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Thesis Abstract 
The PI3K-Akt signalling pathway is central to cell proliferation and growth, and hyperactivating 

mutations in this pathway are found in a large number of cancers. Downstream of PI3K, Akt is 

heavily studied, however the highly related SGK family of protein kinases have recently been 

identified as driving cancer cell growth in certain contexts. In particular, my research interest 

and the focus of this thesis is the role these kinases, in particular SGK3, has in resistance to Class 

I PI3K and Akt inhibitors in certain ER+ breast cancers. 

The first major aim of my PhD was to develop a method by which the signalling of SGK3 can be 

specifically modulated in cancer cells. Due to the high homology between the SGK family of 

protein kinases, chemical inhibition of SGK3 specifically has not been possible. Further, model 

cancer cell lines have been intractable to genome modification. I therefore, in collaboration with 

the Ciulli lab, designed and characterised SGK3-PROTAC1, a Proteolysis Targeting Chimera 

(PROTAC) which targeted SGK3 for specific ubiquitylation by VHL E3 ligase and subsequent 

proteasomal degradation. I demonstrated by quantitative Mass Spectrometry that SGK3-

PROTAC1 mediated degradation was highly specific. Rapid, reversible degradation of SGK3 

provided a tool for specifically modulating SGK3 in cancer cells. Further analysis using this 

compound in ZR-75-1 cells suggested some possible, previously unknown functions of SGK3 in 

cAMP signalling and mitochondrial metabolism. On degradation of SGK3, I observed a 

downregulation of the phosphodiesterase PDE4D and upregulation of a host of proteins 

mediating Oxidative Phosphorylation in mitochondria. These effects were observed only on 

degradation of the protein and not inhibition of its kinase activity, suggesting putative kinase-

independent roles of SGK3. These findings would be extremely exciting to follow up in future 

work, and demonstrate the power of the PROTAC approach. 

Given the potential of the PROTAC approach to probe biological systems, I also collaborated with 

the Ciulli lab to generate HaloPROTAC-E. This compound utilizes the bacterial dehalogenase 

activity of HaloTag7 to specifically induce degradation of any endogenously Halo-tagged protein. 
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I demonstrated that HaloPROTAC-E was able to induce degradation of the entire VPS34 complex 

to impact on downstream biology. This compound will be a useful tool within the unit and wider 

field to study proteins with no known ligands or validate target proteins for potential PROTAC 

development. 

The second aim of my PhD was to study how SGK3 is activated in the context of PI3K inhibition. 

In this thesis, I studied the mTORC2 component mSin1, and provide preliminary data to show 

that certain regions of this protein may explain the differential regulation of Akt and SGK3. I also 

performed a preliminary assay to study interactors regulating the activity of Class III PI3K VPS34. 

Together, these experiments represent important preliminary results in understanding the 

activation of SGK3 and how it mediates Class I PI3K and Akt inhibitor resistance. 
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1. Introduction 

1.1  Post-Translational modifications, and protein phosphorylation, in 

signal transduction 

For survival, it is critical for cells to be able to respond to signals both internally and from their 

external environment. Sophisticated signalling mechanisms have therefore evolved for cells to 

recognise and appropriately respond to stimuli. Signalling cascades typically result from the 

binding of a signalling molecule, for example external growth factors or internal nutrient levels, 

to a receptor, altering its activity and mediating downstream cellular enzymes. This activation 

results in a cellular response (Figure 1A). A strong advantage to these signalling cascades is that 

sensitivity to subtle changes in the cellular environment can be amplified through the cascade.  

In order to propagate signals, cellular enzymes will frequently modify their substrates through 

mechanisms such as proteolytic cleavage or post translational modifications, for example the 

conjugation of phosphates, carbohydrates or ubiquitin onto substrate proteins (Figure 1.1A). 

These post-translational modifications can dynamically modulate the activity, localisation and 

stability of almost all proteins encoded by the human genome. Additionally, many of these 

cascades are also reversible. For example, as will be discussed further in Chapter 3, 

polyubiquitylation of a target protein can act as a signal for its proteasomal degradation. 

Addition of a carbohydrate moiety to a substrate protein can form a transduction signal or a 

protein interaction motif. Many highly abundant post-translational modifications remain largely 

understudied, due to the lack of tools or analysis to detect them. A recently published study 

used new mass spectrometry analytical techniques to increase known sites of proline 

hydroxylation 10-fold (Devabhaktuni et al., 2019). Another vast class of signal transduction, and 

the focus of this thesis, is protein phosphorylation. 

Protein phosphorylation is the conjugation of a phosphate group to a substrate protein, and is 

a key component of most signal transduction cascades. This is carried out by protein kinases, 

which transfer the γ-phosphate of ATP to their protein substrate. Protein phosphorylation 
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typically occurs on the hydroxyl group of Ser, Thr, or Tyr residues, however other non-canonical 

phosphorylation sites are less well studied (Hunter, 2012). This modification is reversed by the 

action of protein phosphatases. Phosphorylation is an ideal mechanism for signal transduction 

as it is a rapid and reversible process, creating a simple “molecular switch” which does not 

require the synthesis or degradation of any new proteins. Protein phosphorylation results in the 

local addition of 2 negative charges, and therefore a considerable local charge change, which 

often results in conformational change of the substrate protein. This can have a number of 

downstream effects. The most common effect of enzyme phosphorylation is activation or 

deactivation of that enzyme, by revealing or occluding an active site. Alternatively, this 

conformation or charge change can result in altered interaction with downstream substrates 

and binding partners, creating a change in protein localisation, stability or function (Figure 1.1B) 

(Cohen, 2002; Hunter, 2012).  
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Figure 1.1 Protein phosphorylation is a reversible switch in signal transduction 
A. Signal Transduction cascades involve a series of enzymes and effectors, which allow internal cellular 
responses to an external or intracellular signal. B. Protein kinases catalyse the transfer of the γ-phosphate 
from ATP to their substrate protein, producing ADP. This modification can be reversed by protein 
phosphatases. Results of protein phosphorylation include activation of an enzyme, or altered interactions, 
localisation or stability of a target protein. 
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‘Canonical’ protein phosphorylation has been extensively studied as the conjugation of 

phosphate to the hydroxyl group of serine, threonine or tyrosine. However, increasing evidence 

suggests that extensive non-canonical phosphorylation also occurs on histidine, arginine, 

asparagine, lysine, glutamate and cysteine residues. The study of these phosphorylation sites 

has remained behind that of canonical phosphorylation due to the lack of tools to study them. 

The bonds formed on phosphorylation of these residues are highly acid- and heat-labile and 

most traditional methods to detect  canonical protein phosphorylation are not suitable 

(Hardman et al., 2019). However, recent development of tools such as monoclonal antibodies 

against pHis have allowed for functional relevance of these phosphorylation events to be 

determined (Besant and Attwood, 2012; Fan et al., 2012; Fuhs et al., 2015; Wieland and Attwood, 

2015; Srivastava et al., 2016; Fuhs and Hunter, 2017). For example, it was recently determined 

that the histidine phosphatase LHPP can act as a tumour suppressor in hepatocellular carcinoma, 

suggesting that deregulated histidine phosphorylation can be oncogenic (Hindupur et al., 2018). 

Phosphorylation of histidine residues is of particular interest, as many enzymes have a catalytic 

histidine in their active site, due to the ability of its sidechain to rapidly transition from a charged 

to uncharged state. The charge change associated with phosphorylation, therefore, could 

strongly impact on catalysis. True to the lack of tools available to study non-canonical 

phosphorylation, little is known about the enzymes which catalyse phosphorylation and 

dephosphorylation of these sites. However elegant work has identified 2 histidine kinases, NME1 

and NME2, and 3 histidine phosphatases, PHPT1, LHPP and PGAM5 (Fuhs and Hunter, 

2017).Recently published work presented a modified mass spectrometry method for detection 

of ‘non-canonical’ phosphorylation, and estimated that these phosphorylation events are far 

more frequent than previously believed, and equal one third of total phosphorylation events 

(Hardman et al., 2019) Such techniques greatly improve our ability to study these 

phosphorylation events. 



[5] 
 

 

1.1.1 Protein kinases, their structure and activation 

The human genome encodes 538 known kinases, of which 518 are protein kinases and 20 are 

lipid kinases. This collection of proteins is commonly referred to as the ‘kinome’. Based on 

sequence similarity and functional annotation, the kinome is subdivided into 10 groups. 478 

belong to a single superfamily, the typical eukaryotic protein kinases (ePKs), which evolved to 

share a common kinase domain fold, described further below. A further 40 ‘atypical’ protein 

kinases (aPKs) do not share the typical kinase fold, however do carry kinase activity. One 

example of an atypical protein kinase is mTOR which is described in further detail in section 1.2.5 

(G. Manning et al., 2002). 

The ePKs diverge into 9 groups, namely AGC (PKA, PKG, PKC family), CAMK (Ca2+/Calmodulin-

dependent kinases), CK1 (Casein Kinase 1 family), CMGC (CDK, MAPK, GSK and CLK family), STE 

(homologues of the yeast sterile kinases family), TK (Tyrosine kinase), TLK (Tyrosine kinase-like 

kinase family), RGC (Receptor Guanylate Cyclase), and ‘Other’ protein kinases that do not fit a 

particular group. (G. Manning et al., 2002) (Figure 1.2). Protein kinases within a certain family 

typically have similar substrate preferences, and often also similar methods of activation and 

regulation. Highlighted in Figure 1.2 are the closely related SGK and Akt protein kinases, which 

are the focus of this thesis. 
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Figure 1.2 Tree of known human protein kinases  
Protein kinases have evolved from a conserved kinase fold to form 10 kinase groups. Derived from (G. 
Manning et al., 2002). Highlighted in red box are the SGK and Akt protein kinases, the focus of this thesis. 

 

Protein kinases share a remarkably conserved catalytic region, termed the kinase domain. This 

kinase fold of 250-300 residues is highly conserved throughout evolution, however regulatory 

regions outside of this domain vary widely, particularly between kinase families. Figure 1.3 
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demonstrates the kinase domain of Akt (also known as Protein Kinase B). Akt is a member of the 

AGC protein kinase family, and its kinase domain is typical of this family of kinases. The kinase 

fold consists of 12 subdomains, organised into 2 lobes. The smaller N-lobe is formed of 

subdomains I-IV and contains a 5-stranded β-sheet and the regulatory αC-helix. The remaining 

subdomains V-XII form the largely α-helical C lobe. A hinge region links these 2 lobes, and the 

interface between them forms an important part of the active site. The N lobe is responsible for 

binding and coordination of the ATP for phosphotransfer, whereas the C lobe coordinates 

substrate binding and catalysis. 

 

Figure 1.3 Crystal structure of Akt kinase domain from PDB 1GV1 
The crystal structure of the Akt kinase domain was solved bound to the ATP competitive inhibitor AZD5363 
(Addie et al., 2013). From PDB 1GV1, this structure shows the key structural features of the AGC kinase 
domain. The smaller N-lobe (blue) coordinates ATP (in this case, AZD5363) for transfer to substrate by the 
C-lobe (red). In cyan is demonstrated the Cα-helix, and, in green, the hydrophobic motif residues which 
interact with the N lobe, to stabilize the domain in an active conformation. 
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There are a number of motifs highly conserved in protein kinases that are critical for activation 

and catalytic activity. Motifs within the N lobe are responsible for ATP binding and coordination. 

A GxGxxG motif binds the α and β phosphates of ATP, which are not transferred during 

phosphorylation, meanwhile the VAIK motif binds and positions the ATP. The lysine of this VAIK 

motif is the catalytic lysine critical for phosphorylation activity. Motifs within the C lobe are 

responsible for substrate binding and phosphotransfer. The HRDxxxxN motif contributes an Asp 

as proton acceptor for the catalytic reaction and the Asn coordinates one Mg2+ ion, while the 

DFG motif, which coordinates the second Mg2+ ion and its responsible for orientation of the ATP 

γ-phosphate. In addition, in this region an APE motif forms a salt bridge to subdomain XI for 

stabilization of the C lobe. In between these two motifs lies the critically important activation 

region of the T loop. 

Surprisingly, 10% of the kinome comprises pseudokinases. These proteins are structurally 

related to kinases, and have maintained the typical protein kinase fold, however have lost 

residues critical for catalysis (Kwon et al., 2019). Pseudokinases are well conserved and evolved 

alongside active kinases, likely evolving from gene duplication, which implies they still have, 

currently unknown, functional roles in signal transduction. For example, pseudokinases may act 

through regulating the activity of an active kinase, of through dynamic scaffolding functions 

(Rajakulendran and Sicheri, 2010; Shaw et al., 2014). For example, pseudokinase FAM20A has 

no catalytic activity, however is a regulator of its counterpart FAM20C (Cui et al., 2015, 2017). 

Some predicted pseudokinases bind nucleotides in different binding modes. For example, the 

SelO pseudokinase was found to bind ATP in an inverted conformation, and instead ‘AMPylate’ 

its substrate proteins (Sreelatha et al., 2018). Further the bacterial pseudokinase SidJ was found 

to use a protein kinase fold to glutamylate the SidE family of E3 ligases and inhibit their activity 

(Black et al., 2019).  
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Protein kinases are molecular switch proteins which can rapidly be activated or inactivated 

through phosphorylation. AGC protein kinases are typically activated by phosphorylation on two 

important residues, the T-loop (or activation loop) and the C-terminal hydrophobic motif 

residues. In the case of Akt, these residues are Thr308 and Ser473 respectively. The T loop of 

Akt is phosphorylated by 3-phosphoinositide dependent protein kinase-1 (PDK1) (Alessi, Deak, 

et al., 1997; Alessi, James, et al., 1997; Mora et al., 2004). Phosphorylation of this residue allows 

for the displacement of the Cα-helix  and  stabilisation  of  the  N- and  C-lobes  in  the  active  

conformation,  permitting  the  proper  orientation  of  the  substrate (Hanks and Hunter, 1995; 

Johnson et al., 1998). In figure 1.3, the T loop of AKT is observed to orientate the Cα-helix in 

cyan. Another critical activation residue of the AGC protein kinases is the hydrophobic motif 

residues. In AKT, this is Ser473 as is phosphorylated by mTORC2 (Sarbassov et al., 2005). The 

hydrophobic motif residues interact with the N lobe of the protein, for further stabilization. In 

Figure 1.3 this is shown for AKT in green. For AKT, this additional phosphoactivation event 

maximally activates the kinase towards certain additional substrates (Guertin et al., 2006; 

Jacinto et al., 2006). For other kinases, such as the Serum and Glucocorticoid regulated protein 

kinases (SGKs), prior phosphorylation of this residue is critical for subsequent phosphorylation 

of the T-loop residue by PDK1 (Garcia-Martinez and Alessi, 2008). This mechanism is described 

in greater detail in section 1.4.1. 

 

1.1.3 Protein phosphorylation in disease 

Protein phosphorylation regulates a vast array of cellular processes. It is therefore unsurprising 

that mutations of the enzymes regulating phosphorylation cascades are linked to a wide 

spectrum of human diseases. Hereditary conditions linked to mutations of kinases have been 

extensively reviewed by Lahiry et al, and Alessi and Cohen. Inactivating and activating mutations 

in protein kinases can impact on a wide range of pathologies, including neurological disorders, 

immune disorders and hypertension, as well as skeletal abnormalities and errors in metabolism 
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(Lahiry et al., 2010; Cohen and Alessi, 2013). For example, activating mutations in Leucine Rich 

Repeat Kinase 2 (LRRK2) are a risk factor for familial Parkinson’s Disease (PD) (Alessi and 

Sammler, 2018). Although the mechanism by which LRRK2 mutations lead to PD are not yet 

known, all known pathogenic mutations result in an increase in kinase activity, therefore LRRK2 

inhibitors are being investigated as a possible therapeutic in the clinic. Another example is the 

WNK1 (with-no-K(Lys)) and WNK4 kinases, which phosphorylate 2 downstream kinases 

STE20/SPS1-related proline/alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 

(OSR1) in the regulation of blood pressure, and mutation of these kinases can lead to 

hypertension (Vitari et al., 2005; Richardson and Alessi, 2008). Activated SPAK/OSR1 

phosphorylate and activate ion cotransporters such as the Na+/Cl- co-transporter (NCC) to 

regulate salt homeostasis (Gamba, 2005). Therefore, targeting of these kinases is an attractive 

target in lowering blood pressure.  

The importance of protein phosphorylation in human disease is highlighted by the significant 

effort that has been devoted for the development of protein kinase inhibitors for the clinic, to 

treat a range of conditions (Cohen and Alessi, 2013). There are currently 52 kinase inhibitors 

approved for clinical use by the Food and Drug Administration (FDA), with many more in clinical 

development (See www.kinase-screen.mrc.ac.uk).  

In addition, both hereditary and sporadic mutations of protein and lipid kinases are commonly 

found in human cancers. A current list of kinases implicated in oncogenesis by somatic or 

hereditary mutations is summarised in Table 1.1. This dataset is summarised from the COSMIC 

Cancer Gene Census (CGC), and describes ‘Tier 1’ genes with substantial evidence as a driver in 

tumorigenesis (Forbes et al., 2011; Sondka et al., 2018). A primary driver in many cancers is 

mutation in the PI3K-Akt-mTOR anabolic pathway, discussed in more detail in section 1.2 
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Table 1.1 Protein and Lipid kinases mutated in cancer. 
Protein and Lipid kinases implicated in cancer, with either somatic or germline mutations. Adapted from 
the COSMIC Cancer Gene Census (CGC), described in (Forbes et al., 2011; Sondka et al., 2018) Only Tier 1 
census genes, with extensive evidence demonstrating a functional role in cancer, are listed. OG = 
oncogene, TSG = Tumour suppressor gene, T = translocation, Mis = missense mutation, N = nonsense 
mutation, D = deletion, F = frameshift mutation, S = splice site mutation 

 

Gene Tumour Types (Somatic) 
Tumour Types 

(Germline) 
Cancer Syndrome 

Role in 
Cancer 

Mut 
Types 

ABL2 AML     OG, fusion T 

ALK 
ALCL, NSCLC, neuroblastoma, inflammatory 
myofibroblastic tumour, Spitzoid tumour neuroblastoma familial neuroblastoma OG, fusion T, Mis, A 

ATR 
endometrial, gastric, epithelial ovarian, 
myeloma oropharyngeal 

familial cutaneous telangiectasia 
and cancer syndrome TSG F; Mis 

BTK CLL, mantle cell lymphoma, WM     OG, TSG Mis 

CDK12 serous ovarian     TSG Mis, N, F 

CDK4   melanoma familial malignant melanoma OG Mis 

CDK6 ALL     OG, fusion T 

CDKN1B breast, small intestine neuroendocrine tumours pituitary, parathyroid 
multiple endocrine neoplasia type 
IV TSG F 

CDKN2A melanoma, multiple other tumour types melanoma, pancreatic familial malignant melanoma TSG 
D, Mis, N, F, 
S 

CDKN2C glioma, MM     TSG D 

ERBB3 colon, gastric, head and neck, bladder, skin     OG Mis, N 

ERBB4 melanoma, gastric, NSCLC     OG, TSG Mis, N 

ETNK1 aCML, CMML, SM-AHD, HES     TSG Mis 

FES HNSCC, ovarian carcinoma     OG, TSG Mis, F 

FLT3 AML, ALL     OG Mis, O 

FLT4 soft tissue sarcoma     OG A 

IKBKB SMZL     OG Mis 

ITK peripheral T-cell lymphoma     fusion T 

JAK1 ALL     OG, TSG Mis 

JAK2 ALL, AML, MPN,  CML     OG, fusion T, Mis, O 

JAK3 acute megakaryocytic leukaemia, ETP ALL     OG Mis 

LATS1 skin basal cell carcinoma     TSG Mis, N 

LATS2 malignant mesothelioma     TSG D, F, N 

LCK T-ALL     OG, fusion T 

MAP2K1 NSCLC, melanoma, colorectal     OG Mis 

MAP2K2 NSCLC, melanoma     OG Mis 

MAP2K4 pancreatic, breast, colorectal     OG, TSG D, Mis, N 

MAP3K1 luminal A breast     OG, TSG 
N, F, Mis, 
O, S 

MAP3K13 breast     OG, TSG F 

MAPK1 CLL, ovarian mixed germ cell tumour, cervical carcinoma     OG Mis 

NTRK1 papillary thyroid, Spitzoid tumour     
OG, TSG, 
fusion T, A 

NTRK3 congenital fibrosarcoma, secretory breast     OG, fusion T 

PIK3CA colorectal, gastric, glioblastoma, breast     OG Mis 

PIK3CB SCC, NSCLC     OG Mis 

PIK3R1 glioblastoma, ovarian, colorectal     TSG Mis, F, O 

PRKACA 
fibrolamellar hepatocellular carcinoma, cortisol 
secreting adrenal adenoma     OG T, Mis, N 

PRKAR1A papillary thyroid 
myxoma, endocrine, 
papillary thyroid Carney complex 

OG, TSG, 
fusion 

T, Mis, N, F, 
S 

PTK6 renal, gastric, head and neck, ovarian, others     OG, TSG Mis, N 

SRC colorectal cancer, endometrial carcinoma     OG Mis, N 

STK11 NSCLC, pancreatic 

jejunal hamartoma, 
ovarian, testicular, 
pancreatic Peutz-Jeghers syndrome TSG 

D, Mis, N, 
F, S 

SYK MDS, peripheral T-cell lymphoma     OG, fusion T 
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1.2 PI3K-mTOR pathway hyperactivation in breast cancer 

1.2.1 Phosphatidylinositol signalling is mediated by phosphatidylinositol 

kinases and phosphatases. 

As demonstrated in Figure 1.4, Phosphatidylinositol (PtdIns) is a glycerophospholipid, containing 

a glycerol backbone, two nonpolar fatty acid tails and a phosphate group linked to an inositol 

polar headgroup. This inositol headgroup is phosphorylated on various sites to produce a range 

of phosphatidylinositides (PtdInsP). These molecules form a minority of phospholipids on 

biological membranes, and yet are central in cellular signalling and as anchors for peripheral 

membrane proteins.  Phosphorylation occurs on one of three hydroxyl groups (positions 3, 4, 

and 5) on the inositol ring, either alone or in combination to generate seven known PtdInsP. 

These phosphorylation events are performed by phosphatidylinositol kinases (PIKs) and 

removed by lipid phosphatases (Figure 1.4) (Bishé, Syed and Siddiqui, 2012). 

Much of the work in this thesis focusses on the PI3Ks, which phosphorylate the 3-OH on the 

inositol headgroup of PtdIns on cellular membranes. These phospholipids then act as 

recruitment signals for effector proteins carrying, for example, PH domains (PtdIns(3,4,5)P2) or 

PX and FYVE domains (PtdIns(3)P). As will be discussed in this section, the PI3K signalling 

pathway is a central pathway by which cells can detect and respond to external signals and 

regulate functions such as glucose metabolism and cell proliferation. The roles in growth and 

metabolism regulation implicate hyperactivation of this pathway in a number of human diseases 

including cancer. 
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Figure 1.4 7 varieties of PtdInsP formed from phosphatidylinositol. 
PtdInsP is modulated by phosphatidylinositol kinases (PIKs), represented in black,  and lipid phosphatases, 
in red. From (Bishé, Syed and Siddiqui, 2012) 

PI3Ks are grouped into 3 classes based on their domain organisation, however all contain a 

structurally related lipid kinase domain. Figure 1.5 describes the classification and domain 

structure of the PI3K family. The class I PI3Ks are the largest class and most highly studied, using 

phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) as a substrate to generate PtdIns(3,4,5)P3. 

The generated PtdIns(3,4,5)P3 has an important role in activating the PI3K-Akt-mTOR signalling 

axis, which will be discussed further below. Class II PI3Ks are less well understood, and contain 

a catalytic core similar to Class I, however contain a C-terminal PX-C2 domain and a variable N-

terminal region. The Class III PI3K family consists of just one member, VPS34. VPS34 is present 

in all eukaryotes and is therefore considered the ancestral PI3K. Overall the domain structure of 

VPS34 is simpler than of the Class I and Class II PI3K, however instead acts within 
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heterotetrameric complexes (Vanhaesebroeck et al., 2010; Vanhaesebroeck, Stephens and 

Hawkins, 2012).  

 

Figure 1.5 The catalytic subunits of the PI3K lipid kinase family. 
The kinases are classified into three different classes based on their structural and biochemical features. 
The common, core catalytic domain consists of a C2 domain, a helical domain, and the catalytic kinase 
domain. Class I PI3K also contain a Ras-binding domain and a domain for binding to regulatory subunits. 
Class II PI3K, also known as PI3K-C2, contain an additional C-terminal PX and C2 domain. In addition, 
variable N-terminal Proline rich domains may mediate protein interactions, localisation and regulation. 
The sole Class III PI3K member, VPS34, is much simpler and contains just the catalytic core. Activity of 
VPS34 is regulated by a large complex. P = Proline rich region, PX = Phox Homology Domain. Adapted from 
(Vanhaesebroeck et al., 2010) 

1.2.2 Class I PI3K 

PI3K Class I act as heterodimers in cells. These dimers consist of a catalytically active p110 

subunit, of which there are α, β, γ and δ variants, and a regulatory subunit. PI3K p110α, β and δ 

form a dimer with regulatory p85 subunits and are activated by Tyrosine autophosphorylation 

of Receptor Tyrosine Kinases (RTKs) (Figure 1.6A). There are 5 different regulatory subunits 

which activate class I PI3K under different stimuli (Vanhaesebroeck, Stephens and Hawkins, 

2012). Docking of the p85 SH2 domain to pTyr allows for allosteric activation of the dimer. PI3K 

p110γ binds to either p101 or p84 regulatory subunits and is activated downstream of G-protein-

coupled receptors (GPCR) signalling. p101 links p110γ to Gβγ subunits released from 

heterotrimeric G proteins downstream of GPCRs (Stephens et al., 1994). Additionally, 

interaction of p110 with the small G-protein Ras can also contribute to the activation of PI3K 

(Rodriguez-Viciana et al., 1994). 
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Class I PI3K form the major axis of canonical PI3K signalling, and the subsequent activation of 

Akt and mTORC1 in response to growth factor signals recognised by RTKs (Figure 1.6). 

Dimerization and autophosphorylation of RTKs generates phosphotyrosine for the recruitment 

of p85 by its SH2 domain (Escobedo et al., 1991; Skolnik et al., 1991). This process recruits PI3K 

to the plasma membrane and also relieves autoinhibition of p110 by p85 (Yu et al., 1998). The 

preferred substrate for Class I PI3K is PtdIns(4,5)P2, which is phosphorylated at the 3-OH position 

to generate PtdIns(3,4,5)P3 (Whitman et al., 1988; Stephens and Downes, 1990). This action is 

reversed by the tumour suppressor, lipid phosphatase PTEN (phosphatases and tension 

homolog deleted on chromosome 10) (Maehama and Dixon, 1998; Myers et al., 1998; Stambolic 

et al., 1998) (Figure 1.6A). 

Production of PtdIns(3,4,5)P3, and its immediate product PtdIns(3,4)P2, results in the 

recruitment of pleckstrin homology (PH) domain-containing effector proteins. Two critical 

proteins in the pathway containing a PH domain are 3-phosphoinositide-dependent protein 

kinase-1 (PDK1) (Alessi, Deak, et al., 1997) and Akt (James et al., 1996). This recruitment allows 

for the phosphorylation of Akt by PDK1 on its activation loop Thr308 and therefore its activation 

(Alessi, James, et al., 1997). Activated Akt phosphorylates a number of substrates in the cell 

effecting biological processes such as cell growth and proliferation (Figure 1.6B). 

1.2.3 Class II PI3K 

Unlike Class I PI3K, Class II PI3K do not constitutively associate with regulatory subunits. There 

are 3 members of the PI3K Class II, PI3K-C2α, β or γ, which contain variable N- and C-terminal 

regions which may regulate their activity. In particular, all PI3K-C2 isoforms contain an additional 

C-terminal C2 domain (Gulluni et al., 2019). Unlike the Class I and Class III PI3K, Class II PI3K 

isoforms are active as monomers, with no known obligatory regulatory subunits (MacDougall, 

Domin and Waterfield, 1995). 
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Figure 1.6. Activation and downstream effect of PI3K Class I 
A. Class I PI3K are activated by external stimuli such as growth factors, cytokines or hormones binding to 
Receptor Tyrosine Kinases (RTK) or G-protein coupled receptors (GPCR). Phosphorylated RTKs bind to 
regulatory p85, relieving inhibition of p110α,β,δ. p110γ is activated by binding to Gβγ proteins released 
from GPCRs. p110 preferentially uses PtdIns(4,5)P2 as a substrate to generate PtdIns(3,4,5)P3 on the 
plasma membrane B. PtdIns(3,4,5)Ps rich regions on the plasma membrane recruit Akt and PDK1 by virtue 
of their PH domains. mTORC2 is also recruited to the membrane by the PtdIns(3,4,5)P3 signal. 
Colocalization of Akt with its activating kinases allows for its phosphorylation and activation, stimulating 
cell growth and survival signals. Modified from (Vanhaesebroeck et al., 2010; Yang et al., 2019). 

