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Abstract 

The small intestine, which is lined by a single layer of intestinal epithelial cells, is the 

main site of nutrient absorption. It is continuously exposed to food antigens, and also 

several bacteria and microorganisms. Intestinal intraepithelial lymphocytes (IELs) are T 

cells that are interspersed between epithelial cells, above the basement membrane. This 

makes them one of the first immune cells to encounter and provide defence against 

invasive microbes. Studies have shown the important contribution of IELs patrolling 

along the epithelium to the immunosurveillance of the guts. However, little is known 

about how these immune cells move. 

Intestinal organoids are three-dimensional structures of epithelial cells that mimic the gut 

epithelium in vitro. In this study a murine IEL-organoid co-culture system was 

established to study IEL movement. It has been shown that it is possible to keep them 

together in culture for long-term and by performing brightfield and confocal microscopy 

imaging of the co-culture, I was able to visualize IEL movements. Indeed, IELs were 

observed to be highly motile inside organoids similar to previous studies. IL-15, a 

chemokine which is known to promote IEL proliferation and survival, can also affect IEL 

chemokinesis and chemotaxis. When IL-15 bindings was blocked, IEL movement was 

reduced. I also performed an analysis of IEL proteomic data for molecules regulated by 

IL-15 that could be involved in IEL migration. The expression of several adhesion 

molecules and chemokine receptors was either upregulated or downregulated which 

showed a potential involvement in IEL movement and retention within the epithelium. I 

showed that one way in which IL-15 drives IEL migration is potentially through a 

chemokine receptor, CXCR6. Results from the migration assay showed that IEL were 

chemoattracted and migrated towards CXCL16, the ligand of CXCR6. CXCL16 is 

expressed by stressed epithelial cells, and could be a mechanism for IELs to be attracted 

to sites of intestinal damage. 
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Introduction 

1. Intestinal epithelial cells and their roles in small intestine immunity

The small intestine is a part of the gastrointestinal tract, which is an organ that takes in 

food, digests it and absorbs nutrients. The lining of the gut consists of a single layer of 

intestinal epithelial cells (IEC), and their main function is to absorb nutrients from food. 

The epithelium also serves as a barrier that separates the lumen, which contains foreign 

substances accompanying the intake of food such as bacteria, and the sterile lamina 

propria which hosts several types of immune cells. Thus, its contribution to the gut 

immune system is highly significant.  

To aid in intestinal immunity, IECs serve two major functions: segregation and mediation 

(Okumura and Takeda 2017). Segregation is the separation of the gut microbes and host 

immune cells, while mediation is the delivery of signals between them. Both roles aim to 

maintain the balance between the intestinal microbiota and the host immunity, thus 

avoiding intestinal inflammation. IECs also generate two main types of barrier, physical 

barrier and chemical barrier. 

The physical barrier includes the mucus layer and epithelial layer. Mucus is a sticky fluid 

which is mucin-glycoprotein-rich. It forms a thick layer which covers intestinal epithelial 

cells. The epithelial layer is a single cell layer, composed mainly of enterocytes joined by 

tight junctions. It is a contiguous and relatively impermeable membrane, securely 

separating the sterile environment underneath the epithelium from foreign substances. 

The epithelium is organized into villi and crypts to increase the surface area (Fig 1). At 

the bottom of the crypts are pluripotent intestinal stem cells, which constantly generate 

new epithelial cells every 4 to 5 days (van der Flier and Clevers 2009). Differentiated 

cells, except Paneth cells, migrate upward and out of the crypts. Afterwards, epithelial 

cells undergo apoptosis and are shed off the villi into intestinal lumen, while new cells 

are constantly generated (Hall, Coates et al. 1994). As a result, the epithelium is always 

renewed (van der Flier and Clevers 2009). 

Secretory intestinal epithelial cells, which consist of enteroendocrine, goblet and Paneth 

cells, are specialized for maintaining the digestive or barrier functions of the epithelium 

(Peterson and Artis 2014). These cells secrete various gastrointestinal hormones, the 

mucus layer and antimicrobial peptides respectively. Microfold cells or M cells which 
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only found in the Peyer’s patches in the small intestine, are responsible for the uptake and 

delivery of antigens from the lumen to antigen-presenting cells (Mabbott, Donaldson et 

al. 2013). Tuft cells also contribute to intestinal immunity and are enriched in a G protein-

coupled receptor, SUCNR1 (succinate receptor) to sense protists and helminths which 

then can sufficiently activate type 2 inflammation (von Moltke, Ji et al. 2016, Ting and 

von Moltke 2019). Cup cells are another cell type which are randomly distributed in the 

villus epithelium and their function in gut immunity remains unclear (Madara 1982). 

To aid in the chemical barrier functions, Paneth cells produce antimicrobial peptides 

(AMPs) including the regenerating islet-derived 3 (Reg3) family of peptides that have a 

critical role in segregating bacteria from the epithelial surface of the small intestine 

(Okumura and Takeda 2017). AMPs are small, basic amino-acid-rich cationic proteins 

that can protect against bacterial infection by interacting with negatively charged 

microbial membrane, causing membrane disruption (Brogden 2005). The Reg3 family of 

proteins was defined as antimicrobial proteins of which Reg3γ is active against Gram-

positive bacteria (Cash, Whitham et al. 2006, Vaishnava, Yamamoto et al. 2011). The 

production of antimicrobial molecules by Paneth cells is regulated partially by 

Fig 1: The small intestine is organized into crypts and villi to expand the surface area of the gut. 

The epithelium is composed of several populations of specialized cells which contribute to the small 

intestine functions: absorbing nutrients and protecting the body from harmful components. Intestinal 

stem cells (IESCs) are located at the bottom of the crypts.  
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TLR4/Myd88 signalling and NOD2 signalling which is driven by gut microbiome 

(Vaishnava, Yamamoto et al. 2011, Muniz, Knosp et al. 2012).  

The intestinal immune system developed several tools in order to prevent the gut from 

bacterial invasion. The first one is the immunity provided by gut microbes. The intestinal 

microbiota has been indicated to be involved in the host immunity by constantly and 

directly contacting with host cells (Okumura and Takeda 2017). The second one is the 

protection from the epithelium composed by IECs. IECs can regulate host immune 

response by pro-inflammatory cytokine and chemokine secretion (Okumura and Takeda 

2017). For instance, in humans epithelium, TLR5/Myd88 signalling promotes IECs-

derived IL-8, which recruits neutrophils to the intestinal mucosa (Gewirtz, Navas et al. 

2001, Yu, Zeng et al. 2003). IECs also respond to bacterial substances by generating 

factors that enhance cell survival and repair, and immunoregulatory responses such as 

TGF-β (Bauche and Marie 2017). The third protective level is represented by the innate 

and adaptive immune cells: dendritic cells, macrophages, phagocytes and the 

lymphocytes that are observed scattering in the gut. The most abundant lymphocyte 

population in the intestinal epithelium is the intestinal intraepithelial lymphocytes (IELs). 

2. Intestinal intraepithelial lymphocytes 

IELs are one component of the intestinal immune system and are present an estimated 

density of one IEL for every 5 to 10 epithelial cells in the small intestine (Beagley, 

Fujihashi et al. 1995). IELs are interspersed between epithelial cells, above the basement 

membrane, which make them one of the first immune cells to provide defence against 

invasive micro-organisms (Hu, Jia et al. 2018). However, the understanding about how 

the IELs are fully activated and which factors drive the cytolytic activity of IELs toward 

infected cells remain unclear. 

Most of the IELs, around 90%, are TCR+ and can be further classified into induced and 

natural IELs, also known as conventional and unconventional T cells respectively. 

Induced IELs include CD4+ and CD8αβ+ TCRαβ+ subsets, derived from antigen-specific 

T cells that were activated in the periphery in response to antigens then enter the 

epithelium. Thus, they typically express a memory-like phenotype (Cheroutre, Lambolez 

et al. 2011). Natural IELs include TCRαβ+ and TCRγδ+ subsets, which enter the 

epithelium as soon as they are generated in the thymus, and typically express the CD8αα 

receptor (Van Kaer and Olivares-Villagomez 2018). Some natural IELs express natural 

killer (NK) cell receptors and the CD3 complex (Shires, Theodoridis et al. 2001, 
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Cheroutre, Lambolez et al. 2011). TCR-negative cells only account for 10% of IELs and 

consist of subsets that resemble to innate lymphoid-like cells (ILCs) found outside the 

intestinal epithelium.  

As the epithelium is constantly exposed to microbial pathogens and commensal 

organisms, IELs exert various functions in order to fight against bacterial and moderate 

overt inflammation (Sumida 2019). IELs can contribute to the innate immune response 

and fight against bacteria through cytolysis by secreting cytotoxic substances such as 

granzymes, perforin and Fas ligand or through natural killer receptors (Inagaki-Ohara, 

Nishimura et al. 1997, Bauer, Groh et al. 1999). Another mechanism is the regulation of 

mucus and antimicrobial peptides produced by Goblet cells and Paneth cells relatively 

(Hu, Jia et al. 2018). IELs are also involved in intestinal homeostasis and epithelial cell 

healing and repair (Cheroutre, Lambolez et al. 2011). For instance, TCRγδ+ IELs have 

the capacity to produce keratinocyte growth factor to regulate IEC integrity and healing 

(Boismenu and Havran 1994, Sheridan and Lefrancois 2010). IELs are known for their 

immunosurveillance at the epithelial layer to quickly respond to infection in the intestine 

(Van Kaer and Olivares-Villagomez 2018). So far, there have been several studies of IEL 

migration because such migration to site of infection provides efficient immune response. 

