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Abstract Nd2CuO4 has a crystal structure called the

Nd2CuO4 (T’) structure in which fluorite-like Nd2O2

slabs and CuO2 planes stack alternately. Nd2CuO4 is

known to show superconductivity by carrier doping via

anion/cation substitution, or making the oxygen sub-

lattice highly ordered via a stringent control of ther-

modynamic conditions during crystal growth. In this

study, CaF2 is used for growing Nd2CuO4 films, as a

substrate material which contains fluorine atoms. The

films show superconducting onset (T on
c ) beyond 30 K.

Furthermore, in contrast to reported superconductivity

in this system, the emergence of superconductivity is

found to be insensitive to post annealing procedures.
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1 Introduction

The first discovery of superconductivity in copper ox-

ide [1] drove researchers into intensive competitions to

find new superconductors with higher superconducting

transition temperature (T c), and to clarify the origin

of high temperature superconductivity in copper oxide

system. Many materials found to show superconduc-

tivity by hole doping, while there are relatively fewer

examples of electron-doped superconductors; one exam-

ple is the infinite layer (IL) materials [2–4], and an-

other is RE 2CuO4 (RE : rare earth elements) with the

Nd2CuO4 (T’) structure (Figure 1 (a)). In both IL

structure and T’ structure, copper atoms are square-

planar coordinated by surrounding oxygen atoms, and

form CuO2 planes. The CuO2 planes are sandwiched

by alkali earth ions in IL structure, and by fluorite-like

RE 2O2 blocks in the T’ structure, respectively.

In the system of T’-RE 2CuO4, superconductivity

can be induced by substituting either RE atoms or

oxygen atoms. First superconductivity was reported in

cerium doped (Nd,Ce)2CuO4 [5], followed by thorium

doped RE 2−xThxCuO4 (RE = Pr [6], Nd [7], Sm [8])

and fluorine doped Nd2Cu(O,F)4 [9]. In the references

above, bulk (powder) samples were examined and the

emergence of superconductivity are explained on the

basis of carrier doping into insulating parent materi-

als. On the other hand, thin films of non-dope com-

pounds are fairly metallic after post annealing process

in vacuum. It has been known empirically that apical

oxygen atoms above copper atoms in T’ copper oxides

play the role of a very strong scatterer as well as a

pair breaker. Obtaining a perfect oxygen sublattice (i.e.,

fully filled in-plane oxygen sites without residual api-

cal oxygen atoms) requires a precise control of oxidisa-

tion/reduction conditions. 20 years after the first report
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[5], thin films of RE 2CuO4 (RE = Pr, Nd, Sm, Eu, Gd),

synthesised by means of metal-organic decomposition,

was found to show superconductivity with substantially

higher T c compared to those of electron-doped rela-

tives [10]. For example, non-dope Nd2CuO4 films show

superconductivity onset as high as T on
c ∼ 33 K, in con-

trast to T on
c ∼ 24 K in (Nd,Ce)2CuO4 [5], and ∼ 27 K

in Nd2Cu(O,F)4 [9]. This implies that thin film sam-

ples are advantageous in removal of the apical oxygen

atoms due to a large surface-to-volume ratio. Another

advantage of film samples is the use of substrate materi-

als which provides lattice strains as well carrier doping

driven by atomic diffusion from the substrate/film in-

terface.

In this work, we synthesised film samples of Nd2CuO4

on (001) CaF2 substrates in order to revisit the results

on superconducting Nd2Cu(O,F)4 [9,11]. Nd2CuO4 films

on (001) CaF2 show sharp superconducting transition

at higher temperature compared to previously reported

Nd2Cu(O,F)4. The highest T on
c ∼ 31 K, which is almost

as high as that of non-dope Nd2CuO4 films on oxide

substrates [10]. Furthermore, the metallic conduction

and superconductivity in the films of Nd2CuO4 on (001)

CaF2 was found to be independent of post annealing

process in contrast to what is reported for supercon-

ducting non-dope Nd2CuO4 films on oxide substrates

such as SrTiO3 and DyScO3.

