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Abstract

The term cancer covers a multitude of bodily diseases, broadly categorised by
having cells which do not behave normally. Since cancer cells can arise from
any type of cell in the body, cancers can grow in or around any tissue or organ
making the disease highly complex. Our research is focused on understanding
the specific mechanisms that occur in the tumour microenvironment via math-
ematical and computational modeling. We present a 3D individual-based model
which allows one to simulate the behaviour of, and spatio-temporal interactions
between, cells, extracellular matrix fibres and blood vessels. Each agent (a
single cell, for example) is fully realised within the model and interactions are
primarily governed by mechanical forces between elements. However, as well as
the mechanical interactions we also consider chemical interactions, for example,
by coupling the code to a finite element solver to model the diffusion of oxygen
from blood vessels to cells. The current state of the art of the model allows us
to simulate tumour growth around an arbitrary blood-vessel network or along
the striations of fibrous tissue.
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1. Introduction1

Cancer Research UK estimates that approximately 50% of the UK’s popula-2

tion will receive a cancer diagnosis during their lifetime [3], and as the second-3

leading cause of death worldwide the World Health Organisation reports that4

one in six deaths will be caused by it [16]. The term cancer covers a mul-5

titude of diseases, broadly categorised by having cells which do not behave6

normally. Since cancer cells can form from any type of cell in the body, can-7

cers can arise from and grow in any tissue or organ making the disease highly8

complex. Moreover, ideally, treatment for cancer should target the tumour cells9

while having limited or no effect on the surrounding healthy cells and tissue10

microenvironment. One of the Hallmarks of Cancer [24, 25] is tissue invasion11

and metastasis. Tumour cells proliferate and occupy whole areas of tissue. Ad-12

ditionally they interact with surrounding cells, tissue structures, vasculature13

and the extracellular matrix in a variety of ways. While some cancer behaviour14

is well understood (such as avascular growth and tumour angiogenesis) we are15

yet to elucidate all of the mechanisms by which cancer cells take hold of, use,16

and affect the body. Mathematical modelling and simulation can complement17

traditional biological and experimental approaches to cancer research.18

Mathematical modelling of biological processes and systems can trace its19

roots back over 100 years to the seminal work of D’Arcy Thompson “On Growth20

and Form” [43]. More recently, in the past twenty five years or so, there has21

been increased interest in the mathematical modelling of cancer growth and22

treatment, leading to the development of a field in its own right - mathematical23

oncology. Much of this research focuses on the interaction of cancer cells with24

their local tissue, “the tumour microenvironment”. At the same time, there has25

also been increased interest in computational tools and simulation techniques,26

so called in silico models, which aim to provide the biologist with additional27

insight without potentially high economic, time and ethical costs. Cancer re-28

search is a prime example of a field for which the use of in silico modelling is29

gathering pace. One particular branch of in silico models for solid tumours,30

and of particular interest here, is that of agent-based models. For a review of31

cell-based computational modelling in cancer biology see [34]. In an agent- or32

individual-based (IB) model one seeks to learn more about the whole system33

under study by examining the actions and interactions of its individual parts or34

components. An IB model of a solid tumour may reproduce the behaviour of35

various tumour components, for example, the individual cancer cells; the vessels36

forming the tumour vasculature and components of the tumour microenviron-37

ment. It is precisely such a model which we present here.38

IB modelling of such a complex system as a solid tumour is certainly an39

ambitious approach, since there will be a large number of parameters and vari-40

ables across multiple scales. However, implementing these realistic models offers41

a constructive tool that truly complements experimental methods. In clinical42

and experimental practice, scientists are able to track only a limited number43

of parameters using specific and well established markers. On the one hand,44

this top-down approach (from macroscopic markers to microscopic biological45
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parameters) ensures that the model reproduces the major biological processes.46

On the other hand, as the number of variables is very large (in the form of47

cells, proteins, particles or similar complexes and interactions between them),48

the complexity reduction might yield a large amount of side masking effects.49

Multiscale and IB modelling offers a bottom-up approach that, starting from50

the processes at the level of individual cells, has the capability to isolate a small51

number of variables and can complement real and macroscopic observations.52

Due to the realistic simulations they offer, IB models are now used widely53

within mathematical oncology and in many other areas of biomedical systems54

research. Here we focus particularly on a model of solid tumour growth but55

other researchers have used and are using IB models to look at tumour-immune56

interactions (e.g., [35, 28, 29, 30]), invasion (e.g., [1, 46, 39]) and metastatic57

spread (e.g., [2, 19]). Our model is a force-based (centre-based) lattice-free58

model, and much pioneering work in this area has been carried out by Drasdo59

and colleagues (see, e.g., [13, 21, 14, 38]). Other authors working in this area60

include [31, 8, 9, 10]. For a comprehensive review of IB force-based models of61

tumour growth see [44] and references therein.62

In this paper we present a summary of the development of the IB force-63

based model presented in [6]. The model presented there had previously been64

developed from a 2D model first presented in [38] and developed in [40, 41]. In65

this paper, by presenting examples of different simulations for cancer related66

scenarios we show the diversity and current state-of-the-art of the code. In67

Section 2 we give a detailed overview of the governing equations and mechanisms68

governing the cells within the model. The main improvements to the model69

concern the introduction of interactions with a vasculature network (Section 3)70

and fibrous tissue (Section 4). In Section 3 we show how a growing solid tumour71

interacts with pre-existing vasculature and how diffusion of oxygen from the72

blood vessel network affects the growth of the cancer cells. As discussed in this73

