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Abstract 13 

This paper presents the spatial variation of annual maximum daily rainfall (AMDR), represented 14 

by the fitted generalized extreme value (GEV) distributions, from two century-long datasets of 15 

Great Britain (GB) and Australia with respect to three spatial properties: geographic locations, 16 

sizes and shapes of the region of interest (ROI). The results show that the GEV fits well the areal 17 

AMDR. The spatial variation of the GEV location-scale parameters, quantified by the 18 

generalized linear models, is dominated by geographic locations and area sizes with an eastward-19 

decreasing-banded-pattern in GB and a concentrically-increasing-pattern from the middle to the 20 

coasts in Australia. Although the impact of the ROI shapes is insignificant, the round-shaped 21 

regions usually have higher-valued parameters than the elongated ones. The findings provide a 22 

new perspective to understanding the heterogeneity of extreme rainfall distribution in the space 23 

driven by the complex interactions among climate, geographical features and the practical 24 

sampling approaches. 25 

1 Introduction 26 

Intensive rainfall is considered to be one of the primary triggers for flooding alongside 27 

other factors such as climate, topography, and soil type of different catchment patterns (Rogger 28 

et al., 2017; Westra et al., 2014). Evaluation of the flood risks caused by rainfall usually requires 29 

use of long-term observed data at one or more locations to derive flood-triggering rainfall 30 

amount with preferred exceedance probabilities. This procedure is always associated with a 31 

region of interest (ROI). Whilst the precipitation process is part of the global hydrological cycle 32 

and hence a (laterally) boundless phenomenon, its area-oriented variation is of the concern of the 33 

engineers and flood risk managers. It is clear that the area-oriented rainfall variation and 34 

distribution are closely related to the climate at large scale (Millán et al., 2005); in the meantime, 35 

local features and processes, such as the topography, urbanisation, as well as the orientation and 36 

the size of the area can also affect the rainfall amount in question (Buytaert et al., 2006). Many 37 

studies, e.g. Buishand et al., 2008; Jung et al., 2017; Pedersen et al., 2010; Villarini et al., 2010; 38 

Zheng et al., 2016, have attempted to understand the spatial variation of rainfall extremes at 39 

different scales based on gauged records.  40 

In addition, spatially disaggregated, grid-based hydro-climatic datasets, have become 41 

more accessible to the research community; processing these new datasets to support large-scale 42 

variation analysis of grid-by-grid extremes has become an important research topic to address 43 

(Peleg et al., 2018). Some studies have focused on spatial variation of grid-based hydroclimatic 44 

observations,  e.g., UKCIP, Banwell et al., 2018; Kendon et al., 2019; Lowe et al., 2018; Prein et 45 

al., 2017;  Others attempted to address the temporal variation, for example, frequency analysis 46 

(Li et al., 2015; Overeem et al., 2010). 47 

However, these efforts are often frustrated by the fact that the required data records with 48 

sufficient length are often scarce. It is unsurprising that very few studies have been produced so 49 

far. Further, most aforementioned studies focus only on the spatio-temporal variation of averaged 50 

quantities of hydro-climatic variables instead of their extremes; for those indeed focusing on 51 

extremes, they tend to be limited by one or a few catchments or stations. 52 

In this study, two century-long, grid-based rainfall datasets covering Great Britain (GB) 53 

and Australia (AU) are analysed with an overall aim of gaining insights into how area-orientated 54 

rainfall extremes vary with space with respect to the probability distribution parameters which 55 
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are of concern of flood risk management and civil engineering design. Specifically, the study 56 

attempts to address the following questions: 57 

1. How areal rainfall extremes change over space. 58 

2. How other factors such as the size, shapes of the area in question may affect such spatial 59 

dependencies. 60 

3. How the spatial patterns and variations are linked to the climate variability.  61 

4. What is the implication of the spatial variation of the parameters to the applications (e.g. 62 

flood risk management). 63 

The two datasets come with a duration over 100 years and have relatively high temporal 64 

and spatial resolutions (daily and 1–5 km respectively). In addition, a toolbox known as the 65 