However, further investigation is still required to give an insight into the cellular 

mechanisms that regulate IEL migration at steady-state or in response to infection.  

3. Surface receptors on IELs involved in migration 

Unlike other lymphocytes, IELs do not recirculate, however, they express several 

chemokine receptors, including CCR2, CXCR3, CCR5 and CCR9. The process of 

recruiting natural IELs to epithelium, so-called IEL-homing was shown to rely on the 

interaction between CCR9 and its ligand CCL25 which presents on epithelial cells under 

homeostatic condition (Wurbel, Malissen et al. 2001, Uehara, Grinberg et al. 2002). In 

CCR9-deficient mice, approximately 2-fold of intestinal IELs diminished and this 

reduction mainly due to the loss of γδ IELs. In addition, the decrease in IEL number in 

the small intestine was found to depend on β7 integrin, another gut-specific homing 

molecule (Gorfu, Rivera-Nieves et al. 2009). Furthermore, other molecules were found 

to be involved in IEL recruitment to epithelium. CXCR3 is expressed on the surface of 

activated CD8+ IELs and is thought to activate these cells in response to pathogens 

(Strauch, Mueller et al. 2001). Lack of this molecule leads to change in the number of 

cells in each IEL subsets, thus, CXCR3 and its ligand CXCL10 are suspected to be 

involved in IEL recruitment into infected tissues (Groom and Luster 2011). Another 
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noticeable chemokine receptor is CCR5 which is highly expressed by IELs. Its ligand is 

CCL5 which previously known as RANTES (Papadakis and Targan 2000). In CCR5-/- 

mice, there was increased inflammation and tissue damage upon Toxoplasma gondii 

infection (Luangsay, Kasper et al. 2003). Further, CD8β+ IELs isolated from CCR5 

deficient mice were impaired in their ability to migrate to infected tissues both in vivo and 

In vitro. CCL5 was shown to not have chemoattraction on primed IEL, instead it increases 

MIP-1α (CCL3) secretion (Luo, Berman et al. 2002). However, blocking CCL5 activity 

could totally inhibit migration of primed IELs to epithelial cells (Luangsay, Kasper et al. 

2003). Thus, the results suggested that CCL5 can mediate IEL migration through MIP-

1α and/or MIP-1β (CCL4) (both secreted by enterocytes) via chemokine receptor CCR5. 

In the same study, CCR2 expression level on primed IELs was found to be significantly 

lower than CCR5 and addition of an antibody to MCP-1, the CCR2 ligand, was ineffective 

to inhibit IEL migration. However, it is still a potential chemokine receptor to mediate 

IEL attraction.  

G protein-coupled receptors also play a role in IEL homing. GPR18 is expressed by 

CD8αα+ IELs and there is a reduction in CD8αα+TCRγδ+ IELs in mice lacking this 

receptor (Wang, Sumida et al. 2014). Another G protein-coupled receptor, GPR55 

negatively modulates accumulation of CD8αα+TCRγδ+ IELs. In addition, in GPR55-

deficient mice, IELs show faster movement and interact more with epithelial cells 

(Sumida, Lu et al. 2017). These results further confirm the involvement of chemokines in 

IEL migration. 

Fractalkine and its specific receptor CX3CR1 were reported to direct lymphocyte 

chemoattraction and adhesion within human intestinal mucosa (Muehlhoefer, 

Saubermann et al. 2000). This study showed that intestinal epithelial cells are a source of 

fractalkine and nearly half of the freshly isolated human IELs expressed the fractalkine 

receptor CX3CR1 on their surface (which contain approximately 80% CD8+ IELs). 

Cultured human IELs were previously demonstrated to migrate to polarized intestinal 

layer in vitro (Shaw, Hermanowski-Vosatka et al. 1998). However, IELs need to be 

activated by IL-2R signalling in advance to migrate in response to fractalkine. This 

migration can partially be inhibited by pertussis toxin, suggesting IEL migration can 

potentially be regulated by chemokine receptor-mediated signalling (Shaw, 

Hermanowski-Vosatka et al. 1998). PTX is an exotoxin with an A-B structure that ADP-

ribosylates Gi proteins, interfering with a majority of chemokine receptors (Moss, Stanley 
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et al. 1983). Previous studies also showed that PTX can inhibit the chemotaxis of 

neutrophils, lymphocytes and macrophages (Spangrude, Sacchi et al. 1985). IEL 

recruitment to the intestinal mucosa is also regulated by αEβ7 and fractalkine has been 

shown to mediate an integrin-independent adhesion in vitro (Imai, Hieshima et al. 1997, 

Haskell, Cleary et al. 1999), suggesting that fractalkine contributes to IEL retention 

within intestinal epithelial layer. In addition, fractalkine is strongly upregulated in the 

intestinal mucosa of patients with active Crohn’s Disease.  

Once IEL enter the epithelium, they interact with epithelial cells. Until recently it was not 

clear whether IEL moved between epithelial cells or stayed sessile. A study from 

Chennupati showed that IEL moved little while later studies showed that IELs were 

highly motile within the epithelium (Chennupati, Worbs et al. 2010, Hoytema van 

Konijnenburg, Reis et al. 2017, Hu, Ethridge et al. 2018) 

Crosstalk between IELs and IECs plays a key role in gut immune response (Hoytema van 

Konijnenburg, Reis et al. 2017). One factor involve in that interaction is occludin, a tight-

junction protein was reported to regulate TCRγδ+ IELs migration within epithelial layer 

(Edelblum, Shen et al. 2012). In occludin-deficient mice, TCRγδ+ IELs accumulation in 

intraepithelial compartment was impaired and IELs showed less interaction with IECs. 

This was only observed in TCRγδ+ IELs. Another molecule known to mediate the 

selective localization and retention of IELs is αE(CD103)β7 (Schon, Arya et al. 1999). 

This integrin is expressed in almost all IELs and its ligand, E-cadherin is found on 

epithelial cells and their binding mediates the adhesion of IELs to IECs (Cepek, Shaw et 

al. 1994). CD103 deletion increased migration of TCRγδ+ IELs to the lateral intercellular 

space (LIS) between epithelial cells, thus reducing pathogens invasion (Edelblum, Singh 

et al. 2015). When performing parallel transcriptome analyses in both TCRγδ+ IELs and 

IECs upon infection with Salmonella, there were an increase of Wnt/β-Catenin pathway 

which is responsible for the self-renewal capacity of intestinal stem cells (Hoytema van 

Konijnenburg, Reis et al. 2017). The Wnt/β-Catenin pathway also links with changes in 

IECs replacement rate, tissue regeneration and cellular metabolism (Karin and Clevers 

2016). Furthermore, enteric infection induced changes in TLR sensing and Myd88 

signaling, a pathway which IECs follow to response to pathogens (Hoytema van 

Konijnenburg, Reis et al. 2017). In Myd88-deficient mice, there was a loss of gene 

expressions associated with the immune response in isolated IECs and TCRγδ+ IELs. 

TCRγδ+ IELs behavioural changes were shown to depend on Myd88 expression in IECs. 
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Altogether, IECs are possibly the first cells sense and response to microbes then 

communicate with IELs, and are also responsible for TCRγδ+ IELs behaviour regulation 

during infection in a Myd88-dependant way.  

An early study described the migration characteristics of TCRγδ+ IELs, which account 

for approximately 50 – 60% of IEL population in the murine small intestine (Chennupati, 

Worbs et al. 2010). They found that, under physiological conditions, intestinal TCRγδ+ 

IELs showed little movement and relatively confined to the epithelium. However, two 

later studies proved that under homeostatic conditions, IELs actively move in the space 

between the basement membrane and the epithelium, and occasionally show transient 

contact with epithelial cells (Edelblum, Shen et al. 2012, Hoytema van Konijnenburg, 

Reis et al. 2017). TCRγδ+ IELs showed a serpentine movement and a significant increase 

number of γδ IELs were found in the lateral intercellular space (LIS) upon infection with 

Salmonella enterica Typhimurium (Edelblum, Singh et al. 2015, Hoytema van 

Konijnenburg, Reis et al. 2017). In addition, TCRγδ+ IELs were observed to gather near 

and directly contact with infected cells which would enable these cells to protect the host 

and provide a quick response against pathogens. Thus, TCRγδ+ IELs patrol the 

epithelium and migrate between adjacent epithelial cells to do their protective functions 

and without TCRγδ+ IELs, enteric pathogen invasion increased (Edelblum, Singh et al. 

2015). Therefore, IELs behavioral changes possibly depend on gut infection and direct 

contact with bacteria is required for them to fight against bacteria. However none of these 

studies have evaluated the movement of TCRαβ+ IELs. 

4. Intestinal organoids 

As mentioned above, it is shown that IEL migration and close interaction with IECs play 

an important role in gut immune response, thus IECs might be involved in IEL migration. 

However, studying interactions of IELs with IECs is challenging as isolated IECs easily 

undergo a programmed cell death, termed anoikis – a form of apoptosis (Frisch and 

Francis 1994). Recent advances allow long-term culture IECs as organoids, a culture 

system derived from intestinal stem cells (ISCs) (Sato, Vries et al. 2009). 

An organoid is a three-dimensional structure which can resemble cellular composition 

and tissue organization of the intestine (Sato, Vries et al. 2009). As mentioned above, 

intestinal stem cells (ISCs) are located near the crypt bottom, at a density of 4 to 6 cells 

per crypt. ISCs produce the transit amplifying (TA) cells, which can proliferate rapidly. 