Section the underlying computational code has been developed in two particular74

ways. Firstly, vessels are modelled explicitly in the IB model, and this means75

that tumour cells can adhere to vessels and that the model can take into account76

a physical force between vessels and cells. Secondly, the coupling of the IB model77

with a continuum model for oxygen diffusion (using a finite element approach)78

has been improved in several ways: (i) using a more realistic non-linear reaction79

model; (ii) using an adaptive mesh, refined near the vessels; (iii) dynamical80

evaluation of when a new solution of the diffusion equation is needed, based81

on the variation in cell density; (iv) using Robin boundary conditions at the82

boundary of the continuous domain, in order to account for a more realistic83

effect of the surrounding tissue. In Section 4 we show how the growth of a84

tumour mass is affected by the local tissue structures; how its shape is altered85

by the alignment of extracellular matrix (ECM) fibres. The model has been86

developed to include the fibres as additional agents in order to take into account87

the mechanical interplay between fibres and cells. We note that in the previous88

work of [40] fibres were also incorporated. However, the model presented there89

is 2D, and in this current paper moving to a 3D domain has added significantly90

to the complexity of the cell-fibre interactions. In Section 5 we summarise the91
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current capabilities of the model and discuss plans for further development of92

the code.93

2. Individual-based model of cancer growth94

In this Section we describe our model for solid tumour growth. Specifically,95

since we employ an IB approach, each cancer cell is considered to be an agent96

that grows, divides, acquires a certain phenotypic status and interacts with97

other neighbouring cells (and later in the paper, with both blood vessels and98

individual fibres constituting the ECM). We will focus first on describing the cell-99

cell interactions. As discussed in the introduction, this is a force-based model100

and so the interactions are primarily mechanical and each cell is governed by101

an equation of motion.102

2.1. The equation of motion103

Firstly, we note that we model each cell as a viscoelastic sphere subjected to104

small deformations. It is true that the shape of cancer cells can vary depend-105

ing on the type of tumour, environment and on the degree of differentiation.106

Furthermore, individual cellular behaviour at the tumour interface is dependent107

on specific molecular-scale interactions that result in cytoplasmic deformations.108

However, when a growing solid tumour (which reaches a size consisting of thou-109

sands of individual cells) it is acceptable to make this simplification on the cell110

geometry (i.e. spherical cells). Formally, then, each cell is described by a set111

of state variables including the cell centre position, x, cell radius, (r), cellular112

phenotype, σ, oxygen concentration, c(x, t) and the stage in the cell cycle, η.113

Cell dynamics are governed by the following set of ordinary differential equations114

(one for each cell):115

Γvi(t)︸ ︷︷ ︸
friction

+ arfi(t)︸ ︷︷ ︸
random fluct.

=

Ncells(t)∑
j=1

Fi,j(t)︸ ︷︷ ︸
cell-cell forces

, (1)

where vi = ẋi denotes the velocity of cell i and Γ is a 3-dimensional tensor that116

models the physical structure of the environment, for simplicity assumed to be117

isotropic, i.e., Γl,k = γδl,k. The term arfi(t), where fi is a normal function118

with zero mean and unit variance, models the active random forces exerted by119

cellular mechanisms as a process of exploration of the nearby space, as well as120

other normally distributed spatial fluctuations that may happen at the cellular121

scale [22]. Finally, Ncells(t) denotes the total number of cells at time t and122

Fi,j(t) is the force exerted on a cell i by a neighbouring cell j, consisting of a123

combination of repulsive and attractive forces (see Section 2.2).124

We solve the model numerically based on an explicit discretisation of (1),125

where the cell position is computed, at time tn+1, via126

xi(t
n+1) = xi(t

n) +
∆t

γ

−arfi(tn) +

Ncells(tn)∑
j=1

Fi,j(t
n)

 , (2)
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where ∆t denotes the time step.127

2.2. Cell-cell interaction128

This Section briefly describes the forces governing the cell-cell interactions.129

For more details on this, we refer the reader to [6]. An interaction is assumed to130

only take place between two cells in contact with each other, and is composed of131

both a repulsive and an adhesive component. Let us consider two cells (denoted132

by i and j), let Ri and Rj be their radii, and let dij denote the spatial vector133

connecting their cell centres, oriented from the centre of cell i to the centre of134

cell j. In what follows, we will consider the case |dij | ≤ Ri +Rj , i.e., when the135

cells are in contact, introducing also the length of “overlap” between cells given136

by137

hij = Ri +Rj − ‖dij‖. (3)

Denoting with Ei and Ej the cells’ Young’s moduli and with νi and νj their138

Poisson ratios, the repulsive force term, Frep
i,j , is computed from the Hertz model139

[27] (assuming sufficiently small deformations) and is given as140

|Frep
i,j | =

4

3
E∗R∗1/2hij

3/2. (4)

In (4), R∗ = RiRj/(Ri + Rj) is the effective radius and E∗ is the effective141

Young’s Modulus calculated from142

1

E∗
=

1− ν2
i

Ei
+

1− ν2
j

Ej
. (5)

The adhesion force between cells is produced by adhesive molecules that143

travel to the cellular membrane, stimulated by the the proximity of the neigh-144

bouring cell. Therefore, the adhesion force, Fadh
i,j , between two overlapping cells,145

is assumed be proportional to the contact surface between them, denoted by Sadh146

[37]. Since we assume small cell deformations, the contact surface between the147

two cells is computed as the average value between the area of a spherical cap148

of height the overlap between the cells, hij , and surface of the circle underlying149

the cap. Thus,150

Sadh
ij =

1

2

[
2πRihij + π

(
R2
i − (Ri − hij)2

)]
(6)

yielding the force151

|Fadh
i,j | = α∗

(
Ri −

hij
4

)
hij . (7)