Until recently, the PI3K-C2 kinases were largely understudied, however recent findings suggests 

roles in both cell signalling and vesicle trafficking (Gulluni et al., 2019). The Class II Isoforms each 

have the enzymatic capability to produce both PI(3)P and PI(3,4)P2 in vivo, depending on their 

cellular context. Each isoform carries distinct and non-overlapping cellular roles in different 

tissues and cellular compartments (Margaria et al., 2019).  
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PI3KC2α on early endosomal membranes will produce PtdIns(3)P from readily available PtdIns 

containing membranes, and mediates vesicle trafficking (Yoshioka et al., 2012; Franco et al., 

2014). However, this isoform can also produce PtdIns(3,4)P2 from PtdIns(4)P-rich areas of the 

plasma membrane to regulate clathrin-mediated endocytosis (Posor et al., 2013). 

PI3KC2β, however, primarily synthesises PtdIns(3)P both in vitro and in vivo (Maffucci and 

Falasca, 2014). Enzymatic activity of PI3KC2β has been linked to cell migration and formation of 

actin-rich lamellipodia (Domin et al., 2005). PI3KC2β has also been linked to insulin sensitivity 

and regulation of mTORC1 (Alliouachene et al., 2015; Marat et al., 2017). PI3KC2α and PI3KC2β  

both have essential roles in clathrin-mediated pinocytosis, however PI3K-C2β was required for 

actin filament formation at the clathrin-coated structures (Aung et al., 2019). PI3KC2γ can 

produce both PtdIns(3)P and PtdIns(3,4)P2 in vitro, however in vivo primarily produces a pool of 

PtdIns(3,4)P2 on endosomal membranes in response to insulin (Braccini et al., 2015). 

1.2.4 Class III PI3K 

Class III PI3K, VPS34, generates PtdIns(3)P from PtdIns and is found in two distinct complexes 

within cells. The catalytically active VPS34 subunit forms a constitutive heterodimer with VPS15. 

VPS15 is myristoylated at Gly2, acting as a member anchor. This dimer forms 2 major complexes 

in cells, with different biological roles (Figure 1.7). In VPS34 Complex I, VPS34/VPS15 form a 

heterotetramer with Beclin1 and ATG14L. This complex is primarily on Rab7-containing 

membranes and involved in the activation and regulation of autophagy, and response to 

nutrient starvation (Kihara et al., 2001; Itakura et al., 2008; Matsunaga et al., 2009). Complex II 

is formed with UVRAG in place of ATG14. This complex is found on Rab5- and Rab9-containing 

endosomal membranes and is critical for endocytic sorting, lysosome recycling and LC3-

mediated phagocytosis (Liang et al., 2008; Thoresen et al., 2010; Martinez et al., 2015; Munson 

et al., 2015). 
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Figure 1.7 Complexes formed by Class III PI3K VPS34. 
VPS34, VPS15 and Beclin1 form a heterotetramer with either ATG14L or UVRAG to form complex I or 
complex II respectively. More transient, accessory interactors include Rubicon and Rab5 interacting with 
Complex II, and NRBF2 and Rab7 interacting with Complex I. AmbraI has been observed to form very 
transient interactions with both complexes. 

Differing complexes and localisation allows for the independent regulation of many distinct 

pathways controlled by PtdIns(3)P in the cell. For example, in the context of amino acid 

starvation, complex I is activated to regulate autophagy while other complexes are inhibited. 

This is due to the recruitment of ATG14L by ULK1, which phosphorylates Beclin1 for activation 

of the complex (Russell et al., 2013). Differing activity of the complexes can also be regulated by 

curvature of the target membrane, therefore differentiating between different intracellular 

organelles. While, in vitro, both complexes I and II displayed similar activity on high curvature 

membranes, complex I had no measurable activity in flat membranes (Rostislavleva et al., 2015). 

Structural information on VPS34 complex 

 

Figure 1.8 Domain structure of the core VPS34 complex members. 
 VPS34 interacts and dimerises with the WD40 domain of VPS15 via its N-terminal C2 domain. Binding to 
substrate membranes is via the kinase domain of VPS34 and the BARA domain of Beclin1. The core complex 
will associate with either ATG14L in Complex I or UVRAG in Complex II 
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Comprehensive structural studies of the VPS34 complexes has revealed additional information 

on the mechanisms of VPS34 activation. Both complexes form a “Y” shape on the target 

membrane. VPS34/VPS15 form as an obligate dimer and form a catalytic arm of the “Y” 

(Baskaran et al., 2014; Rostislavleva et al., 2015; M. Ma et al., 2017). Beclin1 with ATG14 or 

UVRAG form a second, regulatory arm of the “Y”. These 2 arms bind to target membranes via 

the BARA domain of Beclin1 and the kinase domain of VPS34. Myristoylation of VPS15 at Gly2 

also acts as a membrane anchor (Herman, Stack and Emr, 1991). In vitro studies of the human 

protein have also observed a high mobility of the VPS34 kinase domain relative to the rest of the 

complex (M. Ma et al., 2017; Stjepanovic et al., 2017). 

VPS34 has a similar domain structure to the other PI3Ks, with an N-terminal C2 domain, Helical 

domain and a C-terminal Kinase domain (Figure 1.8). However, this domain structure is very 

simple in comparison to the Class I and Class II PI3K and the polypeptide does not contain other 

regulatory elements, as regulation is mediated by its complex members. The C2 domain is critical 

for interaction with the WD40 domain of VPS15 (Rostislavleva et al., 2015). Also, residues of this 

domain can be phosphorylated by CDK1, CDK5 and AMPK which causes a reduction in VPS34 

activity, possibly due to weakened complex stability (Furuya et al., 2010; Kim et al., 2013). 

Additionally, cleavage of this domain by caspase 8 causes decreased affinity for Beclin1, and 

reduced activity, demonstrating how critical this region is for VPS34 activity (Jiang et al., 2017). 

VPS15 is composed of an N-terminal pseudokinase domain, followed by a Helical domain, linker 

region and C-terminal WD40 domain critical for binding to VPS34 (Figure 1.8). Despite having no 

known kinase activity, the pseudokinase domain of VPS15 has been demonstrated to be critical 

for complex formation and VPS34 activation (Nemazanyy et al., 2013). Somatic mutations in the 

pseudokinase domain have also been detected in cancer (Herman, Stack and Emr, 1991; Shull et 

al., 2012). Beclin1 is extensively decorated with posttranslational modifications, which mediate 

its localization, binding partners and stability. For example, as described above, phosphorylation 

of Beclin1 by ULK1 and AMPK increases the activity of the autophagic complex I (Kim et al., 2013; 
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Russell et al., 2013; Egan et al., 2015). Generally, autophagy-promoting modifications are largely 

found in the N-terminus and BH3 domain. Conversely, autophagy-inhibiting modifications are 

commonly found in its CC domains and membrane-binding BARA domain (Zalckvar et al., 2009; 

Shi and Kehrl, 2010; Maejima et al., 2013). 

ATG14L completes VPS34 complex I, and contains 3 coiled coil domains, a C-terminal domain 

and a Barkor/Atg14L autophagosome targeting sequence (BATS) domain. At the N-terminus of 

ATG14L, two heavily conserved CXXC motifs are critical for localisation of ATG14 to the ER 

(Matsunaga et al., 2010). Additionally, an N-terminal extension, present only in metazoans, 

contains a phosphorylation site at S27. Phosphorylation of this site by Ulk1 is triggered by amino 

acid starvation or inhibition of mTORC1 and activates VPS34 complex I activity, however it is 

currently unclear how this activation occurs (Park et al., 2016). UVRAG is the subunit found 

exclusively in complex II. UVRAG-contained complexes are found to localise to Rab5- and Rab9-

positive endosomes, and UVRAG is not found with autophagic complexes. Instead, the function 

of UVRAG-containing complexes is in endocytic trafficking and potentially autophagosome 

maturation (Knaevelsrud et al., 2010; Takats et al., 2014).  Importantly, Rab5-positive 

endosomes have only UVRAG-containing complexes, not ATG14. 

In addition to these stable complex members, there are several accessory subunits which bind 

to the complex more transiently. NRBF2 binds specifically to complex I, and boosts activity of 

the complex (Ohashi et al., 2016; Young et al., 2016). Phosphorylation of NRBF2 by mTORC1 

decreases binding to complex I and reduces VPS34 activity (X. Ma et al., 2017). Rubicon, 

alternatively, binds specifically to complex II and regulates its activity, however it has been 

reported to both increase and decrease activity of the complex and its role is not entirely clear 

(Matsunaga et al., 2009; Matsunaga, Noda and Yoshimori, 2009; Zhong et al., 2009; Martinez et 

al., 2015). Additionally, AMBRA1 (activating molecule in Beclin-1-regulated autophagy) is an 

adaptor molecule which weakly associates with both complexes (Antonioli et al., 2014). It is a 

largely disordered protein acts as a hub coordinating several processes to promote autophagy 
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and regulate mTOR signalling. It has been demonstrated to interact with Beclin1 and increase 

VPS34 complex activity (Cianfanelli et al., 2015). 

Posttranslational modifications regulating VPS34 activity 

Binding of regulatory subunits to VPS34 is critical for mediating its subcellular activity. However, 

a range of post translational modifications also vastly regulate its activity. As described above, 

Beclin1 is heavily decorated with modifications which alter its localisation and activity of the 

VPS34. In addition, VPS34 itself can also be regulated by PTMs. For example, VPS34 can be 

acetylated by p300 at K29, K771 and K781. K771 is situated in the activation loop of VPS34 kinase 

domain and, importantly, binds to substrate PtdIns. Acetylation at this site by p300 substantially 

reduces VPS34 activity. Additionally, acetylation at K29 has been observed to reduce Beclin1 

interaction and increase Rubicon interactions, potentially activating and deactivating VPS34 

under the appropriate conditions. Within the helical domain of VPS34, two highly conserved 

lysine residues are poly-ubiquitinated by the UBC-13/UEV-1/CHN-1 complex. This 

polyubiquitylation stabilizes VPS34 and increases autophagosome maturation. 

1.2.5 mTOR signalling downstream of PI3K 

The mammalian target of rapamycin (mTOR) is a Ser/Thr protein kinase, and central integrator 

of a wide variety of cellular signals that control cell growth and homeostasis. It is an atypical 

protein kinase of the PI3K-like Kinase (PIKK) family. mTOR is the mammalian homolog of yeast 

target of rapamycin (TOR). It is inhibited by the macrolide Rapamycin, discovered due to its anti-

proliferative properties (Heitman, Movva and Hall, 1991; Brown et al., 1994; Sabatini et al., 1994; 

Sabers et al., 1995). mTOR exists in at least two distinct complexes termed mTOR complex 1 

(mTORC1) and mTORC2,  shown in figure 1.9. Both complexes contain mTOR and accessory 

proteins termed mammalian lethal with sec-13 protein 8 (mLST8, also known as GβL) (Kim et al., 

2003; Jacinto et al., 2006), DEP domain containing mTOR-interacting protein (Deptor) (Peterson 

et al., 2009) and Tti1/Tel2 complex (Kaizuka et al., 2010). mTORC1 is completed by regulatory- 

associated protein of mammalian target of rapamycin (Raptor) (Hara et al., 2002; Kim et al., 
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2002), and proline-rich Akt substrate 40 kDa (PRAS40) (Sancak et al., 2007; Thedieck et al., 2007; 

Vander Haar et al., 2007; Wang et al., 2007). mTORC2 uniquely contains Rapamycin-insensitive 

companion of mTOR (Rictor) (Jacinto et al., 2004; Sarbassov et al., 2004), mammalian stress-

activated map kinase-interacting protein 1 (mSin1) (Frias et al., 2006; Jacinto et al., 2006) and 

protein observed with Rictor 1 and 2 (Protor1/2) (Pearce et al., 2007; Thedieck et al., 2007; Woo 

et al., 2007). 

Activity of these 2 distinct complexes can be delineated with Rapamycin. mTORC1 is acutely 

sensitive to rapamycin whereas mTORC2 is only affected by chronic rapamycin treatment 

(Sarbassov et al., 2004, 2006; Phung et al., 2006). Cryo-EM advances have allowed the structure 

of both complexes to be solved, providing insights into their differential activity and regulation 

(Aylett et al., 2015; X. Chen et al., 2018). 

 

Figure 1.9 mTOR forms two complexes in cells 
 mTORC1 is formed of mTOR, Raptor and mLST8, with PRAS40 and Deptor. mTORC2 is formed of mTOR, 
Rictor and mLST8, with Deptor and Protor. These two complexes are activated by different cellular signals 
and perform different functional roles. Adapted from (Saxton and Sabatini, 2017) 

mTORC1 
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mTORC1 is the better characterised complex of mTOR and coordinates a vast array of upstream 

signals relating to cell growth and metabolism. mTORC1 has been demonstrated to be regulated 

by a) growth factor signalling, b) cellular stress, c) cellular energy status, d) oxygen, and e) amino 

acids. Downstream of these signals, mTORC1 regulates cell growth and proliferation by 

promoting anabolic processes and by inhibiting the catabolic process of autophagy (Figure 1.9) 

(Saxton and Sabatini, 2017). 

 

Figure 1.10 Activation of mTORC1 in response to growth factors and cellular energy through TSC2. 
On activation of the PI3K signalling pathway, Akt is activated by phosphorylation by PDK1 and mTORC2. 
Active Akt phosphorylates TSC2, relieving its inhibition on Rheb. Activation of Rheb allows the activation 
of mTORC1 signalling. Akt also phosphorylates PRAS40, releasing the inhibitory factor from the mTORC1 
complex. Other signals of cellular energy mediate mTORC1 activation through TSC2, via AMPK or MAPK 
and cytokine signalling. 

 

A key signal for mTORC1 activation is in response to Growth Factors, and cellular energy levels, 

mediated through tuberous sclerosis 2 (TSC2). Within the PI3K-Akt-mTOR signalling axis, Akt 

mediates the activation of mTORC1 via phosphorylation of TSC2 and PRAS40. Akt 

phosphorylates TSC2 at Ser939 and Thr1462. This results in the dissociation of the TSC1/2 
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heterodimer from the GTPase Ras homolog enriched in brain (Rheb) (B. D. Manning et al., 2002; 

Inoki et al., 2002). In its GTP-bound state, Rheb will directly bind to and activate mTORC1. TSC1/2 

complex acts as a GTPase-activating protein (GAP) for Rheb, therefore its dissociation allows 

accumulation of Rheb-GTP to activate mTORC1 (Inoki et al., 2003; Tee et al., 2003). The TSC1/2 

is also phosphorylated at alternative sites  and inactivated by other effector kinases of growth 

factor signalling pathways, such as the extracellular-signal-regulated kinases 1/2 (ERK1/2) and 

cytokines (Ma et al., 2005; Lee et al., 2007; Laplante and Sabatini, 2012). Akt also phosphorylates 

PRAS40 at Thr246, triggering its dissociation from mTORC1, relieving its inhibition of the 

complex (Sancak et al., 2007; Thedieck et al., 2007; Vander Haar et al., 2007; Wang et al., 2007) 

(Figure 1.10). 

However, it is important that mTORC1-mediated anabolism only occurs under conditions of 

sufficient cellular energy and substrates for macromolecular synthesis. Glucose deprivation and 

hypoxia activate the AMP-regulated protein kinase AMPK, which will phosphorylate and activate 

TSC2 (Brugarolas et al., 2004; Kalender et al., 2010; Efeyan et al., 2013), leading to inhibition of 

mTORC1 activity. Further, exquisite mechanisms have evolved by which mTORC1 senses cellular 

amino acid levels, and activation of mTORC1 by Rheb-GTP only occurs in the presence of amino 

acids (Figure 1.10). 

This has been shown to be mediated by the Rag GTPases, vacuolar v-ATPase and Ragulator (E. 

Kim et al., 2008; Sancak et al., 2008, 2010; Zoncu et al., 2011; Bar-Peled et al., 2012). 

Accumulation of amino acids in the lysosomal lumen promotes the loading of the RagA/B 

heterodimer with GTP, allowing its interaction with the mTORC1 subunit Raptor, and 

translocation of mTORC1 from the cytosol to the lysosomal surface (Laplante and Sabatini, 2012; 

Jewell, Russell and Guan, 2013). On the lysosomal surface, the RagA/B dimer docks onto 

Ragulator, and mTORC1 can interact with Rheb-GTP, located throughout the endomembrane 

system. This checkpoint mechanism ensures that mTORC1 will only be activated if amino acids 
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are available, irrespective of other positive signals. Interaction of the v-ATPase with Ragulator is 

also believed to be important for mTORC1 activation on lysosomal membranes (Zoncu et al., 

2011). 

More recent advances have also determined how Rag-mediated activation of mTORC1 senses 

cytosolic amino acid levels, through the GATOR1/GATOR2 complexes. The GATOR1 complex acts 

as a GTPase-activating protein (GAP) for RagA/B, and therefore inhibits mTORC1 activation on 

the lysosomal membrane. GATOR2, on the other hand, is a positive regulator of mTORC1 

signalling, as it interacts with and inhibits GATOR1 (Bar-Peled et al., 2013; Wolfson et al., 2017). 

The activity of GATOR2 is then regulated by cytosolic amino acid sensors, which bind and inhibit 

GATOR2 in the absence of amino acids. Sestrin2 is a cytosolic leucine sensor, which binds 

GATOR2 in the absence of leucine, and releases it upon leucine binding (Chantranupong et al., 

2014; Parmigiani et al., 2014; Saxton, Knockenhauer, et al., 2016; Wolfson et al., 2016). CASTOR 

similarly binds and inhibits GATOR2, dissociating upon binding of cytosolic arginine 

(Chantranupong et al., 2016; Saxton, Chantranupong, et al., 2016). 

mTORC2 

mTORC2 is insensitive to nutrients, however is also regulated by growth factors via relatively 

poorly understood mechanisms mediated by PI3K. mTORC2 has also been shown to associate 

with ribosomes following PI3K activation and the activation of mTORC2 is suggested to be 

dependent on ribosomes, but not protein synthesis (Zinzalla et al., 2011) 

PI3K-dependent activation of mTORC2 may be mediated by PtdIns(3,4,5)P3 itself. Increased 

PtdIns(3,4,5)P3 levels correlate with increased mTORC2 activity and recent studies suggest a 

direct activation of mTORC2 by PtdIns(3,4,5)P3 (Gan et al., 2011; Liu et al., 2015). Liu et al., 

recently proposed that PtdIns(3,4,5)P3 is activating mTORC2 via the PH domain of mSin1. Their 

proposed model suggested an autoinhibition of mTOR by the PH domain of mSin1, which was 

relieved on PH binding to PtdIns(3,4,5)P3 (Liu et al., 2015).  
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The best-characterised substrates of mTORC2 are the AGC protein kinases, phosphorylating 

their hydrophobic motif residues leading to their activation. Akt activity against certain 

substrates appears to be modulated by mTORC2 activity, whereas hydrophobic motif 

phosphorylation of SGK is critical for its activation (Guertin et al., 2006; Jacinto et al., 2006; 

Garcia-Martinez and Alessi, 2008). Through phosphorylation of its substrates, mTORC2 has roles 

in controlling cell survival and proliferation, as well as cytoskeletal organisation (Laplante and 

Sabatini, 2012). 

1.2.6 Hyperactivation of the PI3K pathway in breast cancer 

Due to its role in mediating many processes in cell growth and metabolism, aberrant activation 

of the PI3K pathway is frequently observed in breast cancer.  It is estimated that 70% of all breast 

cancer cases harbour hyperactivated PI3K signalling (Miller et al., 2011). This hyperactivation of 

the pathway can be achieved in a number of ways. Frequently observed alterations include, but 

are not limited to, amplification of RTKs, loss of PTEN or INPP4B (inositol polyphosphate-4-

phosphatase) function, activating mutations of p110 catalytic subunit of PI3K, inactivating 

mutations of p85 regulatory subunit of PI3K or activating mutations of Akt or Ras. Mutations of 

the pathway in breast cancer was extensively reviewed by McKenna et al., and is summarised in 

table 1.2 below. 

The most frequent pathway mutations, and the most important in the context of therapy, are 

PI3K and PTEN. The PI3KCA gene, encoding the p110α catalytic subunit, is the most frequently 

mutated PI3K pathway component in breast cancer (Zardavas, Fumagalli and Loi, 2012). 80% of 

these mutations occur in 1 of three hotspot regions, described by Samuels et al., which modulate 

PI3K regulation and activity (Samuels et al., 2004). One hotspot is the E545K mutation in exon 9, 

located in the helical domain, which interferes with inhibitory binding of the p85 subunit. 

Mutations around H1047 in the kinase catalytic domain increase interaction of the kinase with 

the lipid membrane (Ikenoue et al., 2005; Kang, Bader and Vogt, 2005; Vogt et al., 2007; Jiang 
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et al., 2018). These mutations act by different mechanisms and therefore can combine for a 

synergistic effect on PI3K pathway activation (Zhao and Vogt, 2008). Additionally, important 

activating mutations also occur in the C2 domain (Croessmann et al., 2018). Gene mutations in 

PTEN are relatively uncommon, and loss of function of PTEN frequently occurs through loss of 

heterozygosity at the 10q23 locus.  This occurs in 30-40% breast cancer tumours, and results in 

constitutive activation of Akt (Li et al., 1997; Liaw et al., 1997; Wang et al., 2014; C.-Y. Chen et 

al., 2018). These alterations also occur in 80% of Cowden’s syndrome patients, a condition which 

predisposes to breast cancer (Liaw et al., 1997).  
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Table 1.2 Mutations within the PI3K pathway associated with breast cancer, stratified by subtype. 
Modified from (McKenna, McGarrigle and Pidgeon, 2018). HR+ = hormone-receptor positive. HER2+ = 
human epidermal growth factor receptor 2 positive, TNBC = triple negative breast cancer. Data extracted 
from a = (Miller, 2011), b = (Kriegsmann et al., 2014), c = (Gonzalez-Angulo and Blumenschein, 2013), d = 
(Ellis and Perou, 2013), e = (Stern et al., 2015), f = Cancer Genome Atlas Network (CGAN, 2012), g = (Chin 
et al., 2014) 

  

Gene Alteration Effect on 
signalling 
pathway 

HR+ 
(%) 

HER2+ 
(%) 

TNBC, 
(%) 

Refs. 

Receptors 

EGFR Amplification Activation of EGFR 
signalling 

0.8 0.8 0.8-0.9 a, b 

ERBB2 Amplification/Overexpression Activation of ErbB2 
signalling 

10 100 0-3.8 a, b 

FGFR1 Amplification/Activating 
mutation 

Activation of FGFR 
signalling 

8.6-
11.
6 

5.4 5.6 a 

IGF1R Activating 
mutation/Amplification 

Activation of IGF-1R 
signalling 

41-
48 

18-64 42 a 

PI3K 

PIK3CA Activating 
mutation/Amplification 

Activation of PI3K 
signalling 

28-
47 

23-42 8-25.9 a, c, b 

PIK3CB Amplification Unknown 5 5 5 a 

PIK3R1 Inactivating mutation 
(p85α, p55α, p50α) 

Increased p110a, 
catalytic activity 

0.4-
2 

2-5 0-2 a, c, d 

PIK3R3 Activating mutation 
(p55γ) 

Activation of PI3K 
signalling 

0-
0.8 

0 0 c 

Lipid phosphatases 
PTEN Loss of heterozygosity Activation of PI3K 

signalling 
4-
44 

5.4-22 4.8-67 a, b, e, f 

INPP4B Under-expression Loss of AKT 
signalling regulation 

10-
33 

30-54 30-53 a, c 

Akt 

AKT1 Activating mutation Activation of AKT 
signalling 

2-4 0-2 0-0.9 a, c, b 

AKT2 Amplification Activation of AKT 
signalling 

0-
2.8 

0-2.8 0-2.8 a, c 

AKT3 Activating mutation/ 
Amplification 

Activation of AKT 
signalling 

0.4-
0.8 

0 1-28 c, g 

Other regulators 
KRAS Activating mutation Hyperactivation of 

PI3K and MEK 
4-6 4-6 0.9-6 a, b 

LKB1 Under-expression Loss of AKT 
signalling regulation 

4.3-
8.6 

- - a 

PDK1 Amplification/Overexpression Activation of AKT 
signalling 

22 22 38 a 

RPS6K1 Amplification Unknown 3.8-
12.
5 

3.8-
12.5 

3.8-
12.5 

a 
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1.2.7 PI3K Inhibitors to treat cancer 

Due to the hyperactivation of PI3K-signalling being frequently observed in breast cancer, a wide 

range of inhibitors have been developed targeting this pathway with the aim of therapeutically 

targeting cancer. These inhibitors commonly target either PI3K, Akt or mTOR. In addition, PI3K-

mTOR dual inhibitors have been developed, as well as isoform specific PI3K inhibitors. Current 

inhibitors in clinical trials are summarised in Figure 1.11. P110α inhibitor BYL719 from Novartis 

has recently been approved by the FDA for treatment of advanced ER+ PI3KCA mutant breast 

cancer under the brand name Piqray. The drug has been approved in combination with 

Fulvestrant, after their SOLAR-1 study demonstrated the combination almost doubled 

progression-free survival (PFS) compared to Fulvestrant alone, extending PFS to 11 months 

compared to 5.7, and more than doubled the overall response rate to 38% from 16% (André et 

al., 2019). Targeting p110α specifically reduced off target toxicity associated with pan inhibitors 

which also target the p110β/δ isoforms (Baselga et al., 2018). 

 

Figure 1.11 Inhibitors of the PI3K-Akt-mTOR pathway in clinical trials against Breast Cancer. 
From (McKenna, McGarrigle and Pidgeon, 2018).  
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1.3  Akt protein kinases 

The Akt isoforms are members of the AGC family of Ser/Thr protein kinases. As discussed above, 

Akt is critical in the activation of mTORC1 by phosphorylation of PRAS40 and TSC2. As well as 

mTORC1 activation, Akt phosphorylates a wide array of substrates involved in regulating 

metabolism, and cell survival and proliferation (Manning and Cantley, 2007).  

1.3.1 Activation of Akt 

Akt is activated downstream of PtdIns(3,4,5)P3 production by Class I PI3K on the plasma 

membrane.  Akt is recruited to PtdIns(3,4,5)P3 rich membranes by virtue of its N-terminal PH 

domain, where it is phosphorylated on its activation loop residue Thr308 by PDK1, and its 

hydrophobic motif residue Ser473 by mTORC2 (James et al., 1996; Alessi, Deak, et al., 1997; 

Alessi, James, et al., 1997; Sarbassov et al., 2005). Many AGC protein kinases, such as the SGK 

family, require prior phosphorylation on their hydrophobic motif residue for subsequent 

phosphorylation of the activation loop by PDK1. This occurs via a PDK1-interacting fragment 

(PIF)-dependent mechanism by which a conformational change allows the protein to dock to the 

PIF-pocket of PDK1, leading to its activation loop phosphorylation. Akt, however, can be 

phosphorylated by PDK1 by a PIF-independent mechanism, through co-recruitment to 

PtdIns(3,4,5)P3 rich plasma membranes. 

Akt is also autoinhibited in the cytosol, through allosteric inhibition by its PH domain in the 

absence of PI(3,4,5)P3. On engagement with PtdIns(3,4,5)P3 on the membrane, this 

autoinhibition is relieved. The autoinhibited form of Akt in the cytosol is also held more 

susceptible to phosphatase mediated inactivation (Ebner, Lučić, et al., 2017; Lučic et al., 2018). 

 

The precise mechanism of Akt activation in response to membrane binding and hydrophobic 

motif phosphorylation is still unclear, with 2 recent papers proposed differing mechanisms by 

which Akt is fully activated. Lučic et al proposed a model whereby PtdIns(3,4,5)P3 binding of the 

PH domain is critical for Akt activation, as in the inactive state the PH domain occludes substrate 
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binding in the active site, also maintaining Akt in a conformation more open to cytosolic 

phosphatases. They also propose that phosphorylation of Akt on its activation sites does not 

override occlusion of the active site by the PH domain in the absence of membrane binding  

(Lučic et al., 2018). Alternatively, Chu et al used protein semisynthesis to study purified Akt 

phosphorylated on its hydrophobic motif. They demonstrated motif phosphorylation relieves 

auto-inhibition of the PH domain on the kinase domain by interaction with a hydrophobic patch 

on the PH-kinase linker (Chu et al., 2018). 