TA cells then differentiate into enterocytes, goblet cells and enteroendocrine cells that 
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migrate upwards along the crypt-villous axis. Paneth cells – secretory cells that secret 

Wnt3a, stay at the bottom of the crypts. According to this breakthrough study, intestinal 

organoids can be formed by supplementing ISC essential growth signals. First, Wnt 

signalling was reported to be a pivotal element for crypt proliferation (Pinto, Gregorieff 

et al. 2003). A Paneth cell then emerged, representing the first symmetry-breaking event 

in intestinal organoid formation (Serra, Mayr et al. 2019). A Wnt3a gradient is formed 

around these cells and is believed to determine a crypt site. In addition, Wnt agonist, R-

spondin-1 also induced crypt hyperplasia in vivo. Second, epidermal growth factor (EGF) 

was associated with intestinal proliferation by reducing TGFβ-induced inhibition of IEC 

proliferation (Kurokowa, Lynch et al. 1987, Dignass and Sturm 2001). Third, crypt 

number expansion was reported to depend on transgenic expression of Noggin (Haramis, 

Begthel et al. 2004). The last element was Matrigel, a mixture of extracellular base matrix 

to support intestinal organoid growth which have been applied to grow the epithelium of 

mammal (Stingl, Eaves et al. 2001). Laminin is also an enriched element at the crypt base, 

thus the use of Matrigel is to create an environment that mimics the stem cell niche in 

vivo (Sasaki, Giltay et al. 2002).  

In vitro culture of intestinal organoids, also known as enteroids, with supplementation of 

all the growth factors above enables a long-term survival of enteroids and a reminiscent 

of normal intestine. There is a crypt-like structure with Paneth cells reside at the bottom 

 

Figure 2: Bright field microscopy of a mouse small intestinal organoid with crypt domains (red 

bracket) and villus domain (black bracket). Paneth cells are presented at the crypt domain (black 

arrow). The lumen is filled with dead cells. Organoids were cultured with supplementation of EGF, 

Noggin and R-spondin. 

 



16 
 

 
 

and TA cells. This crypt region is where the budding events occur. Budding events are 

similar to crypt fission which is a process in intestinal epithelium expansion (Langlands, 

Almet et al. 2016). There is also a villus-like domain composed of enterocytes. Apoptotic 

cells are shed off into the lumens and this process is similar with the dead cell shedding 

event in normal gut (Fig 2). In addition, IECs expanded by this method can reconstitute 

normal epithelium when being transplanted back into syngeneic mice, showing that the 

in vitro culture of IEC does not affect the conservation of their in vivo features (Nozaki, 

Mochizuki et al. 2016). 

5. Co-culturing IEL with organoids 

IELs are highly susceptible to apoptosis after isolation, thus, it has been a challenge to 

study IEL functions and behaviours in vitro. However, survival and proliferation factors 

derived from IECs can support the maintenance of IEL in vitro (Nozaki, Mochizuki et al. 

2016). This suggested that IECs have physiological properties that provide a suitable 

microenvironment for a sustained culture of IELs. Isolated IEC also easily undergo 

anoikis (a form of apoptosis), but recent advances allow long-term culture of IEC as 

enteroids, three-dimensional primary culture systems that are derived from intestinal stem 

cells.  

A co-culture system of IELs and intestinal organoids has been developed to study in vitro 

IELs interaction with IECs (Nozaki, Mochizuki et al. 2016). In this study, exogenous 

addition of cytokines, IL-2, IL-7 and IL-15 were used to test their effects on IEL 

maintenance and all three were able to expand IEL and maintain IEL survival. IELs were 

shown to move around enteroids with high motility and constantly changing their contact 

with enteroids. Some IELs approached enteroids, stayed in it and then egressed from it; 

others got into enteroids and moved along the epithelial layer in a random direction. 

Enteroids also support IELs proliferation and IELs have been observed to behave 

normally inside enteroids. Another group also utilised this method to co-culture TCRγδ+ 

IELs with enteroids derived from WT mice in order to study the importance of IL-15 (Hu, 

Ethridge et al. 2018).  They performed an intravital microscopy on WT mice and mice 

with IL-15 overexpression in the epithelial layer found that in those overexpressing 

murine IL-15, the number of TCRγδ+ IELs associated with enteroids and migrating to 

the lateral intercellular spaces was increased. IL-15 has been shown to promote IEL 

survival and proliferation through the trans-presentation of IL-15 by epithelial IL-15Rα 

to IL-2Rβ presenting on T cells; natural IELs were significantly reduced in IL-15 or its 
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receptor IL-15Rα and IL-2Rβ-deficient mice (Suzuki, Duncan et al. 1997, Lodolce, 

Boone et al. 1998, Ma, Acero et al. 2009). Thus, epithelial IL-15 could be a 

chemoattractant for IEL migration. These studies showed that the IEL-organoid co-

culture system can be an efficient tool to study the dynamic nature of IELs. However, 

very little is known about what controls their migration, their migration is directional or 

non-directional, there is so much still need to be learned in this area that my project will 

explore.  

6. Project objectives 

The main aims of the projects are: 

 Establish a stable co-culture between mouse-derived IELs and enteroid. 

 Visualize and measure IEL movement by widefield and confocal live imaging of 

the co-culture. 

 Identify potential molecules and determinants involved in the regulation of IEL 

movement and migration. 
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Results 
 

1. Studying IEL movement in organoids 

The first aim of my project was to develop a stable co-culture between IEL and 

enteroids. I first tested different available media used for enteroid culture to select 

which medium will be appropriate and best support both IEL and enteroid growth. With 

this system, I could further study the IEL migration in enteroids by performing live 

imaging. 

1.1. Testing organoid cultures in different media 

Because most of our experiments were dependant on robust intestinal organoid cultures, 

it was important to find the best conditions to culture them. To that end, the whole 

intestinal tissue preparation was performed on ice to preserve the yield of crypts. 

Following the protocol, after a vigorous shake for one minute, a mixture of villus and 

crypts were obtained as demonstrated below (Fig 3). 

For enteroid culturing, I tested three different medium formulations available: ENR (Sato, 

Vries et al. 2009), OGM (a commercial organoid growth medium from Stem Cell 

Technologies) and conditioned L-WRN medium (Miyoshi and Stappenbeck 2013). ENR 

is a basic crypt medium supplemented with organoid growth factor EGF, R-spondin and 

Noggin. After one to two days in culture, three dimensional structures were visible.  

 

Fig 3: Crypts (blue arrow) after isolation process. 
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Crypts grown in ENR (Fig 4A) developed budding structures approximately 3 to 4 days 

after culture. It was similar to what I observed with crypts cultured in OGM, the 

commercial organoid media. A third medium is conditioned L-WRN media. This medium 

is produced from an L cell line which was engineered to secrete Wnt3a, R-Spondin-3 and 

Noggin into the medium (Miyoshi and Stappenbeck 2013). Crypts cultured in this 

conditioned medium formed nearly spherical, non-budding three-dimensional structures, 

known as spheroids (Fig 4B). Spheroids are highly enriched for proliferating cells, so 

they expand rapidly. These spheroids started to become visible after just one or two days 

in culture then quickly developed in size and needed to be passaged after 3 to 4 days (Fig 

4B). L-WRN media could be replaced with ENR or OGM after the first passage, we then 

observed the budding structures in 3 to 4 days after switching to ENR and OGM. 

Therefore, I was able to identify L-WRN conditioned media as the most suitable medium 

to promote the formation and proliferation of enteroids which should be used in the first 

4 to 5 days. Then ENR or OGM can be used to differentiate and maintain the proper 

epithelial structure and morphology of the enteroids. 

1.2. Establishing the IEL-enteroid co-culture 

The next step in the project was to establish a sustainable co-culture in which both 

enteroids and IELs are healthily growing during the length of experiment, which can up 

to two weeks. The protocol was followed based on Nozaki et al, 2016. Briefly, enteroids 

were passaged or cultured two days prior to the co-culture with IELs. When enteroids 

were passaged, debris which accompanying the crypts in the isolation process would be 

get rid of, thus passaged enteroids were preferred in my experiment. On the day of the 

co-culture, IELs were isolated and sorted for CD8-positive cells, the sorting was ensured 

of 90% purity (by flow cytometry). Enteroids were counted before releasing from 

 

Fig 4: Mouse small intestinal enteroids after 3 – 4 days in culture. A) Enteroids cultured in ENR 

developed into budding structures. B) Enteroids grew into spheroids when cultured in L-WRN 

media. C) Enteroids cultured in OGM also have a budding structure, similar to ENR, these enteroids 

tended to develop in length before bud formation. 
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Matrigel by washing the well with cold Advance DMEM/F12 media. Enteroids were 

disrupted by pipetting vigorously. IELs and enteroids were mixed together with a ratio of 

1 enteroid and 500 IELs, warm medium was added, and the mixture was incubated for 30 

minutes. Subsequently, the pellet was collected and suspended in Matrigel before adding 

to a 24-well plate. For this, I used ENR or OGM to develop budding structures. As IL-15 

and IL-2 are known to support the proliferation of IEL, they were added to the medium 

at a concentration of 10ng/mL and 100U/mL respectively (Nozaki, Mochizuki et al. 