In (7), α∗ = 2πα, and α is the adhesion constant, which is currently assumed152

to be constant among the cell population. Note that this adjusted adhesion153

coefficient α∗ will be referred from here on as the adhesion coefficient. The154

advantage of using this adhesion approach (instead of a linear term as in [38])155

resides in the fact that it considers a suction effect as a consequence of the156

increasing density of effective bonds between the cells.157
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The total cell-cell interaction force is directed along the vector joining the158

centres of cells i and j, it is159

Fi,j =
(
Frep
i,j − Fadh

i,j

) dij
‖dij‖

(8)

and can be determined using equations (4) and (7). Notice that in equation (8)160

we assume, without loss of generality, that positive forces for cell i are directed161

outwards.162

For the simulations shown in this paper we shall suppose that all cells have163

the same maximum radii, Young’s moduli, Poisson ratios and adhesion constant,164

denoted by R, E ν and α∗, respectively. The values for the parameters used165

in model Equation (2) are given in Table 1 (see also [6, 38, 37]). With these166

choices, the potential is minimised (and thus forces are in equilibrium) when167

cell centres are approximately 8.5µm apart, causing a small deformation to the168

spherical cell.169

Parameter Description Value
R maximum cell radius 5µm
E Young’s modulus 1e−3µN/µm2

ν Poisson ratio 0.5
α∗ adhesion coefficient 3.72e−4µN/µm2

∆t timestep 1 min
γ cell-medium friction constant 0.01µNµm/min
ar amplitude of random forces 4× 10−3µN

Table 1: Parameter values for Equation (2) used in the simulations throughout this paper.

2.3. Cell cycle, growth and birth170

Besides the mechanical interactions between cells, cells are also subject to171

changes due to biological factors, such as the cell cycle, mitosis and mutations.172

Mitosis is modeled by a combination of processes, depending on three necessary173

biological conditions and a probability distribution.174

The necessary conditions are:175

(1) Cells are allowed to undergo mitosis only after reaching the mature state.176

The cell cycle is modeled by assuming that each cell increases in size at177

a given growth rate (specifically, 0.1µmin) until it achieves a prescribed178

maximum radius, Rµm. Once the cell has grown to its proliferating size179

(at least 99% of this maximum) the condition is satisfied.180

(2) Cells are allowed to undergo mitosis only if contact inhibition processes are181

not activated. Mitosis is not possible if the cell experiences an excessive182

compression force due to the neighbouring cells. To take this into account,183

mitosis is only allowed as long as (i) the repulsive force of the modified184
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Hertz model (see Equation (4)) is below a given threshold F ∗c,m
1, and185

(ii) the number of total contact neighbours of the cell is below a given186

threshold n∗c,m (approximately 16 neighbours, as in [6, 37]).187

(3) Cells are allowed to undergo mitosis only if there is enough oxygen in the188

surrounding media. This last condition depends on the type of scenario189

to be modeled. Cells can have different phenotypes, depending on the190

problem under consideration, as a function of the environment surrounding191

the cell and/or on the cell status. A change in phenotype may manifest192

in a change of cell behaviour (for example, in Section 3.3.1, condition 3 is193

considered to be satisfied when phenotypic expression is normoxic). Cell194

evolution might also depend on several additional biophysical processes,195

such as the availability of nutrients (see Section 3) or the structure of the196

extra-cellular matrix (see Section 4).197

When the conditions are satisfied, mitosis may occur with an uniform prob-198

ability distribution with pmitosis = 1
TCC

, i.e., equal to the inverse of the cell199

cycle time TCC . In the simulations presented in this article, TCC is equivalent200

to 1,000 timesteps or approximately 16.5 hours.201

Remark 1. Notice that, in the proposed model, growth rate is independent of202

nutrient concentration. Scarcity of nutrient does affect the phenotypic state o203

a cell, which has a direct influence on both its oxygen uptake/consumption and204

mitosis (see condition (3)).205

2.4. Implementation details206

The individual cell model has been implemented in a C++ solver, in which207

each cell is an independent object with a given set of properties (radius, position,208

phenotype, etc.). Each iteration is composed of a global step, in which each209

Cell obtains information about its neighbours, and a local step, comprising210

all operations that are performed cell by cell (computing forces and velocities,211

mitosis, mutations). The domain is divided into boxes, and each cell is uniquely212

assigned to the box containing its centre. This subdivision speeds up the search213

for neighbours of a given cell, by restricting the operations to the cells in the214

neighbouring boxes.215

In [6] solid tumour growth was simulated, and the model was given as216

above but the tumour grew within a domain diffused with oxygen from “vessel”217

sources. In the next Section we develop this approach by introducing addi-218

tional agents (vessels) so that we may model mechanical as well as chemical219

interactions between solid tumours and a pre-existing vasculature.220

1 The threshold force is currently calculated as the value of the repulsion force of 12 cells
at a contact distance of 8.5µm
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3. Growth Around Blood Vessels221

This Section describes in detail the coupling between the IB model described222

in Section 2 and updated to include an IB treatment of the vessels, with a finite223

element solver for simulating oxygen diffusion within the tissue.224

In order to setup an efficient computational approach, we consider an ex-225

tension of the multiscale model recently proposed in [6]. Namely, we simulate226

oxygen diffusion within the tissue solving a reaction-diffusion equation with a227

finite element method, in which the vascular tree is taken into account as an228

immersed singular source. As observed in [6], this approach allows us to ef-229

ficiently treat arbitrary vascular structure, without the need of adapting the230

finite element mesh.231

3.1. Mathematical Model232

Oxygen uptake is a variable of extreme importance when determining the233

dynamics of cancer growth. Depending on availability of oxygen in the sur-234

rounding tissues, cancer cells might undergo different biophysical processes. In235

the case of hypoxia (lack of oxygen), cancer cells typically increase their motility236

but eventually, as oxygen levels continue to drop, become necrotic. As oxygen is237

provided by the blood vessels perfusing the tissue, understanding the interplay238

between cancer cells, cancer growth and vasculature is crucial.239

To formulate the model, let us denote with Ω ⊂ R3 the space occupied by240

the whole tissue domain and by Ωv the domain of blood vessels. The oxy-241

gen concentration is governed by the following reaction-diffusion equation and242