1.3.2 Downstream substrates of Akt 

Once activated, Akt phosphorylates a wide array of substrates, which through different 

mechanisms drive cellular metabolism, as well as proliferation and survival. It is currently under 

debate whether Akt must remain at the membrane to phosphorylate its substrates, or once 

activated it can phosphorylate substrates elsewhere in the cell (Ebner, Lučić, et al., 2017; Chu et 

al., 2018; Lučic et al., 2018). Akt has a very well characterised RXRXXpS/T substrate motif, which 

it shares with the SGK family of protein kinases, discussed further in section 1.4 (Pearson and 

Kemp, 1991; Alessi et al., 1996). More recent data has demonstrated that Akt prefers large 

hydrophobic residues at its +1 site, whereas the SGK kinases can tolerate a wider range of 

residues at this site (Murray et al., 2005; Malik et al., 2019). The first identified substrate of Akt 

was the protein kinase Glycogen Synthase Kinase 3 (GSK3) (Cross et al., 1995), which when 

phosphorylated is inhibited, allowing cell cycle progression. Since then, a variety of substrates 

have been identified, by which Akt mediates cell growth and metabolism, cell proliferation, and 

cell survival (Manning and Cantley, 2007). These are summarised in Figure 1.12 and discussed in 

more detail below. 
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Figure 1.12 Schematic of Akt activation downstream PtdIns(3,4,5)P3, and examples of its downstream 
substrates in cell growth and survival. 

 

Cell growth and metabolism 

The most well characterised role of Akt is in its activation of mTORC1, and subsequent driving of 

protein and lipid synthesis and other anabolic processes. It was described in section 1.2.4 how 

Akt activates this process through phosphoinactivation of PRAS40 and TSC2. Once activated, 

mTORC1 is a promotor of translation initiation and ribosome biogenesis. mTORC1 is therefore 

critical in enhancing protein and lipid synthesis to mediate cellular growth and metabolism 

through phosphorylation of its substrates. 

Akt is a major regulator in glucose metabolism, through regulation of plasma membrane 

transporters. A primary glucose transporter in cells is GLUT1 and is regulated largely through its 

expression levels. Activation of mTORC1 can promote expression of GLUT1 through Hif1α-

dependent transcription of the GLUT1 gene and cap-dependent translation of its mRNA (Zelzer 

et al., 1998; Taha et al., 1999). In addition, activation of Akt has been associated with increased 

translocation of glucose transporter GLUT4 to the plasma membrane, and therefore increased 
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glucose uptake (Kohn et al., 1996). It has been proposed that this translocation is mediated by 

direct phosphorylation by Akt of the Rab GTPase-activating protein AS160 (Sano et al., 2003; 

Eguez et al., 2005), and alanine mutation of target sites blocked insulin-stimulated GLUT4 

translocation (Sano et al., 2003). Akt is also proposed to regulate expression of other nutrient 

transporters in an mTORC1-dependent manner (Edinger and Thompson, 2002). 

Cell proliferation 

A number of Akt substrates regulate the process of cell proliferation and cell division, and 

phosphorylation by Akt can promote these processes. Phosphorylation of GSK3 by Akt inhibits 

its activity, leading to the stabilization of proteins that play key roles in G1-S transition (Cross et 

al., 1995). Phosphorylation of cyclin D and cyclin E, as well as transcription factors c-jun and c-

myc, targets them for degradation and inhibits the cell cycle (Diehl et al., 1998; Welcker et al., 

2003; Yeh et al., 2004; Wei et al., 2005). Therefore, inhibition of this pathway by Akt-mediated 

phosphorylation of GSK3 promotes cell proliferation. Activation of mTORC1 by Akt also 

promotes activation of eIF4E, promoting cap-dependent translation of cell cycle promoters such 

as cyclin D1 and c-Myc (Mamane et al., 2004). 

Additionally, Akt phosphorylates p27, the Cyclin-dependent kinase inhibitor, at T157, creating a 

14-3-3 binding site and blocking nuclear localisation (Liang et al., 2002; Shin et al., 2002; Viglietto 

et al., 2002; Sekimoto, Fukumoto and Yoneda, 2004). This impedes its inhibitory effects and 

promotes progression through the cell cycle. Akt can also inhibit expression of p27 through 

FOXO inhibition (Medema et al., 2000), discussed in further detail below. Similarly, Akt has been 

found to phosphorylate cyclin-dependent kinase inhibitor p21, again leading to its cytosolic 

localisation (Zhou, Liao, Xia, Spohn, et al., 2001). 

Cell survival 

Finally, phosphorylation of substrates by Akt blocks the function or expression of many pro-

apoptotic proteins, and as a result Akt actively promotes cell survival. Akt regulates the 

expression and activity of many Bcl2-homology domain 3 (BH3)-only proteins. For example, Akt 
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will directly phosphorylate FOXO transcription factors, leading to their binding to 14-3-3 proteins, 

and nuclear export and degradation (Tran et al., 2003). This therefore results in reduced 

expression of FOXO target genes such as the proapoptotic cytokine FasL (Brunet et al., 1999) 

and BH3-only protein BIM, which stimulates cell death upon cytokine withdrawal (Dijkers et al., 

2002). Akt also phosphorylates and inhibits BAD, a pro-apoptotic Bcl-2 family member. 

Phosphorylation of BAD at S136 again creates a binding site for 14-3-3 proteins, and triggers the 

release of BAD from its target proteins (Datta et al., 1997, 2000; del Peso et al., 1997). Finally, 

Akt will directly phosphorylate MDM2, an E3 ligase which mediates degradation of p53. 

Phosphorylated MDM2 translocates to the nucleus and there negatively regulates p53 function 

(Mayo and Donner, 2001; Zhou, Liao, Xia, Zou, et al., 2001) resulting in the downregulation of 

proapoptotic p53 targets such as Puma and Noxa (Villunger et al., 2003). 

Akt mutation and cancer 

Given the role Akt plays in a vast array of pro-survival pathways, it is unsurprising that activating 

mutations in Akt or its upstream regulators are frequently found in a numerous cancers. For 

example, a Glu17Lys mutation within the PH domain of Akt1 causes constitutive Akt1 plasma 

membrane association and activation (Carpten et al., 2007), and the analogous mutation has 

also been reported in Akt2 and Akt3 (Davies et al., 2008; Stephens et al., 2012). Glu17Lys has 

been identified as a hotspot mutation in a wide range of cancer types (Bleeker et al., 2008; Do 

et al., 2008; M. S. Kim et al., 2008; Cohen et al., 2010; Chang et al., 2016; Rudolph et al., 2016). 

Studies by Parikh et al. suggested the majority of activating Akt mutations disrupt autoinhibitory 

PH-kinase domain interactions (Parikh et al., 2012). For example, L52R mutation is predicted to 

severely weaken PH domain interactions with V270, V271, Y326 and R328 of the kinase domain. 

Additionally, Q79K mutant PH domain exhibited weaker interaction with the kinase domain (Kan 

et al., 2010; Parikh et al., 2012; Yi et al., 2012; Yi and Lauring, 2015). Ebner et al also observed 

that a somatic cancer mutation (D323A) drives Akt hyperactivation by relieving autoinhibition, 

leading to phosphorylated, active Akt in the cytosol (Ebner, Lučić, et al., 2017).  
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1.4  SGK Protein kinases and Akt-independent oncogenic signalling 

The serum- and glucocorticoid-regulated kinase (SGK) family of protein kinases are AGC protein 

kinases carrying very high homology to Akt. Their kinase domains share 45-55% identity and they 

share an overlapping RxRxxS/T substrate recognition motif (Webster et al., 1993; Alessi et al., 

1996; Murray et al., 2005). They are therefore able to phosphorylate a shared pool of substrate 

proteins and likely perform overlapping functions. Although their kinase and regulatory domains 

are highly similar, the SGKs differ from Akt as they lack the N-terminal PH domain which 

mediates Akt localisation and activation. Therefore, SGK1/2 are localised and activated 

cytosolically. SGK3 is unique within the SGK family and known protein kinases, as it contains an 

N-terminal PX domain, which alternatively localises it to PtdIns(3)P produced on early 

endosomal membranes for its activation (Figure 1.13). 

Although the SGK family are highly conserved at the sequence level, they display differences in 

tissue distribution and expression. SGK1 was the first discovered member of the Serum- and 

Glucocorticoid-regulated kinase family. It was initially identified as a gene regulated by 

glucocorticoids and serum, due to a glucocorticoid response element in its gene promoter 

(Webster et al., 1993). In contrast, SGK2 and SGK3 expression in not induced in response to 

serum or glucocorticoids, but were named by sequence similarity to SGK1 (Kobayashi et al., 

1999). Both SGK1 and SGK3 are ubiquitously expressed in heart, brain, liver, lung, kidney, 

placenta, skeletal muscle and pancreas but SGK2 showed more restricted expression in liver, 

kidney, pancreas and brain (Kobayashi et al., 1999). 
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Figure 1.13 Domain structure of the SGK family of protein kinases. 
SGK protein kinases are very similar in domain structure to Akt. They contain an AGC family kinase domain 
and C-terminal regulatory domain (CTD). SGK protein kinases are phosphorylated, like Akt, on their T loop 
by PDK1 and H-motif by mTORC2 for their activation. SGK3 also contains an N-terminal PX Domain. The 
SGK protein kinases, like Akt, phosphorylate substrates within an RxRxxpS/T recognition motif. 

1.4.1 Regulation of the SGK Protein kinases 

The activation and regulation of Akt was discussed in section 1.3.1. As with Akt and many other 

AGC protein kinases, the SGK family of protein kinases are similarly activated by PI3K signalling, 

mediated by phosphorylation on their T Loop by PDK1 and Hydrophobic motif by mTORC2. 

However, as these kinases lack a PH domain, they are  not recruited to PDK1 on the plasma 

membrane as Akt. Therefore, activation of the SGK family of kinases is reliant on a PIF-

dependent mechanism, whereby phosphorylation first occurs by mTORC2 on the hydrophobic 

motif (Garcia-Martinez and Alessi, 2008), which induces a conformational change in this 

hydrophobic region, promoting interaction with the PDK1 interacting fragment (PIF) pocket of 

PDK1. This enables PDK1 to dock, allowing phosphorylation of the activation loop residue (Biondi 

et al., 2001; Collins et al., 2003). 

The protein kinase SGK3 is unique among the SGK3 isoforms, as it has an N-terminal PX-domain. 

Similarly to the recruitment of Akt to PtdIns(3,4,5)P3 rich membranes, the PX-domain of SGK3 

anchors it to PtdIns(3)P rich membranes for its subsequent phosphorylation and activation by 

PDK1 and mTORC2 (Bago et al., 2014, 2016). Mutation of PtdIns(3)P-binding residues of the PX 
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domain of SGK3 completely ablated localisation to PtdIns(3)P-containing structures, and also its 

activity (Bago et al., 2016). By shRNA knockdown of the mTORC2 subunit Rictor, Bago et al. 

demonstrated that SGK3 activation and hydrophobic motif phosphorylation is mTORC2 

dependent (Bago et al., 2016). Recent research has revealed that SGK3 can be activated through 

PtdIns(3)P production by the Class III PI3K VPS34, but also by Class I PI3K, via the lipid 

phosphatases SHIP2 and INPP4B (Bago et al., 2016; Malik et al., 2018). Comparison of the 

activation mechanisms of the Akt and SGK isoforms is shown in Figure 1.14. 

 

Figure 1.14 Activation mechanisms of Akt, SGK1/2 and SGK3. 
Akt can be activated in a PIF-independent mechanism, by colocalization to the plasma membrane with 
PDK1, or a PIF-dependent mechanism by prior phosphorylation by mTORC2. It is currently contested 
whether PH-binding to PtdIns(3,4,5)P3 is required for Akt activation. SGK3 is activated by recruitment to 
PtdIns(3)P on endosomal membranes by phosphorylation by mTORC2 in a PIF-dependent manner, then 
PDK1. SGK1/2 are activated by a PIF-dependent mechanism. 

 

SGK1 is also regulated by rapid protein turnover, with a half-life of only 30 minutes. This a 

mediated by an N-terminal degron motif in SGK1 which targets the protein for proteasomal 
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degradation (Brickley et al., 2002; Bogusz et al., 2006). This protein-level regulation appears to 

be in part mediated by SGK1 through feedback regulation. Phosphorylation of Neural Precursor 

Cell-Expressed Developmentally-Downregulated Protein 4-2 (Nedd4-2) by SGK1 increases 

Nedd4-2-mediated ubiquitylation of SGK1 (Zhou and Snyder, 2005). 

1.4.2 Physiological roles of the SGK Protein Kinases 

SGK1 

As discussed above, SGK1 was first identified as a gene upregulated in response to serum and 

glucocorticoids (Webster et al., 1993; Webster, Goya and Firestone, 1993). SGK1 has also been 

demonstrated to be transcriptionally induced by the mineralocorticoid aldosterone (Chen et al., 

1999; Naray-Fejes-Toth et al., 1999) and a range of other factors such as transforming growth 

factor beta (TGF-β), cytokines, and external stress (Lang et al., 2006; Lang, Artunc and Vallon, 

2009). 

SGK1 has been linked to multiple cellular and physiological processes including regulation of 

solute transport, control of blood pressure, memory consolidation and cell survival (Lang et al., 

2006). SGK1 gene variants have been associated with elevated blood pressure (Busjahn et al., 

2002; Rao et al., 2013), increased incidence of ischaemic stroke and type II diabetes (Schwab et 

al., 2008; Dahlberg et al., 2011) and increased body mass index (Dieter et al., 2004), and SGK1 is 

thought to be a driver in the pathophysiology of these conditions. SGK1 has been reported to 

regulate the activity of a vast number of channels and transporters including sodium, potassium, 

calcium and chloride channels and amino acid and glucose transporters (Lang et al., 2006; Lang 

and Voelkl, 2013). 

SGK1 is highly expressed in the kidney, and the best mechanistically characterised role of SGK1 

is in regulation of the epithelial sodium channel (ENaC), through which SGK1 contributes to the 

control of renal tubular Na+ reabsorption. Co-expression of SGK1 with ENaC in Xenopus oocytes 

was found to increase ENaC mediated currents, through increased levels of ENaC at the plasma 
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membrane (Chen et al., 1999; Naray-Fejes-Toth et al., 1999; Alvarez de la Rosa et al., 2003). 

Additionally, phosphorylation of Nedd4-2 by SGK1 was found to upregulate levels of ENaC at the 

plasma membrane. Downregulation of Nedd4-2 activity by SGK1-mediated  phosphorylation 

reduces binding to ENaC and stimulates Nedd4-2 binding to 14-3-3 chaperone proteins, leading 

to increased levels of ENaC at the cell surface (Debonneville et al., 2001; Snyder, Olson and 

Thomas, 2002; Bhalla et al., 2005; Ichimura et al., 2005). SGK1 has additionally been suggested 

to regulate ENaC via WNK4 (Ring et al., 2007) and transcriptionally (Boyd and Naray-Fejes-Toth, 

2005; Zhang et al., 2007).  

As expected from these findings, SGK1 knockout mice exhibit an impaired ability to regulate 

urinary Na+ and water excretion when placed on a low sodium diet (Wulff et al., 2002; Fejes-

Toth et al., 2008; Faresse et al., 2012). SGK1-/- mouse kidneys also failed to eliminate acute K+ 

load (Huang et al., 2004), and mice were resistant to increases in blood pressure, either induced 

by dexamethasone or by high salt intake in combination with a high fat diet (Huang, Boini, 

Friedrich, et al., 2006; Huang, Boini, Osswald, et al., 2006; Boini et al., 2008). However, a 

surprising result from these knockout mice was that expression of ENaC channels was only 

modestly reduced, with a greater deficiency in Na+Cl- cotransporter (NCC) (Fejes-Toth et al., 

2008; Vallon et al., 2009; Faresse et al., 2012). These findings suggest that the primary target of 

SGK1 may actually be NCC, with mechanisms proposed via Wnk4 (Rozansky et al., 2009) and 

Nedd4-2 (Arroyo et al., 2011). 

SGK1, as well as SGK3, may impact cellular metabolism, as expression in Xenopus oocytes, was 

shown to stimulate the activity of the Na+-glucose cotransporter SGLT1, which serves to absorb 

intestinal glucose (Dieter et al., 2004). Consequently, SGK1 knockout mice exhibited reduced 

glucocorticoid-induced intestinal glucose uptake (Grahammer et al., 2006) 
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SGK2 

Of all the SGK isoforms, SGK2 is the least studied. SGK2 is not transcriptionally induced by 

glucocorticoids or serum in cells (Kobayashi et al., 1999), and its physiological roles are not yet 

clear. A handful of studies have implicated SGK2 signalling in regulation of human organic anion 

transporters 1 and 4 (hOAT1/4) via phosphorylation of Nedd4-2 (Wang et al., 2016; Xu et al., 

2016; Wang, Zhang and You, 2019). 2 recent papers have suggested a role for SGK2 in bladder 

and renal cell carcinoma proliferation (Liu et al., 2017, 2019; J.-B. Chen et al., 2018). 

SGK3 

SGK3 was first identified as a novel isoform of SGK1 (Kobayashi et al., 1999). It was identified as 

a mediator of interleukin 3 (IL3)-dependent survival in haematopoietic cells (Liu, Yang and 

Songyang, 2000). SGK3 can be recruited via its PX domain to PtdIns(3)P at the early endosomal 

membrane generated by VPS34 (Virbasius et al., 2001; Bago et al., 2014, 2016). As SGK3 is 

commonly observed on Rab5-positive endosomes, its activation is likely mediated by complex II 

of VPS34. Additionally, the accessory subunit Rubicon has been associated with growth factor 

recognition and solely interacts with VPS34 complex II. Unlike SGK1, SGK3 expression is not 

induced by serum and glucocorticoids and is constitutively expressed (Kobayashi et al., 1999). 

However, its gene promoter contains oestrogen binding regions and its transcription can be 

induced by oestrogen (Wang et al., 2011). Additionally, elevated levels of SGK3 have also be 

observed in ER positive breast cancer cells (Xu et al., 2012). 

Like SGK1, SGK3 has been observed to phosphorylate and regulate the activity of the E3 Ligase 

Need4-2 (Dieter et al., 2004; Lamothe and Zhang, 2013). A role has also been proposed for SGK3 

in regulation of  vesicular trafficking and receptor sorting at the endosome, through regulation 

of E3 ligase atrophin-1 interacting protein 4 (AIP4) (Slagsvold et al., 2006). 

An additional substrate of SGK1 and SGK3, shared with Akt, is N-myc downstream-regulated 

gene 1 (NDRG1) and 2 (Murray et al., 2004). However, the functional significance of this 
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phosphorylation event remains unknown. Phosphorylation at this site is extensively used as a 

measure of SGK activity in this thesis. Recent data from our lab has identified SGK3-specific 

endosomal substrates (Malik et al., 2019). It was determined that the identity of the +1 site in 

the substrate motif was critical in specificity between Akt and SGK3 substrates and may provide 

a bioinformatic tool for identifying further SGK3-specific substrates. 

SGK3 knockout mice display impaired postnatal hair growth due to a hair bulb keratinocyte 

proliferation defect (McCormick et al., 2004; Alonso et al., 2005). SGK3-/- mice also display a mild 

growth defect, normal renal salt handling, subtly decreased locomotion, defective mast cell 

function, increased gastric acid secretion and decreased intestinal glucose transport (McCormick 

et al., 2004; Sandu et al., 2005; Zemtsova et al., 2010; Pasham et al., 2011). 

Combination with SGK1 or Akt deletion models reveals redundancies and unique roles for the 

kinases in this pathway. For example, depletion of SGK3 further worsens the glucose handling 

phenotype of Akt2 knockout mice (Yao et al., 2011). SGK1-/-SGK3-/- double knockout mice share 

the hair growth defect of the SGK3 knockouts and the renal salt retention defect of SGK1 

knockouts without showing any novel more severe phenotypes (Grahammer et al., 2006). This 

suggests these kinases are playing independent physiological roles. 

1.4.3 SGK family of kinases in cancer, and Akt and PI3K inhibitor resistance. 

As discussed, the high degree of homology between the Akt and SGK protein kinases results in 

an overlapping substrate-specificity motif and therefore shared substrates between these 

kinases. These kinases were therefore  proposed as possible candidates for mediating Akt 

independent signalling, considering their regulation by PI3Ks and the similarity in substrate 

specificity with Akt (Bruhn et al., 2010, 2013) 

As Akt, SGK1 has been proposed to phosphorylate and inhibit the pro-apoptotic FoxO 

transcription factors (Brunet et al., 2001). SGK1 has also been linked to dexamethasone and 

Glucocorticoid Receptor activation associated breast cancer cell survival (Mikosz et al., 2001; 
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Wu et al., 2004), and a role for SGK1 in cell invasion and migration has also been reported 

(Eylenstein et al., 2011; Schmidt, Gu, et al., 2012; Schmidt, Kraemer, et al., 2012). In multiple 

myeloma SGK1 was identified as a transcriptional target of cytokines that promote proliferation 

(Fagerli et al., 2011). It has recently been observed, in a panel of breast cancer cell lines carrying 

PI3K pathway mutations, that high expression of SGK1 confers resistance to Akt inhibitors 

(Sommer et al., 2013). It was also recently shown that a set of colorectal cancer tissues exhibited 

high expression of SGK1 in comparison to neighbouring healthy tissue. In addition, targeting of 

SGK1 by shRNA or kinase inhibition reduced colorectal cancer cell proliferation and migration, 

and induced apoptosis (Liang et al., 2017). A recent study of diffuse large B cell lymphomas found 

shRNA knockdown of SGK1 sensitised these cells to Akt inhibition (Lu et al., 2019). SGK1-/- mice 

were observed to develop significantly fewer chemically induced colonic tumours than their 

wildtype littermates, and this was determined to be at least partially due to stabilization of 

FOXO3a and BIM (Nasir et al., 2009). Additionally, crossing these mice with an adenomatous 

polyposis coli (APC)-deficient background resulted in reduced spontaneous tumorigenesis, and 

reduced β-catenin abundance was detected by western blot and confocal microscopy (Wang et 

al., 2010) 

It has recently been shown that SGK3 can also be implicated in resistance to inhibition of the 

PI3K-Akt signalling pathway. Bago et al., published that, in certain breast cancer cell lines, SGK3 

can be induced to provide acquired resistance after prolonged treatment with PI3K or Akt 

inhibitors. SGK3 is transcriptionally upregulated and activated independently of Class I PI3K to 

phosphorylate substrates in the place of Akt. This leads to Akt-independent activation of 

pathways such as mTORC1-driven proliferation (Figure 1.15). The focus of this thesis will be on 

this role of SGK3 in resistance to Class I PI3K and Akt inhibitors. In xenograft models of BT474 

cells treated with Akt inhibitors alone or in combination with an inhibitor of SGK (14H), it was 

determined that the combination treatment caused a much better growth arrest and even 

recession of the tumour (Bago et al., 2016). In a more recent study, SGK3 was also proposed to 
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mediate liver cancer stem cell expansion after prolonged inhibition of PI3K Class I, through 

activation of the GSK-3β/β-catenin signalling (Liu et al., 2018). 

 

Figure 1.15 Akt-independent activation of mTORC1 via SGK3. 
When Class I PI3K or Akt are inhibited, SGK3 can be activated via Class III PI3K VPS34. In the absence of 
Akt activity, SGK3 can phosphorylate TSC2 leading to the activation of mTORC1. 

SGK3 has also been proposed as a driver of cancer cell proliferation itself. SGK3 was originally 

identified as a mediator of interleukin 3 (IL3)-dependent survival in hematopoietic cells, and 

again was suggested to inhibit FOXO-mediated transcription and to inhibit pro-apoptotic Bcl-2 

family members in a manner similar to Akt (Liu, Yang and Songyang, 2000). A study by Vasudevan 

noted that growth of breast cancer cells carrying the PIK3CA E545K mutation was promoted 

through activation of SGK3, with relatively low Akt phosphorylation (Vasudevan et al., 2009). A 

recent study also used SGK3 KO mice to determine that SGK3 was critical for hepatocarcinoma 

development downstream of PI3KCA E545K mutation (Cao et al., 2019).  
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1.5 Thesis Aims 

My PhD project aimed to further explore the role that SGK3 plays in resistance to PI3K/Akt 

inhibition. In order to investigate the regulation and downstream signaling of SGK isoforms, 

work on the project has been based on 2 key aims. 

1. The Development of tools to induce degradation of SGK3 in sensitive cancer cell lines 
a. An SGK-specific PROTAC derived from Sanofi inhibitor compounds (Chapter 3) 
b. Mass-Spectrometry analysis of the impact of PROTAC-mediated degradation in 

cancer cells (Chapter 4) 
c. A Generalizable HaloPROTAC approach (Chapter 5) 

2. Determining the mechanism by which SGK3 can be activated in the context of PI3K 
inhibition 

a. How is mTORC2 activated against SGK3 under Class I PI3K inhibition? In 
particular, is this mediated by mSin1? (Chapter 6) 

b. How is the Class III PI3K, VPS34, activated on stimulation with growth factors? 
(Chapter 6) 
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2. Materials and Methods 

2.1 Materials  

2.1.1 Commercial Reagents   

Reagents used in this report are categorised into 5 main parts for: bacterial transformation, 

tissue culture, cell lysis, Immunoblotting (IB),  Immunoprecipitation (IP) & Kinase assay, and 

gDNA extraction and subcloning (Table 2.1).  

Table 2.1 Commercial Reagents 

Reagent Company Origin  

Bacterial transformation 

Ampicillin Sigma-Aldrich Poole, UK 

Plasmid Maxiprep kit Qiagen Ltd Crawley, UK 

Plasmid Midiprep kit Qiagen Ltd Crawley, UK 

Tissue culture  

Blasiticidin InVivoGen San Diego, USA 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich Poole, UK 

Doxycycline Sigma-Aldrich Poole, UK 

Dulbecco’s modified eagle medium Invitrogen Paisley, UK 

Foetal bovine serum (FBS) Labtech Brambleside, UK 

Hygromycin InVivoGen San Diego, USA 

L-glutamine Invitrogen Paisley, UK 

Pen/Strep Invitrogen Paisley, UK 

Phosphate buffered saline (PBS) Invitrogen Paisley, UK 

Polyethyleneimine (PEI) Polyscience Warrington, PA 

Puromycin Sigma-Aldrich Poole, UK 

Trypsin/EDTA Invitrogen Paisley, UK 

Zeocin Invivogen San Diego, USA 

IGF-1 (carrier free) New England 
Biolabs 

Ipswich, MA 

Lysis of cells 
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Benzamidine Sigma-Aldrich Poole, UK 

Dithiothreitol (DTT) Formedium Norfolk, UK 

EDTA Sigma-Aldrich Poole, UK 

EGTA Sigma-Aldrich Poole, UK 

Protease inhibitor cocktail Roche Lewes, UK 

Sodium b-glycerophosphate Sigma-Aldrich Poole, UK 

Sodium fluoride Sigma-Aldrich Poole, UK 

Sodium orthovanadate Sigma-Aldrich Poole, UK 

Sucrose VWR 
International 

Radnor, USA 

Triton-X-100 Sigma-Aldrich Poole, UK 

Sodium dodecyl sulphate (SDS) Sigma-Aldrich Poole, UK 

IB, IP & Kinase Assay 

3MM paper Whatman Maidstone, UK 

40% (w/v) 29:1 Acrylamide Flowgen 
Bioscience 

Nottingham, UK 

Ammonium persulphate (APS) Sigma-Aldrich Poole, UK 

Bovine serum albumin (BSA) Sigma-Aldrich Poole, UK 

Coomassie protein assay kits Thermo Scientific Essex, UK 

Dimethyl pimelimidate (DMP) Sigma-Aldrich Poole, UK 

Enhanced chemiluminescence (ECL) GE Healthcare Piscataway, NJ 

Glycine Sigma-Aldrich Poole, UK 

Immobilon PVDF membrane (0.45μm) Sigma-Aldrich Poole, UK 

Isopropanol Sigma-Aldrich Poole, UK 

Methanol Sigma-Aldrich Poole, UK 

N,N,N′,N′-Tetramethylethane-1,2- diamine Sigma-Aldrich Poole, UK 
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NuPAGE LDS sample buffer Invitrogen Paisley, UK 

NuPAGE MOPS running buffer Invitrogen Paisley, UK 

NuPAGE Novex SDS Bis-Tris gels Invitrogen Paisley, UK 

Photographic developer (LX24)  Kodak Liverpool, UK 

Photographic fixer (FX40) Kodak Liverpool, UK 

Ponceau S Sigma-Aldrich Poole, UK 

Precision Plus Protein unstained standards BioRad Herts, UK 

Skimmed milk (Marvel) Premier 
Beverages 

Stafford, UK 

Sodium tetraborate Sigma-Aldrich Poole, UK 

Sucrose BDH Lutterworth, UK 

Tris(hydoxymethyl)methylamine (Tris) BDH Lutterworth, UK 

Super sensitive X-ray films GE Healthcare Buckinghamshire, UK 

Tween-20 Sigma-Aldrich Poole, UK 

X-ray films Konica 
Corporation 

Japan 

[γ32P]‐labelled ATP GE Healthcare Buckinghamshire, UK 

P81 paper GE Healthcare Poole, UK 

Acetone Sigma Aldrich Poole, UK 

Orthophosphoric Acid Sigma Aldrich 
 

Magnesium Acetate Sigma Aldrich Crawley, UK 

gDNA extraction and subcloning 

DNeasy Blood and Tissue Kit Qiagen Essex, UK 

dNTP Mix Thermo Scientific Ipswich, MA 

Taq Polymerase New England 
Biolabs 

Paisley, UK 

Custom Primers Invitrogen Essex, UK 

GeneRuler 100bp Plus DNA Ladder Thermo Scientific Ipswich, MA 
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Strataclone PCR cloning kit Agilent Santa Clara, CA 

X-Gal Formedium Norfolk, UK 

 

2.1.2 In-house Reagents    

Calcium competent E. coli DH5α cells and Crosstide Peptide were kindly provided by MRC PPU 

Reagents and Services. Luria Bertani (LB) broth and agar plates were kindly supplied by the 

Media Kitchen of the University of Dundee. PROTAC compounds were produced by the Ciulli Lab 

(BCDD, University of Dundee) and dissolved in DMSO to a 10mM solution. In-house antibodies 

were provided by MRC PPU Reagents and Services are described in section 2.1.5 

2.1.3 DNA constructs   

Cloning and mutagenesis of cDNA constructs was performed by Dr R Toth, Mrs M Wightman, Mr 

T. Macartney and Ms S Weidlich (Table 2.2). All DNA constructs were verified by DNA sequencing 

performed by Sequencing Service of the University of Dundee using DYEnamic ET terminator 

chemistry (GE Healthcare, Little Chalfont, UK) on automated DNA sequencers (Applied 

Biosystems, Foster City, CA). All constructs encoded the human version of the gene. 