2 Experimental

Controlling both stoichiometry and thermodynamic con-

ditions is a key to synthesise single phase crystals, par-

ticularly those of complex oxide of transition metals.

Molecular beam epitaxy (MBE) is a synthesis technique

which enables simultaneous and precise manipulation of

both stoichiometry and thermodynamic conditions, and

Fig. 1 (a)(left) The Nd2CuO4 structure (also called T’
structure). Trivalent rare earth ions (e.g., La3+, Pr3+, Sm3+,
Eu3+, Gd3+, Tb3+), as well as tetravalent ions (Ce4+, Th4+)
can be located in the RE sites. Similarly, the oxygen sites
can be altered by halogen elements (e.g., F−). (b)(right) A
schematic of MBE chamber used in this study.

therefore, is known to produce the unparalleled crystal

quality. All the films in this study were synthesised in a

custom-made MBE chamber which is kept at base pres-

sure ∼ 10−6 Pa (figure 1 (b)). For stabilising the desired

phase, atomic oxygen is supplied as an oxidant using

RF oxygen plasma source. The power of plasma source

and O2 gas flow into the plasma source are varied in

the range of 250 W to 350 W, and 0.8 sccm to 1.2 sccm,

respectively. The equilibrium pressure during film de-

position is typically ∼ 1.5× 10−3 Pa to 3.0× 10−3 Pa.

The atomic fluxes from metal sources (Nd and Cu) are

calibrated against quartz crystal microbalance (QCM).

Electron impact emission spectroscopy (EIES) and feed-

back loop are used for monitoring and controlling the

atomic fluxes and stoichiometry. The atomic fluxes of

constituent elements are adjusted to give the growth

rate ∼ 0.1 unit-cell layer/second. The film thickness is

typically ∼ 800 Å. The deviations from optimal growth

conditions, e.g., off-stoichiometry of cation ratio, often

result in precipitation of unwanted phases and degrada-

tion of in-plane coherency of the crystal. Reflection high

energy electron diffraction (RHEED) is used to monitor

the surface morphology during the film growth and to

detect such signals of deterioration of crystalline qual-

ity. Fluorine doping is attempted by using (001) CaF2

substrates assuming diffusion of fluorine atoms from the

substrate into the film. For the deposition, substrate

temperature T s ∼ 730 ◦C was used for all the samples.

In the case of non-dope Nd2CuO4 films grown on ox-

ide substrates, post annealing process is essential oth-

erwise superconductivity is destroyed by electron scat-

tering by residual apical oxygen atoms. Therefore, some

films were kept at ∼ 580 ◦C in vacuum for 10 minutes

after the deposition. Films which are not annealed are

denoted as as-grown films. X-ray diffraction (XRD) is

used in order to identify the grown phases, to evaluate

the crystalline quality, as well as to determine the c-

axis lattice constant (c0). Standard four-probe method

is used for resistivity measurements.

3 Results

From X-ray diffraction patterns, it was confirmed that

c-orientated Nd2CuO4 films are synthesised over the

examined range of growth parameters. All films show

positive temperature derivative of resistivity ( dρdT>0 )

from 300 K to ∼ 70 K. Non-superconducting films show

upturn in lower temperature range likely due to lat-

tice defects. The resistivity curves of superconducting

Nd2CuO4 films on CaF2 are shown in figure 2. The

typical resistivity values at 300 K ranged 400µΩcm to

800µΩcm, and sharp superconducting onsets are ob-

served at T on
c ∼ 30 K. Comparing with the resistivity
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Fig. 2 Temperature dependences of electrical resistivity (ρ-
T ) in the Nd2CuO4 films grown on (001) CaF2 substrates
synthesised in this work. The black and pink curves cor-
respond to as-grown film and annealed film, respectively.
For a comparison, ρ-T curves of Nd2CuO4 film on SrTiO3

[12] (dashed line), (Nd,Ce)2CuO4 film on SrTiO3 [13] (short
dashed line), and Nd2Cu(O,F)4 pellet [9] (dotted line, mul-
tiplied by 1