boundary conditions assuming that oxygen diffuses within the cellular tissue243

homogeneously with a known diffusion constant.244 

∂tc−DO2
∆c+

αnρn + αhρh
c(T ) + c

c = 0, in Ω,

∂c

∂n
= φv =

1

Jv
(cv − c), on ∂Ωv,

∂c

∂n
=

1

ηDO2

(c+∞ − c) , on ∂Ω/∂Ωv,

(9)

where c(x, t) denotes the oxygen concentration. In the reaction-diffusion equa-245

tion (9)1, DO2 is the diffusion coefficient of oxygen, ρn and ρh stand for the dens-246

ity of normoxic and hypoxic cells, respectively, αn and αh are model parameters247

regulating oxygen uptake and c(T ) is the saturation constant (the oxygen level248

at which the consumption rate is halved). The last term on the left-hand side249

models the oxygen/nutrient uptake by different cell types, modelled through250

Michaelis-Menten type kinetics. The boundary conditions are of Robin-type.251

Equation (9)2 models the filtration from vessels to tissue, while Equation (9)3252

imposes a condition on the external boundaries of the tissue sample, i.e. those253

boundaries not adjacent to any vessel wall. In particular, we consider that blood254

vessels are sources of oxygen, from which oxygen is constantly diffused into the255

domain at a rate φv, based on a filtration law in which cv denotes the oxygen256
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partial pressure inside the vessel and Jv is the filtration coefficient (assumed257

to be known). In this way the oxygen flux, φv, through the boundary, ∂Ωv,258

is assumed to be proportional to the concentration difference between the ves-259

sel and the tissue. We consider c+∞ to be a far field partial pressure. Notice260

that small values of the model parameter η corresponds, from a mathematical261

point of view, to imposing c = c+∞ i.e. a Dirichlet boundary condition, while262

large values of η or c+∞ = 0 are both equivalent to imposing a homogeneous263

Neumann boundary condition.264

Equation (9)1 is a time-dependent non-linear partial differential equation for265

the concentration c(x, t). In order to obtain an efficient solution method, within266

our computational model we considered the following hypothesis. Firstly, we267

assume a strong scale separation between the oxygen diffusion (time to reach268

an equilibrium state) and the cellular tissue growth. Hence, for the purposes of269

the coupled model equation (9)1 can be replaced by its steady counterpart270

−DO2
∆c+

αnρn(t̂m) + αhρh(t̂m)

c(T ) + c
c = 0, in Ω (10)

where t̂m denotes the m-time iteration in the time scale of the cells, and specifies271

the current cell configuration.272

Secondly, we assume that the oxygen distribution does not change excess-273

ively from one iteration of the diffusion solver to another (provided the cell274

distribution remains close). This assumption is used to linearise the reaction275

terms in equation (10), replacing the unknown concentration c at a time itera-276

tion t̂m with the previously calculated c(t̂m−1). Hence, the continuum equation277

that is considered for the coupling with the individual-based model is given by278

−DO2∆c+
αnρn(t̂m) + αhρh(t̂m)

c(T ) + c(t̂m−1)
c = 0, in Ω. (11)

3.2. Finite element approximation279

In order to solve equation (11) numerically, we consider a tetrahedral mesh
Th of the computational domain Ω and the discrete (finite element) space
Vh = P2(Th) of the piecewise quadratic functions on the elements of Th.
Moreover, let us denote with (·, ·)Ω the standard L2 scalar product defined by

(p, q)Ω =

∫
Ω

pq dΩ

for all p, q ∈ Vh.280

The finite element method for the diffusion equation (11) is derived starting281

from its weak formulation. Namely, we first multiply equation (11) by an ar-282

bitrary function q ∈ Vh (a so-called test function) and then integrate by parts,283
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obtaining the following equivalent problem: Find c ∈ Vh such that284

(DO2∇c,∇q)Ω +
∑

α=N,H

(µαR
cells
α (tcells)c, q)Ω

+

(
1

Jv
(c− cv), q

)
∂Ωv︸ ︷︷ ︸

Φv

+

(
1

ηDO2

(c− c+∞), q

)
∂Ω\∂Ωv

= 0,
(12)

for all q ∈ Vh.285

The blood vessel Ωv, representing the source of oxygen, is assumed to be a286

thin tube, with radius much smaller than the characteristic length of the three-287

dimensional domain. In order to avoid an excessive refinement of the mesh288

close to the vessel, the source term on the boundary of ∂Ωv is treated in a289

multi-scale fashion, adopting the immersed boundary formulation proposed in290

[12]. In this approach, the vessel is described by a one-dimensional manifold291

Γv, representing the vessel axis (centre-line), which does not need to be fully292

resolved by the finite element mesh, and it is immersed in the three-dimensional293

domain, in the sense that it enters the diffusion equation (12) only as a singular294

flux term. In practice, the term Φv in equation (12) is approximated by295

Φ̃v =

(
1

Jv
(c− cv), q

)
Γv

=

∫
Ω

1

Jv
(c− cv)q δhΓv

dΩ. (13)

where δhΓv
stands for a discrete approximation of the Dirac delta function of the296

vessel centre-line.297

The main advantages of this approach is that it allows us to use a coarser298

spatial discretisation. In practice, the finite element mesh needs only to be299

refined around blood vessels, but it does not need to fully resolve the vessel300

geometry. Hence, the formulation can handle arbitrary vessel configurations.301

3.3. Coupling with the individual-based model302

3.3.1. Cell phenotype303

Within the model, each cell is characterised by a particular phenotypic state,304

depending on the amount of oxygen available. In particular, we distinguish305

between normoxic, hypoxic, and necrotic states [see also 6, 32, 33, 36]. By306

default, cells are normoxic, and they remain in this state, as long as the oxy-307

gen concentration at their spatial location remains above a specified threshold308