Table 2.2 cDNA constructs 

Expressed Plasmid Vector Type DU# 

Chapter 3  

SGK3 pcDNA5 FRT/TO Mammalian 42866 

SGK3 K191A pcDNA5 FRT/TO Mammalian 44432 

SGK3 T320A pcDNA5 FRT/TO Mammalian 62503 

SGK3 S486A pcDNA5 FRT/TO Mammalian 62504 

SGK3 Q125-end pcDNA5 FRT/TO Mammalian 62559 

SGK3 R50A/R90A pcDNA5 FRT/TO Mammalian 44990 

HA-SGK1 pcDNA5 FRT/TO Mammalian 44437 

HA-SGK1 K129A pcDNA5 FRT/TO Mammalian 44426 

Chapter 4 

shSGK3 #1 pLKO puro Viral 62718 
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shSGK3 #2 pLKO puro Viral 62768 

shRNA scramble pLKO puro Viral 62719 

Gag/Pol-Rev pCMV Mammalian  Addgene 

VSVG pCMV Mammalian Addgene 

SGK3 shRNA#1 resistant pcDNA5 FRT/TO Mammalian 44539 

SGK3 K191A shRNA#1 resistant pcDNA5 FRT/TO Mammalian 44540 

SGK3 shRNA#2 resistant pcDNA5 FRT/TO Mammalian 44496 

SGK3 K191A shRNA#2 resistant pcDNA5 FRT/TO Mammalian 44538 

Chapter 5 

SGK3 Cter Gly5 Halo IRES GFP KI Donor pMK-RQ Mammalian 52689 

SGK3 Cter KI antisense guide + Cas9 
D10A 

pX335 Mammalian 52662 

SGK3 Cter KI sense guide pBabeD Mammalian 52684 

VPS34 Nter Halo KI Donor pMK-RQ Mammalian 57077 

VPS34 Nter KI antisense guide + Cas9 
D10A 

pX335 Mammalian 52082 

VPS34 Nter KI sense guide pBabeD Mammalian 52071 

SGK3 pcDNA5 FRT/TO Mammalian 42866 

SGK3-Flag pcDNA5 FRT/TO Mammalian 42884 

SGK3-GFP pcDNA5 FRT/TO Mammalian 42883 

SGK3-Gly5-Halo   pcDNA5 FRT/TO Mammalian 50748 

SGK3-Gly5-HaloD106A pcDNA5 FRT/TO Mammalian 50763 

SGK3-Gly10-Halo pcDNA5 FRT/TO Mammalian 26756 

SGK3-Gly15-Halo pcDNA5 FRT/TO Mammalian 26769 

SGK3-Gly20-Halo pcDNA5 FRT/TO Mammalian 26812 

SGK3-Gly5-ATG-Halo pcDNA5 FRT/TO Mammalian 54586 

SGK3-Lys5-Halo pcDNA5 FRT/TO Mammalian 50749 

SGK3-Lys5-HaloD106A pcDNA5 FRT/TO Mammalian 50764 

SGK3-Gly5-HaloMUT1 * pcDNA5 FRT/TO Mammalian 26553 

SGK3-Gly5-HaloMUT2 * pcDNA5 FRT/TO Mammalian 26566 

SGK3-Gly5-HaloMUT3 * pcDNA5 FRT/TO Mammalian 26575 

SGK3-Lys5-HaloMUT1 * pcDNA5 FRT/TO Mammalian 26527 

SGK3-Lys5-HaloMUT2 * pcDNA5 FRT/TO Mammalian 26541 

SGK3-Lys5-HaloMUT3 * pcDNA5 FRT/TO Mammalian 26559 



[50] 
 

 

*MUT1 = R21K, R86K, R204K, R254K, R288K  

MUT2 = MUT1 + R30K, R146K, H230K  

MUT3 = MUT2 + R199K  

Chapter 6 

mSin1 KO antisense guide + Cas9 D10A pX335 Mammalian 52297 

mSIN1 KO sense guide pBabeD Mammalian 52278 

mSIN1 Cter GFP KI Donor pMK-RQ Mammalian 57431 

mSIN1 Cter KI antisense guide A + Cas9 
D10A 

pX335 Mammalian 57354 

mSIN1 Cter KI sense guide A pBabeD Mammalian 57348 

mSIN1 Cter KI antisense guide B + Cas9 
D10A 

pX335 Mammalian 57353 

mSIN1 Cter KI sense guide B pBabeD Mammalian 57349 

Rictor NTer GFP KI Donor pMK-RQ Mammalian 57430 

Rictor Nter KI antisense guide A + Cas9 
D10A 

pX335 Mammalian 57356 

Rictor Nter KI sense guide A pBabeD Mammalian 57350 

Rictor Nter KI antisense guide B + Cas9 
D10A 

pX335 Mammalian 57355 

Rictor Nter KI sense guide B pBabeD Mammalian 57351 

HA-mSin1 TV1 pcDNA5 FRT/TO Mammalian 26852 

HA-mSin1 TV2 pcDNA5 FRT/TO Mammalian 26882 

HA-mSin1 TV3 pcDNA5 FRT/TO Mammalian 26952 

HA-mSin1 TV4 pcDNA5 FRT/TO Mammalian 26853 

HA-mSin1 TV5 pcDNA5 FRT/TO Mammalian 26886 

HA-mSin1 TV1 R393C K428A K464A pcDNA5 FRT/TO Mammalian 26854 

HA-mSin1 TV1 M1-Q375 pcDNA5 FRT/TO Mammalian 26862 

HA-mSin1 TV1 M1-S356 pcDNA5 FRT/TO Mammalian 27342 

HA-mSin1 TV1 R312L pcDNA5 FRT/TO Mammalian 26992 

HA-mSin1 TV1 R312A pcDNA5 FRT/TO Mammalian 26991 

HA-mSin1 TV1 K307D pcDNA5 FRT/TO Mammalian 26993 

HA-mSin1 TV1 R312L R393C K428A 
K464A 

pcDNA5 FRT/TO Mammalian 27329 

HA-mSin1 TV1 T86A pcDNA5 FRT/TO Mammalian 27795 

HA-mSin1 TV1 T86E pcDNA5 FRT/TO Mammalian 27789 
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HA-mSin1 TV1 T86A T398A pcDNA5 FRT/TO Mammalian 27814 

HA-mSin1 TV1 T86E T398E pcDNA5 FRT/TO Mammalian 27788 

HA-mSin1 TV1 Q68H pcDNA5 FRT/TO Mammalian 27538 

HA-mSin1 TV2 R393C K428A K464A pcDNA5 FRT/TO Mammalian 59340 

HA-mSin1 TV2 M1-Q375 pcDNA5 FRT/TO Mammalian 59186 

HA-mSin1 TV2 T86A pcDNA5 FRT/TO Mammalian 59104 

HA-mSin1 TV2 T86E pcDNA5 FRT/TO Mammalian 59103 

HA-mSin1 TV2 T86A T398A pcDNA5 FRT/TO Mammalian 59282 

HA-mSin1 TV2 T86E T398E pcDNA5 FRT/TO Mammalian 59132 

GST-SGK3 D304A pEBG Mammalian 2257 

GST-SGK1 60-end K127A pEBG Mammalian 143 

GST-PKB A K179A pEBG Mammalian 6191 

Flag-TurboID-aGFP6M pBabeD Mammalian 29702 

Gag/Pol pCMV Mammalian Addgene 

VSV/G pCMV Mammalian Addgene 

 

2.1.4 Buffers and solutions  

Mammalian cell lysis buffer: 25 mM Tris (pH 7.5), 1 mM EDTA, 1 mM EGTA, 0.27 M sucrose, 50 

mM NaF, 5 mM sodium pyrophosphate, 1mM sodium orthovanadate, 10 mM sodium 

βglycerophosphate, 1 mM benzamidine, 1mM DTT, one mini Complete protease inhibitor 

cocktail tablet per 10 ml of lysis buffer and 1% Triton X-100  

Glutamate Lysis Buffer: 25mM HEPES (pH 7.4), 2.5mM Mg Acetate, 5mM EGTA (pH 8), 150mM 

K-Glutamate, 25mM KCl 

Tris-Glycine running buffer: 25 mM Tris-HCl (pH 8.3), 192 mM glycine, 0.1% (w/v) SDS  

Tris-Glycine transfer buffer: 48 mM Tris-HCl (pH 8.3), 39 mM glycine, 20% (v/v) methanol 

TBST buffer: 50 mM Tris-HCl (pH 7.5), 0.15 M NaCl and 0.1% (v/v) Tween-20 

Buffer A: 30mM Tris-HCl (pH 7.5), 0.1M EGTA 
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RIPA Buffer: 50mM Tris-HCl (pH 8), 150mM NaCl, 1mM EDTA, 0.1% SDS, 1% sodium 

deoxycholate, 1% NP-40, 50mM NaF, 5mM sodium pyrophosphate, one mini Complete protease 

inhibitor cocktail tablet per 10 ml of lysis buffer. 

2.1.5 Antibodies  

In-house antibodies (Table 2.3) were raised in sheep and affinity purified with respective 

antigens by the DSTT and were used at 1 µg/mL in 5% (w/v) skimmed milk in 0.1% TBST. 

Phospho-specific antibodies were supplemented with 10 µg/ml of the relevant non-phospho 

peptide to increase specificity and decrease background. Commercial antibodies (Table 2.4) 

were diluted 1:1000 in 5% (w/v) BSA in 0.1% TBST.  

Table 2.3  In-house antibodies produced by MRC PPU Reagents and Services 

Antibody Immunogen Sheep # Bleed # 

PKB-alpha Human 466-480 S695B 3rd 

NDRG1 Human Full Length S771D 3rd 

PRAS40 Human 238-256 S115B 1st 

pPRAS40 (Thr246) Human 240-251 S114B 2nd 

SGK3 SGK3 PX Domain 
(Human 1-130) 

S848D 6th 

VPS15 Human 433-667 R1737 2nd 

VPS34 Human Full Length S672B 3rd 

Beclin1 Human Full Length S900B 2nd 

UVRAG Human Full Length S232D 3rd 

P70S6K1 Human 25-44 S417B 2nd 

mSin1 Human Full Length S008C 3rd 

mTOR Human 2-20 S683B 1st 

Rictor Human 6-20 S654B 3rd 

  

Table 2.4 Commercial antibodies.  

Antibody Catalogue Number Company Species 

pAkt (Thr308) 4046 CST Rabbit 
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pAkt (Ser473) 9271 CST Rabbit 

pAkt (Thr450) 9267 CST Rabbit 

pSGK3 (Thr320) 5642 CST Rabbit 

pSGK1 (Ser422) Sc-16745 Santa Cruz Rabbit 

SGK S5188 Sigma Rabbit 

pNDRG1 (Thr346) 5482 CST Rabbit 

GAPDH (6C5) Sc-32233 Santa Cruz Mouse 

HaloTag7 mAb G9211 Promega Mouse 

HaloTag7 pAb G9281 Promega Rabbit 

pTSC2 S929 3615 CST Rabbit 

pTSC2 T1462 3617 CST Rabbit 

TSC2 3612 CST Rabbit 

pPRAS40 2997 CST Rabbit 

pS6 S240/244 2215 CST Rabbit 

S6 Total 2317 CST Mouse 

pp70S6K1 T389 9205 CST Rabbit 

p70S6K1 9202 CST Rabbit 

pFOXO3a (Ser253) 9466 CST Rabbit 

p4EBP1 S65 9451 CST Rabbit 

4EBP1 9452 CST Rabbit 

PDE4D Ab171750 Abcam Rabbit 

RPL14 ab181200 Abcam Rabbit 

TRAF3IP2 NB100-56740SS Novus Rabbit 

ZNF512B A303-236A-T Bethyl Rabbit 

RSAD1 ab104051 Abcam Rabbit 

GHITM 16296-1-AP Proteintech Rabbit 

COX6C ab150422 Abcam Rabbit 

COXIV 4844 CST Rabbit 

ATPb ab15730 Abcam Rabbit 

MT-CO1 ab14705 Abcam Rabbit 

MT-ND6 ab81212 Abcam Rabbit 
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mSin1 12860 CST Rabbit 

pmSin1 T86 14716 CST Rabbit 

Rictor 3806 CST Rabbit 

ATG14 PD026 MBL Rabbit 

 

2.1.6 Inhibitors and compounds 

PROTAC compounds were synthesised by Andrea Testa and Chiara Maniaci in Alessio Ciulli’s lab. 

Large amounts of Sanofi 290-R and 308-R were synthesised by Natalia Shpiro for production of 

the SGK3-PROTAC compounds. Natalia Shpiro also synthesised the inhibitors available in house 

at MRC PPU Reagents and services. 

Table 2.5 Inhibitors 

Inhibitor Target Source Ref 

AZD5363 Akt AstraZeneca (Davies et al., 
2012) 

14H SGK In House (Halland et al., 
2015) 

GDC0941 Class I PI3K In house (Folkes et al., 
2008) 

VPS34IN1 VPS34 In house (Bago et al., 2014) 

MLN4924 Nedd8 E3 In house (Brownell et al., 
2010) 

VH298 pVHL Ciulli lab (Frost et al., 2016) 

MG132 Proteasome Calbiochem (Lee and 
Goldberg, 1998) 

MK2206 Akt SelleckChem (Hirai et al., 2010) 

Bafilomycin A Vacuolar H+-ATPase Enzo Life Sciences (Ohkuma et al., 
1993) 

 

2.1.7 Cell lines 

ZR-75-1, CAMA-1, CAMA-R, BT-474 and JIMT-1 cell lines were provided by AstraZeneca. All other 

cell lines were supplied by the MRC Protein Phosphorylation and Ubiquitylation Unit. 
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2.2 Methods  

2.2.1. Amplification of cDNA constructs. 

cDNA constructs used in this study were produced by MRC PPU Reagents and Services as 

described in section 2.1.3. Amplification of the constructs for use in experiments was performed 

in DH5α cells. 

2.2.1.1 Transformation of competent E. coli DH5α cells  

1 µl DNA was added to 50 µl of competent E. coli DH5α cells and incubated on ice for 20 min 

followed by a heat shock for 45 seconds at 42°C. The cells were placed back on ice for 5 min and 

then streaked onto LB agar plates containing ampicillin or kanamycin for selection and incubated 

overnight at 37°C. 

2.2.1.2 Purification of plasmids from E. coli and measurement of DNA concentration   

Transformed E. coli DH5α cells were cultured in 250 mL LB containing 200 µg/mL ampicillin or 

kanamycin. After an incubation time of about 16 h at 37°C, shaking at 180rpm, the samples were 

pelleted by centrifugation at 6000 x g. Plasmid purification was performed by Maxiprep kit 

according to the manufacturer’s instructions. Finally, DNA concentrations were measured using 

NanoDrop based on DNA absorption at 260 nm. Absorbance at 230 nm and 280 nm was also 

measured as a measure of purity.    

2.2.2 gDNA Sequencing  

gDNA was extracted from HEK293 cells using DNeasy Blood and Tissue Kit according to 

manufacturer’s instructions for Blood. Polymerase Chain Reaction (PCR) was performed in a 25µl 

reaction, containing 2 ul Buffer, 0.8µM primers, 200µM dNTPs, 1 µl DNA and 1 µl Taq Polymerase. 

The reaction was performed on the following thermal cycle, using primers described in Table 

2.6: 96 °C for 3, 35 cycles of [95 °C for 30’’, Tm for 30’’, 72 °C for 30’’], then 72 °C for 10’’ before 

storage at 4 °C. 5µl PCR product was analysed on a 2% Agarose gel in TAE buffer to detect the 

correct sized product. 3µl PCR product was subcloned using the  StrataClone PCR cloning kit 
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according to manufacturer’s instructions. DNA Sequencing was performed using the M13 

Forward Primer by DNA Sequencing and Services (www.dnaseq.co.uk) using Applied Biosystems 

Big-Dye v 3.1 chemistry on an Applied Biosystems model 3730 automated capillary DNA 

sequencer.   

Table 2.6 PCR primer sequences 

Target Forward Primer (5’ -> 3’) Reverse Primer (5’ => 3’) 

SGK3-Halo KI 
Junction 

GTGAATGCCAGTGTATTGGAGG GAGGAGGTCGGGTTACCGT 

SGK3 Exon 17 GCTGGACCAGATGATATCAG GAGGCACTAGTTATACATATTTG 

Halo-VPS34 KI 
Junction 

CCTAACTGCAAGGCTGTGGA CCTCTATCACCTCCCGTGCT 

VPS34 Exon 1 AGCTCAAGCTCAAATGATAGCG CATCTGCCTGTGTCTACCTCTC 

mSin1 Exon 5 TCCATGGTCACAGTAGGTCT GCTGATTCTCTGAGATGCACA 

  

2.2.3 Cell culture methods 

Cells were maintained in an incubator at 37°C and 5% CO2. The passaging of  cells was performed 

by washing the cells with PBS followed by incubation with Trypsin/EDTA. Detached cells were 

resuspended in cell culture medium and split at 1:2 – 1:8 ratios. HEK293, HEK293FT, HEK293T 

and U2OS cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) in the presence of 

10% (v/v) FBS, 2 mM  L-glutamine, 100 U/mL penicillin and 0.1 mg/mL streptomycin in DMEM. 

Stable HEK293 TREx cell lines were grown in selection media containing 100 µg/ml Hygromycin 

and 15 µg/ml Blasticidin. Virally transfected stable cell lines were grown in media containing 2 

µg/ml Puromycin until plating for experiments. ZR-75-1, CAMA-1, BT-474 and JIMT-1 were 

grown in RPMI-1640 media without phenol red and supplemented as above with the exclusion 

of penicillin and streptomycin. 

2.2.3.1 Freezing and Thawing Cells  
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Detached cells were centrifuged at 300 x g for 5 min and resuspended in FBS with 10% DMSO. 1 

mL aliquots were stored in cryovials at -80 ˚C. Cells were thawed in a 37 ˚C water bath, 

resuspended in growth medium and allowed to adhere overnight prior to medium change.  

2.2.3.2 Transfection of cells using polyethyleneimine (PEI)   

For transfection of cells grown in 10cm dishes, 5µg DNA was mixed with 20µl 1mg/ml PEI and 

1mL serum-free DMEM and left for 20-30 min at room temperature before being added to cells. 

For transient transfection, cells were harvested 24 hr post transfection. For generation of 

HEK293 TREx stable cell lines, media was changed 24 hr post transfection, and media containing 

Hygromycin and Blasticidin added 48 hr post transfection. 

2.2.3.3 Transfection of cells using retroviral and lentiviral constructs. 

i. Transfection with pBABE constructs for stable overexpression 

Stable expression of the FLAG-TurboID-aGFP6M plasmid was performed using a pBABE retroviral 

expression vector. To generate retroviral particles, HEK293T cells grown on 10 cm dishes were 

transfected with 6 µg pBABE construct, 3.8 µg pCMV Gag-Pol and 2.2 µg pCMV VSVG, with 36 µl 

Lipofectamine 2000 in Optimem. Virus-containing medium was collected 48 and 72 h post-

transfection and filtered with a 0.45 µM filter. Cells were transfected at a 5:1 ratio in full media, 

with 8 µg/ml polybrene. Media was changed after 24 h, and after 48 h selection for transfected 

cells was performed with media supplemented with 2 µg/ml puromycin.  

ii. RNA interference by small hairpin RNAs (shRNA) 

shRNA knockdown of SGK3 was performed using pLKO shRNA lentiviral constructs previously 

optimised in the lab for SGK3 knockdown in a range of cell lines. shRNA sequences are shown in 

table 2.4 below. To generate lentiviral particles, HEK293T cells grown on 10cm dishes were 

transfected with 3 µg pLKO plasmid and 3 µg each of the lentiviral packaging plasmids from 

Addgene with 36 µl PEI. Virus-containing medium was collected 48 and 72 h post-transfection 
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and filtered with a 0.45 µM filter. Cells were transfected at a 5:1 ratio in full media, with 8 µg/ml 

polybrene. Media was changed after 24 h, and after 48 h selection for transfected cells was 

performed with media supplemented with 2 µg/ml puromycin. 

Table 2.7 shRNA sequences 

shRNA Sequence insert 

shSGK3#1 CCGGGCAGGACTAAACGAATTCATTCTCGAGATAAGAGAAACCAACGAATGCTTTTT 

shSGK3 #2 CCGGGCATTCGTTGGTTTCTCTTATCTCGAGATAAGAGAAACCAACGAATGCTTTTT 

shRNA 
scramble 

CCGGCCTAAGGTTAAGTCGCCCTCGCTCGAGATAAGAGAAACCAACGAATGCTTTTT 

  

2.2.3.4 Treatment of cells with Growth Factors, Inhibitors or PROTACs  

PROTAC compounds and inhibitors were added to cell culture medium at the time and 

concentration described in text, to a DMSO concentration of 0.1%. In IGF1 stimulation 

experiments, cells were deprived of serum for 16hr to induce basal conditions prior to 

stimulation with 50 ng/mL IGF1 for 15 min. 100 µg/mL stock of IGF1 was prepared in 20mM 

citrate pH 3. In the case of prolonged inhibitor treatments of cancer cell lines, RPMI medium and 

compounds were replenished every 3 days. 

2.2.3.5 Cell lysis  

Cells were washed with PBS and lysed on ice using 1 mL of cell lysis buffer per 15 cm dish. Lysates 

were clarified by centrifugation at 14,000 x g for 15 min at 4 ˚C.  

2.2.3.6 Quantification of protein concentration with Bradford assay   

The protein concentration of lysates was measured using the Bradford assay in a 96 well plate. 

5 µl of a 1:10 diluted sample was added in duplicate to 200 µl of Bradford reagent (Coomassie 

Brilliant Blue). The standard curve was measured by plotting absorbance at 595 nm against BSA 

standards of different concentrations.   
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2.2.4 Western Blotting 

2.2.4.1 Resolution of protein samples via SDS-PAGE and transfer to nitrocellulose membranes   

To separate proteins according to their electrophoretic mobility, polyacrylamide gel 

electrophoresis (PAGE) was used. Home-made isogradient or commercial 4-12% Bis-Tris gels 

were used to resolve different proteins. Samples were made in 1x LDS buffer with 5% β-

mercaptoethanol and heated at 70 ̊ C for 15 min. 2-30 µg of lysate or 10% of immunoprecipitates 

were loaded per lane alongside protein standards. In-house gels consist of a resolving gel (375 

mM Tris-HCl (pH 8.6), 0.1% SDS and 8/10/12 % acrylamide) and a stacking gel (125 mM Tris HCl 

pH 6.8, 0.1% SDS, 4% acrylamide). TEMED and APS were used to initiate polymerisation. The 

electrophoresis was initiated at 80 V until the dye front entered the resolving gel and was then 

increased to 160-180 V until the dye front reached the end of the resolving gel. Pre-cast gels 

were run at 160 V for 1 h.   

For protein transfer, gels were sandwiched between nylon sponges, Whatman 3MM filter 

papers and nitrocellulose soaked in transfer buffer. The transfer cell was submerged in transfer 

buffer and transfer was carried out at 80 V for 80 min.   

2.2.4.2 Immunoblotting (IB)  

After transfer, membranes were blocked with 5% (w/v) skimmed milk in TBST for 1 h at room 

temperature. Next, membranes were incubated with primary antibodies diluted in either 5% 

(w/v) milk or BSA in TBST at 4 ˚C overnight. Membranes were washed four times with TBST at 

room temperature followed by the incubation with IR-680 or IR-800 dyes, diluted 1:10,000 in 

TBS/T, for 1 hour at room temperature. The membranes were then washed four times with 

TBS/T, and fluorescent signal captured with an Odyssey Infrared Imaging System and Quantified 

in Image Studio.  

Where indicated, signals were visualised using Horseradish Peroxidase (HRP)-conjugated 

enzymes and ECL Chemiluminescent substrate and exposed to X-ray films.  
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2.2.5 Immunoprecipitation 

2.2.5.1 Covalent coupling of antibodies   

Protein G-beads were washed in PBS four times followed by coating with 1 µg of antibody per 1 

µl of resin for 1 h at 4 ̊ C. Beads were then washed 4 times with PBS to remove unbound antibody, 

followed by 4 washes with 100 mM sodium tetraborate (pH 9.3). Beads were incubated with 20 

mM DMP in 100 mM sodium tetraborate twice for 30 min at room temperature followed by four 

washes with 50 mM glycine (pH 2.5) to remove any non-covalently coupled antibody. To 

neutralise the pH, two washes were performed with 200 mM Tris-HCl (pH 8). Finally, beads were 

incubated in 200 mM Tris-HCl (pH 8) at 4 ˚C overnight, before storage in PBS at 4˚C.   

2.2.5.1 Immunoprecipitation (IP) of proteins  

Covalently coupled antibody was mixed with 0.5-3 mg of lysate, at a ratio of 1µg antibody to 

1mg lysate, for 2.5 h at 4 ˚C on a rotating wheel. Beads were then washed once with lysis buffer 

containing 500mM NaCl and once with lysis buffer containing 150 mM NaCl, followed by 2 

washes with Buffer A. The immunoprecipitates were eluted by resuspending the beads in 2x 

NuPAGE LDS sample buffer, boiled at 70 ˚C for 15 min followed by filtering through 0.22 µM 

Spin-X columns.  

2.2.6 Kinase assays employing a peptide substrate  

In vitro kinase activities were measured using Cerenkov counting of incorporation of radioactive 

32P from [γ32P]‐labelled ATP into a peptide substrate. The following conditions were used: 10 

mM Magnesium Acetate, 0.1 mM [γ32P]‐ATP, 30 µM Crosstide Peptide (GRPRTSSFAEG) in Buffer 

A to a final volume of 40 µl. Control reactions contained a pre-immune IgG precipitate. Reactions 

were incubated at 30˚C for 30 min, shaking at 1100rpm, and terminated by adding 10µl 0.1M 

EDTA.  

40 µl of the reaction mixture was then spotted onto P81 phosphocellulose paper, which 

specifically binds phosphorylated peptides, and papers washed 3x5 min in 75 mM 
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orthophosphoric acid to remove any radioactivity not associated with the phosphorylated 

peptide. Papers were then incubated in acetone for 3 min and air-dried. Cerenkov counting was 

performed on a scintillation counter for 1 minute per sample and counts normalised to 1ul of 

the kinase assay reaction mix. One unit of protein kinase activity is defined as the amount of 

enzyme that catalyses the incorporation of 1 nmol phosphate into the substrate in 1 min. 