Spatial Random Sampling for Grid-based Data Analysis (SRS-GDA, Wang & Xuan, 2020), is 66 

employed to assist the required spatial sampling. The toolbox can automatically generate 67 

arbitrary ROIs with predefined or randomised features, i.e., size, location and dominant 68 

orientation, from the supplied grid-based dataset. The sampled annual maximum daily rainfall 69 

(AMDR) at each ROI is fitted with the widely used and tested Generalised Extreme Value 70 

(GEV) distributions whose spatial variation is then analysed. The associated intensive 71 

computation demand is met by the high-performance computing (HPC) resources provided by 72 

Super Computing Wales (https://www.supercomputing.wales). 73 

The remainder of this paper is organized as follows: section 2 describes the data and 74 

methods then shows the sampled ROI and the goodness-of-fit tests results. Both the qualitative 75 

and quantitative results of the spatial variation of the distribution parameters, as well as their 76 

linkage to the climate are discussed in sections 3, 4, and 5. Finally, the conclusions and 77 

recommendations of further study are given in section 6. 78 

2 Data and Methods 79 

2.1. Datasets  80 

This study makes use of two century-long datasets which are the ‘Gridded Estimates of 81 

daily Areal Rainfall’ (GEAR) and the ‘Australian Data Archive for Meteorology’ (ADAM). The 82 

GEAR dataset is a grid-based (1×1 km
2
) rainfall estimation that covers the mainland of Great 83 

Britain (GB) from 01/01/1898 to 31/12/2010. It is derived from the UK Met Office national 84 

database of observed precipitation from the UK rain gauge network. The natural neighbour 85 

interpolation method with a normalisation step based on the average annual rainfall, was used to 86 

generate the daily estimates (Tanguy et al., 2016). The ADAM dataset is generated using a 87 

sophisticated analysis technique described in Jones et al. (2009), which is also grid-based 88 

(0.05
o
×0.05

o
, approx. 5×5km

2
) rainfall from 01/01/1900 to 31/12/2018 over Australia (AU). The 89 

recorded rainfall values are provided as daily rainfall, i.e. the total rainfall amount over a 90 

predefined  24-hour (9AM-9AM) period which refers to the 24 hours prior to the reporting time 91 

for the ADAM dataset and the 24 hours after for the GEAR dataset. 92 

2.2. Methodology  93 

The geographical areas of the two data domains, i.e. GB and AU, are sampled into a 94 

series of ROIs using the SRS-GDA toolbox before the AMDR values are extracted from each 95 
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ROI.  Three different types of predefined spatial features (geographical locations, sizes and 96 

shapes) are applied in this spatial sampling process to reduce the overall computing time while 97 

maintaining the representativeness of the samples. As a result, these ROIs are evenly distributed 98 

across the two study domains. The AMDR extracted from each ROI is then fitted with a 99 

probability distribution. In this study, the three-parameter GEV distribution is chosen as the 100 

candidate distribution. The goodness of fit (GOF) of the fitted distributions are further tested by 101 

two different methods: the Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) tests. The 102 

parameters (𝜇 and 𝜎) of the fitted distributions are then analysed with regards to their spatial 103 

distribution with reference to the climate variations.  104 

1) ROI Generation and AMDR Extraction 105 

The ROI sampling starts with an initial set of evenly distributed ROIs which comprise of 106 

7 predefined shapes, parameterised by their spatial indexes (Wang & Xuan, 2020) reciprocally 107 

grouped as 0.2/5.0, 0.5/2.0, 0.8/1.25 and 1.0. The size of these ROIs is then gradually increased 108 

by 10 steps with 20% increment each,  while maintaining the same shape and location (of the 109 

centroid). In the end, the largest sizes the ROIs are 1,050 km
2
 for GB and 9,900 km

2
 for AU 110 

respectively. 111 

The SRS-GDA toolbox used to generate the ROIs is set up in a way that only one spatial 112 

feature is allowed to vary at a time. For instance, to obtain ROI samples of G2 and A2 in Table 113 

1, the toolbox is configured to keep the centroid location unchanged while generating 10 ROIs 114 

only by varying their sizes. Table 1 also summarises all ROIs and their properties.  115 