100
) are also shown. The inset shows an enlarged

view between 20 K to 35 K. The film samples in this work
show lower resistivity values and higher T c values compared
to those reported for Nd2Cu(O,F)4 pellet regardless of post
annealing process.

curve reported for the bulk Nd2Cu(O,F)4 in [9] (figure

2, dotted line), much lower resistivity values as well as

higher superconducting transition temperature are ob-

served in this study. Moreover, the emergence of super-

conductivity and the values of T on
c in this study seems

independent of annealing process, in contrast to cases

of cerium doped and non-dope Nd2CuO4 films in which

post annealing in vacuum is critical to superconducting

properties.

The insensitive response to annealing process can be

seen in not only electrical conduction but also structural

parameters. Figure 3 illustrates T on
c as a function of c0

for samples shown in figure 2. Figure 3 also include data

from [9,12,13]. Here, the c-axis lattice constants of films

are estimated by applying Nelson-Relay function to the

d values of diffraction peaks from Nd2CuO4 [16]. Filled

marks correspond to as-grown samples. For a compar-

ison, the c0 value in bulk Nd2CuO4 [15] is also shown

as dotted grey line. The Nd2CuO4 films grown on (001)

CaF2 substrates (shown as stars) have c0 close to the

Fig. 3 Temperatures of superconducting onset (Ton
c ) as a

function of c-axis lattice constant (c0) for films in this study
(plotted with stars), non-dope superconducting Nd2CuO4

film [10] (circle), optimally doped (Nd,Ce)2CuO4 film [13]
(diamond), and Nd2Cu(O,F)4 pellet [9] (downward triangle).
Filled marks correspond to as-grown samples [14]. For a com-
parison, the c0 value in bulk Nd2CuO4 [15] is also shown as
dotted grey line. The Nd2CuO4 films grown on (001) CaF2

substrates have comparable c0 with the bulk value, and it is
almost independent of post annealing process.

bulk value, and the T on
c s do not change depending on c0

values. On the other hand, substantially shorter value is

reported for fluorine doped Nd2Cu(O,F)4 powder sam-

ples (12.13 ± 0.02 Å) [9] (triangle) and for cerium doped

(Nd,Ce)2CuO4 (12.08 Å) [13] (diamond) due to replace-

ment with ions with smaller ionic radii (i.e., O2−: 1.40 Å

→ F−: 1.33 Å, and Nd3+: 1.109 Å→ Ce4+: 0.97 Å [17]).

Without ion substitution, the superconducting films of

non-dope Nd2CuO4 on oxide substrates, in which elim-

inating apical oxygen atoms is crucial to superconduc-

tivity, also show shorter c0 value compared to the bulk

value. In the case of non-dope Nd2CuO4 on oxide sub-

strates, c0 changes depending on the residual amount

of apical oxygen atoms [18]. Therefore, c0 qualitatively

indicate the residual amount of apical oxygen atoms.

For example, the typical c0 value of non-dope super-

conducting Nd2CuO4 films on oxide substrates is con-

siderably (∼ 0.03 Å to 0.04 Å) shorter than bulk c0 [10].

The original intention to employ fluorite substrates

was to dope fluorine atoms as donors via atomic dif-

fusion. Some of Nd2CuO4 films grown on (001) CaF2
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indeed show superconductivity However, the results ap-

pear not to be explained by simple fluorine doping be-

cause the observed values of T on
c are substantially higher

and the c0s are longer compared to the reported values

for bulk (powder) Nd2Cu(O,F)4 [9].

There are some scenarios to possibly explain the re-

sult. One is that the observed superconductivity stems

from non-dope Nd2CuO4 domains in the samples. As

reported in [19], with the growth condition marginal

for the T’ phase formation, i.e., by increasing growth

temperature and reducing oxygen partial pressure from

typical growth condition, non-dope T’ materials show

superconductivity in the as-grown state. It is known

that oxide substrates supply additional oxygen atoms

which increase the oxygen partial pressure in the sur-

face selectively. On the other hand, no oxygen diffusion

occur from fluorite substrates, which may result in sim-

ilar growth condition as described in [19]. However, the

observed insensitivity to post annealing process and the

peculiarly long c0 for its high its high T on
c may be con-

tradictory to the preceding reports on superconductiv-

ity in the non-dope system on oxide substrates.