Protein kinase profiling 

Protein kinase profiling against Dundee panel of 140 protein kinases was undertaken at the 

International Centre for Protein Kinase Profiling. The result for each kinase was presented as a 

mean kinase activity of the reaction taken in triplicate relative to a control sample treated with 

DMSO. Assay conditions and abbreviations are available at http://www.kinase-screen.mrc.ac.uk. 

IC50 determination was performed with MRC PPU International Centre for Protein Kinase 

Profiling, according the protocol previously described (Hastie, McLauchlan and Cohen, 2006; 

Bain et al., 2007) 

2.2.7 mTORC2 kinase assays 

Cells were lysed in CHAPS lysis buffer. Lysates were incubated with 15 µL HA-conjugated 

sepharose beads at 4 °C for 1 h. Immunoprecipitates were washed six times with CHAPS lysis 

buffer and twice with HEPES kinase assay buffer. Assays were carried out in a final volume of 25 

µL HEPES kinase assay buffer containing 1µg of substrate (GST-Akt1, GST-ΔN-SGK1, or GST-SGK3) 

and kinase reactions were initiated upon addition of 0.1 mM ATP and 10 mM Magnesium 

acetate. Reactions were carried out for 30 min at 30°C and terminated by SDS sample buffer. 

Samples were heated to 70°C for 5 min, passed through a Spin-X column and subjected to 

immunoblot analysis.  

2.2.8 Generation of knock-in cells via CRISPR/Cas9  

A detailed description of the CRISPR/Cas9 mechanism is described in Chapter 5. A modified Cas9 

nickase system was used for the generation of N–terminal HaloTag7–VPS34, and C–terminal 

http://www.kinase-screen.mrc.ac.uk/
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SGK3–HaloTag7 knock–in mutation, as well as knockout of msin1. Optimal sgRNA pairs were 

identified [as close as possible to point of HaloTag7 insertion, with a low combined off–targeting 

score; (VPS34–sgRNA1: GCTACATCTATAGTTGTGACC (DU52071); sgRNA2: 

GCCCCATCGCACCGTCTGCAA (DU52082); SGK3–sgRNA1: GAGCAAAATAAGTCTATAGA 

(DU52684)); sgRNA2: GAAAAATAAGTCTTCTGAAGG (DU52662), mSin1-sgRNA1: 

GCCCGATCAGGTCCTGCACCC; sgRNA2: GTGCTGGCAGTATACAAGCGA] using the Sanger Institute 

CRISPR web tool (http://www.sanger.ac.uk/htgt/wge/find_crisprs). Complementary oligos with 

BbsI compatible overhangs were designed for each, annealed and the dsDNA guide inserts 

ligated into BbsI–digested target vectors; the antisense guides (sgRNA2) were cloned onto the 

spCas9 D10A–expressing pX335 vector (Addgene plasmid no. 42335) and the sense guides 

(sgRNA1) into the puromycin–selectable pBABED P U6 plasmid (Dundee–modified version of the 

original Cell Biolabs pBABE plasmid). Donor constructs (VPS34–DU57077 and SGK3–DU52689) 

consisting of HaloTag7 or HaloTag7–IRES2–GFP flanked by ∼500 bp homology arms were 

synthesized by GeneArt (Life Technologies); each donor was engineered to contain sufficient 

silent mutations to prevent recognition and cleavage by Cas9 nuclease. 

1 µg each of the sense, antisense and donor plasmid were transfected into cells of 70% 

confluency using 20µl 1mg/ml PEI. Media was changed 24hr post transfection and puromycin 

selection (2µg/ml) initiated 48 hr post transfection. Untransfected cells served as negative 

control since these were not puromycin resistant. After another 48 h, media was changed to 

normal growth media for recovery. Due to the low efficiency of knockin, the transfection process 

was performed twice. After 2 rounds of transfection cells were split into two dishes. One half 

was lysed and used for the immunoblot (IB) screen of the cell pool to assess KI efficiency. The 

other half of the cells was prepared for single cell sorting by centrifugation at 300 x g for 3 min 

at room-temperature and resuspending in 1 mL DMEM containing 1% FBS. After single cell 

sorting into 96 well plates, each plate was centrifuged at 350 x g for 3 min at room-temperature 

and incubated at 37°C and 5% CO2. After 2-3 weeks, visible clones were transferred into 24-well 
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plates and expanded until enough cells were obtained to screen by for IB. Possible positive 

clones were identified by western blot before validation by gDNA sequencing, as described in 

section 2.2.3 

2.2.9 Immunofluorescence 

Immunofluorescent imaging was used in this study to determine the correct localisation 

of proteins of interest, and to measure production of PtdIns(3)P on endosomal 

membranes. 22x22 cm coverslips were sterilised in ethanol before placing in a well of 6 

well plates and allowing to dry. When working with HEK293 cells or using the Freeze-

Thaw method of cell permeabilization, cover slips were coated with Poly-L-Lysine to 

improve adherence of cells to coverslips in later washing steps. Cells were plated on 

coated coverslips and allowed to adhere overnight, before cell treatments were 

performed as indicated.  

2.2.9.1 Formaldehyde fixation of cells 

The goal of fixation is to maintain cells in their current state and to preserve the cells 

over an extended period. Chemical cross-linkers such as formaldehyde crosslink proteins 

via their free amino groups and cellular morphology is generally well conserved in this 

way. Following cell treatments, media was removed, and coverslips immediately 

incubated with 4% paraformaldehyde for 10 minutes at room temperature to fix the 

cells. After fixation, coverslips were quenched by 3x 5’ washes with 0.2% BSA in PBS. 

2.2.9.2 Permeabilization 

i. 1% Nonidet P40 method 

Permeabilization of cells were performed by incubating coverslips for 10’ in 1% Nonidet 

P40 in PBS. This permeabilization enables intracellular structures to become more 
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accessible to antibodies, which otherwise would not be able to pass the lipid membranes 

of the cell. 

ii. Freeze-Thaw method 

Following cell treatments as described in figure legends, and prior to fixation with 

paraformaldehyde, cells were placed on ice and washed twice with ice-cold PBS. Cells were then 

washed twice with glutamate lysis buffer before snap freezing in liquid nitrogen. Coverslips were 

quickly thawed and washed twice more with glutamate buffer, prior to fixation with 4% PFA for 

30 minutes at room temperature. After fixation, cover slips were quenched by two washes and 

10’ incubation with DMEM + 10 mM HEPES, pH 7.4. 

2.2.9.3 Immunostaining 

Following permeabilization, cover slips were washed 2 x 5’ with 0.2% BSA in PBS, then incubated 

in blocking buffer (1% BSA in PBS) for 15’ at room temperature. As with immunoblotting, this 

blocking minimises non-specific binding of primary antibodies to  off-target antigens within the 

cell. After blocking samples were incubated with a dilution of the primary antibody ranging from 

1:500 – 1:1000 for 1 hour at room temperature to specifically target the intracellular protein 

structure of interest. Following three 10 minute washes with 0.2% BSA to remove unbound 

antibody, coverslips were incubated with secondary antibodies conjugated to AlexaFluor-488 or 

AlexaFluor-594 fluorescent dyes (Life Technologies), diluted 1:500 in 0.2% BSA in PBS for 1 hour 

at room temperature. At the stage of adding fluorescent antibodies samples were protected 

from light to prevent photobleaching. Surplus antibody was again removed by three further 

washes for 10 min in 0.2% BSA. Subsequently coverslips were briefly washed with ddH2O to 

remove PBS salt crystals prior to mounting onto coverslips with ProLong gold® antifade 

mountant with DAPI (Life Technologies). DAPI stains the nuclei and can assist in orientation of 

cells. Coverslips were left in the dark at RT overnight to fully dry before imaging. 
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2.2.9.4 PtdIns(3)P staining and HaloTag7-staining. 

PtdIns(3)P was localised by use of recombinant 2xFYVE domain probes, kindly gifted by Ian 

Ganley. In brief, probes were produced by expression of a tandem 2xFYVE domain of the 

endocytic Hrs protein (DU45781), which specifically binds PtdIns(3)P. Proteins were cloned, 

expressed and purified by MRC PPU Reagents and Services. This probe was then conjugated to 

AlexaFluor 488 (A30006 – Life Technologies) or Alexa-Fluor-594 (A30008 – Life Technologies) 

according to the manufacturer’s protocol. The probes were stored at 1mg/ml in 50 % (v/v) 

Glycerol at -80 °C. 

For detection of PtdIns(3)P inside cells, coverslips were permeabilised by the freeze-thaw 

method before paraformaldehyde fixation. The freeze-thaw method is necessary for use of 

these probes to remove cytosolic proteins while preserving membrane-bound proteins to give 

a clean signal. After blocking, coverslips were incubated with the 2xFYVE probe for 1 hour at 

room temperature, alongside any endosomal counterstains. After secondary staining, if 

required, coverslips were briefly washed in ddH20 to remove any PBS crystals and mounted on 

microscope slides with ProLong gold® antifade mountant with DAPI (Life Technologies). Slides 

were imaged under the microscope to examine localisation and the probe intensity quantified 

to determine intracellular PI(3)P levels. 

Localisation of HaloTag7 was identified using the HaloTag7-TMR Ligand from Promega, 

according to the manufacturer’s instructions. This ligand contains the 594-fluorescent TMR-dye 

conjugated to a chloroalkane moiety, which will specifically and covalently bind to HaloTag7. In 

brief, 5 µM HaloTag7-TMR ligand was added to live cells for 15 minutes, and washout performed 

for 30 minutes, before fixation and counterstaining for endosomal markers. 

2.2.9.5 Imaging and Quantitation 
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All images were collected on an LSM710 laser scanning confocal microscope (Carl Zeiss) using 

the x63 Plan - Apochromat objective (NA 1.4), using a pinhole chosen to provide a uniform 0.8um 

optical section thickness in all the fluorescence channels. For quantitation of PtdIns(3)P 

production, images from the microscope were imported into Volocity image processing 

software (Perkin-Elmer) and batch processed using the same custom written programmes for all 

the images in an experimental group. The graphs show the sum of signal intensity per cell in 

arbitrary units.  

2.2.10 Measurement of cell growth and viability 

2.2.10.1 Quantification of cell growth by Incucyte S3 Assay. 

To measure the rate of growth of cancer cell lines, cells were seeded into 96-well plates and 

allowed to adhere overnight. The next morning, cells were treated in triplicate with the 

compounds indicated and placed in an Essen Incucyte S3, incubated at 37 ˚C. 4 images per well 

were taken every 4 hours, and cell confluency estimated from these images for the length of 

time indicated. 

2.2.10.2 Quantification of cell number by Sytox Green Assay 

Sytox Green is a nucleic acid stain which gives a >500-fold fluorescent enhancement when 

binding to nucleic acid. However, the stain is also impermeable to live cells. Therefore, dead cells 

can be measured by brief incubation of a cell population with Sytox Green and excitation of the 

dye by a 488 nm laser, with an emission peak of 523 nm. After measuring dead cells, adding the 

mild detergent saponin to a cell population overnight will permeabilise the cells allowing a total 

cell count. Live cell number can then be calculated by subtracting dead cell count from the total 

cell count. 

This approach can be used to measure sensitivity of a cell population to compound treatment. 

After seeding 2 plates in parallel and allowing cells to adhere overnight, one plate was taken at 

‘Day 0’ and total cell number calculated. The second plate was treated as indicated for 5-7 days, 
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and remaining surviving cells measured by Sytox Green Assay. Subtracting ‘Day 0’ counts from 

the final cell count provides a proxy of cell growth and survival in the presence of the tested 

compound. The multi-well plate format allows a large number of compounds to be tested over 

a range of concentrations in parallel. Plates were read using the Acumen laser scanning plate 

reader, using the 488nm argon-ion laser to excite the dye. 

2.2.10.3 Estimation of cell viability by MTS assay. 

MTS assay was performed using the CellTiter 96® AQueous One Solution Cell Proliferation Assay 

kit from Promega. This kit provides a colorimetric method to measure cell viability, as it contains 

the tetrazolium compound MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium, inner salt] which reacts with the electron coupling reagent PES 

(phenazine ethosulfate) to form a formazan product in live, proliferating cells. This can be 

measured in a multi-well assay, measuring production of formazan by absorbance at 490 nM. 

While this assay is in fact a measure of metabolism, it is often used at a proxy for cell viability 

and proliferation. The production of formazan product, as measured by absorbance at 490nm, 

is directly proportional to the number of living cells in culture. 

For this assay, cells were seeded in 96-well plates and allowed to adhere overnight. The next 

morning, cells were treated with compounds as indicated in the figure. DMSO treatment was 

used as a positive control and 0.1% Triton was used as a 100% death negative control. After 48 

h treatment, cell viability was measured by addition of MTS reagent for 4 h, and measurement 

on an optical plate reader at 490 nm. Absorbance was normalised to DMSO control to determine 

any impact of the compound on cell viability. 

2.2.11 Mass Spectrometry Methods 

2.2.11.1 Global Proteome Analysis 

Cell lysis and sample preparation  
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Cell pellets were lysed with 2 ml of lysis buffer (8 M Urea, 50 mM Ammonium bicarbonate 

containing protease inhibitor and phosphatase inhibitor).  Samples were incubated on ice for 15 

min then sonicated for 5 min (30 sec on/off) in ice-cold water bath. After sonication, benzonase® 

endonuclease (Merck Millipore) was added 1:100  to degrade DNA and RNA. Lysates clarified by 

centrifugation at 12,000 rpm, 15 min at 4 °C, and supernatants were transferred into new 

Eppendorf tubes. Protein concentration was measured with BCA assay (Pierce™ BCA Protein 

Assay Kit, Thermo).  Each sample was reduced with 5 mM DTT at 45 °C for 30 min, before 

alkylation for 30 min at RT with 10 mM iodoacetamide. Alkylation was quenched by the addition 

of 5 mM DTT. 

Samples were digested by Lys-C  (1:200 w/w) for 4 h at 30 °c. Samples were diluted with 50 mM 

ammonium bicarbonate to 1.5 M Urea concentration. Samples were then digested with trypsin 

(Pierce trypsin, Thermo) at an enzyme to protein ratio of 1:50 (w/w) at room temperature with 

gentle shaking overnight. The digest was stopped by the addition of 1% TFA (v/v), centrifuged at 

10,000 g for 10 min at room temperature.  The supernatants were desalted on 200 mg SepPak 

C18 cartridge (Waters), and dried by vacuum centrifugation using Speedvac (Thermo).  

TMT labelling and Basic C18 reverse phase (bRP) chromatography fractionation 

200 μg peptides was re-suspended in 100 μL 100 mM TEAB buffer. The TMT labelling reagents 

were equilibrated to room temperature and 41 μL anhydrous acetonitrile was added to each 

reagent channel and softly vortexed for 10 min. Peptides were transferred to the corresponding 

TMT channels and incubated for 1 h at room temperature. The reaction was quenched with 8 μL 

of 5% hydroxylamine. To ensure complete labelling, 1 µg of labelled samples from each channel 

were analysed by LC-MS/MS prior to mix. After evaluation, the complete TMT labelled 9 samples 

were then combined, acidified and dried. Sep-Pak desalting was then performed, and the elution 

was dried to completeness. 
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Pooled peptides were separated by basic reverse phase (bRP) chromatography fractionation. 

With Ultimate 3000 high-pressure liquid chromatography (HPLC) system (Dionex) operating at 

569 µL/min with two buffers: buffer A (10 mM ammonium formate, pH 10) and buffer B (80% 

ACN, 10 mM ammonium formate, pH 10). Peptides were resuspended in 200 µL of buffer A (10 

mM ammonium formate, pH10) and separated on a C18 reverse phase column. A total of 90 

fractions (1 min per fraction) were collected before further concatenation into 30 final fractions. 

Each fraction was then dried and desalted over a C18 StageTip prior to analysis by mass 

spectrometry. 

LC-MS/MS and Data Analysis 

LC-MS/MS was performed by Dr Houjiang Zhou at the MRC PPU. Liquid Chromatography (LC) 

separations were performed with a Thermo Dionex Ultimate 3000 RSLC Nano liquid 

chromatography instrument. Approximately 1 µg of concatenated peptides (Peptides 

quantitation by Nanodrop) from bRP chromatography were dissolved in 0.1% formic acid and 

then loaded on C18 trap column with 3 % ACN/0.1%TFA at a flow rate of 5 μL/min. Eluted 

peptides were analysed on an Orbitrap Fusion Lumos (Thermo Fisher Scientific, San Jose, CA) 

mass spectrometer. 

All the acquired LC-MS/MS data were analysed using Proteome Discoverer software v.2.2 

(Thermo Fisher Scientific) with Mascot search engine. Data were searched against a complete 

UniProt Human (Reviewed 20,143 entry downloaded at Nov 2018). Reporter ions were 

quantified from MS3 scans. Protein ratios were calculated from medians of summed sample 

abundances of replicate groups. Standard deviation was calculated from three biological 

replicate values. The standard deviation of three biological replicates lower than 25% were used 

for further analyses. To determine the significant differences between different treatments, 

ANOVA model is used for statistical significance analysis. 

2.2.11.2 Global Phosphoproteome Analysis 
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Phosphopeptide enrichment 

Cell lysates were prepared and desalted as described for total proteomics above. The  desalted 

peptides were resuspended in 1 ml of 2 M lactic acid/50% acetonitrile (ACN) and centrifuged at 

15,000 x g for 20 min. Supernatants were transferred to an Eppendorf tube containing 18 mg of 

titanium dioxide (TiO2) beads (GL sciences, Japan) and vortexed for 1 h at room temperature. 

The TiO2 beads were washed three times (10 min per wash) with 2 M lactic acid/50% ACN 

following by three washs with 0.1%TFA/50% ACN. Phosphopeptides were eluted twice with 150 

μl of 50 mM ammonia solution (NH4OH) (pH ~10). The combined eluent were dried using 

vacuum centrifugation and then desalted using a C18 StageTip (3M Empore™). TMT labelling 

was performed as described for total proteomics. 

LC-MS/MS and Data Analysis 

LC-MS/MS was performed by Dr Houjiang Zhou at the MRC PPU. The desalted TMT labelled 

phoshopeptides were dissolved in 0.1% formic acid and then loaded on C18 trap column with 3 

% ACN/0.1%TFA at a flow rate of 5 μl/min. Eluted peptides were analysed on an Orbitrap Lumos 

Tribrid platform with instrument control software version 3.0. 

Maxquant was used for processing the collected MS Raw data. The raw data were searched 

against Uniprot human database (70,947 entries, downloaded on March 10, 2017) using Mascot. 

The phosphopeptides were quantified using the intensity of TMT reporter ions. Data were 

further analysed with Perseus software and figures were made using PRISM software.  

2.2.11.1 Analysis of biotinylated proteins by TurboID and streptavidin pulldown. 

Cell culture and proteomic sample preparation  

After stimulation, cells were washed 5 times with ice cold PBS to remove exogenous biotin and 

lysed in RIPA buffer. Lysates were clarified by centrifugation and quantified using Pierce 660 nM 

Protein Assay Reagent. Streptavidin pulldown was performed on 500ug-1mg lysate overnight 
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with 20ul Streptavidin-conjugated sepharose beads. Streptavidin-IP was washed 3x each in RIPA 

buffer, 500 mM Tris-HCl and Urea Buffer. To prepare proteins for digest, the samples were 

reduced with 1 mM DTT for 30 minutes, alkylated in the dark with 10 mM iodoacetamide for 

30minutes, and quenched with 10 mM DTT for 10 minutes. Samples were first digested with 

200ng Trypsin per sample, at 32°C with gentle shaking for 16 h.  The digest was stopped by the 

addition of TFA to a final concentration 1% TFA (v/v), centrifuged at 10,000 g for 10 min at room 

temperature.  The supernatant was desalted on SCX membrane and desalted peptides airdried 

by vacuum centrifugation using a SpeedVac (Thermo Scientific)  

TMT labelling 

Each sample was re-suspended in 20 μL of 100 mM TEAB buffer. The TMT labelling reagents 

were equilibrated to room temperature and 7 ul TMT reagent added with 3 ul  anhydrous 

acetonitrile. Labelling reactions were incubated for 1 h at room temperature with gentle shaking. 

The reaction was quenched with 0.1% v/v hydroxylamine. To ensure complete labelling, 10% 

labelled samples from each channel were analysed by LC-MS/MS prior to mix. After evaluation, 

the complete TMT labelled 9 samples were then combined, acidified and dried. Samples were 

desalted and fractionated on C18 membrane prior to analysis by mass spectrometry. 

LC-MS/MS and Data Analysis 

LC-MS/MS was run by MRC PPU Proteomics Facility (Robert Gourley). Peptides were analysed 

on Orbitrap Fusion Lumos (Thermo Fisher Scientific, San Jose, CA) mass spectrometer. All the 

acquired LC-MS data were analysed using MaxQuant software v.1.6.6.0. Volcano plots  were 

produced in Perseus 1.6.2.3.  

2.12. Statistical Analysis 

With the exception of Mass Spectrometry Analysis, described above, all figures are 

representative of at least n=2 replicate experiments.  Statistical analysis  was performed in 

GraphPad Prism v8, and described in figure legends.
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3. SGK3-PROTAC1 induces degradation of SGK3 in cancer cell 

lines 

3.1 PROTACs – Proteolysis Targeting Chimeras for targeted protein 

degradation 

Proteolysis Targeting Chimeras (PROTACs) have recently gained momentum as a new 

therapeutic axis in targeting erroneous signalling axes. These compounds act by ‘hijacking’ the 

ubiquitin-proteasome system, allowing target proteins to be ubiquitylated and targeted for 

degradation by the cells’ own degradation machinery. As will be discussed further in section 

3.2.1, this approach has numerous benefits over chemical inhibition. I therefore chose as a major 

aim of my thesis to develop a PROTAC compound targeted against SGK3, designed to degrade 

the protein from cancer cell lines and modulate PI3K inhibitor resistance. 

3.1.1 Ubiquitin-Proteasome mechanism of protein degradation 

Like protein phosphorylation, protein ubiquitylation is an evolutionarily conserved 

posttranslational modification critical to numerous cell signalling processes. It requires the 

transfer of a 76 amino acid protein Ubiquitin to, typically, lysine residues on substrate proteins. 

Ubiquitin can be conjugated to substrates in a variety of topologies resulting in different cellular 

responses. Substrate proteins can be monoubiquitylated, polymonoubiquitylated, or decorated 

with polyubiquitin chains. Further specificity of the pathway is mediated by different 

polyubiquitin chain types being formed, from different lysines of ubiquitin. Chains can be formed 

from K6, K11, K27, K29, K33, K48, and K63, in addition to the N terminal Methionine M1. These 

chain types signal for different cellular responses, for example, K63 and linear ubiquitin chains 

can have both scaffolding and signalling roles, regulating many biological processes, including 

inflammation (Newton et al., 2008; Walczak, Iwai and Dikic, 2012). K48  and K11 chains on 

substrate proteins specifically target the ubiquitylated protein for degradation via the 

proteasome (Jin et al., 2008; Newton et al., 2008; Wickliffe et al., 2011). It is this proteasomal 

degradation which is targeted by the PROTAC mechanism. 
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3.1.2 E3 Ubiquitin Ligases 

 

Figure 3.1 Mechanism of substrate ubiquitylation. 
Ubiquitin is activating by formation of a thioester bond onto an E1 enzyme, in an ATP dependent manner. 
Ubiquitin is conjugated onto the E2 conjugating enzyme. E3 ligases catalyse the transfer of ubiquitin from 
the E2 to the substrate protein 

Ubiquitylation is mediated by three families of enzymes. E1 activating enzymes catalyse the 

formation of an E1-Ub thioester in an ATP-dependent manner (Schulman and Harper, 2009). E2 

conjugating enzymes are then ‘charged’ with the ubiquitin, generating a E2-Ub thioester 

(Komander, 2009). E3 ubiquitin ligases catalyse the final step of the substrate ubiquitylation 

cascade. These enzymes interact with both the E2-Ub conjugate and a target protein to catalyse 

the transfer of Ubiquitin to the substrate. While there are just 2 E1s, UBE1 and UBE1L2, and over 

40 E2s, complexity and specificity in the pathway is mediated by the E3. There are >600 E3 ligases, 

grouped into 3 families, based on their structure and mechanism of ubiquitin transfer (Li et al., 

2008). These are the Really Interesting New Gene (RING)-E3 ligases, the HECT-E3 ligases and 

RING-between-RING (RBR)-E3 ligases. One subset of the RING E3 ligases is the Cullin-RING (CRL) 

E3 ligases. These enzymes are large E3 ligase complexes, built on a Cullin scaffold. This scaffold 

then binds adaptor proteins to substrate receptors, and the E3 ligase protein itself. Through this 

scaffold mechanism, substrate proteins are recruited into proximity of the E3, where transfer of 

Ubiquitin from the E2 can be catalysed. 

An example of such an E3 is the CUL2VHL E3 ligase. Built from a Cullin2 scaffold, the pVHL 

substrate adaptor protein is joined to the complex by Elongin1/Elongin2. pVHL recognises its 

substrate, Hif1α, via a hydroxyproline residue on Hif1α. Under normoxic conditions, Hif1α is 

hydroxylated on this proline by Proline hydroxylase (PHD) enzymes, and is rapidly recognised 
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and ubiquitylated by VHL, and targeted for degradation (Figure 3.2). Under conditions of hypoxia, 

PHD enzymes are inhibited, and Hif1α is stabilized, accumulates and triggers the transcription 

of hypoxia related genes. Also bound to Cullin2 is the RBX1 E3 ligase, and recruitment of Hif1α 

to the complex by VHL allows ubiquitin transfer to the substrate from an associated E2. Similar 

mechanisms of ubiquitin transfer are utilised by CUL4CRBN and CUL1SKP2. 

3.2  PROTAC mechanism - Proximity-based ubiquitylation 

The mechanism of action of CRL E3 ubiquitin ligases, identifying substrate proteins for 

ubiquitylation via an adaptor protein, has recently been exploited for targeted degradation of 

alternative proteins. As ubiquitylation of substrate proteins by CRL E3 ligases  is proximity driven 

through the substrate receptor, with no specific ubiquitylation motifs, this mechanism can be 

hijacked to target protein degradation to desired target proteins. By recruiting the target protein 

of interest to the target E3 ligase, this protein can be ubiquitylated in the place of the 

endogenous substrate. 

One example of this is Proteolysis Targeting Chimeras (PROTACs). PROTACs are chimeric 

molecules, consisting of an E3 ligase-binding headgroup joined to a protein-targeting headgroup 

joined by a short linker sequence (Pettersson and Crews, 2019). For example, in order to target 

VHL E3 Ligase, the ligand VH032 designed as a Hif-1α mimic and a high affinity binder of VHL, 

has been conjugated to a range of known inhibitors to target a vast array of proteins (Zengerle, 

Chan and Ciulli, 2015; Gadd et al., 2017; Maniaci et al., 2017; Smith et al., 2019). Similarly, 

CUL4CRBN E3 ligase has been utilised using compounds derived from pomalidomide and a number 

of other phthalidomide-related inhibitors (Lu et al., 2015; Winter et al., 2015; Lai et al., 2016; 

Olson et al., 2018). 

To date, PROTAC compounds have been developed targeting a range of protein kinases, such as 

RIPK2 (Bondeson et al., 2015) BCR-ABL(Lai et al., 2016; Shibata et al., 2018), CDK9 (Olson et al., 

2018) and PTK2 (Cromm et al., 2018; Popow et al., 2019). As discussed below, targeting protein 
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kinases for targeted degradation evades numerous issues with conventional kinase inhibition 

(Ferguson and Gray, 2018). 

 

 

 

Figure 3.2 Mechanism of action of PROTAC compounds. 
A PROTAC consists of an E3 binding motif and target protein binding motif, joined by a short linker. 
PROTACs act by recruiting a protein of interest to the targeted E3 ligases. The CUL2 VHL E3 Ligase complex 
typically induces ubiquitylation and degradation of Hif1a under conditions of normoxia. Formation of an 
E3-PROTAC-target ternary complex results in the polyubiquitylation of the target protein, leading to its 
proteasomal degradation in cells. 

3.2.1 Benefits of targeted degradation over chemical inhibition of protein kinases 

The importance of protein phosphorylation to cell signalling and disease means that kinases are 

commonly the target of therapeutic avenues. Kinase inhibitors have been developed for a wide 

range of diseases; however, issues arise in resistance and off target effects. Many of these 

problems with kinase inhibition can be solved by targeted protein degradation. Firstly, chemical 

inhibition of kinases requires 1:1 occupation of the binding site, and therefore fairly high 

concentrations of compound are required for a biologically significant, therapeutic effect. This 

can result in either on-target or off-target toxicity. The catalytic mechanism of action of a 

PROTAC means that the compound can be applied at sub stoichiometric levels, therefore much 
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lower amounts are required. This reduces off target effects and is an advantage as both a 

methodological tool and a potential therapeutic. Additionally, chemical inhibition of a kinase will 

only remove one function of a protein, its kinase activity. Many kinases also carry additional 

functions such structural and scaffolding roles, which would not be removed by chemical 

inhibition. Conversely, targeted degradation of the protein will remove it from the cell 

completely, therefore removing all its potential roles. Depending on whether these additional 

functions are beneficial or deleterious, it may be advantageous to remove the entire protein 

from cells. There is also an additional advantage that these tools allow us to delineate between 

kinase and non-kinase functions of proteins in disease. 