Table 1. ROIs for analysing the spatial variations in GB and AU 116 

Sampling areas Changing with location Changing with size  

(each group includes 10 

ROIs) 

Changing with shape 

(each group includes 7 ROIs) 

GB Indicator G1 G2 G3 

ROI(s) of 

1x1 km grid 

   

Size (km
2
) 500 10, 43, 87, 164, 257, 366, 

504, 660, 827, 1025  

500 each ROI 

Total ROI 

number 
88 81 × 10 = 810 74 × 7 = 518 

Total 

meridional 

group 

10 10 10 

ESSOAr | https://doi.org/10.1002/essoar.10504410.1 | CC_BY_NC_4.0 | First posted online: Fri, 9 Oct 2020 15:34:03 | This content has not been peer reviewed. 



manuscript submitted to Geophysical Research Letters 

 

number 

Geographical 

location 

(marked as 

“×”) 

   

AU Indicator A1 A2 A3 

ROI(s) of 

5x5 km grid 

   

Size (km
2
) 500 125, 400, 900, 1550, 2450, 

3550, 4875, 6350, 8025, 9900 

5000 each ROI 

Total ROI 

number 
679 627 × 10 = 6270 378 × 7 = 2646 

Total 

meridional 

group 

number 

40 38 30 

Geographical 

location 

(marked as 

“×”) 
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 117 

The extraction of the AMDR series from each ROI is then carried out using the super 118 

computers from Super Computing Wales. In total, there is around 642.3GB of data processed 119 

with 11,011 areal AMDR series produced. 120 

2) Fitting the extracted AMDRs using GEV distribution 121 

Derived from the extreme value theory, the generalised extreme value  (GEV) 122 

distribution has become by far one of the most well-founded distributions for describing annual 123 

maximum rainfall. It has been applied to not only many gauged rainfall extreme studies (Feng et 124 

al., 2007; Martins & Stedinger, 2000; Westra et al., 2013) but also those using grid rainfall 125 

datasets (Overeem et al., 2010). A GEV distribution is controlled by three parameters, namely, 126 

the location 𝜇, the scale 𝜎 and the shape 𝜉 parameter which defines the three limiting types: the 127 

Gumbel (𝜉 = 0), the Frechét (𝜉 > 0) and the Weibull (𝜉 < 0). The cumulative probability 128 

distribution function of GEV is given by: 129 

𝐹(𝑥; 𝜎, 𝜇, 𝜉) =

{
 
 

 
 
exp [−(1 + 𝜉 (

𝑥 − 𝜇

𝜎
))

−
1
𝜉

]   for 𝜉 ≠ 0

exp [− exp (−
𝑥 − 𝜇

𝜎
)]            for 𝜉 = 0

 
(

1) 

where 𝐹 is defined for {1 +
𝜉(𝑥−𝜇)

𝜎
> 0} ,−∞ < 𝜇 < ∞, 𝜎 > 0 and−∞ < 𝜉 < ∞ ; and 𝑥 130 

denotes the extracted AMDR. A maximum likelihood estimator (MLE, Hosting, 1985) is 131 

introduced to estimate the three parameters of the GEV distribution fitted to those AMDRs 132 

extracted from each ROI.  133 

Although the GEV distribution generally fits well to the point rainfall extremes (e.g. 134 

gauge observation) as reported in many studies before (Schaefer, 1990; Yoon et al., 2013), very 135 

few have been done on the suitability of GEV distribution fitting the areal grid-based rainfall 136 

extremes. In this study, the GOF is tested using  bootstrapped KS and AD tests (see 137 

supplementary text S1). Out of all the AMDR series from every ROI (1416 ROIs of GB and 138 