(τhypo), performing aerobic metabolism. If the oxygen concentration falls be-309

low τhypo, the cell activates anaerobic metabolism (i.e., it consumes oxygen at a310

lower rate so that αh < αn), stops proliferating and acquires additional motility.311

The increased motility is modelled by increasing the magnitude of the random312

movement term, arfi(t), of Equation (2) by a factor vhypo [see also 32]. Hypoxic313

cells that move into locations where oxygen levels are reverted to physoxia may314

revert their phenotype back to normoxic [4]; following our previous work [6], we315

consider that when oxygen levels rise over the hypoxia threshold (τhypo) cells316
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may revert to normoxic with a probability p = 1/24 hours. Ultimately, however,317

if the oxygen concentration decreases below a dramatic threshold (τdead), the318

cells undergo apoptosis by anoxia [32], becoming biologically inactive. These319

dead cells remain in the system as a part of the debris in necrotic regions and320

they move only as a consequence of mechanical forces.321

3.4. Implementation details322

The stationary equation (11) is solved numerically using a P2 finite element323

method implemented within the library FreeFem++ (v 3.42) [26]. In order to324

couple the finite element solver with the individual cell solver, the two models325

have to be defined on the same computational domain. However, this relies on326

different discretization strategies. For practical implementation, we considered a327

cubic domain – subdivided into smaller boxes (to simplify the search operations,328

see Section 2.4) – and generated a tetrahedral mesh using Gmsh (v4.4.1) [23]329

and TetGen (v1.5) [42].330

3.4.1. Time-stepping and up-scaling of the cell distribution331

As discussed in Section 3.1, the feedback of the cell model on the diffusion332

equation (11) is driven by the density of normoxic and hypoxic cells (as necrotic333

cells do not consume nutrients), which is assumed to be constant in the short334

time needed by the diffusion problem to reach an equilibrium.335

The cell density, ρ = ρn + ρh, has been computed directly in the discrete336

finite element setting, i.e., approximating ρ as a piece-wise constant function337

on each mesh tetrahedra. To this end, we pre-computed a map, assigning,338

to each tetrahedra, the box containing its barycentre. This step allows us to339

efficiently evaluate the piece-wise approximation of cell density by mapping each340

cell from its box to a given tetrahedra, and summing up the contribution for341

each tetrahedra.342

Another observation allows for a further gain in computational efficiency.343

Since the spatial configuration of the cell undergoes only limited changes between344

time steps, the finite element solver is not launched at each time iteration. In-345

stead, at each time step only the up-scaled cell density (a piecewise constant346

function on the tetrahedral mesh) is computed and stored.347

The solution to the steady diffusion equation is only updated when the348

relative difference (in L2-norm) between the current density and the one used349

in the previous finite element iteration used is above a certain threshold. In350

our numerical simulations, we relaunched the finite element solver whenever the351

relative difference was above 5%. However, a rigorous multiscale analysis would352

be necessary, in order to derive an optimal scale separation strategy. This issue353

is subject of current investigation.354

3.4.2. Individual-based treatment for vessels355

Besides providing available nutrient concentration, the blood vessels are also356

handled within the IB model as independent geometrical entities, this is not the357

case in [6] and is one of the major changes to the model presented here. We358
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consider an adhesion-repulsion interaction model in order to model cell adhesion359

to vessel walls without, at least in this instance, allowing cells to penetrate the360

space occupied by blood vessels. From the computational point of view, vessels361

segments are treated as additional agents, characterised by their extrema, their362

orientation and their radius. Let us introduce the vectorial distance between363

cell and vessel surface hiv, i.e., the vector connecting the centre of cell i with364

vessel v, and perpendicular to the vessel axis. The cell-vessel interaction force365

is computed as the sum of a repulsion and an adhesive term, as:366

Fi,v =

[
4

3
ÊR

1
2
i ‖hiv‖

3
2 − αvesselSiv

]
hiv
‖hiv‖

(14)

with 1
Ê

=
1−ν2

i

Ei
+

1−ν2
v

Ev
(where Ei, νi and Ev, νv denote the Young’s moduli and367

Poisson ratios of cell i and vessel v, respectively), αvessel is an adhesion coefficient368

and Siv is the surface of cell-vessel contact, which is approximated analogously to369

the cell-cell adhesion surface (Equation (6)). When solving for the cell position,370

this contribution is added to the right-hand side of Equation (2).371

3.5. Computational results372

We consider a tissue sample of size 600µm×400µm×400µm, with six vessel373

segments arranged as depicted in the left-hand panel of Figure 1. In the right-374

hand panel of Figure 1 we show the oxygen concentration without the presence375

of cells. The model parameters are summarised in Table 2.

Parameter Description Value
Ev vessel Young’s modulus 1e−3µN/µm2

ν vessel Poisson ratio 0.5
αvessel cell-vessel adhesion coefficient 3.72e−4µN/µm2

c(T ) O2 saturation constant 2.5mmHg
αn normoxic consumption coefficient 0.3
αh hypoxic consumption coefficient 0.06
η determines boundary condition type 0.02
Jv coefficient for filtration term 1e−3
τhypo hypoxia O2 p.p. threshold 7.0mmHg
τdeath necrosis O2 p.p. threshold 0.7mmHg
vhypo hypoxic motility variance factor 10.0

Table 2: Parameter values for the vessel interactions used in simulations. The abbreviation
p.p. stands for partial pressure.

376

In Figure 2 we give the results of a simulation of the vascularised tumour377

growth model after 16 000 timesteps, when the population size has reached ap-378

proximately 20 000 cells. The plots show two different views of the cell popu-379

lation, which has been coloured according to oxygen concentration. It shows380

that the tumour grows between the vessel network without penetrating the vas-381

culature and, intuitively, the cells closest to the vessel segments have higher382
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Figure 1: Left: the vessel geometry considered in the simulation. Notice that the plot shows
the contour surfaces of the partial pressure equal to 60mmHg, since vessels are not explicitly
resolved within the computational mesh. Right: Partial pressure field in three different cross-
sections without the presence of cancer cells.