2016). In these conditions, I was able to maintain a viable co-culture for 12 days. In order 

to track IELs, I isolated IELs from mice expressing a robust tdTomato fluorescent reporter 

following GranzymeB-Cre-mediated recombination in IELs. IELs appeared to get into 

the enteroids right after plating and after 4 days of being co-cultured, almost all IELs 

moved into enteroids (Fig 5). At day 1, as shown by the figure, there were a total of 55 

IELs and 11 of them were inside enteroids; while at day 4, there were 43 IELs and 39 of 

them were inside enteroids. IEL number reduction would be a result of cell death.  

After passaging, IELs were still alive and remained inside the enteroid, indicating that 

enteroids provided a suitable and essential microenvironment for them to grow. The 

extrinsic IL-15 added into the medium was believed to support the survival of IELs 

outside enteroids in the Matrigel.  

 

Fig 5: IEL-organoid co-culture establishment. Bright field and merge images showed IEL migration 

into enteroid after a day and 4 days of plating. IELs were isolated from a td-tomato mouse of which 

all IELs were red. Crypts were isolated from WT mice and cultured into enteroids.  
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1.3. IEL movement both inside and outside organoids 

Now that I had established the co-culture, the next step was to study how IEL moved into, 

and within the enteroids. To study the movement of IEL in the co-culture, I performed 

live imaging with widefield fluorescent microscopy and confocal microscopy. I did the 

live imaging at day 2 after plating to observe IEL movement both inside and outside 

enteroids. IELs in Matrigel could be seen moving into the enteroids (Fig 6). Inside the 

enteroids, by tracking IELs movement, I was able to determine that IEL were moving at 

the speed of 0.1 microns per sec (Fig 7), which approximately similar to those reported 

in Nozaki et al, 2016. Interestingly, some IELs appeared to move from one enteroid to 

another. I also noted the presence of IEL which were immobile in the beginning and then 

started moving following no specific direction. It should be noted that tracking the 

movement of IELs was difficult since the live imaging was done with a 3D structure, it 

can be interrupted when IEL were out of focus and disappeared from the plane of view. 

As shown from figure 7, the lines of tracking IELs were not seamless due to loss track of 

IELs.  

 

 

 

 

 

 

Fig 6: Visualize IEL motility in co-culture using confocal microscopy, supplemented with ENR 

medium. A figure showed the tracking movement of IELs in the co-culture. Three IELs at the top of 

the region were moving outside enteroids. Two IELs (white arrow) were moving along the outer 

layer of enteroid while one IEL (red arrow) stay idle at its place. 
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1.4. Investigating the importance of IL-15 in IEL migration 

Our results so far indicate that IEL are highly motile inside the enteroids, confirming 

recent in vivo data showing that TCRγδ+ IEL were moving within the intestinal mucosa 

(Hu et al, 2018). This indicates that our IEL-enteroids co-culture is a good model to study 

IEL movement. IL-15 is known to promote the proliferation and survival of IELs and the 

trans-presentation of IL-15 by epithelial IL-15Rα to IL-2Rβ expressed on T cells is 

required (Ma, Acero et al. 2009). IL-15 was stated to be a critical regulator of TCRγδ+ 

IELs as IL-2Rβ inhibition by a blocking antibody (TM-β1) significantly reduced IEL 

speed and displacement length after 48-hour treatment (Hu, Ethridge et al. 2018). We 

wanted to see in our co-culture system, if inhibition of IL-15 signalling would result in 

any changes in IELs movement. To do so, I set up a co-culture between IELs and enteroids 

as previously described with IL-2 and IL-15 supplementation, this condition also used as 

controls. I then treated the IEL-enteroid co-cultures with 40µg/ml of TM-β1, an anti-IL-

2Rβ blocking antibody at two timepoints, 1 hour and 48 hours before imaging. IELs 

treated with the IL-15 alone moved frequently over the course of the live imaging. 

 

Fig 7: IEL were highly motile in co-culture. The live imaging was done with the widefield 

fluorescent microscopy. Three IELs were spotted at the ROI. The lines showed the distance of target 

spots and they were not seamless due to IELs moving out-of-focus and each color showed a different 

track. IEL tracking was done with Fiji. 
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However, 48h treatment of TM-β1 lead to a significant decrease in displacement length 

compared with controls. Within 1h of TM-β1 treatment, the effect of IL-2Rβ inhibition 

on IEL migration was evident with respect to the number of IEL moving during the 

imaging. All IELs observed within the enteroid and were highly motile. In the 1h TM- β1 

treatment, there were 5 out of 14 IELs did not move, 2 of them were outside enteroids; in 

other region, 6 out of 20 IELs detected were not motile and all of them were outside 

enteroid. In 48h TM- β1 treatment, all of the IELs were inside and moving within 

enteroids. Thus, with TM-β1 treatment, more IELs seemed to idle and this was more 

likely to happen to IELs in the Matrigel than those within enteroids. 

There was a clear reduction in IELs speed between TM-β1 treatment and control in one 

experiment (Fig 8), however this decrease was not reproduced in the second experiment 

(data not shown). It appeared that IEL speed in the control conditions was lower than that 

in TM- β1 treatment condition in my second experiment. This could be explained by the 

increase in the number of sessile IEL per region of interest observed, longer imaging time 

and the fact that there were more idle IELs even in the control. IELs which were already 

inside enteroids seemed to be more active than IELs in the Matrigel. Despite these 

caveats, blocking IL-2Rβ still reduced the track displacement length in this experiment 

 

Fig 8: IL-2Rβ inhibition decrease IEL kinetics in co-culture. Mean track speed and displacement 

length of IEL in co-culture with TM-β1 treatment for 1h or 48h before imaging. Number of tracks: 

n = 77, 31 and 8, corresponding to the condition presented on the graph). Tracks were generated 

from time-lase imaging acquired every 2.5 minutes for 105 minutes. Image data was analysed by 

Imaris and data was shown as individual spot for non-normal distributed data. Statistics done with 

Graphpad prism, using Mann-Whitney test. *p < 0.05, **p < 0.005 (n = 1) 
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as well. Therefore, we were able to conclude that IL-2Rβ inhibition had a negative effect 

on IEL kinetics, especially on IEL displacement. 
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2. Molecular determinants involved in IEL intraepithelial migration 

We established a co-culture system between IELs and enteroids and used it to visualize 

and study the impacts of IL-15 inhibition on IEL movement in enteroids. My next aim 

was to investigate the involvement of any potential molecules such as adhesion 

molecules or chemokine receptors in IEL migration and retention within the epithelium. 

To this end, I first analysed the proteomic data of three IEL subsets after 24-hour IL-15 

exposure which has recently established by our laboratory. Then, by performing 

migration assay, I tested IEL response to CXCL16, a ligand to CXCR6 which is a 

chemokine receptor expressed on IELs and is upregulated by IL-15. 

2.1. Analysis of IEL proteomic data for molecules regulated by IL-15 involve in 

IEL migration 

As stated above, we observed a reduction in IEL movement in vitro as a response to TM-

β1 treatment, suggesting IL-15 might be important for IEL migration. However, previous 

study (Hu, Ethridge et al. 2018) suggested that IL-15 does not function as a chemotactic 

agent for IELs albeit that it can increase chemokinesis. The difference between 

chemokinesis and chemotaxis is the direction of movement; chemokinesis is the 

movement in any direction while chemotaxis the movement towards an attractant. 

Therefore, I wanted to address if IL-15 regulates the migration of IEL through other 

molecules. Our laboratory has recently developed a proteomic map of the global changes 

induced by IL-15 in IEL. Thus, I analysed this data set to identify proteins regulated by 

IL-15 that might play a role in IEL migration. 

Quantitative label-free mass spectrometry was performed on the three main IEL 

subpopulations, TCRγδ CD8αα, TCRαβ CD8αα and TCRαβ CD8αβ after 24 hours 

exposure to 100ng/mL complexed IL-15 (assigned as high levels of IL-15). IELs isolated 

directly ex vivo were used as untreated controls (James, Vanderyken et al. 2020). More 

than 7100 proteins were identified and quantified in all three subsets. Proteins with a fold 

change >2 were considered as upregulated, whereas proteins with a fold change <0.5 were 

downregulated, and the rest were considered unchanged by IL-15 stimulation. Since the 

error bar of the standard deviation is large due to the inherent issues of label-free 

proteomic quantitation, we did not consider the statistical significance value, however, 

we focussed on proteins which had been quantified based on at least two peptides being 

identified by mass spectrometry, and that were found in at least two replicates (out of 

four) of each IEL subpopulation. In my analysis for proteins that regulate migration, I 
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focused only on the upregulated and downregulated proteins that are expressed at the cell 

surface, as indicated by Uniprot. This would help us to confirm its involvement in IEL 

migration quickly by adding blocking antibodies. We further narrowed down the number 

by selecting proteins that are involved in cell adhesion, cell chemotaxis and migration. 

These analyses lead to a list of 74 upregulated and 26 downregulated potential proteins. 

In order to corroborate proteins involved in adhesion, migration and chemotaxis, I also 

used the functional annotation clustering from DAVID database 

(https://david.ncifcrf.gov/tools) to select the proteins whose topological domains are 

extracellular; involved in cell-cell adhesion, cell migration and chemotaxis. The 

commonly identified proteins between the two analyses are presented in Table 1 

(Appendix). 