9595 ROIs of AU) tested,  the results show that the GEV distribution fits well the AMDR series 139 

with a 100% pass of the KS test and more than 97% for the AD test. 140 

3) Analysing the spatial distribution of the location-scale parameters 141 

The spatial variation of the location and scale parameters of the fitted GEV distributions 142 

are analysed both qualitatively and quantitatively. Instead of using full spatial coordinates to 143 

represent the geographical locations, a univariate spatial-location representation is adopted in this 144 

study. The procedure is briefly described below:  145 

i. The chosen GEV parameter is aggregated meridionally, e.g. over all ROIs that have the 146 

same x-direction (easting or longitude) coordinate.  147 

ii. The aggregated GEV parameter values are indexed by their x-direction only coordinate 148 

which is then used as an input variable to represent the geographical locations. 149 

iii. The same procedure is also applied zonally, i.e., over the same y-direction coordinate.  150 
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With this arrangement, the meridional or zonal average of the GEV parameter in question 151 

is taken as the response variable (predictor). In AU, a concentric pattern is found where both the 152 

meridional average and the zonal average show a similar result; For the case of GB, only a strong 153 

west-east pattern exists. Therefore, for comparing two cases and convenience, the meridional 154 

average is taken for both cases. 155 

Finally, a generalised linear model (GLM) is fitted to quantify the relationship between 156 

the GEV parameters and the associated spatial features, i.e., to explicitly model the spatial 157 

variation of the GEV parameters with respect to the locations, sizes, and shapes of the underlying 158 

ROIs.  159 

3 Results and discussions 160 

3.1. GEV parameter variation over geographical locations 161 

Figures 1a and 1b present the histograms and spatial variations of the three GEV 162 

parameters of all ROIs in GB and AU where the following patterns can be clearly identified: 163 

 Most ROIs are in favour of the Frechét type of distribution (𝜉 > 0). 164 

 Both 𝜎 and 𝜇 present a similar spatial pattern where a higher 𝜇 is usually accompanied by a 165 

higher 𝜎. 166 

 

(a) 
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(b) 

 

(c) 
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(d) 

 

(e) 
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(f) 

Figure 1. Histograms and spatial variations of the three GEV parameters in GB (a) and AU (b); 167 

the changes of meridional average location-scale parameters with the ROIs’ size in GB (c) and 168 

AU (d); and the ROIs’ shape 𝑠𝑝 in GB (e) and AU (f), where the 𝑥 values shown in the legends 169 

refer to the geographic location (index in the 𝑥-direction) of the meridional groups. 170 

In GB, the values of 𝜇 and 𝜎 in the western region, especially in the coastal area, are 171 

much larger than those in the east. Such west-east gradient is also strong in the west indicated by 172 

the much denser contours. However, there is no remarkable variation from south to north, even 173 

though the 𝜇 and 𝜎 in Scotland are higher. As such, the meridional average is thought to better 174 

reveal such eastward pattern. This meridional spatial pattern can be described as “west high, east 175 

low” with an apparently nonlinear variation. 176 

The values of 𝜇 and 𝜎 in AU have a clear increasing trend from the south-middle zone to 177 

the coastal regions. This spatial pattern can be seen as a series of concentric circles. It is also 178 

notable that the rapid variations are close to the north-eastern coastal regions. For a matter of 179 

convenience, the meridional average is also taken for studying the west-east variation in AU.   180 

3.2. Variation of GEV parameters with regards to the area size 181 

 Figures 1c and 1d show the changes of 𝜇 and 𝜎 of all meridional groups in GB and AU, 182 

parameterised by the size of the ROI (𝑠, in km
2
). Generally, regardless of their locations (𝑥), the 183 

parameter values are inversely proportional to the sizes of the ROIs, as reflected by the fitted 184 

trend lines. 185 

The decreases in both 𝜇 and 𝜎 with increased ROI sizes have an important implication: 186 

the most frequent AMDR (relating to 𝜇) becomes smaller for larger ROI alongside an overall 187 
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decreased extremity (relating both parameters).  Another interesting measure is the rate of such 188 

reduction (RR) as the size of ROI increases, which has also shown a clear spatial dependency. In 189 

AU, the RR remains low in the central desert zone (e.g., 𝑥-index from 300 to 360 km), and it 190 

increases near the coastal areas where large parameter values are also found. This feature can be 191 

explained by the fact that regions having more extreme rainfall (e.g. the outer coastal regions in 192 

AU) are not only manifested by the higher 𝜇 and 𝜎; they also have more heterogenous rainfall 193 

than those with less extreme rainfall (lower 𝜇 and 𝜎). Therefore, the changes of 𝜇 and 𝜎 are more 194 

sensitive to geographic locations, as revealed by the RR. GB also shows a similar pattern albeit 195 

not as remarkable.  196 

3.3. Variation of GEV parameters due to change of ROI shape 197 

Figures 1e and 1f present the changes of 𝜇 and 𝜎 in GB and AU, parameterised by the 198 

