among the four methods mentioned
in Section 3.2 are depicted in Fig. 6. Except the NLLM
method, all the other methods can achieve convergence to
the minimum in searching the optimal structural parameters.
Likewise, SNLGN method has the best performance with
the fastest convergence. Moreover, the methods with
nonlinear parameters unseparated have obvious oscillation
phenomenon during the iterations.

The optimal structural parameters were obtained through
SNLGN method, and the experimental calibration result
of absolute positioning accuracy is presented in Fig. 7.
It can be seen that the absolute positioning accuracy is
dramatically improved by 72.46%, which meets the require-
ment of most industrial production and manufacturing
tasks.
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Fig. 6 Comparisons on
calibration processes among
NLGN, NLLM, SNLGN and
SNLLM methods with the same
experimental data. a Calibration
process of NLGN method. b
NLLM method. c SNLGN
method. d SNLLM method

4 Conclusion

In this paper, a robust kinematic calibration algorithm with
nonlinear parameters separated is proposed. The novel fea-
ture is that, by separating the linear and nonlinear struc-
tural parameters of robots, the original problem of kine-
matic calibration can be partitioned into two subproblems:
a linear least squares subproblem and a reduced subprob-
lem involving only nonlinear parameters. For the former

Fig. 7 Experimental calibration result of absolute positioning accu-
racy with the optimal structural parameters

one, linear structural parameters can readily be obtained by
mature linear least squares; For the latter one, the robustness
during identification procedure of nonlinear parameters is
enhanced by eliminating the partial linear structural param-
eters, and fewer parameters are to be identified by nonlinear
least squares regression, resulting in fewer iterations and
faster convergence. The results of numerical and experi-
mental validations show that: 1) the convergence rate is
promoted from 68.98% to 100% with different deviation
vector pairs; and 2) the average running time is reduced
from 33.931s to 1.874s.
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