Another is that the superconductivity is induced by

fluoridation of Nd2CuO3.5. Corbel et al. [20] suggested

that, through fluoridation at 200 ◦C to 300 ◦C, fluorine

atoms replace oxygen atoms in the Nd2O2 slab and

the released oxygen atoms migrate in to the CuO1.5

layers thus forming conducting CuO2 planes. This an-

ion rearrangement induces structural deformation from

monoclinic symmetry to tetragonal symmetry. Similar

structural deformations are previously found in fluori-

dation or oxidisation of A2CuO3 (A = Ca, Sr, Ba) [21–

25]. Fluoridated Nd2CuO3.5 show superconductivity at

T on
c ∼ 6 K to 11 K, which is lower than the maximal

T on
c ∼ 27 K in Nd2Cu(O,F)4. Not optimal Cu oxida-

tion state and a partial substitution of in-plane oxygen

sites by fluorine atoms are attributed as possible rea-

sons in [20], yet the exact reason for lowering T c in

fluoridated Nd2CuO3.5 remains unclear. It is reported

that a majority of fluorine atoms substitute for the oxy-

gen sites in Nd2O2 blocks, while approximately 30 % of

fluorine atoms also substitute in in-plane oxygen sites

[20,26,27]. Calculation of the electrostatic energies for

different oxygen and fluorine distributions between the

Nd2O2 blocks (i.e., Nd2(O,F)2·CuO2) and CuO2 (i.e.,

Nd2O2·Cu(O,F)2) planes was performed by [20]. The

calculation showed that the former structure has a lower

energy than the latter by ∼ 200 kJ/mol. Due to the

non-equillibrium character of MBE growth, occupation

or migration of fluorine atoms to in-plane sites might

be suppressed in this study, which results in improved

electronic conduction. It must be noted, however, that

the c0 values of Nd2CuO4 films on CaF2 close to the

bulk c0 seem contradictory to crystallographic consid-

eration: c0 values are expected to be reduced by sub-

stituting oxygen atoms by smaller fluorine atoms. Per-

haps, part of the doped fluorine atoms may occupy the

apical sites which may provide additional hole to CuO2

planes from the viewpoint of valence state of copper

ions. However, it is uncommon that fluorine atoms oc-

cupy the apical sites while the crystal lattice keeps the

T’ structure [28].

Indeed, there are only few reports on “hole-doped”

superconductors with T’ structure. Takamatsu et al.

reported superconductivity in La1.8−xEu0.2AxCuO4 (A

= Ca, Sr) [29,30]. In both composition, the materials

stabilise in T’ structure, and both show T on
c ∼ 13 K

with x = 0.05. In [29,30], the examined powder sam-

ples had a few % of superconducting volume fractions

which may be attributed to oxygen sublattice disorder,

i.e., in-plane oxygen defect and/or residual apical oxy-

gen atoms. However, this difficulty can be overcome in

films samples due to a large surface-to-volume ratio [10].

Note that, however, superconductivity in this system

strongly depends on the synthesis process, and there-

fore hole-doped superconductivity in T’ copper oxides

is not a consensus yet that [31].

4 Conclusion

Film synthesis of Nd2CuO4 using CaF2 substrate was

attempted. The films grown were confirmed to be

Nd2CuO4 with T’ structure from X-ray diffraction pat-

tern. Some films show sharp superconducting transition

and T on
c ∼ 31 K at highest. In contrast to previously

reported trends in neighbouring systems, the values of

T on
c and c-axis lattice constant appeared independent

of post annealing process. Further characterisations are

required to clarify the origin of superconducting phase

observed in this study.
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