ROI shape (𝑠𝑝). The variation of the shape starts from west-east orientated shapes (𝑠𝑝 = 0.2), 199 

gradually growing into more rounded shapes (𝑠𝑝 = 1.0) and then to more north-south orientated 200 

shapes (𝑠𝑝 = 5.0). By the definition of 𝑠𝑝, two shapes with reciprocal 𝑠𝑝 values will have their 201 

major dimension swapped, i.e. east-west versus south-north and vice versa. The result is 202 

inspected and summarized as:  203 

 For the majority of the meridional groups, there is little difference between the location-scale 204 

parameters of ROIs with reciprocal shapes, e.g. two shapes with sp values of 0.2 and 5.0. 205 

This is regarded as a symmetric pattern around 𝑠𝑝 = 1.0;  206 

 Generally, the values of 𝜇 and 𝜎 of ROIs in an elongated shape are smaller than those of the 207 

ROIs in more rounded shapes. This indicates that the rounded-shape ROIs have a better 208 

chance to capture more rainfall extremes than the elongated ones. It also leads to that for the 209 

same area size, regions with more regular shape tend to have more extreme areal rainfall. 210 

 Overall, the effects of ROI shape are not as significant.  211 

4 Quantify the spatial variation  212 

The generalised linear models (GLM) are based on an extension to the classical linear 213 

regression model (McCullagh, 1989), and have found many applications in hydrology and 214 

meteorology (Coe & Stern, 1982; Stern & Coe, 1984). GLMs have been shown to be effective in 215 

incorporating complex structures (Segond et al., 2006). Chandler & Wheater (2002) proposed a 216 

GLM-based framework for interpreting historical daily rainfall records and revealing the changes 217 

on rainfall occurrence and amount in western Ireland. Many more applications have since 218 

followed, e.g. Yan et al., 2002; Yang et al., 2005; Rashid et al., 2013, with good performance 219 

reported. 220 

In this study, the two parameters 𝜇 and 𝜎 which reflect the property of rainfall extremes, 221 

also show a similar right-skewed distribution (Figure S1), therefore we broadly followed 222 

Chandler & Wheater (2002) and propose a GLM with a log-link to describe their spatial 223 

variation. Helped by the qualitative analysis in section 3, the three spatial properties of the 224 

underlying ROIs, i.e. the size (𝑠), location (𝑥-index: 𝑥), and shape (𝑠𝑝), as well as their 225 

interactions are chosen to be the candidates of the predictors. 226 

The fitting of the GLM starts with a simplest form and then successively adds other 227 

predictors or their combinations (Chandler & Wheater, 2002; James, 2002). The significance of 228 
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the newly added predictor or the combination of each attempt is evaluated by calculating the 229 

value of likelihood. The best fitted form of GLMs is obtained by considering both the likelihood 230 

and the discrepancy (e.g. root mean squared error, RMSE). More details can be found in Text S2.  231 

Finally, the optimum form of GLM models are identified as follows: 232 

For 𝜇𝐺𝐵: (1 + 𝑥 + 𝑠 + 𝑥2 + 𝑥3)𝜷𝝁𝑮𝑩 
(

2a) 

For 𝜎𝐺𝐵: (1 + 𝑥 + 𝑠 + 𝑥
2 + 𝑥3)𝜷𝝈𝑮𝑩 

(

2b) 

For 𝜇𝐴𝑈: (1 + 𝑥 + 𝑠 + 𝑠𝑝 + 𝑥2 + 𝑠2)𝜷𝝁𝑨𝑼 
(

3a) 

For 𝜎𝐴𝑈: (1 + 𝑥 + 𝑠 + 𝑠𝑝 + 𝑥2 + 𝑠2 + 𝑥 × 𝑠)𝜷𝝈𝑨𝑼 
(

3b) 

where 𝜷 is the estimated vector of coefficients of predictors and the subscripts GB and 233 