Figure 2: Cancer growth simulation after 16 000 time steps (approximately 20 000 cells). The
cells are coloured according to available oxygen concentration. In the two panels we show the
domain from different viewpoints.

O2-levels. Figure 3 depicts the level curves of oxygen concentration computed383

with the finite element solver within the vascular tissue, showing the effect of384

the sink terms due to the cell consumption.385

4. Cell-fibre interactions386

While interactions with any local vasculature obviously play an important387

role in the growth and evolution of a solid tumour, interactions with other388

components of the surrounding stroma also play a key role. Fibrous connective389

tissue performs a wide variety of functions within the healthy body but in terms390

of cancer development the structure of the extra-cellular matrix (ECM) and the391

interaction with individual fibres of the matrix drives cell migration. Malignant392

cells activate the integrin migration pathway and crawl towards the protein393

network of the ECM. Migration through the protein network results in the394
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Figure 3: Cancer growth simulation after 16 000 time steps. The plot depicts the contour
surfaces of the O2 partial pressure field.

rearrangement of the ECM structure as cancer cells use the integrin pathway395

to cut-off the fibres and re-orient the ECM. Cell migration can happen as a396

collective process that presents in different ways depending on the tumour type397

and the nearby environment leading to different migration structures [17, 18].398

In this Section, we describe an extension of the IB model presented in Section399

2 that takes into account a three-dimensional fibrous ECM, where fibres of400

arbitrary shape and orientation interact with the individual cells.401

4.1. Mathematical Model402

Each individual fibre is modelled explicitly in the first instance by a thin403

cylinder (described by its extrema and radius), and we assume that the whole404

three-dimensional computational domain is filled by fibres with a given distri-405

bution of positions and orientations.406

4.1.1. Forces on the cell407

Let us consider a cell i in contact with a fibre f . In order to model the inter-408

action, we assume that each cell moves in response to a fibre in two directions.409

In particular, a cell in contact with a fibre will feel an adhesive force, parallel410

to fibre orientation and a repulsive force orthogonal to the fibre (see, e.g., [11]).411

The adhesive force is modelled as412

F‖ = αfibre

(
1− ‖vi‖

vmax

)(
|vi · lf |
‖vi‖

)s
lf . (15)

The force is directed along the normalised direction of fibre f , lf (with (‖lf‖ =413

1), and depends on the normalised scalar product between lf and vi, the velocity414
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of cell i. Moreover, the force depends on an adhesion coefficient, αfibre, and on a415

threshold velocity, vmax, which limits the pulling effect of fibres. The additional416

parameter s > 0 can be used to model additional effects which might increase417

(s < 1) or decrease (s > 1) the pulling effect. For the simulation showed in this418

work, we use s = 1.419

Conversely, the repulsion force is modelled via an additional friction exerted420

by the fibre, again depending on the normalised scalar product between lf and421

vi, and directed parallel to cell velocity and depending on the component of cell422

velocity orthogonal to the fibre:423

F⊥ = βfibre

(
‖vi‖2 − |vi · lf |2

‖vi‖2

)r
vi . (16)

In (16), βfibre is the friction coefficient and the exponent r > 0 can be used to424

model nonlinear effects which increase (r < 1) or decrease (r > 1) the repulsion425

forces. For the simulation showed in this work, we use r = 1. The cell-fibre426

interaction force is computed as the sum of the repulsion and adhesive terms,427

Fi,f = F‖−F⊥, when solving for the cell position, this contribution is added to428

Equation (2).429

4.1.2. Fibre degradation430

A further biologically relevant aspect is the possibility that the fibres are431

degraded by the cells. To take this aspect into account, we include the possibility432

that, during the interaction between a cell and a fibre, the latter is partially or433

totally broken. Specifically, at present, each fibre is equipped with an additional434

flag variable δf ∈ {0, 1}, equal to 1 if the fibre is degraded. For each cell in close435

proximity to a given fibre, f , the fibre is degraded with probability pcontact if the436

cell is moving towards the fibre and in general with probability pdiffusion. For437

the simulations shown in this paper very few fibres per simulation are degraded.438

4.2. Implementation details439

From the technical point of view, the model for the fibres is implemented440

within the same solver used for the cells. In particular, the Fibre class is a441

special computational agent which can interact with neighbouring Cell agents.442

4.3. Computational results443

We investigate the growth of a solid tumour as a function of fibre distribu-444

tion, i.e., depending on density, orientation and interaction parameters (primar-445

ily the adhesion force). In the following simulation we consider a computational446

domain of size 500µm×2000µm×500µm containing 75 000 fibres. Fibre length447

is assumed to be normally distributed with mean 75µm and standard deviation448

5µm [40], while fibre radius is set to 2µm. With these choices, we obtain a total449

fibre volume ratio comparable with the one used in [40]. The parameters for450

the fibre-cell force components are given in Table 3.451

In the first simulation we show how a tumour grows oriented with fibres452

which are uniformly distributed aligned with the y-axis. We place a single cancer453
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Parameter Description Value
αfibre cell-fibre adhesion coefficient 0.005− 0.02N
βfibre resistive coefficient orthogonal to fibre 10−3Nminµm−1

vmax maximum fibre-induced cell velocity 10µmmin−1

pcontact fibre contact degradation rate (per cell) 10−3min−1

pdiffusion fibre diffusion degradation rate (per cell) 10−6min−1

Table 3: Parameter values for the fibre-cell force components used in simulations

Figure 4: Example of a simulation with cell-fibre adhesion parameter set to 0.03N and using
uniformly distributed fibres along the y-axis, after 9000 time steps. Cells are represented by
red spheres, fibres in grey. Left: View orthogonal to the fibre orientation (xz-plane). Right:
View in the yz-plane, cropped on the left side.