Among the upregulated proteins, common chemokine receptors such as CXCR6, 

CXCR3, CCR9 and CCR5 were detected (Fig 9A). These receptors are all chemokine 

receptors, involved in cell chemotaxis. CXCR6 functions have not been previously 

studied on IEL. CCR5 and CXCR3 have been shown to be expressed on all human and 

murine IEL (Agace, Roberts et al. 2000). CCR5 is implicated in the migration of IEL 

 

Fig 9: Bar graph shows protein copy numbers upregulated by IL-15 of A) Chemokine receptors.  

B) Adhesion molecules C) Activating receptors. All of these molecules have been quantified in 

at least two peptides of at least two replicates (out of four). Fold changes of these molecules 

were shown in Table 2. 

https://david.ncifcrf.gov/tools
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towards T. gondii infected cells. CCR5 expression was increased in TCRαβ CD8αβ but 

decreased in TCRγδ CD8αα and unchanged in the other subset, suggesting potential 

different impacts of CCR5 in different IEL subsets (Fig 9A). CCR9 as previously 

mentioned in the introduction, has important contribution to the IEL homing to the gut. 

There were a few adhesion molecules like L1CAM, PECAM-1, ICAM-2 and ALCAM 

which were reported to play a role in adhesion of platelet/endothelial cells, neuronal cells 

and activated leukocytes (Fig 9B). The upregulation of these molecules in all three IEL 

populations after culturing with IL-15 suggests its involvement in IEL trafficking.  

Activating receptors like JAML and CD226 were upregulated and involved in cell-cell 

adherence junctions (Fig 9C). CD226 is a member of the poliovirus receptor (PVR)-

nectin family, an activating and natural cytotoxic receptor that activates NK cells and 

regulates its response against tumours (Shibuya, Campbell et al. 1996, Du, de Almeida et 

al. 2018). CD226 also mediates cell-cell adhesion through binding with its ligands, 

CD112 and CD155 (Bottino, Castriconi et al. 2003, Tahara-Hanaoka, Shibuya et al. 

2004). TGF-β (transforming growth factor beta) is secreted by IELs to maintain intestinal 

homeostasis (Konkel and Chen 2011) and its receptor type 1 and 2 were found to be 

strongly upregulated in IELs after exposing to IL-15.  

Noticeable among the downregulated proteins were Cadherin-17 (Cdh17), a calcium-

dependent transmembrane glycoprotein that concentrates in adherence junctions in IECs 

and plays a critical role in intestinal homeostasis by limiting epithelium permeability 

(Wendeler, Drenckhahn et al. 2007, Chang, Yu et al. 2018) (Fig 10). Integrin alpha M 

was downregulated suggesting IEL adherence was partially integrin mediated. Apart from 

the cell surface proteins, a cytoplasmic protein, regulator of G-protein signalling RGS1 

expression was also decreased. This protein is interesting because RGS proteins are 

 

Fig 10: Bar graphs shows protein copy numbers downregulated by IL-15. Cdh17 and ItgaM are 

involved in tight junction and cell-cell adherence. CCR5 is a chemokine receptor. Fold change of 

these molecules were shown in Table 2. 
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GTPase activating proteins and RGS1 is highly expressed in lymphoid organs and acts as 

a negative regulator of chemokine receptor signalling in lymphocytes (Reif and Cyster 

2000, Moratz, Harrison et al. 2004). This observation raised a hypothesis that high-level 

IL-15 culture might down-regulate adhesion protein expression and increase the ability 

of IEL moving under chemokine signalling, thus will lead to IEL moving more freely 

within the epithelium. The expression of some proteins in TCRαβ CD8αβ subpopulation 

is different from the other two (e.g CCR5, RGS1), indicate other mechanisms may 

regulate the migration in this induced IEL population. 

2.2. Investigating the role of CXCR6 in IEL migration 

As CXCR6 is the chemokine receptor that has not been implicated in IEL biology, we 

further investigate the role of CXCR6. CXCR6 is interesting as it possibly acts as both an 

adhesion and chemotactic molecule and it is responsible for the retention and circulation 

of innate lymphoid cell precursors (Chea, Possot et al. 2015, Koenen, Babendreyer et al. 

2017). CXCR6 is expressed by subsets of CD4+ T cells, natural killer (NK) cells, NK T 

cells and plasma cells (Deng, Chen et al. 2010). CXCR6 also involved in recruitment of 

several immune cells (Butcher, Wu et al. 2016, Ashhurst, Florido et al. 2019). However, 

its role on IEL has not been studied. First, I checked CXCR6 expression on ex vivo IELs 

and 24-hour cultured IELs with high level of IL-15. I used splenic T cells as a negative 

 

Fig 11: CXCR6 expression in three main IEL subsets. Ex vivo and 24-hour cultured with 100ng/mL IL-

15 IEL were stained for CXCR6. Splenic T cells were used for negative control. A) Histogram showed 

CXCR6 expression in spleen T cells (red), ex vivo IELs (blue) and 24-hour cultured IELs (orange) of 

three IELs populations. B) Bar graphs showed the MFI of CXCR6 in spleen T cells, ex vivo IELs and 

24-hour cultured with 100ng/mL IL-15 (n=1). 
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control since CXCR6 is expressed on these cells at a low level (Matloubian, David et al. 

2000). Clearly, IELs express CXCR6, and this is further upregulated after culture. Figure 

11A showed an upregulation of CXCR6 expression comparing to the ex vivo and splenic 

T cells.  

Next, we wanted to test if IL-15 regulates IELs migration through CXCR6 expression by 

a Transwell migration assay. I used CXCL16, the only known ligand for CXCR6 as a 

chemoattractant. CXCL16 has been found to be expressed by macrophages, dendritic 

cells, epithelial cells (Matloubian, David et al. 2000, Agostini, Cabrelle et al. 2005). 

Briefly, IELs were isolated and cultured with 100ng/mL IL-15 to upregulate CXCR6. 

After 24 hours of incubation, approximately 500,000 IELs were plated into the Transwell 

insertions, and CXCL16 was added together with medium to the bottom chamber. First 

thing I observed after incubation time of 1h30 was that IEL had migrated to the bottom 

in every well (Fig 12). However, there was a significant difference between two 

conditions: with and without chemokine addition. This suggested that IELs can migrate 

in response to the gradient of CXCL16. The addition of IL-15 into the cells did not make 

any significant difference which indicate that IL-15 did not accelerate the migration of 

IEL, consistent with the previous result from a lab member that CXCR6 was expressed 

even when cultured with low level of IL-15 (2ng/mL) and at the equivalent level with 

 

Fig 12: In vitro migration assay in the presence or absence of CXCL16. IELs were isolated, sorted for 

CD8+ T cells and cultured with 100ng/mL IL-15Rα for 24 hours. IELs were collected and washed twice 

then plated into Transwell inserts, CXCL16 (10ng/mL) and IL-15Rα (100ng/mL) was added to the 

medium at the bottom. Whole co-culture was incubated for 1h30min. After incubation, IELs at the 

bottom were quantified. Experiments were done three times independently and each condition was 

repeated triplicate. Data was shown as percentage of migrated cells relative to number of cells added in 

each experiment. Data was analysed using one-way ANOVA test with multiple comparisons to control 

(no cytokines was added). *p ˂ 0.05, n.s. not significant (n=3) 
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100ng/mL of IL-15 (data not shown). These data showed that CXCR6 was expressed in 

cultured IEL and cultured IELs were chemoattracted by CXCL16. Together, CXCR6 

upregulation by IL-15 is involved in IEL migration.  

To further address the roles of chemokine signalling pathway on IEL movement, I did an 

IEL-organoid co-culture as previously described with Pertussis toxin. Pertussis toxin 

inhibits a majority of chemokine receptors thus inhibit migration of several cells like 

neutrophils and lymphocytes as mentioned in the introduction. Here I used 10ng/mL 

Pertussis toxin added in the medium, a concentration when cell migration was shown to 

be inhibited (Gilder, Wang et al. 2016). As shown in figure 13, at day 2 after plating, there 

were more IEL migrated into organoids in the control than when Pertussis toxin was 

added. This was also observed at day 4 of the co-culture. By counting the number of cells 

in all regions of interest, at day 2, there were 20% of the IELs outside of enteroids in the 

control while with PTX treatment, the percentage was nearly 60%. At day 4 of the co-

culture, due to the autofluorescent of the dead cells, it was difficult to count the cells but 

I can still observe there were no IELs outside enteroids in the control, and there were still 

a few IELs outside enteroids with PTX treatment. The reduction of free IELs outside 

enteroids might also indicate cell death over time. Despite that, I was able to observe that 

the number of IELs moved into organoids was less with the pertussis toxin addition. It 

suggests chemokine signalling pathway might be involved in IEL migration in vitro. 

 

 

 

Fig 13. IEL-organoid co-culture with PTX treatment. IEL-organoid co-culture was established as 

described, supplemented with 100U/mL IL-2 and 10ng/mL soluble IL-15 as controls; to inhibit 

chemokine receptors, 10ng/mL pertussis toxin was added in the medium. Photos were taken at day 2 

and day 4 after plating. The first row was the control (CT) and the second row showed the co-culture 

with Pertussis toxin (PTX). The first two columns were 2-day and the other two were 4-day old co-

culture (n=1). 
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Discussion 

There have been several studies about IEL migration as IEL patrolling along the 

epithelium plays a key role in the intestinal immunosurveillance of immune cells. Despite 

its importance, little is known about the mechanism that regulate IEL motility within 

epithelial compartment. One study has shown that epithelial IL-15 is a critical regulator 

for the migration of γδ IELs into the epithelium. However, IL-15 is only sufficient to 

affect IEL chemokinesis. Co-culture between IEL and intestinal organoid was a suitable 

system to study the IEL intraepithelial movement as intestinal organoid has been shown 

to provide a microenvironment that sustains IEL survival in vitro. Thus, I wanted to 

investigate in more detail how IEL motility was regulated within the epithelium using this 

co-culture system.  