AU refer to the study area in question. A maximum likelihood estimator (McCullagh, 1989) was 234 

employed for obtaining 𝜷.  These fitted GLMs help to reveal the following intriguing features 235 

regarding the spatial variation of the two parameters: 236 

1. In GB, both the meridionally averaged 𝜇 and 𝜎 have a nonlinear dependency on the 237 

geographical location, i.e., the easting index (𝑥); and a linear dependency on the ROI size 238 

(𝑠). However, they do not appear to be dependent on the ROI shape (𝑠𝑝). 239 

2. In AU, the spatial changes of meridionally averaged 𝜇 and 𝜎 are nonlinear with respect to 240 

both the easting index and the ROI size. Further, the shape of ROI (𝑠𝑝) plays a more 241 

significant role in contributing to the change of GEV parameters than it does in the case 242 

of GB. The combined factor (𝑥 × 𝑠) is significant in contributing to the variation of 𝜎. 243 

The GLMs are further visualised in Figures 2a and 2b where the previously 244 

demonstrated, qualitative properties, are readily reproduced. For example, the spatial changes of 245 

the two GEV parameters are “west high, east low” in GB whereas they are “centre low, outer 246 

coastal regions high” in AU; the parameters get smaller as the size of ROI increases. However, 247 

the RR, which can be interpreted as the vertical distance between curves, is more uneven in AU, 248 

which means that the reduction on most frequent rainfall (𝜇) and occurrence probability of 249 

extremes (𝜎) is more spatially dependent and area-oriented comparing with GB. Moreover, ROI 250 

shape is significant in the AU case where different 𝜇 or 𝜎 values are observed in the east-west-251 

orientated elongated shapes (𝑠𝑝 = 0.2) and the rounded ones (𝑠𝑝 = 1.0) and the difference tends 252 

to decrease for lager 𝜇 and 𝜎. In comparison, the two GEV parameters in the north-south-253 

orientated ROIs (𝑠𝑝 = 5.0)  are also smaller than those in the east-west-orientated and rounded 254 

ones, which can be explained as that in AU the north-south variation is in general smaller than 255 

that of the east-west direction. 256 
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(d) 

Figure 2. Visualisation of the GLMs fitted to the meridional average GEV 𝜇 and 𝜎 parameters as 257 

a colour-scale plot for GB (a) and a contour plot for AU  (b) whose contours are picked up at the 258 

same stops of the values and their changes with respect to the geographic location and size; and a 259 

scatter plot (c) and a normal quantile plot (d) for revealing the difference between the actual 260 

GEV parameters and the modelled GEV parameters. 261 

The performance of the GLMs is evaluated by comparing the parameter values modelled 262 

by the GLMs and those from the originally fitted GEVs (Figure 2); as well as by conducting a 263 

residual analysis (McCullagh, 2018; Pierce & Schafer, 1986; Wang, 1987). 264 

The GLMs for both cases perform well (Figure 2c). The GB case has slight 265 

underestimations for some large values that appear in the western coastal region; and for the AU 266 

case, some overestimation happens for the small values which are located in the middle-south 267 

dry zone. The GLM model probability structure is checked by the normal quantile plot (Figure 268 

2d) of the residuals, where a theoretical normal distribution is shown on the 𝑥-axis compared 269 

with the residual quantiles on the 𝑦-axis. If the probability assumption (i.e. gamma assumption) 270 

is correct, all residuals would have the same distribution which is an approximate normal 271 

distribution. It can be observed that the distribution of the residuals of the four GLMs is 272 

symmetric with two flat sides. Generally, the approximation fits well except for the upper side 273 

which represents only 0.9% of the total data points. In view of the research aims, this is 274 

considered to be acceptable. 275 
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5 Link between the spatial variations of GEV parameters and the climate variation 276 

The GEV distribution parameters can reveal the characteristics of extreme rainfall in 277 

terms of both its amount and occurrence probability. The two parameters are shown to have 278 

strong spatial dependency as discussed in the previous sections. To help understand how such 279 

spatial variation of the extreme rainfall is related to the climate variability over space, Figure 3 is 280 

produced to display the spatial distributions of both the average annual rainfall and its standard 281 

deviation of GB and AU respectively, compared with the spatial distribution of the GEV 282 

parameters.  A great deal of similarity exits in space between the corresponding quantities, i.e. 283 

the location parameter versus the annual mean, and the scale parameter versus the standard 284 

deviation of the annual rainfall. For example, regions with higher annual average rainfall are not 285 

only presented with higher standard deviation (e.g. the circles located in west Scotland and west 286 