Finally, a common mechanism of resistance to chemical inhibition is for the cell to upregulate a 

target protein at the transcriptional level, to overcome loss of function. However, this is 

circumvented by the PROTAC as any newly translated protein can be rapidly degraded (reviewed 

in (Ferguson and Gray, 2018)).  

‘Drugging the undruggable’ 

A large benefit of PROTAC compounds is the ability to target proteins previously considered 

‘undruggable’. A large portion of the human proteome is implicated in disease, however most 

cannot be targeted by conventional chemical therapeutic methods. Many identified proteins 

important in oncogenesis have so far failed to be inhibited by conventional approaches, and 

therefore deemed ‘undruggable’ (Huang and Dixit, 2016). In particular, proteins such as Myc, β-

catenin and MCL1 have been particularly difficult to target (Nero et al., 2014). Targeted protein 

degradation opens a whole new realm of potential for interrogating protein function 

3.3 Designing a PROTAC compound targeting SGK3 for degradation. 

Given the powerful potential of PROTACs as a tool to investigate protein function, and as a new 

therapeutic modality, one of the leading aims of my thesis was to develop a tool compound for 

the degradation of SGK3 from relevant model cancer cell lines. HEK293 SGK3 KO cells have been 
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previously generated using CRISPR/Cas9 technology, and this cell line has been successfully used 

to expand our knowledge of how SGK3 is activated by growth factor signaling (Malik et al., 2018). 

However, a caveat to this genome level knockout is that compensatory pathways may replace 

the role of SGK3 over time, and the effects of the knockout may be diminished. In addition, 

attempts in the lab to generate a genome level knockout of SGK3 in relevant model breast 

cancer cell lines, such as the ZR-75-1 and CAMA-1 cell lines have so far been unsuccessful. Use 

of PROTAC compounds to induce rapid, reversible knockout of SGK3 at the protein level in these 

cells is a promising solution to these caveats. I therefore aimed, in the first two chapters of my 

thesis to develop tool compounds to induce degradation of SGK3. 

The strategy chosen for this approach involved designing compounds derived from a series of 

SGK inhibitors recently published by Sanofi (Halland et al., 2015). Because a crystal structure of 

the SGK3 kinase domain is not yet available, either alone or in complex with an inhibitor, we 

could not use structure-guided design to build a series of degraders. The Ciulli lab inspected the 

structure activity relationship (SAR) of the series of SGK inhibitors described in the Sanofi Patent 

(Halland et al., 2015) (International Patent WO2014140065), to identify potential strategies to 

elaborate PROTACs.  

3.4 Two rounds of compound screening revealed optimal compound 

SGK3-PROTAC1 

A series of inhibitors that have a pyrazolopyrimidine scaffold appeared to tolerate aliphatic and 

cyclic substituents at the position 4 of the pyrazolopyrimidine core, suggesting that such portion 

of the molecule could be solvent exposed. Two SGK inhibitors, termed 290 and 308 (Fig 3.3A), 

were judged particularly amenable for linker conjugation, as the morpholine ring can be 

selectively N-alkylated by means of reductive amination protocols. (Fig 3.3A). As the inhibitors 

described in the patent were racemic, we synthesized both the R and S epimers of these 

compounds and determined by kinase screening that the R forms were marginally more potent 
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(data available at http://www.kinase-screen.mrc.ac.uk/kinase-inhibitors). The specificity of 

these compounds was profiled against 140 kinases at 1 M concentration, revealing that they 

were relatively selective (Figure 3.3, 3.4 and Appendix Table 1), with S6K1 being a key off target 

that was most potently inhibited. Further profiling determined that the IC50 of these 

compounds for SGK1 and SGK3 were between 5 to 40 nM, with S6K1 again being a key off-target 

with IC50 of 1-10 nM (Table 3.1).

http://www.kinase-screen.mrc.ac.uk/kinase-inhibitors
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Figure 3.3 In vitro selectively screening of 1 M Sanofi 308(R). 
Kinase selectively profiling was performed by the National Centre for Protein Kinase Profiling (www.kinase-screen.mrc.ac.uk) against 140 protein kinases. Data are presented 

as mean (n=3) kinase activity remaining in the presence of 1 M Sanofi 308(R), in comparison to a DMSO control. Raw data is available in Appendix Table 1, and data for the 
S isoform available online. 

http://www.kinase-screen.mrc.ac.uk/
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Figure 3.4 In vitro selectively screening of 1 M Sanofi 290(R). 
Kinase selectively profiling was performed by the National Centre for Protein Kinase Profiling (www.kinase-screen.mrc.ac.uk) against 140 protein kinases. Data are presented 

as mean (n=3) kinase activity remaining in the presence of 1 M Sanofi 290(R), in comparison to a DMSO control. Raw data is available in Appendix Table 1 and data for the 
S isoform available online. 

http://www.kinase-screen.mrc.ac.uk/
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Design of 1st Generation compound DAT1 

For the first round of compound screening, 4 compounds were developed by the Ciulli lab, with 

290-R or 308-R conjugated to either the well characterised VHL ligand VH032 (Galdeano et al., 

2014; Frost et al., 2016) or the Cereblon ligand pomalidomide (Lu et al., 2015) (Fig 3.5B). For this 

first series of compounds, a medium length linker, composed of 3 PEG units, was used (Fig 3.5C). 

In order to examine the potency and specificity of the compounds, I administered them to 

HEK293 cells for 48 hours at concentrations of up to 10 M and analysed the effect of PROTAC 

treatment on expression of endogenous SGK isoform or S6K1 expression (Fig 3.3C). Of the four 

compounds tested only DAT1, composed of 308-R conjugated to VH032, markedly reduced SGK3 

expression. Additionally, this reduction in SGK3 occurred without significantly impacting levels 

of SGK1, SGK2 or S6K1 (Fig 3.5D). DAT1 reduced SGK3 expression by 69% at 1 µM and 77% at 10 

µM after 48 h (Fig 3.5D). 
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Figure 3.5 Design and cellular activity of first generation SGK3 PROTACs. 
A. Structure of compound 14H, previously published by Sanofi as an inhibitor of SGK3. B. Starting material 
for SGK PROTACs. PROTACs were derived from SGK inhibitors 308-R or 290-R linked to either VH032 or 
Pomalidomide to target the VHL or Cereblon E3 ligases respectively. C. Structures of first generation SGK 
PROTACs, generated by the Ciulli lab. SGK and E3 ligase targeting motifs were joined by a 3xPEG linker to 
produce the PROTACs D. HEK293 cells were treated for 48 hours with increasing concentrations of each 
PROTAC compound from 0.1 nM to 10 µM. Cell lysates were subjected to immunoblot analysis with the 
indicated antibodies, and SGK3 protein levels quantified in Image Studio Lite software (Licor). 

Conjugation of 308-R to E3 ligase ligands for the elaboration of PROTACs markedly decreased 

the inhibitory activity for SGK isoforms and S6K1 in biochemical kinase assays (5 nM to 440 nM 

for SGK3 and 1 nM to 160 nM for S6K1) (Table 3.1). We found no correlation between potency 

of PROTACs for inhibiting SGK3 and ability to induce degradation of SGK3 in cells. For example, 

DAT2 which does not impact SGK3 protein levels in HEK293 cells, inhibited SGK1 and SGK3 2-4-

fold more potently than DAT1. 
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Table 3.1. IC50 values of SGK inhibitors and first generation PROTACs. 
The structures of the compounds are shown in Figure 3.5B&C. For degradation efficiency “-“ = No 
Degradation, “+” = >50% Degradation at 10 µM. 

 SGK3 IC50 (nM) SGK1 IC50 (nM) S6K1 IC50 (nM) 
SGK3 
Degradation 
Efficiency 

290 (R) 35 19 10 / 

308(R) 5 10 1 / 

DAT1 440 1600 160 + 

DAT2 190 400 180 - 

DAT3 640 1000 240 - 

DAT4 540 600 190 - 

 

Treatment with 1 M DAT1 maximally reduced SGK3 expression by 12 hours (Fig 3.6A) and a 

dose response analysis revealed that 2 M DAT1 maximally reduced SGK3 expression at an 8 h 

time point (Fig 3.6B). To validate that this degradation occurred, as expected, via the CUL2VHL E3 

Ligase complex and the proteasome, I pre-treated cells with inhibitors of the pathway (Fig 3.7) 

and measured blockade of DAT1-induced degradation. MLN4924 is an inhibitor of the 

Neddylation enzyme which conjugates NEDD8 onto the CRL E3 ligases (Brownell et al., 2010). 

Inhibition of this Neddylation process inactivates the complex. MG132 is an inhibitor of the 

proteasome and therefore blocks the degradation of ubiquitylated proteins (Lee and Goldberg, 

1998). As expected, pre-treatment with MLN4924 (3 M) or proteasome inhibitor MG132 (50 

M) successfully blocked DAT1-induced degradation of SGK3 (Figure 3.6C). These data 

demonstrate that DAT1 degradation of SGK3 is both neddylation and proteasome dependent, 

and therefore acting via the expected mechanism. I therefore selected DAT1 to analyse further 

and create a range a derivatives to optimize degradation. 

 



[84] 
 

 

 

Figure 3.6 Mechanistic characterization of DAT1 
 A. HEK293 cells were treated for up to 48h with 1 µM DAT1, and lysates analysed by western blot for SGK3 
expression B. HEK293 cells were treated for 6 h with increasing doses of DAT1, and lysates analysed by 
western blot. C. HEK293 cells were pre-treated with the indicated inhibitors before treatment for 6 h with 
5 µM DAT1, and lysates analysed by western blot for SGK3 expression. 
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Figure 3.7 Inhibitor treatments for mechanistic validation of SGK PROTACs. 
MG132 is an inhibitor of proteasome activity, and blocks degradation of polyubiquitylated proteins. 
Neddylation inhibitor MLN4924 restricts activity of the CUL2VHL complex, and therefore reduces CUL2VHL 
E3 activity and blocks ubiquitylation of target proteins. 

Design of 2nd Generation compound DAT8 (SGK3-PROTAC1) 

The next series of compounds were analogues of DAT1, produced by shortening the linker length 

from 3 to 2 PEG units (DAT5) or extending the linker length to 4 and 5 PEG units (DAT6-7).  (Fig 

3.8A). As before, I tested the ability of each of these compounds to decrease SGK3 expression 

after 48 h treatment in HEK293 cells (Fig 3.8C). From this data I determined that the optimal 

linker length was 4 PEG units (13 atoms), with DAT6 displaying significant improvements both in 

terms of potency and amount of reduction of SGK3 observed compared to the original DAT1 (Fig 

3.6C). DAT6 induced 55% degradation of SGK3 at 1 µM, and 80% degradation at 10 µM. DAT7 

(16 atoms) also induced potent degradation of SGK3. We then changed the composition of the 

linkers for more lipophilic alkylic moieties of 13 (DAT8) and 16 atoms (DAT9,10). For this set of 

compounds, we also conjugated the inhibitor 290-R (DAT11,12). This was to determine whether, 

with an optimized linker, the 290-R derived compounds may show some activity.  

DAT8 possessed the best potency for inducing degradation of SGK3, with 65% degradation at 

0.1 µM and 75% degradation achieved at 1 µM after treatment for 48 h. This represents a >10-

fold increase in potency for DAT8 over DAT6, and is likely a result of increased cell penetrance 

from a more lipophilic linker region, however this was not further studied. At <1 µM, 
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degradation was specific for SGK3 with no effect on SGK1/2 or S6K1. At concentrations >1 µM, 

however, a slight reduction in S6K1 expression can be observed. DAT8 was therefore selected 

for further use in this thesis and renamed SGK3-PROTAC1 (Fig 3.8D). SGK3-PROTAC1 possesses 

a linker of 13 atoms, the same as DAT6, however carries 1 less oxygen atom, creating a more 

lipophilic compound (Fig 3.8A). 

At this stage I also decided to generate a control compound for SGK3-PROTAC1 that would bind 

and inhibit SGK3, but not induce recruitment of the CUL2-VHL E3 ligase complex. We therefore 

synthesized a version of SGK3-PROTAC1 termed cisSGK3-PROTAC1 that contains a hydroxyl 

epimer of VH032 moiety that previous work showed ablates binding to VHL (Fig 3.8B) (Bondeson 

et al., 2015; Zengerle, Chan and Ciulli, 2015; Frost et al., 2016). 

In in vitro assays, SGK3-PROTAC1 inhibited SGK3 with an IC50 of 300 nM and S6K1 with an IC50 

of 1800 nM (Table 3.2). SGK1 was inhibited with an IC50 of 220 nM, however, was not degraded 

by the compound. The specificity of SGK3-PROTAC1 at 1 M was assessed in a panel of 140 

kinases. This revealed a surprising increase in specificity over the original 308-R compound, with 

SGK1 and S6K1 the only kinases most potently inhibited by this compound in vitro (Figure 3.9 

and Appendix Table 1). As expected, cisSGK3-PROTAC1 inhibited our panel of kinases similarly 

to SGK3-PROTAC1 (Figure 3.10 and Appendix Table 1). 
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Figure 3.8 Design and cellular evaluation of second and third generation SGK PROTACs.  
A. Chemical structure of compounds DAT5-12, expanding upon DAT1. B. Chemical structure of cisSGK3-
PROTAC1 C. HEK293 cells were treated for 48 hours with increasing concentrations of each PROTAC 
compound from 1 nM to 10 µM. Cell lysates were subjected to immunoblot analysis with the indicated 
antibodies, and SGK3 protein levels quantified in Image Studio Lite software. D. HEK293 cells were treated 
for 48 hours with increasing concentrations of each PROTAC compound from 1 nM to 10 µM. Cell lysates 
were subjected to immunoblot analysis with the indicated antibodies, and SGK3 and S6K1 protein levels 
quantified in Image Studio Lite software. 

 

 

Table 3.2. IC50 values of second generation of SGK PROTACs. 
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The structures of the compounds are shown in Figure 3.6A. “-“ = No Degradation, “+” = >50% Degradation 
at 10 µM. “++” = >50% Degradation at 1 µM. “+++” = >50% Degradation at 0.1 µM. “++++” = >60% 
Degradation at 0.1 µM. 

 SGK3 IC50 (µM) SGK1 IC50 (µM) S6K1 IC50 (µM) 

SGK3 Degradation 
efficiency 

 

DAT1 0.44 1.6 0.16 + 

DAT5 >10 >10 >10 + 

DAT6 >10 >10 >10 ++ 

DAT7 >10 >10 >10 ++ 

DAT8 0.3 0.22 1.8 ++++ 

DAT9 1.79 8.99 4.53 ++ 

DAT10 >10 >10 >10 ++ 

DAT11 0.73 1.34 1.80 +++ 

DAT12 >10 >10 >10 ++ 
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Figure 3.9 In vitro selectively screening of 1 M SGK3-PROTAC1. 
Kinase selectively profiling was performed by the National Centre for Protein Kinase Profiling (www.kinase-screen.mrc.ac.uk) against 140 protein kinases. Data are presented 

as mean (n=3) kinase activity remaining in the presence of 1 M SGK3-PROTAC1, in comparison to a DMSO control. Raw data is available in Appendix Table 1. 

http://www.kinase-screen.mrc.ac.uk/
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Figure 3.10 In vitro selectively screening of cisSGK3-PROTAC1. 
Kinase selectively profiling was performed by the National Centre for Protein Kinase Profiling (www.kinase-screen.mrc.ac.uk) against 140 protein kinases. Data are presented 

as mean (n=3) kinase activity remaining in the presence of 1 M cisSGK3-PROTAC1, in comparison to a DMSO control. Raw data is available in Appendix Table 1. 

http://www.kinase-screen.mrc.ac.uk/
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 3.5 Cellular characterisation of SGK3-PROTAC1 

On the basis of the experiments in section 3.4, I selected SGK3-PROTAC1 for further cellular 

characterisation, and for use in probing SGK3 biology in an array of cell lines. A cellular 

degradation assay confirmed that from 0.1 M SGK3-PROTAC1 markedly reduced SGK3 in 

HEK293 cells after 8 h treatment, however cisSGK3-PROTAC1 did not induce any loss of SGK3 up 

to 3 M. As observed previously, no degradation of S6K1 was observed at concentrations below 

1 M (Figure 3.11A). It was also of interest to study the impact of SGK3 degradation on 

phosphorylation of its physiological substrate NDRG1 at Thr346 (Sommer et al., 2013). As this 

site is also phosphorylated by Akt, all conditions were treated with the Akt inhibitor AZD5363 (3 

M) 1 h before lysis. At 0.1-0.3 M SGK3-PROTAC1, phosphorylation of NDRG1 was markedly 

reduced. At these concentrations cisSGK3-PROTAC1 had no effect, however at higher 

concentrations cisSGK3-PROTAC1 lowered NDRG1 phosphorylation (Figure 3.11A). This can be 

explained by the fact that although this compound does not bind VHL, the 308-R derived SGK-

binding head will still bind and inhibit SGK3. 

To fully characterize the compound, I performed timecourse analysis of SGK3-PROTAC1 induced 

degradation of SGK3. In HEK293 cells, 0.3 M SGK3-PROTAC1 induced 50% degradation of SGK3 

within 2 h, and maximal degradation was achieved after 8 h (Fig 3.11B). To demonstrate that 

SGK3-PROTAC1 induced SGK3 degradation is reversible, HEK293 cells were treated for 24 h with 

SGK3PROTAC-1, then washed 3 times with DMEM before replacing with fresh DMEM without 

PROTAC compound. Recovery of SGK3 expression was then tracked by Western Blot. This 

experiment revealed that increased SGK3 expression began after 1 h, with normal protein levels 

returning after 10 h (Fig 3.11C). SGK3-PROTAC1 is therefore a potent tool for the rapid and 

reversible degradation of SGK3 from cells, and manipulation of downstream signaling. As 

previously observed with DAT1, SGK3-PROTAC1-mediated degradation of SGK3 was also 

prevented by the neddylation inhibitor MLN4924 as well as the MG132 proteasome inhibitor 

(Figure 3.11D). 
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Figure 3.11 Mechanistic characterization of SGK3-PROTAC1. 
A. HEK293 cells were treated for 8h with 0.03-3 µM SGK3-PROTAC1 and cisSGK3-PROTAC1. Cells were also 
treated 1 h before lysis with 3 µM AZD5363, and protein levels measured by immunoblot. B. HEK293 cells 
were treated for up to 48 h with SGK3-PROTAC1 (0.3 µM), and lysates analyzed by immunoblot. C. HEK293 
cells were treated for 24h with SGK3-PROTAC1, cells washed 3 times with DMEM to wash out compound 
and recovery of protein analyzed by immunoblot D. HEK293 cells were pretreated with the indicated 
inhibitors before treatment for 6 h with 0.3 µM SGK3-PROTAC1, and lysates analyzed by western blot for 
SGK3 expression 

The aim of this project was to develop a tool with which I could study the removal of SGK3 from 

breast cancer cell lines which rely upon SGK3 for resistance to PI3K-Akt-mTOR pathway 
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inhibition. I therefore characterized SGK3-PROTAC1 in 2 such cell lines, CAMA-1 and ZR-75-1 

(Bago et al., 2016). As in HEK293, in these cells concentrations of >0.1 M SGK3-PROTAC1 

induced degradation of SGK3, but not SGK1 or S6K1 after 8 h. Again, as expected, cisSGK3-

PROTAC1 had no impact on SGK3 expression (Fig 3.12A,B). Therefore SGK3-PROTAC1 is expected 

to be a good tool for interrogation of SGK3 signaling in these cells. It is also interesting to note 

that in these cancer cell lines, degradation of SGK3 is more potent than in HEK293, possibly due 

to increased expression or activity of VHL in these cells. A western blot analysis of VHL protein 

levels revealed higher protein expression in these cancer cell lines than in HEK293 (data not 

shown). 

HEK293, ZR-75-1 and CAMA-1 cells all contain much higher levels of SGK3 than they do SGK1. In 

order to confirm that SGK3-PROTAC1 mediated degradation is specific for SGK3 and does not 

induce degradation of endogenous SGK1, I additionally screened these compounds in the JIMT-

1 cell line. This cell line has previously been demonstrated to express high levels of SGK1, and 

cell growth and metabolism is largely driven by SGK1 in these cells (Sommer et al., 2013). 

Concentrations of up to 3 µM SGK3-PROTAC1 failed to induce degradation of SGK1, whereas 

SGK3 expression was reduced from 0.1 M as observed in other cells lines (Fig 3.12C). As 

previous attempts to generate SGK3-specific inhibitors have so far been unsuccessful, due to 

high homology of the SGK kinase domains (Gong et al., 2018), it is surprising that SGK3-PROTAC1 

degradation is so specific for SGK3. This also places SGK3-PROTAC1 as an important tool in 

studying SGK3 function and delineating between the roles of SGK3 and SGK1. The specificity of 

SGK3-PROTAC1 for SGK3 over SGK1 is further explored in section 3.10. 



[94] 
 

 

 

Figure 3.12 Characterization of cellular activities of SGK3-PROTAC1 and cisSGK3-PROTAC1 in cancer cell 
lines. 
CAMA-1 (A), ZR-75-1 (B) and JIMT-1 (C) cells were treated with 0.03-3 µM SGK3-PROTAC1 and cisSGK3-
PROTAC1. Lysates were subjected to immunoblot analysis with the indicated antibodies. 

3.6 Effect of SGK3-PROTAC1 on SGK3-dependent mTORC1 activation 

Previous work has shown that prolonged treatment of breast cancer cell lines such as CAMA-1 

and ZR-75-1 cells with PI3K or Akt inhibitors resulted in upregulation of SGK3 leading to the 

activation of mTORC1 signaling, mediated by SGK3 phosphorylating TSC2 at the same sites as 

Akt (Bago et al., 2016). Therefore, once I had confirmed that SGK3-PROTAC1 dramatically 

reduces protein levels of SGK3 in these cell lines, I aimed to investigate the effect that SGK3-

PROTAC1 treatment would have on this resistance pathway. In particular, I was interested to 

determine whether SGK3-PROTAC1 could reverse inhibitor resistance. 
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In order to investigate the effect of SGK3-PROTAC1 under these conditions, I treated CAMA-1 

(Figure 3.13A,C) or ZR-75-1 (Figure 3.13B,D) for 5 days with either a Class IA PI3K inhibitor 

(GDC0941, 1 µM) (Folkes et al., 2008) or the Akt inhibitor AZD5363 (1 µM) (Davies et al., 2012). 

These treatments induce increased expression and activity of SGK3, and a rescue of NDRG1 

phosphorylation at Thr346 and mTORC1 activity, as measured by S6K1 phosphorylation at 

Thr389 and S6 protein phosphorylation at Ser240/244 (Bago et al., 2016). To determine the 

impact of SGK3 degradation on this resistance pathway, I cotreated cells with SGK3-PROTAC1 or 

cisSGK3PROTAC-1 (0.3 µM), either at the start of treatment, or 8 h before lysis, once resistance 

had already developed. 

SGK3-PROTAC1 substantially reduced SGK3 expression in both the CAMA-1 and ZR-75-1 cells 

within 8 h, and SGK3 degradation was maintained after 5 days of treatment (media and 

compound replenished after 72 h). Consistent with SGK3-PROTAC1 blocking mTORC1 activation, 

we found that these treatments also suppressed mTORC1-mediated phosphorylation of S6K1 at 

Thr389 resulting in a moderate reduction in S6 protein phosphorylation. In contrast, cisSGK3-

PROTAC1 had no significant effect on SGK3 protein level or phosphorylation of TSC2, S6K1 or S6 

protein. 

In parallel, I also treated these cells with the non-PROTAC SGK inhibitor 14H (1 µM) (Halland et 

al., 2015). I chose this compound instead of the source inhibitor 308-R, as 14H is more specific 

in targeting SGK kinases, and therefore was the better control. I observed in these conditions 

that, in both CAMA-1 and ZR-75-1 cells, SGK3-PROTAC1 inhibited mTORC1 signaling more than 

the inhibitor, suggesting degradation of SGK3 has a greater effect than mere inhibition of its 

kinase activity (Fig 3.13). 



[96] 
 

 

 

Figure 3.13 SGK3-PROTAC1-mediated degradation of SGK3 inhibits Akt-independent activation of 
mTORC1 in cancer cell lines treated with Akt or PI3K inhibitors. 
CAMA-1 (A, C) or ZR-75-1 (B, D) were treated for 5 days with 1 µM GDC0941 (A, B) or 1 µM AZD5363 (C, 
D). Cells were treated with the compounds indicated for either 5 days, or 8 h before lysis, cells were treated 
with the compounds indicated. Cell lysates were subject to immunoblot analysis with the indicated 
antibodies 

3.7 Effect of SGK3-PROTAC1 on cancer cell growth 

In section 3.6 I demonstrated that degradation of SGK3 by SGK3-PROTAC1 treatment can inhibit 

Akt-independent activation of mTORC1. Therefore, I next chose to investigate whether SGK3-
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PROTAC1 impacts on proliferation of cancer cell lines in the context of PI3K-Akt pathway 

inhibition. 

I first sought to determine any effect of SGK3-PROTAC1 or cisSGK3-PROTAC1 treatment on 

CAMA-1 or ZR-75-1 cells under basal conditions, with no inhibition of PI3K or Akt. Treatment of 

CAMA-1 or ZR-75-1 cells with SGK3-PROTAC1 alone had no effect on growth (Figure 3.14A,C), 

consistent with previous work undertaken with high doses of conventional SGK inhibitors (Bago 

et al., 2016; Castel et al., 2016). This reconfirms that growth of these cells under basal conditions 

is not mediated by SGK3 and suggests that PROTACs are not exhibiting any off-target toxic or 

anti-proliferative effect. I also measured sensitivity and toxicity of the compounds by Sytox 

Green assay. Sytox Green is a fluorescent nucleic acid binding reagent which exhibits >500-fold 

increased fluorescence on binding nucleic acids, however, is impermeable to live cells. 

Measuring fluorescence emitted by this reagent with or without cell permeabilization by 

Saponin provides a quantitative measure of live cell number. This assay can be used to quantify 

the impact of a compound on cell survival and proliferation. Sytox Green assay determined that 

these compounds were well tolerated up to 3 M. In contrast treatment with PI3K inhibitor 

(GDC0941) or Akt inhibitor (AZD5363) significantly impacted on CAMA-1 and ZR-75-1 cell growth, 

and reduced the number of surviving cells identified by Sytox Green Assay (Figure 3.14B,D). 
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Figure 3.14 SGK3-PROTAC compounds have no effect on cell growth. 
CAMA-1 and ZR-75-1 cells were seeded in 96 well plates, allowed to adhere overnight, and treated as 
indicated in the figure. A&C. Confluency of CAMA-1 (A) and ZR-75-1 (C) cells was measured every 4h on 
Incucyte S3. B&D. Measurement of cell number by Sytox Green Assay. Surviving cells were measured after 
7 day treatment with the indicated concentration of compound. Remaining cells were quantified relative 
to DMSO treatment. Error bar = SD, n=3. 