cell within our fibrous domain, the result after 9 000 timesteps (approximately454

6 days) of a sample simulation (with a relatively high adhesion coefficient) are455

shown in Figure 4. Whereas in the absence of fibres we typically see a spherical456

tumour mass (as in Figure 2), here the growth has been stretched out along the457

fibrous tissue.458

We investigate how the shape of the tumour changes depending on key para-459

meters, namely, the adhesion coefficient αfibre, the fibre density (number of460

fibres) and the variance of the fibre orientation distribution. For different simu-461

lation settings, we run 200 simulations in each case, computing the final shape462

of the tumour with the quantity463

δ =

√
3ay√

a2
x + a2

y + a2
z

(17)

where ay is the length of the tumour mass in the y direction etc. As such δ464

measures the anisotropy along the y-axis, which is the main axis of orientation465

of fibres. The results are shown in Figure 5. We show that if we increase either466

the cell-fibre adhesion coefficient or the number of fibres the tumour grows467

preferentially in the y-direction. Conversely as we increase the variance of the468

fibre orientation the tumour grows more isotropically.469

IIn the next numerical test we investigate the motion of a single cell (non-470

proliferating) within a given anisotropic fibre distribution. The cell is placed471
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Figure 5: The shape of the distribution of cells within the domain, given by Equation (17).
We vary the fibre adhesion coefficient, number of fibres and variance of fibre orientation in the
left, middle and right plots, respectively. In each plot, the red square indicates the baseline
simulation (αfibre = 0.01N). The y-axis represents the mean value of the indicator, δ, for the
set of simulations, while the vertical error bar corresponds to the variance.

at (250,50,250), while fibres are generated with a fibre volume ratio as above472

(i.e. 75 000 fibres over a domain 500µm×2000µm×500µm), and oriented along473

the y-axis. We run 100 simulations for 10 000 timesteps, monitoring the path474

of the cell within the fibrous domain. The results are shown in Figure 6. We475

observe that the y-orientated fibrous distribution induces the cell to move along476

the y-axis parallel to the direction of the fibres (Figure 6 , top left), with a477

smaller diffusive effect along the x and z axes (Figure 6, top right). The bottom478

panel of 6 compares the mean and variance of the displacement along each axial479

direction, showing greater movement along y.480

In the final numerical test, we investigate how the statistics of the motion of481

a single cell (non proliferating and placed at (250,50,250)) changes as we vary482

parameters affecting the interaction between the cell and the fibrous tissue. In483

particular, we monitor the dispersive behavior of the motion, i.e., the difference484

between the movement along the y-axis (which is the preferential orientation485

of the fibres) and in its orthogonal plane. We run 100 simulations for 10 000486

timesteps, monitoring the path of the cell within the fibrous domain.487

The results (showing the path of the cell for a single run of the simulation488

and the general dispersion behaviour for all 100 runs) are shown in Figure 7.489

The top figures show the results if we reduce the cell-fibre adhesion from 0.03N490

to 0.01N, hence decreasing the “pulling” effect in the direction of the fibres. We491

observe that the cells still predominantly move in the y-direction (with a smaller492

diffusive effect in the x- and z-directions) but do not move as far into the domain493

as observed in Figure 6. The small diffusive effect in the x- and z-directions494

remains as in Figure 6. The middle figures in Figure 7 show the effect of reducing495

fibre density (decreasing the number of fibres from 75 000 to 25 000). In this case496

cells come into contact with fewer fibres and as such the “pull” the cell feels in the497

direction of the fibres is again reduced, yielding similar results as the ones shown498

in the top panel of 7. Finally, the bottom figures in Figure 7 show the effect of499

increasing the variance of fibre orientation distribution. Specifically, instead of500

a uniformly oriented fibre distribution (along the y-direction), we sample fibre501

orientation from a normal distribution with mean (0, 1, 0) (along y-direction)502

and variance of elevation and azimuthal angles equal to 0.8. Hence, fibres are503
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Figure 6: Results of 100 simulations of a single cell (initial position at (250,50,250)) moving
within a fibrous domain. Top Panel: the initial position is indicated by a blue circle, while
final positions (for each simulation) are marked in red. The trajectories are indicated by the
light grey lines. Left: y-z plane. Right: x-z plane. In the left hand plot we indicate the mean
path with the dark grey line. Bottom Panel: The dispersion in each of the axial directions for
the 100 simulations.
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now oriented in different directions, although there remains a preference for504

fibres oriented in the y-direction. In this case the cells continue to feel a strong505

“pull” predominantly along the y-axis although slightly less so than in Figure 6,506

and the variance of the motion along the x and z-axes directions also increases.507

508

5. Discussion and Conclusions509

The evolution from the first mathematical models of biological systems to the510

present computational approaches indicates both the difficulties that science has511

faced in this field but also the great advances that have been made. As exper-512

imentalists come to a deeper understanding of cellular behaviour as multiscale513

complex systems of interactions, the modelling community is endeavouring to514

reconstruct the biology ever more faithfully. In the last few decades particularly,515

a range of powerful computational exploratory tools has been created.516

In this “proof of concept” paper we have detailed our in silico IB model of517

solid tumour growth within the tumour microenvironment in which cancer cells518

interact not only with each other but also with the local vasculature and fibrous519

tissue. The code has been developed from that in [6] to include these vessel/fibre520

interactions. We have shown that the basic model can reproduce important521

key biological aspects. Tumour shape, for example, is driven both by fibre522

orientation in the domain as seen in Section 4 and local vascular structure as523

seen in Section 3. Cell migration is also led by interactions with the environment524

as cells move preferentially along fibres (Section 4) or in search of sources of525

nutrient (namely oxygen) due to oxygen phenotypic profiles which is dealt with526

extensively in [6].527

The model as it stands presents many significant avenues for further devel-528

opment, and we detail a selection of these here. With regards to our remark in529