Wales of GB and in north-eastern coastal regions of AU, appearing more reddish and larger), 287 

they are also associated with higher values of the GEV parameters, and appear to be more 288 

heterogenous. This feature also exists in the regions with low and more even annual rainfall 289 

distribution, but works in an opposite way (e.g., circles located in middle and eastern England of 290 

GB and middle-north zone of AU are all more bluish and smaller). This findings is consistent 291 

with those published in the series of climate reports of GB (Kendon et al., 2015; Kendon et al., 292 

2018, 2019) and AU (CSIRO & Australian Bureau of Meteorology, 2018).  293 

 

(a) 
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(b) 

Figure 3. Comparison between the climatic variables (the average annual rainfall and its 294 

standard deviation) and GEV parameters 𝜇 and 𝜎 in GB (a) and AU (b) cases where the colour 295 

denotes the value of averaged annual rainfall or the GEV parameter 𝜇, and the size of the circles 296 

denotes the value of standard deviation of the annual rainfall or the GEV parameter 𝜎. 297 

6 Conclusions 298 

This paper presents a study on the spatial variation of extreme rainfall using two-century 299 

long datasets covering Great Britain and Australia. The annual maximum daily rainfall (AMDR) 300 

series extracted from regions of interest (ROI, 11,011 in total) with various spatial properties 301 

(location, size and shape), are individually fitted with GEV distributions whose parameters are 302 

then analysed over the space. Four generalised linear models (GLMs) are developed to quantify 303 

these variations by involving the effect from the geographical location, area size and shapes. 304 

From the results discussed previously, the following conclusions can be drawn: 305 
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1) The GEV distributions are shown to be able to model well the grid-based areal AMDR for 306 

both the GB and AU cases; more than 90% of the regions are better fitted with the Frechét 307 

type of distribution among the three GEV types. 308 

2) The GEV location (𝜇) and scale (𝜎) parameters present similar spatial patterns where a 309 

higher 𝜇 is usually accompanied by a higher 𝜎 indicating those regions that have higher 310 

amount of most frequent rainfall often observe a higher occurrence probability of extremes. 311 

3) Geographic location is the most significant factor affecting the two GEV parameters. The 312 

spatial pattern in GB is an eastward decreasing banded pattern with no significant difference 313 

along north-south direction. In AU, a concentrically increasing pattern from middle-south 314 

zone to north-east coasts is found. 315 

4) Increasing the region size will decrease both parameters which means a decrease of the most 316 

frequent AMDR amount and the occurrence probability of extremes. However, in AU, the 317 

rate of such decrease varies with regions as the combined impact of ROI location and size is 318 

also detected to be significant. 319 

5) Compared with other spatial properties, the shape of ROI is detected as insignificant, even 320 

though, a symmetric pattern is found for regions with reciprocal spatial indexes. Also, 321 

regions of more elongated shapes tend to have small parameter values in contrast with those 322 

having regular/rounded shapes. 323 

These findings offer a new quantitative insight in understanding the spatial variation of 324 

large-scale climatology of rainfall. Not only are they supported and consistent with many 325 

previous studies on rainfall distributions, the quantification of the extreme rainfall and its spatial 326 

dependencies are of great practical value in engineering design, e.g. designed rainfall/floods for 327 

constructions.  The methods employed by this study are specifically designed for large grid-328 

based datasets, and thus can be readily applied to climate projections for evaluating the spatial 329 

heterogeneity of climate change impact, such as flooding and droughts. It should be noted that 330 

the quality of the underlying datasets, which have undergone a series of quality control measures, 331 

may still bring in large amount of uncertainties and should be addressed in further work. In 332 

addition, impact of the density of the underlying data observations, i.e., rain-gauges, and its 333 

variation over long term also need to be further studied. 334 
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