I therefore studied the effect that SGK3-PROTAC1 and cisSGK3-PROTAC1 had on the growth of 

CAMA-1 (Figure 3.14A,C) or ZR-75-1 (Figure 3.14B,D) in the presence of GDC0941 (1 µM) or 

AZD5363 (1 µM). I studied this effect in long term assays over the course of about 30 days. As 

previously observed, treatment with GDC0941 or AZD5363 substantially reduced growth of 

these cells, however a reduced proliferation was recovered after 7 days treatment with the 

inhibitors (Figure 3.15). Cotreatment with SGK3-PROTAC1 (0.3 µM) further reduced the growth 

of these cells under conditions that cisSGK3-PROTAC1 had a minimal effect (Figure 3.15). I also 

studied in parallel the effect of conventional SGK inhibitor 14H (3 µM) on growth of the inhibited 

cell lines. In the presence of a Class IA PI3K inhibitor 14H further suppressed cell growth, as 

reported previously (Bago et al., 2016), however this was to a lesser extent than was observed 

with SGK3-PROTAC1. When 14H was combined with the Akt inhibitor, it suppressed growth to a 

similar extent as was observed with SGK3-PROTAC1 (Figure 3.15) 
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Figure 3.15 SGK3-PROTAC1-mediated degradation of SGK3 further inhibits the growth of cancer cell 
lines treated with PI3K-Akt pathway inhibitors. 
CAMA-1 (A, C) or ZR-75-1 (B, D) were treated with compounds as indicated either as monotherapy or in 
combination, and confluency measured on the Incucyte S3 every 4 h for up to 4 weeks 

I was also interested in the impact of targeting the PI3K-Akt pathway and SGK3 sequentially, 

with SGK3-PROTAC1, cisSGK3PROTAC1 or 14H added to cells after growth recovery in response 

to GDC0941 or AZD5363. In these assays, I first treated cells with PI3K or Akt inhibitor, and then 

sequentially added the SGK3-targetting compound when growth had recovered to 40-50% 

confluency. In these assays, sequential addition of either the inhibitor or the PROTAC 

compounds had very little effect on proliferation of the cancer cell lines, with the exception of 

ZR-75-1 under prolonged treatment with AZD5363 (Figure 3.16). In this condition, an equal 

effect was seen from the inhibitor or PROTAC. Growth of the cells appeared to stop completely 

under these conditions, however I did not observe any cell death.  
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Figure 3.16 SGK3-PROTAC1-mediated degradation of SGK3 further inhibits the growth of cancer cell 
lines treated with PI3K-Akt pathway inhibitors. 
CAMA-1 (A, C) or ZR-75-1 (B, D) were treated with compounds as indicated either as monotherapy or in 
combination, and confluency measured on the Incucyte S3 every 4 h for up to 4 weeks. Sequential 
treatments (seq) were performed after recovery of cell growth. Arrowheads indicate timepoints of 
sequential treatment 

3.8  Impact of SGK3-PROTAC1 on a generated, AZD5363-resistant cancer 

cell line, CAMA-R 

In order to study resistance to the Akt inhibitor AZD5363, a CAMA-1 cell line highly resistant to 

AZD5363 has been generated by AstraZeneca, termed CAMA-R. To generate this cell line, CAMA-

1 cells were treated with increasing concentrations of AZD5363 and clonally selected, to produce 

a cell line which is now resistant to 5 M AZD5363. This cell line has acquired very high SGK3 

levels to mediate resistance to the Akt inhibitor. I was therefore interested to investigate the 

impact SGK3-PROTAC1 had in this cell line, and whether any of the results differ to the 5 day 

induction experiments described in sections 3.6 and 3.7. 

As in section 3.5, a cellular degradation assay was performed with increasing concentrations of 

SGK3-PROTAC-1 and cis-SGK3PROTAC1, from 0.03 – 3 M for 8 h. As was observed in other cell 
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lines, degradation of SGK3 was observed from 0.1 M SGK3-PROTAC1, while no degradation was 

observed with cisSGK3-PROTAC1 treatment up to 3 M. Studying NDRG1 phosphorylation at 

Thr346, a significant dephosphorylation of NDRG1 was observed from 0.1 M, whereas 10-fold 

more cisSGK3-PROTAC1 was required to impact on NDRG1 phosphorylation. Moreover, SGK3-

PROTAC1 at 0.1/0.3 M had a greater impact on NDRG1 phosphorylation than the non-PROTAC 

SGK inhibitor 14H (Fig 3.17A). 

I next investigated the effect of SGK3-PROTAC1 treatment on cell proliferation and survival of 

CAMA-R cells. In the context of maintained AZD5363 treatment, SGK3-PROTAC1 had a significant 

effect on survival and growth of CAMA-R cells, measured by proliferation by Incucyte 

measurements and also Sytox Green assay (Figure 3.17C,E). When AZD5363 was removed from 

the cells, SGK3 degradation had no effect (Fig 3.17B,D, “No Drug”). In a similar result to 

cotreatment of CAMA-1 cells with AZD5363 and SGK3 PROTAC/inhibitor, I observed that 0.1 M 

SGK3-PROTAC1 had a similar effect on growth to 3 M 14H. When treating CAMA-R cells with 

0.1 M 14H I saw no impact on growth. As expected, cisSGK3-PROTAC1 had no effect at this 

concentration, but had an inhibitory effect at higher concentrations (Fig 3.17C,E). 
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Figure 3.17 The impact on SGK3-PROTAC1 treatment on Akt inhibitor resistant cell line CAMA-R. 
A. CAMA-R cells were grown and seeded in the presence of AZD5363 (5 µM). SGK3-PROTAC1 or cisSGK3-
PROTAC1 were added to cells between 0.03-3 µM for 8h then lysed and subject to immune blot. Red 
asterisk highlights the effect of 0.3 µM compound treatment on substrate phosphorylation, as 
concentration was used in further experiments. B&C. Sensitivity of CAMA-R cells in the absence (B) or 
presence (C) of AZD5363 (5 µM) to increasing concentrations of SGK3 inhibitor 14H, SGK3-PROTAC1 or 
cisSGK3-PROTAC1, as measured by Sytox Green assay after 7 days of treatment. D&E. Sensitivity of CAMA-
R cells in the absence (D) or presence (E) of AZD5363 (5 µM) to SGK3 inhibitor 14H (3 µM), SGK3-PROTAC1 
(0.1 µM) or cisSGK3-PROTAC1 (0.1 µM) as measured by Incucyte S3 cell proliferation assay. 

However, when studying mTORC1 activity downstream of SGK3, SGK3-PROTAC1 treatment had 

little to no effect on downstream phosphorylation of S6K1 and S6 protein (Fig 3.15A). This was 

surprising as such a strong impact on NDRG1 phosphorylation, and CAMA-R cell growth is 

significantly impacted by 0.1 M SGK3-PROTAC1 treatment. I therefore decided to directly 

compare the pathway in CAMA-R cells against CAMA-1 cells with induced AZD5363 resistance 

after 5 day treatment with the inhibitor. I observed that SGK3 was upregulated in CAMA-R cells, 

and there was strong phosphorylation of S6K1 and S6 downstream of mTORC1. However, again 

I saw no impact of 0.1-0.3 M SGK3-PROTAC1 treatment on phosphorylation of these sites 
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(Figure 3.18). Surprisingly, despite activation of mTORC1, I observed very little, if any, 

phosphorylation of TSC2 at the Ser939 and Thr1462 sites, proposed to be phosphorylated by 

SGK3 in this resistance model (Figure 3.18). Therefore, although mTORC1 does appear to be 

reactivated in this cell line, it does not appear to be occurring through the predicted mechanism. 

TSC2 is phosphorylated on alternative sites by, for example, AMPK and the ERK1/2 kinases, 

which were not analysed in this experiment but would be important to study in future work. In 

addition, while SGK3-PROTAC1 treatment does inhibit the growth of CAMA-R cells treated with 

AZD5363, this does not appear to occur through modulation of the mTORC1 signaling cascade. 

It is important to consider that the CAMA-R cell line is expanded from 1 resistant clonal line, and 

therefore resistance may have occurred by a different mechanism. Further experiments would 

be required to determine the cause of resistance in this case. 
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Figure 3.18 mTORC1 is reactivated in CAMA-R cells, but not through TSC2. 
CAMA-R cells, grown in 5 µM AZD5363 were treated and analyzed in parallel to parental CAMA-1 cells in 
the presence of absence of 5d AZD5363 treatment, with SGK3-PROTAC1 or analogue cisSGK3-PROTAC1. 
Activation of mTORC1 in CAMA-1 induced resistance and CAMA-R constitutive resistance was analyzed by 
western blot. 

3.9 Determining the specificity of SGK3-PROTAC1 in HEK293 cells 

An important consideration in the validation of SGK3-PROTAC1 is determining the global 

specificity of the compound. This is of interest as by western blot degradation of SGK3 was 

observed to be specific over the other SGK isoforms. Unknown off-target effects may be having 

an impact on the signaling effects described. Therefore, in collaboration with Dr Houjiang Zhou, 
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I used a quantitative Tandem-Mass-Tag (TMT)-labelled approach to determine the global 

proteomic changes occurring after SGK3-PROTAC1 treatment in HEK293 cells. Cell lysis and 

sample preparation was undertaken after 6 h treatment with SGK3-PROTAC1 (0.3 µM), in 

comparison to the inactive cisSGK3-PROTAC1 (0.3 µM) or a mock treatment with DMSO. The cis 

epimer offers a much more appropriate negative control, and also helps identify any global 

proteomic changes caused by the inhibitory headgroup of SGK3-PROTAC1. 

Cells were treated in triplicate for 6 h with either SGK3-PROTAC1 (0.3 µM), cisSGK3-PROTAC1 

(0.3 µM) or DMSO, then harvested and lysed in Urea buffer. After trypsin and LysC enzyme digest 

samples were labelled with TMT reagents, pooled, and fractionated by high pH reverse phase 

fractionation. Sample analysis was performed in Proteome Discoverer v2.2 using the Mascot 

search engine. This allowed for the unbiased, relative quantification of 8766 proteins, of which 

377 were determined to have protein kinase activity or directly regulate protein kinase activity 

(pantherdb.org). From this sample set, SGK3-PROTAC1 was revealed to be remarkably selective, 

with only SGK3 expression being significantly reduced (p value < 10-3) (Figure 3.19, 3.20). This 

provided higher confidence that the SGK3-PROTAC1 compound was highly selective in cells and 

that any biological changes should be a result of degradation of SGK3. Due to low expression in 

these cells, SGK1 and SGK2 were not detected in this analysis and therefore could not be 

compared. S6K1 and Akt, important possible off-target hits, were unaffected by SGK3-PROTAC1 

treatment. This analysis has also been performed in the biologically relevant ZR-75-1 cancer cell 

line and is discussed in more detail in Chapter 4. 
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Figure 3.19 TMT Proteomic analysis of HEK293 cells treated with SGK3-PROTAC1. 
A. Workflow for Mass Spec analysis of SGK3-PROTAC1 specificity in HEK293. B. In cell lysates treated with 
SGK3-PROTAC1 for 8h, SGK3 levels were noticeably reduced. These lysates were used for mass 
spectrometry analysis of the global proteome. C. Volcano plot demonstrating global proteomic changes 
upon SGK3-PROTAC1 treatment in HEK23 cells. 

 

 

Figure 3.20 TMT Proteomic analysis of HEK293 cells treated with SGK3-PROTAC1 or cisSGK3-PROTAC1 
TMT-labelled proteomic analysis of HEK293 cells treated with A) SGK3-PROTAC1 compared to cisSGK3-
PROTAC1 and B) cisSGK3-PROTAC1 compared to DMSO. Data are represented as a volcano plot of fold-
change against p-value. 
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3.10 Isoform specificity of SGK3 degradation over SGK1. 

Previously published studies have so far been unsuccessful in producing SGK3-specific chemical 

inhibitors, due to the high structural similarity of the kinase domains of the SGK isoforms, 

particularly in the ATP binding sites (Figure 3.21) (Gong et al., 2018). It was therefore very 

interesting that SGK3-PROTAC1 has been revealed as being exquisitely specific for degradation 

of SGK3 over SGK1. This is particularly surprising given that in in vitro kinase assays SGK3-

PROTAC1 inhibits these 2 kinases with a very similar IC50 (0.3 nM for SGK3, 0.22 nM for SGK1). It 

was therefore of interest to determine why degradation was specific for SGK3. 

 

Figure 3.21  Sequence alignment of SGK1 and SGK3 kinase domains. 
High sequence similarity is maintained between SGK1 and SGK3. In particular, regions of ATP and substrate 
binding are highly conserved. 

I first chose to study whether any structural features of SGK3 made this protein more amenable 

to degradation by SGK3-PROTAC1. SGK3 contains an N-terminal PX domain and is localised to 

endosomes, and in this way,  it differs from SGK1. I therefore expressed exogenous SGK3, either 

wildtype or with deletion or mutation of its PX domain, into SGK3 KO HEK293 cells and measured 

the ability of SGK3-PROTAC1 to degrade these proteins. I also expressed SGK3 with inactivating 

mutations in its T-loop (T320A), H-motif (S486A) or kinase domain (K191A) to determine 

whether activation of SGK3 influenced its susceptibility to degradation (Fig 3.22). I found that, 

in this overexpression system, SGK3-PROTAC1 induced about 50% degradation of wildtype SGK3. 

Mutation of the critical residues for SGK3 activity sites had very little effect, increasing SGK3 

degradation by an additional 10%. Although deletion of the PX domain had no effect on 

degradation efficiency, point mutations to inhibit PtdIns(3)P binding (R50A, R90A) and prevent 

translocation of SGK3 to endosomes increased degradation of SGK3 to ~75%. The kinase domain 
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mutant of SGK3 was less stable and expressed and much lower levels but appeared to be 

similarly targeted for degradation by approximately 50% (Fig 3.22). 

SGK1 also differs from SGK3 in that SGK1 carries an N-terminal degron motif, which leads to its 

ubiquitylation by Nedd4-2 and degradation via the proteasome. As this mechanism of SGK1 

leads to its rapid turnover and a half-life of ~30 minutes and overlaps with the mechanism of 

action of the PROTAC, this motif may affect induction of SGK1 degradation by SGK3-PROTAC1. 

Typically, in our assays SGK1 is expressed with its first 59 amino acids deleted, for more stable 

expression. As expected, deletion of the residues resulted in a more stable, higher expressed 

protein, however also sensitised SGK1 to degradation by SGK3-PROTAC1 (Fig 3.22). Therefore, 

the endogenous turnover mechanism of SGK1 in cells may partially impact on SGK3-PROTAC1 

induced degradation. Alternatively, deletion of these residues may have revealed accessible 

lysine residues for ubiquitylation by CUL2VHL. 

 

Figure 3.22 Mutations in SGK3 and SGK1 alter their susceptibility to SGK3-PROTAC1 mediated 
degradation. 
A. SGK3 and SGK1, wildtype and kinase dead, were transiently transfected into SGK3 KO HEK293 cells, and 
treated for 8 h with SGK3-PROTAC1. B. Mutant forms of SGK3 were transiently transfected into HEK293 
cells and treated for 8 h with SGK3-PROTAC1. 

In order to further determine the reasons for SGK3 specificity, I would in future studies perform 

experiments to assess the ability of SGK1 and SGK3 to form stable ternary complexes with SGK3-

PROTAC1 and pVHL. I would examine whether there was a structural element of SGK3 allows 

the protein to form a more stable complex than SGK1. I would in future studies perform 

Isothermal Titration Calorimetry (ITC), to determine the thermal effect of compound binding to 
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SGK1 and SGK3, and therefore identify any differences in the binding affinities of SGK3-PROTAC1 

to these proteins. In vitro kinase assays are very similar between the two proteins so we would 

expect similar binding, however subtle binding differences may be revealed by ITC to partially 

explain this finding. 

In addition, treatment with SGK3-PROTAC1 in combination with proteasome inhibitor MG132 

may further explain the specificity between these isoforms. For example, co-

immunoprecipitation of SGK isoforms with VHL in the presence of SGK3-PROTAC may reveal a 

stronger complex formed with SGK3 than SGK1. Also, studying ubiquitylation of target isoforms 

by immunoblot would demonstrate whether an active ternary complex is being formed. In 

addition, ubiquitylation mapping could be performed on SGK3, to determine where it is being 

ubiquitylated and whether these regions are conserved in SGK1.  

3.11 Discussion 

In this chapter, I describe the design and characterisation of the compound SGK3-PROTAC1. This 

compound is able to induce potent, reversible degradation of SGK3 from a variety of cell lines 

within 4 h, with a DC50 below 100 nM. 

Specificity of SGK3-PROTAC1 

Quantitative mass spectrometry in HEK293 cells revealed degradation of SGK3 to be highly 

selective, with SGK3 being the most downregulated protein. It is particularly interesting that 

SGK3-PROTAC1 was revealed to be remarkably isoform specific for SGK3, with the highly related 

SGK1/2 isoforms remaining unaffected. This was even observed in cell lines such as JIMT-1 which 

express high levels of SGK1 and relatively low levels of SGK3. Recent studies attempting to 

develop isoform specific chemical inhibitors of SGK3 have been unsuccessful, due to the high 

structural similarity of the SGK1 and SGK3 kinase domains, in particular in the ATP binding site 

(Gong et al., 2018). SGK3-PROTAC1 is therefore an important tool in modulating SGK3 biology 

independently of SGK1/2. This ability to generate selective isoform specific inhibitors has 
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previously been observed in PROTACs derived from the pan-BET inhibitor JQ1 (Zengerle, Chan 

and Ciulli, 2015; Gadd et al., 2017; Testa et al., 2018) and PROTACs derived from the 

promiscuous kinase inhibitor Foretinib (Bondeson et al., 2018) or TAE-684 (Huang et al., 2018). 

It has recently been shown that specificity and potency of PROTACs can be dictated by 

differential cooperativity and stability of ternary complex formation (Gadd et al., 2017; Hughes 

and Ciulli, 2017; Roy et al., 2019) as well as geometry/orientation of the recruited E3 ligase 

(Smith et al., 2019). Future work will investigate the extent to which these molecular recognition 

features contribute to the exquisite selectivity of SGK3-PROTAC1 for SGK3 induced degradation. 

Further, the rapid turnover of SGK1 through ubiquitylation and degradation may make it 

intractable to PROTAC mechanism of action. As the protein is already readily ubiquitylated and 

degraded, additional PROTAC-mediated ubiquitylation may have minimal effect. 

Rana et al recently described a CDK6-targeting PROTAC, which had exquisite CDK6 specificity, 

despite equal inhibition of CDK4 and CDK6 (Rana et al., 2019). While CDK4/6 have overlapping 

kinase functions, CDK6 is believed to carry a kinase-independent role in transcriptional 

regulation (Petrocca et al., 2013). Additionally, CDK6 amplification was proposed as a resistance 

mechanism to CDK4/6 inhibition (Yang et al., 2016). The isoform specificity of the PROTAC 

yielded an important tool in studying CDK6-mediated regulation of transcription. The authors 

argued that either a ternary complex could not be formed with CDK4, or rapid deubiquitylation 

occurred on this protein, however they did not study this finding further. 

Benefits of SGK3 degradation over kinase inhibition 

In a variety of assays using SGK3-dependent cancer cell lines, SGK3 degradation was 

demonstrated to have a more potent effect than inhibition of its kinase activity by the 

conventional 14H inhibitor. This finding provides a further example of the benefit of the PROTAC 

approach in targeting protein kinase signaling pathways with greater efficacy and selectivity 

than can be achieved with conventional inhibitors. Other examples include the recent finding 
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that a BCR-ABL degrader displays more sustained inhibition of Chronic myelogenous leukemia 

cell growth after removal of compound than can be achieved by a conventional ABL kinase 

inhibitor (Shibata et al., 2018). I did not explore the restoration of growth after SGK3-PROTAC1 

washout in my experiments, however this would be of interest to explore in further work. Han 

et al  also recently determined that a potent androgen receptor (AR) degrader ARD-68 was >100 

times more potent than an AR antagonist in suppressing gene transcription in two different cell 

lines (Han et al., 2019) 

Further, Crews lab more recently published a PROTAC compound binding allosterically to BCR-

ABL which, although potent in decreasing cancer cell growth, was not more effective than the 

leading active site inhibitor imatinib. However, allosterically targeting kinases for degradation 

also has the additional benefit of allowing combination treatments of PROTAC with kinase 

inhibitor. The authors reason that combination of allosteric degraders and kinase inhibitors 

lower the dose of inhibitor required, and therefore reduce toxicity of ATP mimic compounds 

(Burslem et al., 2019). 

IRAK4 is a Ser/Thr protein kinase downstream of Toll-like Receptor signaling in immune 

responses. IRAK has been proposed to have kinase-independent roles in IL-1β signaling and 

cytokine release due to scaffolding functions (Qin et al., 2004), however degradation with 

PROTAC compounds showed no improvement over kinase inhibition in cytokine production or 

signal transduction (Nunes et al., 2019)  

Other mechanisms by which SGK3-PROTAC1 may inhibit cell growth. 

It is of particular interest that, although in the context of PI3K inhibition SGK3 degradation was 

superior, in the context of Akt inhibition both 14H and SGK3-PROTAC1 had similar effects of 

cancer cell growth. Future studies should follow up further pathways downstream of PI3K in 

which SGK3 may have a role, which may explain the difference between the conditions. In 

addition, when studying the CAMA-R AZD5363 resistant cell line, it was revealed that although 
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cell growth was inhibited by targeting SGK3, this growth inhibition was not occurring through 

phosphorylation of TSC2 by SGK3, as observed in previous models. This again suggests additional, 

as yet undiscovered, pathways in which SGK3 may play a role in PI3K-Akt pathway inhibitor 

resistance. In CAMA-R cells, mTORC1 activation may be mediated through TSC2 at alternative 

sites through the ERK pathway or AMPK. Additionally, targeting of SGK3 in PI3K-Akt pathway 

inhibition appeared to be more effective when treating in combination before resistance occurs. 

Sequential treatment with 14H or with SGK3-PROTAC1 had minimal effect. This data teaches us 

that when targeting SGK3 in cancer, SGK3 and PI3K/Akt should be targeted together in 

combination.  

As described in Chapter 1, Akt phosphorylates substrates in mTORC1-dependent roles which 

regulate cell growth and proliferation, for example in phosphoinactivation of FOXO transcription 

factors and the p27 and p21 cyclin dependent kinase inhibitors (Zhou, Liao, Xia, Spohn, et al., 

2001; Tran et al., 2003; Sekimoto, Fukumoto and Yoneda, 2004). Therefore, degradation of SGK3 

in the context of PI3K-Akt inhibition may also regulate these pathways, which have not been 

fully characterized in this thesis. 

Additionally, SGK3 may have a role in alternative pathways as yet undiscovered. Further, these 

roles may be kinase independent and therefore not revealed by kinase inhibition. In Chapter 4, 

I further investigate this possibility by global proteomic and phosphoproteomic analysis of SGK3-

PROTAC1 treatment in ZR-75-1 cells. This provides evidence for potential newly discovered roles 

of SGK3, which may mediate the resistant growth phenotype on PI3K-Akt pathway inhibition. 

In the BCR-ABL compound described above, degradation was observed to reduce the level of 

GAB2 phosphorylation downstream of BCR-ABL and upstream of MAPK signaling, however 

inhibition of its tyrosine kinase activity did not have the same effect. Further analysis revealed 

this was via a scaffolding mechanism, through autophosphorylation of a docking site at Y177 
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(Burslem et al., 2019). However, this comparison was performed against the allosteric inactive 

PROTAC, and not the active site inhibitor. 

Conclusion 

In this chapter I, in collaboration with the Ciulli lab, optimized and characterized SGK3-PROTAC1 

as an important tool in the study of SGK3 signaling in PI3K-Akt pathway inhibition. This 

compound provides many of the benefits associated with PROTAC-mediated targeting, such as 

isoform specificity for SGK3 over other family members, and additional potency in inhibitor-

resistant growth over conventional kinase inhibition. This compound will be an important 

addition to our armory of chemical probes to decipher the biological roles of the SGK3 signaling 

pathway including in mediating resistance to PI3K and Akt inhibitor therapy in cancer. In Chapter 

4, I will utilize this compound for quantitative global proteomic and phosphoproteomic analysis 

of ZR-75-1 cellular response to SGK3 degradation, revealing possible roles for SGK3 in cancer not 

previously identified by chemical inhibition. 
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4. Global response to SGK3-PROTAC1 treatment in ZR-75-1 

breast cancer cells suggests potential role for  SGK3 in 

cAMP signalling and mitochondrial Oxidative 

Phosphorylation. 

4.1 Introduction 

Throughout this study I have been interested in the biology and signalling of SGK3 particularly 

in the ER+ breast cancer cell lines ZR-75-1 and CAMA-1, which induce SGK3 expression and 

activity in response to inhibition of the PI3K-Akt-mTOR signalling pathway. In section 3.9, I 

demonstrated by Tandem Mass Tag (TMT)-labelled quantitative proteomics that SGK3-

PROTAC1-mediated degradation was highly specific for SGK3 in HEK293 cells. However, results 

may differ in a cell-dependent manner and I was interested to determine the specificity and 

impact of compound-induced SGK3 degradation in a relevant cancer cell line. It was therefore 

of interest to understand the global effects of SGK3 degradation in the ZR-75-1 cell line. 

4.2 Experimental Design - Global Proteomics and Phosphoproteomics in ZR-

75-1 cells 

In an identical method to that used for HEK293 cells in section 3.9, I treated HEK293 cells for 6 

h with SGK3-PROTAC1 (0.3 µM), cisSGK3-PROTAC1 (0.3 µM) or DMSO. In these cell lines I was 

also interested in phosphoproteomic changes on SGK3-PROTAC1 treatment, in order to 

potentially identify new substrates or signalling pathways impacted by SGK3 degradation. 

Therefore, alongside analysis at the proteomic level, I additionally performed TiO2 enrichment 

of phosphopeptides from these lysates and performed complementary phosphoproteomic 

analysis. After treatment with the indicated compounds, cells were harvested, lysed in Urea 

buffer and digested by LysC and Trypsin digestion. Before mass spectrometry analysis, I 

confirmed by western blot that SGK3 had been substantially degraded upon SGK3-PROTAC1 

treatment, but not cisSGK-PROTAC1. The resulting peptides were split for proteomic or 

phosphoproteomic analysis, by TMT-labelled quantitative mass spectrometry. After labelling, 
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proteomic samples were pooled and fractionated by high pH reverse phase fractionation for 

analysis. For phosphoproteomic analysis, phosphopeptides were enriched before labelling and 

pooled for quantitative analysis (Figure 4.1). 

 

 

Figure 4.1 Experimental workflow for mass spectrometry analysis of SGK3-PROTAC1 treatment in ZR-
75-1 cells. 

ZR-75-1 cells were treated for 6 h with DMSO, SGK3-PROTAC1 (0.3 M) or cisSGK3-PROTAC1 (0.3 M). 
Western Blot analysis demonstrated substantial degradation of SGK3 on SGK3-PROTAC1 treatment. 
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4.3 Global Proteomic Analysis of SGK3-PROTAC1 treatment in ZR-75-1 

reveals effects on mitochondrial respiration and cAMP signalling 

Global, unbiased analysis in Proteome Discoverer v2.2 identified relative quantification of 8167 

proteins. As observed in HEK293 cells, SGK3-PROTAC1 was observed to be highly specific, as 

SGK3 was identified as the most downregulated protein. A caveat of this analysis is that, as ZR-

75-1 cells express relatively low levels of SGK3 under basal conditions, relative quantification of 

SGK3 was based on one identified unique peptide, so it carries a relatively low p value, but was 

still determined to be significant (p value = 0.02). Other than SGK3, very few other proteins were 

identified as significantly downregulated. With the exception of Histone proteins that are likely 

trace nuclear contaminants, only 4 other proteins, PDE4D, TRAF3IP2, RPL14 and ZNF512B, were 

also detected as being downregulated in response to treatment, with a >45% reduction in 

protein levels (Figure 4.2 and Table 4.1). I also detected an unexpected upregulation of a host of 

mitochondrial proteins, which upon further analysis were revealed to all be components of the 

electron transport chain. Of 8167 identified proteins, 351 were determined to be significantly 

upregulated >2fold in response to SGK3-PROTAC1 treatment, in comparison to the inactive 

analogue cisSGK3-PROTAC1 (Figure 4.2 and Table 4.2, full list in Appendix Table 3). Of these 351 

upregulated proteins, 318 were identified by Gene Ontology (GO) analysis to be mitochondrial, 

specifically components associated with oxidative phosphorylation. 
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Figure 4.2 Global proteomic analysis of SGK3-PROTAC1 treatment compared to inactive analogue.  

ZR-75-1 cells were treated for 6 h with SGK3-PROTAC1 (0.3 M) or cisSGK3-PROTAC1 (0.3 M) , and cell 
lysates subject to quantitative mass spectrometry analysis. Data are presented as a volcano plot 

 Analysis of SGK3-PROTAC-1/DMSO revealed similar proteomic changes, and as a negative 

control, cisSGK3-PROTAC1/DMSO has very little global effects (Tables 4.1, 4.2 and Figure 4.3). 

These controls confirm that these effects are dependent on SGK3-PROTAC1s ability to induce 

ubiquitylation and subsequent proteasomal degradation. 

 

Figure 4.3 Total proteomic changes on treatment with A) SGK3-PROTAC1 or B) cisSGK3-PROTAC1 in ZR-
75-1 cells. 

ZR-75-1 cells were treated for 6 h with SGK3-PROTAC1 (0.3 M),  cisSGK3-PROTAC1 (0.3 M) or DMSO, 
and cell lysates subject to quantitative mass spectrometry analysis. Data are presented as a volcano plot 
Data are presented as volcano plots. 
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Table 4.1 List of proteins significantly downregulated on SGK3-PROTAC1 Treatment 
After removal of contaminants, identified proteins were filtered for an abundance ratio for SGK3-PROTAC1/cisSGK3-PROTAC1 <0.55 and p value <0.05.  