In my project, I successfully established long-term IEL-enteroid co-cultures that could be 

used for the study of IEL intraepithelial movement. I tested three different media for 

enteroid culturing. L-WRN conditioned medium was used to facilitate the proliferation 

process to rapidly develop the number of spheroids. Epithelial cells grown in L-WRN 

conditioned media, developed into spheroids which are spherical in shape and have thin 

outer walls. Since IEL interacted with more differentiated enterocytes, I switched to 

medium containing R-Spondin-1 (instead of R-Spondin-3), Noggin and EGF, without 

Wnt3a (ENR), or OGM to obtain a budding structure of differentiated organoids. I also 

tested these media for the study of IEL motility in the co-culture. Generally, I observed 

that there were less IELs migrated into spheroids than differentiated organoids (data not 

shown). IEL might prefer intestinal organoids with budding structures as they resemble 

the structure of the gut in vivo and the outer wall of enteroids were similar to the epithelial 

layer where IELs reside. In addition, since differentiated enteroids mimic the 

microenvironment of the gut, it can produce some cytokines or growth factors that are 

favourable to IELs. In contrast, spheroids have thinner outer walls which can hardly 

support IEL retention. They are composed of mainly progenitor cells, thus, growth factors 

and signalling molecules secreted might be suitable for spheroid proliferation but not 

IELs. A former lab member showed that there were no significant difference in IEL 

survival with the addition of IL-7, thus for my co-culture, I only used IL-15 and IL-2 to 

support the survival of IELs.  Further, IELs might respond to the endogenous IL-15 

produced by enterocytes, and it is not clear how much IL-15 the undifferentiated 
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spheroids can produce. Therefore, we focussed on using differentiated organoids in ENR 

media for co-culture with IEL.  

I could also show that the co-culture model was a good model to study IEL intraepithelial 

movement as IELs were highly motile in my experiments. I observed  a slight reduction 

in the number of IELs after few days in co-culture, which probably cell death, but I was 

not able to measure the rate of cell death over time. Despite that, the avarage speed of 

IELs was approximately similar to that seen by Nozaki et al (Nozaki, Mochizuki et al, 

2016). In vivo movement of IELs were measured to be at 3 - 8µm/min (Edelblum, 2015). 

It can also be used to test the functions of surface receptors or proteins that might involve 

in IEL migration by adding blocking antibodies. However, to visualize IEL behaviours 

within enteroids under infection, bacteria needs to be microinjected into enteroids which 

makes it more complicated.  

As we have established a co-culture system which we can use to observe IEL movement, 

we then investigated any factors might involve in IEL movement. IL-15 was previously 

shown to regulate TCRγδ+ IELs motility within the intestinal mucosa in vivo and in 

enteroid co-cultures (Hu, Ethridge et al. 2018). I also found that the mean displacement 

length and mean speed of IEL movement within enteroids were reduced by treatment with 

an antibody which inhibits the binding of IL-15 with its receptor. However, tracking the 

movement of IELs is challenging as organoids have a three-dimension structure and IELs 

might move out of focus thus the track displaement length might not express the real 

replacement of IELs. Also, I was not able to separate the data of IEL movement within 

and outside enteroids. Furthermore, the number of enteroids was approximated and the 

distribution of organoids and IELs when plating was inevitably uneven. Another caveat 

of my study was that TM-β1 blocks the IL-2Rβ chain, which is used by both IL-2 and IL-

15. There have been no studies of IL-2 effects on IEL migration, however IL-2 was added 

in both the controls and TM-β1 treatment. Thus, I can conclude that blocking IL-2Rβ 

affects IEL movement in vitro which was consistent with the observation from previous 

study, which implied that either IL-2 or IL-15 signals are needed for IEL migration.  

In addition, I showed that cultured IELs could migrate along a chemotactic gradient of a 

chemokine, CXCL16. The proteomic data indicated that CXCR6 were upregulated in all 

three IEL subpopulations after 24 hours exposure to IL-15, and I confirmed these data by 

flow cytometry. CXCL16 was shown to strongly induce a chemotactic migration of 

activated CD8 T cells and its chemoattraction was proportional with the amount of the 
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receptors expressed on the cells (Matloubian, David et al. 2000). It could explain the 

higher number of IELs migrated to the bottom of the plate with the presence of CXCL16 

based on the high expression of CXCR6 on cultured IELs. There was no significant 

difference in the number of IELs migrated when IL-15 was added to the cells, indicating 

that IL-15 was not directly affecting IEL chemotaxis, but indirectly through the 

expression of chemokine receptors, in this case CXCR6. CXCL16 is expressed by 

intestinal epithelial cells, suggesting that the interaction between CXCR6 on IELs and 

CXCL16 on epithelial cells might contribute to IEL migrate to and retaining in the 

intestinal epithelium (Diegelmann, Seiderer et al. 2010). Matsumura et al. showed that 

ionizing radiation can enhance CXCL16 production by mouse and human breast cancer 

cells, which can recruit other anti-tumour CXCR6-expressing cells (Matsumura, Wang et 

al. 2008). A study from Diegelmann showed CXCL16 stimulates the activation of several 

signaling pathway such as ERK-MAP and Akt kinase (Diegelmann, Seiderer et al. 2010). 

The mRNA and protein expression of CXCL16 were increased by proinflammatory 

stimuli and upon intestinal inflammation, suggesting the critical role of CXCL16 in 

mucosal innate and adaptive immune response regulation (Diegelmann, Seiderer et al. 

2010). CXCR6 functions on IELs indeed needs to be investigated as it might suggest 

novel insights about IEL-IEC interaction, how it contributes to IEL immunosurveillance 

of the gut and provide new strategies in intestinal cancer treatments.  

The functions of chemokine receptors affected by IL-15 in the proteomic data were 

previously described in the introduction. Among them, CXCR6 was studied in my project 

and it showed that CXCR6 involved in IELs migration. In addition, with the treatment of 

Pertussis toxin, which blocks signalling of a major chemokines, strongly inhibited 

lymphocytes migration (Spangrude, Sacchi et al. 1985). Indeed, treatment of IEL-enteroid 

co-culture with Pertussis toxin has shown inhibited  IEL migration into enteroid. Further, 

I observed by live imaging that there were less IELs moving in and out of enteroid in co-

culture when Pertussis toxin was added in the medium than the control (data not shown). 

However, I did not have the time to establish whether CXCR6 signaling was important 

for IEL migration into the enteroids and for IEL intraepithelial movement. Further, it is 

possible that other chemokines, not just CXCR6, are involved.  

Blocking chemokines signaling with Pertussis toxin only partially inhibit IEL migration, 

indicated that there are other signalling pathways involve. Beside chemokine receptors, 

the proteomic data has shown the expression of several adhesion molecules on IELs. So 
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far functions of adhesion molecules on IEL have been shown to relate to IEL recruitment 

and retention to the epithelial layer. For example, β2 integrins involve in IEL homing and 

β7 integrins play a critical role in interactions between IELs and epithelial cells. Other 

surface adhesion molecules were upregulated in IELs when pre-treated with high 

concentration of IL-15 could contribute to the retention of IEL in the epithelium. The 

adhesion molecules I detected include L1CAM, PECAM-1, ICAM-2 and ALCAM. 

L1CAM is a neuronal cell adhesion molecule which plays a role in cell migration, cell 

adhesion and neuronal differentiation (Samatov, Wicklein et al. 2016). This protein is 

expressed not only on neuronal cells but also non-neuronal cells such as T cells, B cells 

and monocytes. PECAM-1 is highly expressed at endothelial cell-cell junctions and 

serves as an adhesive stress-response protein to maintain the endothelium integrity 

(Lertkiatmongkol, Liao et al. 2016). ICAM-2, intercellular adhesion molecule 2, is an 

endothelial ligand of LFA-1, together with ICAM-1 (Bargatze, Jutila et al. 1995). LFA-1 

(lymphocyte function associated antigen 1) is use by naïve lymphocytes to transmigrate 

into mucosal sites at the later step of the lymphocyte trafficking to the gut cascade 

(Springer 1994, Bargatze, Jutila et al. 1995). ICAM-2 is expressed at high levels on 

endothelium and mediates the LFA-1-dependant adhesion of lymphocytes to endothelial 

cells (Xu, Bickford et al. 1996, Lehmann, Jablonski-Westrich et al. 2003). Activated 

leukocyte cell adhesion molecules (ALCAM) interacts with its ligand, CD6 can activate 

T cells as co-stimulatory molecules (Hassan, Barclay et al. 2004). ALCAM also 

contributes to murine intestinal stem cell homeostasis by maintaining intestinal stem cell 

interactions with their niche (Smith, Davies et al. 2017). One noticeble among the 

upregulated proteins is JAML. JAML (Junctional Adhesion Molecule-Like) belongs to 

JAM transmembrane protein family that regulate cell-cell interactions and acts in 

neutrophil chemotaxis (Moog-Lutz, Cave-Riant et al. 2003, Zen, Liu et al. 2005). The 

interaction between JAML and its ligand, CAR (Coxsackievirus and adenovirus receptor) 

can mediate epithelial γδ T cell-specific activation and result in cellular proliferation, 

cytokine and growth factor generation (Witherden, Verdino et al. 2010). Therefore, its 

upregulation in IELs suggests a potential role for this protein in IEL survival within the 

epithelium. Vice versa, the downregulated adhesion molecules in pre-treated IELs which 

could imply the ability of IELs to be less adherent to IECs and move more freely within 

epithelium layer. Thus, changes in expression of adhesion molecules could also affect 

IEL interaction, migration to IECs and retention within epithelium. It would be interesting 

to test the effects of these adhesion molecules on IEL migration in the co-culture. 
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In addition, there have been several studies about γδ IELs but not αβ IELs migration in 

intestinal epithelial layer (Hoytema van Konijnenburg, Reis et al. 2017, Hu, Ethridge et 

al. 2018). From the proteomic data, there were some proteins only upregulated or 

downregulated in TCRαβ CD8αβ IELs but not in the other two populations. For example, 

CCR5 were downregulated in TCRγδ CD8αα IELs but strongly upregulated in TCRαβ 

CD8αβ IELs and TGF-β receptor type 1 expression was not found in ex vivo TCRαβ 

CD8αβ. It suggests that these conventional IELs subpopulation might migrate under 

different signalling, different movement patterns from TCRγδ IELs. Therefore, it would 

be interesting to compare TCRαβ IELs and other IEL subpopulations behaviours within 

the epithelium.   