Section 2.3 there are additional modifications we could make to tweak our model530

to investigate other relevant biological factors, such as changing the growth rate531

of cells to be dependent on nutrient availability. With regards to cell-vessel532

interaction we seek to couple the model with the angiogenesis model of [5],533

in such a way that not only can we model the interactions between cells and534

existing vasculature but also that we can investigate solid tumour dynamics un-535

der vascularisation. This would involve modelling the diffusion of, for example,536

vascular endothelial growth factor (VEGF) from hypoxic cancer cells into the537

surrounding tissue. VEGF is a protein produced by cancer cells that provide538

the initial signals for endothelial cells to form new blood vessels. We intend539

to model the production and diffusion of VEGF in an analogous way to the540

modelling of oxygen diffusion in Section 3.541

Since blood vessels are now physically represented in the IB model this542

would permit us to couple the cell model with a flow model, taking into account543

the pressure of the cells on the vessel boundary to model, for example, vessel544

collapse. Equally, we could develop the physical interactions between cells and545

vessels to incorporate the possibility of intra- and extra-vasation of cells into546

and out of blood vessels. This would be a first major stepping stone in piecing547
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Figure 7: Results of 100 simulations of a single cell (initial position at (250, 50, 250)) moving
within a fibrous domain under changes to parameters. Left Panels: a single cell path shown in
the y-z and x-z planes; the initial position is indicated by a blue circle, and the final position
is marked by a red circle. Right Panel: The dispersion in each of the axial directions for the
100 simulations. Top Panel: reduction of the fibre adhesion parameter αfibre. Middle Panel:
reduction in the number of fibres. Bottom Panel: increase in the fibre orientation variance.
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together an individual-based force-based model of metastatic spread. With548

the ability to model both local invasion and metastasis we will have a better549

understanding of one of cancer’s most deadly Hallmarks [24, 25] and a platform550

from which to investigate ways of stopping the spread of the disease.551

The numerical tests related to cell-fibre interaction presented in this paper552

are limited to a single migrating cell. Besides serving as a preliminary validation,553

the interest of studying a single cell migration can be found in the experimental554

literature. For example, Friedl and co-workers have carried out in vivo experi-555

ments looking at single cells migrating through collagen fibres both in normal556

and cancerous tissue [20, 17, 45, 18]. Additionally there is the possibility of557

comparing the simulations with in vitro experiments using digital holographic558

imaging which tracks the movement of independent cells (see, e.g., [7, 15]). On-559

going development concerns the incorporation of more detailed aspects of ECM560

re-modelling by cancer cells. As much as cells are driven along fibres, fibres can561

also be pushed and re-oriented by contact with cells. We have already included562

a first-step model of fibre degradation whereby fibres that are in contact with563

cells are subject to a rate of degradation. In order to make this aspect more564

biologically relevant we could instead couple it to a reaction-diffusion equation565

for matrix metalloproteinases (MMPs) and other matrix degrading enzymes -566

in a similar way to the modelling of oxygen shown in Section 3. MMPs are en-567

zymes released by cancer cells which are capable of degrading key components568

of the ECM such as collagen fibres.569

Nonetheless, we currently have a novel individual-based model of solid tu-570

mour growth which can replicate key aspects of growth and development and571

which forms a foundation to build upon. What is important now is to take our572

current model from an exploratory tool to a quantitative, predictive one.573
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[20] P. Friedl, K. S. Zänker, and E-B. Bröcker. Cell migration strategies in 3-d636

extracellular matrix: Differences in morphology, cell matrix interactions,637

and integrin function. Microscopy Research and Technique, 43:369–378,638

1998.639

[21] J. Galle, G. Aust, G. Schaller, T. Beyer, and D. Drasdo. Individual640

cell-based models of the spatial-temporal organization of multicellular sys-641

tems—achievements and limitations. Cytom Part A, 69:704–10, 2006.642

[22] J. Galle, M. Loeffler, and D. Drasdo. Modeling the effect of deregulated643

proliferation and apoptosis on the growth dynamics of epithelial cell pop-644

ulations in vitro. Biophys J, 88(1):62–75, 2005.645

[23] C. Geuzaine and J.-F. Remacle. Gmsh: a three-dimensional finite element646

mesh generator with built-in pre- and post-processing facilities. Int J Num647

Methods Engrn, 79(11):1309–1331, 2009.648

[24] D. Hanahan and R. A Weinberg. Hallmarks of cancer. Cell, 100:57–70,649

2000.650

[25] D. Hanahan and R. A Weinberg. Hallmarks of cancer: the next generation.651

Cell, 144:646–674, 2011.652

[26] F. Hecht. New development in freefem++. J Numer Math, 20(3-4):251–265,653

2012.654
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waves accelerate the progression of high-grade brain tumors. Commun688

Nonlinear Sci Numer Simulat, 39:360–380, 2016.689

[37] I. Ramis-Conde, M. A. J. Chaplain, A. R. A. Anderson, and D. Drasdo.690

Multi-scale modelling of cancer cell intravasation: the role of cadherins in691

metastasis. Phys Biol, 6(1):016008, 2009.692

[38] I. Ramis-Conde, D. Drasdo, A. R. A. Anderson, and M. A. J. Chaplain.693

Modeling the influence of the e-cadherin-beta-catenin pathway in cancer694

cell invasion: a multiscale approach. Biophys J, 95(1):155–65, 2008.695

[39] K. A. Rejniak, S. E. Wang, N. S. Bryce, H. Chang, B. Parvin, J. Jour-696

quin, L. Estrada, J. W. Gray, C. L. Arteaga, A. M. Weaver, V. Quar-697

anta, and A. R. A. Anderson. Linking changes in epithelial morphogenesis698

to cancer mutations using computational modeling. PLoS Comput Biol,699

6(8):e1000900, 2010.700
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