In conclusion, my project has shown a sustainable co-culture between IEL and enteroids 

and that co-culture was a good model to study IEL intraepithelial movement as IELs were 

highly motile within enteroids. This movement was attenuated when the binding of IL-

15 with its receptors was inhibited, confirming a role for IL-15 in IEL kinetics. IL-15 

inhibition via IL-2Rβ blockade reduced IEL migratory patterns, however it is not clear 

whether it was because of reduce IEL survival or activation, or whether IL-2 contributed 

to IEL migration. Also it was not clear how much endogenous cytokines produced by 

enteroids contributed to IEL migration as the movement track was not be able to separate 

between inside and outside enteroids. One way in which IL-15 can regulate IEL migration 

is through the upregulation of CXCR6 expression. IELs express a high level of CXCR6 

and CXCL16 is the only known ligand for CXCR6, and I showed that IELs cultured with 

IL-15 migrated in response to the CXCL16 gradient. Treatment of the co-culture with 

Pertussis toxin showed a reduced migration of IEL into organoids. It suggests CXCR6 

and CXCL16 might involve in IEL recruitment and retention to intestinal epithelium. 

Other newly identified molecules are interesting as they all play important roles in other 

cell types. The identification of novel molecules that regulate IEL functions will provide 

targets for improving IEL surveillance of the gut. For example, in cancer or in vaccination 

strategies against pathogens. Conversly, these targets may also be important for the 

treatment of intestinal autoimmune diseases, where inhibiting IEL functions may reduce 

intestinal damage. 
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Materials and reagents 
 

1. IEL culture media 

Component Cat no. 

RPMI medium 31870-025 

FBS (10%) F7524 (Sigma) 

Pen/Strep 15140-122 

L-Glutamine 25030-024 

HEPES 25mM 17-737E 

Sodium Pyruvate 11360-070 

Non-essential acid amin (NEAA) 11140-035 

B-mercaptoethanol (100uM)  

 

2. IEL isolation media 

Component Cat no. 

RPMI medium 31870-025 

FBS (10%) F7524 (Sigma) 

Pen/Strep 15140-122 

L-Glutamine 25030-024 

 

3. Crypt and organoid culture media 

3.1. Crypt media 

Component Cat no. 

Advanced DMEM/F12+++ 12634-010 

Pen/Strep 15140-122 

L-Glutamine 25030-024  

HEPES 27-737E 

B27 supplement 50X 12587-010 

N2 supplement 100X 400-163 

n-Acetylcysteine 500mM A9165-5G  

 

3.2. Organoid culture media 

Component Cat no. 

Crypt media  

Murine EGF 315-09 

Murine Noggin 250-38 

Murine R-spondin-1 315-32 

CHIR-99021 SML-1046 

Valporic acid P4543-10G 

Y-27632 Y-1000 
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4. L-WRN conditioned media preparation 

4.1. L-WRN cells media for thawing and expanding 

Component Cat no. 

DMEM High Glucose (Gibco) 11960-044 

FBS (10%) F7524 (Sigma) 

Pen/Strep 15140-122 

L-Glutamine 25030-024 

 

4.2. L-WRN cells washing media 

Component Cat no. 

Advanced DMEM/F12  12634-010 

HEPES (15mM) 17-737E 

FBS (10%) F7524 (Sigma) 

Pen/Strep 15140-122 

L-Glutamine 25030-024 

 

4.3. L-WRN primary media for cell collection and top-up  

Component Cat no. 

Advanced DMEM/F12 500mL 

FBS (20%) F7524 (Sigma) 

Pen/Strep 15140-122 

L-Glutamine 25030-024 
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Methods 
 

1. IEL isolation from mice 

The small intestine was dissected from mice with C57BL/6J background and 

GranzymeB-Cre-TdTomato and flushed with PBS, then was cut longitudinally and 

transversely to small 5 – 10mm pieces into warm IEL isolation medium (RPMI medium 

supplemented with 10% FBS, 5mL Pen/Strep and 5mL L-glutamine) with 1mM DTT 

(D5545-5G, Sigma-Aldrich). The tissue was incubated for 40 minutes in a shaker 

following by centrifugation at 500 x g for 5 minutes to remove the supernatant. 10mL 

warm IEL isolation medium was added and vortexed the tube for 3 minutes. The 

suspension was passed through a 100µm sieve (EASYstrainerTM, Greiner Bio-One). The 

tissues were collected and vortexed with another 10mL and further 30mL IEL isolation 

medium were added to wash the sieve. Subsequently, the content was centrifuged at 500 

x g for 5 minutes, and the pellet was resuspended in 5mL of 40% Percoll (diluted in PBS). 

Then the suspension was carefully added on top of 5mL 75% Percoll, following by 

centrifugation at 700 x g for 30 minutes with no brake. After centrifugation, IELs at the 

interface between two layers of Percoll were collected and washed with IEL culture 

medium (500mL RPMI supplemented with 10% FBS, 5mL Pen/Strep, 5mL L-glutamin, 

12.5mL HEPES, 5mL Sodium Pyruvate, 5mL Non-essential acid amin (NEAA), 1mL B-

mercaptoethanol (100µM)). 

2. Crypt isolation and culture 

A part of small intestine, about 5 – 7cm long, was dissected from WT mice (C57BL/6J). 

Crypts isolated from duodenum, jejunum and ileum can be used for organoid culture. In 

my study, I used duodenum part. The intestine was washed with cold PBS, cut 

longitudinally then spread open in a petri dish placed on ice. The villus was scraped off 

carefully using a coverslip. The intestine was cut into small 3 – 5mm pieces and 

transferred to 30mL of PBS with 1mM EDTA cooled on ice, then incubated for 20 

minutes at 4oC on a tube roller. After incubation, the content was passed through a 100µm 

sieve following by 30 minutes incubation with 30mL PBS with 5mM EDTA. The content 

was passed through the sieve again and the intestine was transfer to 10mL cold PBS. The 

tube was shaken vigorously for one minute. Observed the mixture to see the crypts and 

take 2mL to a new 15mL tube. The tube was centrifuged at 100 x g for 5 minutes, the 

supernatant was discarded then resuspended the pellet with 2mL cold Advanced 
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DMEM/F12 (ADF) (500mL ADF; supplemented with 10% FBS, 5mL Pen/Strep, 5mL 

L-glutamine and 7.5mL 1M HEPES). 10µL was taken to count the number of crypts while 

centrifuging again. The pellet was resuspended in ADF to have about 50 – 100 crypts per 

50µL. The suspension was added into pre-thawed Matrigel (Corning, Cat no. 356231) 

with a ratio of 1:3 (suspension versus Matrigel), mixed thoroughly then 20µL was seeded 

at the centre of each well of a 24-well plate. The plate was incubated at 37oC for 10 – 15 

minutes for Matrigel polymerization before adding 500µL of organoid growth medium. 

Organoids were cultured at 37oC and 10% CO2 and fresh medium was changed every 2 – 

3 days. 

Organoids were passaged every 5 – 6 days, 1:2 or 1:3, depending on the number of 

organoids in each well and how dark the lumens were. 1mL of cold ADF were added in 

each well to dissociate the organoid and the suspension was centrifuged at 100 x g for 5 

mins. The pellet was resuspended in ADF before adding the suspension into Matrigel and 

plated it out. 

Growth medium used: 

 ENR: crypts medium supplemented with 50ng/mL EGF (PeproTech, 315-09), 

100ng/mL Noggin (PeproTech, 250-38) and 1µg/mL R-spondin-1 (PeproTech, 

315-32). For the first two days, 1µM CHIR-99021, Valproic acid and 10µM Y-

27632 is necessary to add in the medium (ENR-CVY). Prepared fresh in each 

experiment. Crypt medium: Advanced DMEM/F12 supplemented with 5mL 

Pen/Strep, 5 mL HEPES, 5mL L-glutamine,1 mL N-acetylcysteine, 5mL N2 

supplement, 10mL B27 supplement. 

 OGM: Organoid growth medium, purchased from Stem Cell Technologies (Cat no. 

#06005), a commercial medium. Aliquots were kept in the freezer, used within 2 

weeks after thawing. 

 Conditioned L-WRN media: harvested from L-WRN cells (ATCC® CRL-3276™) 

which are a source of Wnt3a, R-spondin-3 and Noggin. The cells were expanded 

and selected with Hygromycin B Gold and G418, then let the cells grew 

overconfluent for 3 to 4 days. Cells were washed then cultured with Primary media 

(Advanced DMEM/F12 supplemented with 20% FBS, 5mL Pen/Strep and 5mL L-

glutamine) for 24 hours. The medium was collected and centrifuged to get rid of 

dead cells. Conditioned L-WRN media was used at 50% dilution (Miyoshi and 

Stappenbeck 2013).  
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3. Cell culture of IEL 

IELs were enriched following an EasySep™ Mouse CD8α positive selection kit protocol 

from Stem Cell Technologies. Enriched IELs were then washed with IEL culture medium. 

These cells were seeded in a 96-well plate (U version) at 2×105 cells per well with 

100ng/mL Mouse IL-15R Complex Recombinant Protein (Life Technologies) for 

migration assays and flow cytometry.  

4. IEL-organoid co-culture 

IEL were isolated and enriched for CD8α cells following the method above. Two-day-

old organoids were collected by adding 1mL of cold ADF media in each well after 

removing the old medium. The Matrigel was dissociated carefully and collected into 

15mL tube. After centrifugation at 100 x g for 5 mins, the supernatant was discarded, and 

IELs were added into the tube at the ratio 1 crypts versus 500 IELs, 400µL of growth 

medium was added then incubated the mixture at 37oC for 30 minutes. After 30 minutes, 

the mixture was centrifuged at 100 x g for 3 minute. The supernatant was discarded, the 

pellet was resuspended in cold PBS and added to thawed Matrigel. 20µL of the mixture 

was seeded in a 24-well plate then the plate was incubated at 37oC for 10 – 15 minutes 

before adding the growth medium (supplemented with 10ng/mL soluble IL-15 and 100U 

IL-2). For confocal microscopy, the co-culture was seeded in a μ-Slide 8 well ibiTreat 

(Ibidi, Cat no. 80826). TM-β1 (BioLegend, Cat no. 123223) were added at the final 

concentration of 40µg/mL into medium at 48h and 1h before imaging. Medium was 

changed every 2 – 3 days.  

To block chemokine and G protein-coupled receptor signalling, 10ng/mL Pertussis toxin 

(Sigma-Aldrich, Cat no. 516560) was added in the medium when plating. 

Photos of the co-culture were taken by ZOE fluorescent cell imager (Bio-Rad). 

5. Live imaging 

Live imaging of co-culture was performed using Zeiss 710 Confocal Microscope system, 

objective 20X Dry. 20 Z-stacks of each region of interest (ROI) were acquired with an 

interval between each stack is 3µm. Data was analysed by Imaris and ImageJ (Fiji). For 

Imaris, IELs were tracked by creating a Spot function that detects cells with diameter 

from 7.5µm - 8µm. All data of each spot were exported. With ImageJ, TrackMate plug-

in was used (Tinevez, JY.; Perry, N. & Schindelin, J. et al., 2017).  
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6. Migration assay 

IELs were isolated and sorted as previously described and put in culture with 100ng/mL 

IL-15Rα (Life Technologies) for 24 hours. At the day of experiment, the cells were 

collected and washed twice with IEL culture medium. Approximately 5×105 IELs were 

plated in the Corning® Transwell® polycarbonate membrane cell culture inserts (Sigma-

Aldrich, Cat no. CLS3421-48EA) with or without 100ng/mL IL-15Rα. 600µL medium 

supplemented with 10ng/mL CXCL16 (Novus) was added to the bottom chamber. The 

plate was incubated for 1.5 hours. Afterwards, Transwell inserts were removed, cells were 

collected at the bottom chamber and counted with LSR Fortessa by adding CountBright™ 

Absolute Counting Beads, for flow cytometry (ThermoFisher Scientific). 

7. Flow cytometry  

Cell were plated at 2×105 cells per well to a 96-well plate for staining. Fc block was added 

to each well for 5 minutes before cells were incubated with monoclonal antibodies against 

cell surface markers for 15 minutes covered on ice. Cells were stained with the following 

antibodies: CXCR6 [clone SA051D1 (BioLegend)], TCRβ [clone H57-597 

(BioLegend)], TCRγδ [clone GL3 (BioLegend)], CD8α [clone 53-6.7 (BioLegend)], 

CD8β [clone H35-17.2 (Invitrogen)]. Cells were then collected and resuspended in FACS 

buffer (PBS + 1% FBS). Data was acquired using a FACS LSR Fortessa flow cytometer 

with DIVA software (BD Bioscience) and analysed using FlowJo software (TreeStar). 

8. Mass spectrometry 

Sample preparation for mass spectrometry were previously described in (James, 

Vanderyken et al. 2020). Briefly, IELs were isolated as previously described and CD8α+ 

IEL population was enriched using an EasySep™ Release PE positive selection kit 

(STEMCELL Technologies) with a PE-conjugated anti-mouse CD8α antibody 

(BioLegend) following instructions from the manufacturer. TCRγδ CD8αα, TCRαβ 

CD8αα and TCRαβ CD8αα were purified by fluorescent activated cell sorting (FACS). 

Four biological replicates of each population were generated. IEL cell pellets were lysed 

in 200µl lysis buffer (4% SDS, 10mM TCEP, 50mM TEAB (pH 8.5)). Lysates were 

boiled and sonicated (15 cycles of 30s on/30s off) and protein concentrations determined 

by EZQ® Protein Quantitation Kit (Invitrogen). Lysates were alkylated with 

iodoacetamide (IAA) for one hour at room temperature in the dark. Proteins and peptide 

clean-up were performed according to Hughes et al., (2014). Samples were resuspended 

in 2% DMSO and 5% formic acid and fractionated using an Ultimate 3000 HPLC 
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(Thermo Scientific). Samples were sent to MRC-PPU Mass Spectrometry facility, 

University of Dundee, where each fraction was analysed by label-free quantification 

(LFQ) using an LTQ OrbiTrap Velos Pro (Thermo Scientific) with a 240-minute gradient 

per fraction. 

9. Statistics 

All statistics was performed using Graphpad prism 8. Data was presented with mean ± 

SD or with a 95% confidence interval. Data was analysed using one-way ANOVA with 

Dunnett’s multiple comparisons. 
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Appendix 

 

Table 1: Upregulated and downregulated proteins by IL-15 

  Protein names Functions 

Upregulated 

Chemokine (C-X-C motif) receptor 3 

(CXCR3)  

Chemokine receptor, 

chemokine signaling 

pathway 

Chemokine (C-C motif) receptor 5 

(CCR5)       

Chemokine (C-C motif) receptor 9 

(CCR9)         

Chemokine (C-X-C motif) receptor 6 

(CXCR6)     

Adhesion G protein-coupled receptor 

G5(Adgrg5)       

G-protein coupled 

receptor, GPCR signaling 

pathway, GPCR activity 

G protein-coupled receptor 132 (Gpr132)    

G protein-coupled receptor 171 (Gpr171)  

G protein-coupled receptor 55 (Gpr55)       

G-protein coupled receptor 65 (Gpr65)      

G protein-coupled receptor 18 (Gpr18) 

ATP-binding cassette, sub-family A 

(ABC1), member 7 (Abca7)           

Tight junction, cell 

junction, cell-cell 

adhesion, adhesion 

molecules 

Adhesion molecule, interacts with 

CXADR antigen 1 (Amica1/JAML)   

Transforming growth factor, beta receptor 

I (Tgfbr1)        

Desmoglein 1 alpha (Dsg1a)    

Platelet/endothelial cell adhesion 

molecule 1(Pecam1) 

Desmoglein 1 beta (Dsg1b)    

Integrin alpha 3 (Itga3)   

Embigin(Emb)  (only in TCRabCD8ab) 

Dystroglycan 1 (Dag1)       

Activated leukocyte cell adhesion 

molecule (Alcam) 

L1 cell adhesion molecule(L1cam) 

Downregulated 

Desmoglein 1 alpha (Dsg1a)   

Cell adhesion, cadherin-

binding involved in cell 

adhesion 

Desmoglein 1 beta (Dsg1b)   

Claudin 23 (Cldn23)       

Integrin alpha M (Itgam)   

Cadherin 17 (Cdh17)      

G-protein coupled receptor 65(Gpr65)       

G-protein coupled 

receptor, GPCR signaling 

pathway, GPCR activity 

Chemokine (C-C motif) receptor 5(Ccr5)       

Chemokine receptor, 

chemokine signaling 

pathway 
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Table 2: Fold changes of the molecules shown in figure 9 and 10. 

 Proteins 

TCRγδ 

CD8αα 

TCRαβ 

CD8αβ  

TCRαβ 

CD8αα  

Chemokine 

receptors 

CXCR6 2.67 4.18 4.32 

CXCR3 1.17 3.13 1.13 

CCR5 0.35 4.74 0.00 

CCR9 1.25 5.87 1.50 

Adhesion 

molecules 

ALCAM 2.17 3.26 1.25 

PECAM-

1 4.69 1.26 1.70 

ICAM-2 2.02 3.39 2.70 

L1CAM 3.98 3.84 4.31 

Activating 

receptors 

JAML 8.62 19.60 17.12 

CD226 2.67 2.05 6.34 

Down-

regulated 

molecules 

Cdh17 0.14 1.93 0.29 

ItgaM 0.45 1.50 0.92 

CCR5 0.35 4.74 0.00 
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