 

  

Accession Gene Description Unique Peptides Coverage 

# % Abundance Ratio p-value Abundance Ratio p-value Abundance Ratio p-value

Q96BR1 SGK3 Serine/threonine-protein kinase Sgk3 1 2 0.343 0.0486 0.225 0.0259 1.149 0.4726

Q96KM6 ZNF512B Zinc finger protein 512B 13 17 0.374 0.0329 0.41 0.0206 1.154 0.7151

Q08499 PDE4D cAMP-specific 3',5'-cyclic phosphodiesterase 4D 5 6 0.44 0.0001 0.446 0.0008 0.988 0.7399

P50914 RPL14 60S ribosomal protein L14 6 27 0.477 0.0404 0.447 0.0040 1.122 0.5306

O43734 TRAF3IP2 Adapter protein CIKS 10 25 0.472 0.0006 0.525 0.0034 0.907 0.1017

cisSGK3-PROTAC1/DMSOSGK3-PROTAC1/DMSO SGK3-PROTAC1/cisSGK3-PROTAC1
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Table 4.2 List of top 40 proteins significantly upregulated on SGK3-PROTAC1 Treatment. 
After removal of contaminants, identified proteins were filtered for an abundance ratio for SGK3-PROTAC1/cisSGK3-PROTAC1 >2 and p value <0.05. 351 proteins were 
identified meeting these criteria and the full list is available in Appendix Table 2. 

 

Accession Gene Description Unique Peptides Coverage 

# % Abundance Ratio p-value Abundance Ratio p-value Abundance Ratio p-value

P09669 COX6C Cytochrome c oxidase subunit 6C 3 21 2.25 0.0573 3.83 0.0328 0.99 0.5293

P56134 ATP5J2 ATP synthase subunit f, mitochondrial 2 26 3.51 0.0863 3.62 0.0472 0.80 0.7629

Q9H3K2 GHITM Growth hormone-inducible transmembrane protein 6 15 2.29 0.0271 3.55 0.0119 0.85 0.2732

Q6UWS5 PET117 Protein PET117 homolog, mitochondrial 2 31 2.74 0.0907 3.46 0.0461 0.92 0.9826

Q00325 SLC25A3 Phosphate carrier protein, mitochondrial 16 41 2.49 0.0437 3.31 0.0140 0.86 0.6578

P08574 CYC1 Cytochrome c1, heme protein, mitochondrial 12 42 2.24 0.0570 3.31 0.0168 0.92 0.7776

Q9NWR8 MCUB Calcium uniporter regulatory subunit MCUb, mitochondrial 3 9 3.61 0.0800 3.26 0.0389 0.97 0.6884

O75964 ATP5L ATP synthase subunit g, mitochondrial 5 53 3.03 0.0747 3.19 0.0417 0.84 0.7890

Q6UW78 UQCC3 Ubiquinol-cytochrome-c reductase complex assembly factor 3 3 46 2.25 0.1100 2.93 0.0326 1.22 0.8168

Q6NUK1 SLC25A24 Calcium-binding mitochondrial carrier protein SCaMC-1 26 57 2.05 0.0603 2.89 0.0111 0.94 0.8774

Q9Y2R0 COA3 Cytochrome c oxidase assembly factor 3 homolog, mitochondrial 4 36 2.35 0.0522 2.89 0.0260 0.93 0.8314

P00403 MT-CO2 Cytochrome c oxidase subunit 2 7 31 2.61 0.0536 2.89 0.0216 0.88 0.9554

Q99643 SDHC Succinate dehydrogenase cytochrome b560 subunit, mitochondrial 1 5 3.39 0.0481 2.89 0.0224 0.91 0.6842

O43674 NDUFB5 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 5, mitochondrial 5 25 2.18 0.0420 2.88 0.0217 0.92 0.6201

P00846 MT-ATP6 ATP synthase subunit a 1 4 3.26 0.0608 2.87 0.0253 0.91 0.6719

O95169 NDUFB8 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8, mitochondrial 5 36 2.97 0.0499 2.86 0.0405 1.15 0.4244

O60830 TIMM17B Mitochondrial import inner membrane translocase subunit Tim17-B 5 37 2.84 0.0523 2.81 0.0355 0.95 0.8799

Q9UJS0 SLC25A13 Calcium-binding mitochondrial carrier protein Aralar2 19 46 2.24 0.0543 2.78 0.0147 0.88 0.8598

Q16891 IMMT MICOS complex subunit MIC60 49 62 2.09 0.0636 2.78 0.0158 0.88 0.8163

Q9Y6M9 NDUFB9 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9 8 50 2.46 0.0604 2.77 0.0354 1.02 0.8594

P56385 ATP5ME ATP synthase subunit e, mitochondrial 6 67 2.19 0.0409 2.77 0.0363 0.90 0.4006

P53007 SLC25A1 Tricarboxylate transport protein, mitochondrial 13 45 2.46 0.0568 2.77 0.0281 0.89 0.8677

P05141 SLC25A5 ADP/ATP translocase 2 8 52 2.26 0.0550 2.76 0.0223 0.89 0.7942

Q5RI15 COX20 Cytochrome c oxidase assembly protein COX20, mitochondrial 3 23 2.81 0.0360 2.73 0.0077 1.23 0.9285

O95167 NDUFA3 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 3 4 50 2.49 0.0489 2.73 0.0249 1.01 0.7860

Q96IX5 USMG5 Up-regulated during skeletal muscle growth protein 5 3 45 2.22 0.0833 2.73 0.0376 0.86 0.6991

Q9H300 PARL Presenilins-associated rhomboid-like protein, mitochondrial 5 11 2.48 0.0653 2.70 0.0251 0.92 0.9593

O43819 SCO2 Protein SCO2 homolog, mitochondrial 10 43 2.41 0.0437 2.70 0.0224 0.86 0.7113

Q96TA2 YME1L1 ATP-dependent zinc metalloprotease YME1L1 20 26 1.95 0.0677 2.69 0.0180 1.03 0.7877

Q9HA92 RSAD1 Radical S-adenosyl methionine domain-containing protein 1, mitochondrial 5 11 3.05 0.0148 2.69 0.0094 1.06 0.4686

P31930 UQCRC1 Cytochrome b-c1 complex subunit 1, mitochondrial 19 58 2.51 0.0592 2.68 0.0224 0.87 0.9920

A0A0B4J2F0PIGBOS1 Protein PIGBOS1 1 19 1.31 0.2455 2.67 0.0403 0.81 0.6948

Q6PML9 SLC30A9 Zinc transporter 9 9 14 2.01 0.0663 2.67 0.0279 0.98 0.9282

P13073 COX4I1 Cytochrome c oxidase subunit 4 isoform 1, mitochondrial 8 40 2.20 0.0424 2.67 0.0238 0.93 0.7219

Q8N8Q8 COX18 Cytochrome c oxidase assembly protein COX18, mitochondrial 3 8 2.37 0.0920 2.66 0.0115 0.89 0.8118

P22695 UQCRC2 Cytochrome b-c1 complex subunit 2, mitochondrial 18 48 2.73 0.0668 2.65 0.0290 0.79 0.8595

Q6P1K1 SLC48A1 Heme transporter HRG1 1 8 3.28 0.0766 2.65 0.0472 1.13 0.4946

P03905 MT-ND4 NADH-ubiquinone oxidoreductase chain 4 4 8 4.09 0.0640 2.64 0.0241 1.21 0.4522

SGK3-PROTAC1/DMSO SGK3-PROTAC1/cisSGK3-PROTAC1 cisSGK3-PROTAC1/DMSO
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4.3.1 PDE4D is downregulated in response to SGK3-PROTAC1 treatment 

In order to determine the specificity of SGK3-PROTAC1, and whether other proteins were truly 

downregulated in response to PROTAC treatment, I analysed the expression of PDE4D, TRAF3IP2, 

RPL14 and ZNF512B by western blot, with commercially validated antibodies after 8h treatment 

with SGK3-PROTAC1, cisSGK3-PROTAC1 or 14H SGK inhibitor. In this analysis, I detected no 

observable change in expression of TRAF3IP2, RPL14 or ZNF512B, and these may therefore be 

false positives from the mass spectrometry procedure. However, PDE4D expression was 

determined to be downregulated in response to SGK3-PROTAC1, but not cisSGK3-PROTAC1, in 

ZR-75-1 cells by western blot (Figure 4.4). Importantly, this effect was not observed after 

inhibition of SGK3 by 14H, and therefore appears to be a degradation-specific effect.  

 

Figure 4.4 PDE4D is reproducibly downregulated on treatment with SGK3-PROTAC1. 
ZR-75-1 and CAMA-1 cells were treated for 8 h with SGK3-PROTAC1, cisSGK3-PROTAC1 or 14H. Target 
proteins were analysed by western blot. Results are representative of n=3 experiments. 

PDE4D is a cAMP-specific phosphodiesterase involved in regulation of Protein Kinase A (PKA) 

activity in response to external and internal stimuli such as cellular calcium levels.  Its expression 
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has also been linked to progression of a range of cancers and resistance to cancer therapy (Lin 

et al., 2013). Therefore, it would be extremely interesting if PDE4D activity could be mediated 

by degradation of SGK3, thus providing a secondary mechanism of blocking resistance to cancer 

therapy.  

The PDE4D family of phosphodiesterases consists of at least 9 isoforms generated by alternative 

splicing of the PDE4D gene. All isoforms share a C-terminal catalytic domain and variable 

regulatory N terminal domains (Figure 4.5). The isoforms vary on the basis of their UCR1 and 

UCR2 domains, which are heavily decorated with posttranslational modifications and are 

believed to regulate activity of the enzyme. 

 

Figure 4.5 Domain structure of PDE4D isoforms. 
A. 11 PDE4D isoforms are transcribed by alternative splicing of the PDE4D gene. B-D. Domain structures 
of the PDE4D isoforms. Long isoforms contain full UCR1 regulatory domains. 

By Western Blot, the isoforms of PDE4D downregulated by SGK3-PROTAC1 treatment 

correspond to the <80 KDa ‘Long isoforms’ of PDE4D. In CAMA-1 cells, expression of these 

isoforms of PDE4D was undetectable by western blot, however the antibody did pick up a lower 

molecular weight band which may be a short isoform of PDE4D. This isoform was not sensitive 
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to SGK3-PROTAC1 or 14H treatment. Given that isoforms containing UCR1 are sensitive to SGK3-

PROTAC1 treatment, it would be interesting to explore in future work whether there is an 

interaction between SGK3 and the UCR1 domain of PDE4D. Additionally, the UCR1 domain 

contains RXRXXS/T Motifs predicted to be phosphorylated by Akt, however treatment with SGK3 

kinase inhibitor 14H had no impact on PDE4D levels. 

Further analysis in HEK293 cells revealed that PDE4D downregulation in response to SGK3-

PROTAC1 treatment is also observed in this cell line (Figure 4.6A). However, the effect is less 

robust than is observed in ZR-75-1 cells, which may be why the change was not observed in the 

previous mass spectrometry experiment (Section 3.9). Timecourse analysis of PDE4D expression 

in these cells showed a slight reduction in PDE4D expression within an hour, with 50% reduction 

in 4-8 h (Figure 4.6B). An important control is to determine whether this downregulation of 

PDE4D is occurring on-target through SGK3, or as an off-target effect of the compound. I 

therefore sought to use genetic approaches targeting SGK3 in order to validate PDE4D as a 

downstream effector of SGK3.  

I continued to study PDE4D levels downstream of SGK3 using an shRNA method to induce 

significant knockdown of SGK3. Using two different shRNA constructs, targeting the protein 

coding region (shSGK3#1) and 3’UTR (shSGK3#2), I induced significant downregulation of SGK3, 

and studied PDE4D expression in the presence of absence of SGK3-PROTAC1 treatment. I 

detected a reduction in PDE4D expression in response to the shRNA, and remaining PDE4D was 

less sensitive to SGK3-PROTAC1 treatment (Figure 4.6C). This preliminary data suggests that 

PDE4D expression, and therefore cAMP and PKA signalling may modulated by SGK3. 
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Figure 4.6 PDE4D expression is mediated downstream of SGK3 in HEK293 cells. 
A. SGK3-PROTAC1 treatment reduced PDE4D expression in HEK293 cells, but this was not replicated by 

cisSGK3-PROTAC1 or 14H treatment. B. Timecourse treatment with 0.3 M SGK3-PROTAC1 revealed 
reduced expression of PDE4D after 2 hours. C. SGK3 was knocked down by shRNA treatment, and 
transfected cells selected for by puromycin treatment. These cells were then treated for 8 h in the presence 
or absence of SGK3-PROTAC1, and protein levels of SGK3 and PDE4D measured by western blot. 
Quantification of PDE4D was performed using Image Studio Lite software. 

In order to confirm a mechanism of action through SGK3, I re-expressed in the shSGK3 cell lines 

either wildtype or kinase inactive (KI) shRNA resistant SGK3. Consistent with a kinase-

independent mechanism of action through SGK3, PDE4D expression was rescued by both 

wildtype and kinase-inactive SGK3 (Figure 4.7). In fact, KI SGK3 rescued to a greater extent than 

the wildtype. Again, treatment of these cells with the 14H inhibitor or inactive cisSGK3-PROTAC1 
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analogue had no impact on PDE4D levels, suggesting that PDE4D downregulation is a 

degradation-specific effect. 

 

Figure 4.7 Rescue of PDE4D expression by exogenous expression of SGK3 wildtype and kinase inactive. 
HEK293 cells were transfected for 24 h with shRNA against SGK3 or a scrambled control. After allowing a 
further 24 h for recovery, cells were transfected with shRNA resistant SGK3, either wildtype or the kinase 

inactive mutant. 24 h later, cells were treated for 8 h with SGK3-PROTAC1 (0.3 M), cisSGK3-PROTAC1 (0.3 

M) or 14H (1 M). Cells were lysed and subject to immunoblot analysis. 

As additional confirmation that reduction in PDE4D is SGK3-degradation dependent, I treated 

ZR-75-1 cells with a panel of inhibitors to probe different aspects of the pathway. First, I treated 

cells with an off-target PROTAC HaloPROTAC-E, described in more detail in chapter 5, and VHL 

inhibitor VH298 (Frost et al., 2016). These inhibitors showed no effect on PDE4D levels therefore 

this result is unlikely to be an effect of VHL inhibition or HIF1a stabilization as an effect of 

PROTAC treatment. I also treated cells with the SGK3 inhibitor 14h, the Class I PI3K inhibitor 
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GDC0941 or VPS34 inhibitor VSP34-IN1, alone or in combination. These inhibitors were used to 

block activity of SGK3 and determine that this effect is not due to loss of SGK3 kinase activity, 

however this may be the result of a scaffolding effect (Figure 4.8A). I also performed timecourse 

analysis of PDE4D expression in these cells upon SGK3-PROTAC1 treatment and determined that, 

similar to HEK293 cells, downregulation of PDE4D occurs within an hour of treatment, with 

expression reduced 50% within 6h. 

 

Figure 4.8 Mechanistic validation of PDE4D downregulation in ZR-75-1 cells. 

A. ZR-75-1 cells were treated for 6 h with SGK3-PROTAC1 (0.3 M), cisSGK3-PROTAC1 (0.3 M), 

HaloPROTAC-E (0.3 M), VH298 (50 M), 14H (1 M), GDC0941 (1 M) or VPS34IN1 (1 M). Cell lysates 
were subject to immunoblot analysis with the indicated antibodies, and protein levels quantified in Image 

Studio software. B. ZR-75-1 cells were treated for up to 12 h with SGK3-PROTAC1 (0.3 M), or for 12 h with 

cisSGK3-PROTAC1 (0.3 M). Cell lysates were subject to immunoblot analysis with the indicated antibodies 
and protein levels quantified in Image Studio software. 
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4.3.2 Mitochondrial proteins involved in the Electron Transport Chain are 

upregulated on SGK3-PROTAC1 treatment 

It was surprising on analysing the proteomic data to identify a global upregulation in 

mitochondrial proteins involved in oxidative phosphorylation. This effect was not observed in 

HEK293 cells, and no previous literature to our knowledge has connected SGK3 to mitochondria. 

Subsequent analysis by western blot revealed that this effect appears to be specific to the SGK3-

dependent cancer cell lines, as this result could be reproduced only in the ZR-75-1 and CAMA-1 

cells, and not HEK293 cells (Figure 4.9A and B) .Furthermore, analysis of a range of mitochondrial 

proteins revealed this upregulation is specific to members of the electron transport chain, as a 

selection of outer mitochondrial membrane (OMM) proteins were unaffected. Additionally, no 

increased cleaved of OPA-1 was observed on SGK3-PROTAC1 treated, therefore this effect was 

not due to an effect on mitochondrial membrane polarity (Figure 4.9A). 

 

Figure 4.9 SGK3-PROTAC1 treatment induces upregulation of the Electron Transport Chain in ZR-75-1 
cells. 

A. ZR-75-1 cells were treated for 6 h with DMSO, SGK3-PROTAC1 (0.3 M) or cisSGK3-PROTAC1 (0.3 M). 
Cells were lysed in urea buffer and subject to immunoblot analysis with the indicated antibodies. B. HEK293 

cells were treated for 6 h with DMSO, SGK3-PROTAC1 (0.3 M) cisSGK3-PROTAC1 (0.3 M) or SGK3 

inhibitor 14H (1 M ). Cells lysates were subject to immunoblot analysis with the indicated antibodies. ETC 
= proteins of the electron transport chain. OMM = proteins located on the outer mitochondrial membrane, 
not part of the electron transport chain. 
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Oxidative Phosphorylation (OxPhos), is a metabolic pathway in mitochondria which generates 

ATP by transport of electrons through complexes I, II, III and IV of the electron transport chain 

(ETC). This process allows protons to be pumped into the intermembrane space by complexes I, 

III and IV (Figure 4.10). This generates a high proton gradient across the inner mitochondrial 

membrane, causing protons to flow back to the mitochondrial matrix through complex V, ATP 

synthase, driving the synthesis of ATP. Interestingly, in my data set I observed upregulation of 

proteins involved in all 5 complexes, transcribed from both mtDNA and nuclear genes. 

 

Figure 4.10 Electron Transport Chain process. 

Electrons are transferred between ETC complexes I-IV, which also transport protons into the 
mitochondrial intermembrane space, generating a membrane potential. This membrane 
potential allows activation of ATP synthase, which produces ATP. 

As this mitochondrial effect was observed in response to SGK3-PROTAC1 treatment, but not the 

inactive cisSGK3-PROTAC1, it was important to verify that this response was occurring through 

SGK3, and not as an effect of impacting on the VHL pathway. Therefore, in a similar approach to 
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figure 4.8, I  treated CAMA-1 cells for 6 h with a range of compounds to delineate the pathways 

involved in this upregulation. 

SGK3-PROTAC1 and cisSGK3-PROTAC1 treatment confirmed upregulation as a degradation-

specific effect of SGK3-PROTAC1 treatment. I also treated cells with the off-target PROTAC 

(HaloPROTAC-E, 0.3 µM) or the VHL inhibitor VH298 (50 µM), to determine whether 

mitochondrial upregulation was a PROTAC/VHL-dependent effect in these cells. I also treated 

cells with the 14H inhibitor (1 µM) to determine whether SGK3 inhibition had the same effect. I 

additionally treated with Class IA PI3K inhibitor GDC0941 (0.5 µM) or Class III PI3K inhibitor 

VPS34IN1 (1 µM), alone or in combination, to switch off different components of the pathway. 

Western blot for a range of mitochondrial proteins confirmed a robust upregulation of Electron 

Transport Chain on treatment with SGK3-PROTAC1, but not cisSGK3-PROTAC1. I also did not 

observe an effect of treating with HaloPROTAC-E or VH298, therefore suggesting this is not an 

off-target effect through VHL. Finally, while SGK3 inhibition by 14H had very little effect, there 

was a variable effect observed with inhibition of PI3K Class I or Class III, with upregulation of 

COX6C, but apparent degradation of MT-CO1 and MT-ND6 (Figure 4.11).  
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Figure 4.11 Expression of the Electron Transport Chain is upregulated on treatment with SGK3-PROTAC1, 
but not other VHL-targeting compounds. 

CAMA-1 cells were treated for 6 h with SGK3-PROTAC1 (0.3 M), cisSGK3-PROTAC1 (0.3 M), 

HaloPROTAC-E (0.3 M), VH298 (50 M), 14H (1 M), GDC0941 (1 M) or VPS34IN1 (1 M). Cell lysates 
were analyzed by immunoblot with the indicated antibodies, and protein levels quantified in Image Studio 
software. 

In order to further determine response to SGK3-PROTAC1 treatment, I analyzed expression of 

these proteins in response to SGK3-PROTAC1 (0.3 µM) over a timecourse up to 12 hours. This 

revealed an immediate response within an hour of treatment of MT-CO1 and GHITM expression, 

which increased up to the 8 h timepoint. After 12 h, protein expression was maintained but did 

not increase further. In comparison, 12 h treatment with cisSGK3-PROTAC1 had no effect (Figure 

4.12). 



[130] 
 

 

 

Figure 4.12 Increased expression of ETC components is observed within 30 minutes, and maintained for 
12 hours. 

CAMA-1 cells were treated for up to 12 h with SGK3-PROTAC1 (0.3 M), or for 12 h with cisSGK3-PROTAC1 

(0.3 M). Cell lysates were subject to immunoblot analysis with the indicated antibodies and protein levels 
quantified in Image Studio software. 

The functional mechanism and impact of protein upregulation cannot be determined from the 

western blot data. The increase in protein levels could be due to hyperactivation of 

mitochondrial respiration, or inhibition of the pathway causing a compensatory increase in 

protein expression. In future work it would be important to determine what effect PROTAC 

treatment and ETC upregulation was having on mitochondrial respiration and metabolism. It has 

currently not been functionally characterized how SGK3 is impacting on mitochondrial proteins. 

As will be discussed further in section 4.5, SGK3 may be impacting on Nedd4L or another E3 

ligase to regulate protein degradation or may act at the mRNA level to influence protein 

translation. 
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4.4 Phosphoproteomic analysis in ZR-75-1 cells reveals potential pathways 

regulated by SGK3.  

In parallel to the proteomic analysis described above, I also performed phosphoproteomic 

analysis of SGK3-PROTAC1 and cisSGK3PROTAC1 (0.3 µM) in ZR-75-1 cells, in comparison to 

DMSO. Phosphoproteomic analysis was performed to potentially reveal novel substrates 

phosphorylated specifically by SGK3, and not Akt. After splitting the peptide digest for global 

proteomic analysis, peptides were enriched for phosphopeptides by TiO2 enrichment, before 

TMT labelling and analysis by LC-MS/MS on the Orbitrap Lumos Mass Spectrometer. Identified 

mass spectra were then analysed in Max Quant (version 1.6.6.0, (Tyanova, Temu and Cox, 2016)) 

before further analysis in Perseus (Version 1.6.2.3, (Tyanova et al., 2016)). 

A previous phosphoproteomic study in HEK293 cells recently discovered Syntaxin7 and 

Syntaxin12 as specific SGK3 substrates, which are not phosphorylated by Akt (Malik et al., 2019). 

The study performed 2 phosphoproteomic screens, one comparing HEK293 wildtype cells with 

an SGK3-KO cell line, and the other comparing phosphorylation of substrates after treatment 

with the SGK inhibitor 14H. It was interesting to determine whether these substrates were also 

found in ZR-75-1 cells, or if further substrates could be identified. 

The phosphoproteomic analysis identified 29,215 unique phosphosites, of which 18,629 sites 

were Class I sites, as defined by >0.75 probability. Of these 18,629 sites, 1,152 were significantly 

downregulated (According to Two tailed Student’s T Test, p<0.05, FC<=-1.5) in the SGK3-

PROTAC1 condition v cisSGK3-PROTAC, while 215 sites were significantly upregulated (p<0.05, 

FC>=1.5). In comparing the SGK3-PROTAC1 and DMSO conditions, 2,806 sites were 

downregulated, and 147 sites were upregulated in response to the PROTAC. These data are 

presented as a volcano plot in Figure 4.13 and 4.14 (Full data available in Appendix Table 4). 
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Figure 4.13 Phosphorylation sites modulated upon SGK3-PROTAC1 treatment in comparison to DMSO 
in ZR-75-1 cells. 

ZR-75-1 cells were treated for 6 h with SGK3-PROTAC1 (0.3 M) or DMSO, and cell lysates subject to 
quantitative mass spectrometry phosphoproteomic analysis after TiO2 enrichment for phosphorylated 
peptides. Data are presented as a volcano plot 

Although there was substantial overlap, there were differences between the altered sites in the 

SGK3-PROTAC1vcisSGK3-PROTAC1 and SGK3-PROTAC1vDMSO conditions. These differences are 

likely due to the SGK-targeting moiety of the compound still having an inhibitory effect on 

certain sites (Figure 4.14A). Therefore, an additional control to the study was to compare the 

negative control cisSGK3-PROTAC1 to DMSO treated samples, which revealed 396 

downregulated and 34 upregulated sites (Figure 4.14B). Therefore, the majority of the 

phosphoproteomic changes identified in response to SGK3-PROTAC1 are mediated through 

SGK3 degradation. 
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Figure 4.14 Phosphorylation changes in SGK3-PROTAC1/cisSGK3-PROTAC or cisSGK3-PROTAC1/DMSO. 

ZR-75-1 cells were treated for 6 h with SGK3-PROTAC1 (0.3 M) or DMSO, and cell lysates subject to 
quantitative mass spectrometry phosphoproteomic analysis after TiO2 enrichment for phosphorylated 
peptides. Data are presented as a volcano plot. 

I next analysed the phosphoproteomics data for phosphomotif sites enriched in the dataset 

(Figure 4.15). 86.8% of detected phosphopeptides were phosphorylated on a serine residue, 

with 12.2% pThr and 1% pTyr. These ratios are typical for phosphoproteomic analysis using these 

digestion and enrichment methods. I then analysed which phosphomotifs were enriched in the 

dataset, and whether any of these motifs, for example the RXRXXS/T motif shared by Akt and 

SGK3, were enriched in the downregulated phosphopeptides after SGK3-PROTAC1 treatment. I 

found a large enrichment of pSP sites both in the whole dataset and enriched upon SGK3-

PROTAC1 treatment. However, while RXRXXS/T sites composed a large proportion of the dataset, 

very few sites were observed to change upon SGK3-PROTAC1 treatment, discussed further in 

section 4.4.1. 
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Figure 4.15 Phosphosite analysis in ZR-75-1 phosphoproteomic dataset. 
A. Phosphosite analysis of entire dataset B. Motif analysis of phosphopeptides identified in the whole 
dataset. C. Motif analysis of phosphopeptides reduced upon SGK3-PROTAC1 treatment compared to 
cisSGK3-PROTAC1. 

4.4.1 Under basal conditions, much RXRXXS/T motif phosphorylation in ZR-75-1 

cells is not controlled by SGK3 

Under basal conditions, ZR-75-1 cells express relatively low levels of SGK3. Increased expression 

and activity is induced on 5 day treatment with PI3K-Akt pathway inhibitors. Instead, growth 

and signalling are primarily driven through the PI3K pathway via Akt. Therefore, any shared 

substrates of SGK3 and Akt were not expected to change. However, phosphoproteomic analysis 

may reveal specific substrates of SGK3 in ZR-75-1 cells. 

574 sites in total were identified lying within the RXRXXS/T motif. Of these, on comparison of 

SGK3-PROTAC1 to cisSGK3-PROTAC1 treatment, just 17 sites were detected to be significantly 

modulated (FC>1.5, p<0.05). 7 sites were upregulated in response to SGK3-PROTAC1 treatment, 

and 10 showed significant downregulation (Figure 4.16, 4.18). 
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Figure 4.16 RXRXXS/T motif changes upon SGK3-PROTAC1 treatment, compared to cisSGK3PROTAC1. 

ZR-75-1 cells were treated for 6 h with SGK3-PROTAC1 (0.3 M) or cisSGK3-PROTAC1 (0.3M), and cell 
lysates subject to quantitative mass spectrometry phosphoproteomic analysis after TiO2 enrichment for 
phosphorylated peptides. Data are presented as a volcano plot  

When comparing phosphoproteomic changes between the SGK3-PROTAC1 and DMSO treated 

conditions, slightly more significant phosphosite changes were identified (Figures 4.17,18). 

These sites were determined not to be significant when comparing the active and inactive 

PROTACs, like due to slight inhibitory effects of the inactive compound. Only 6 significantly 

modulated phosphosites were shared between the 2 analyses (Figure 4.18) Only 2 consensus 

motif sites were observed to be downregulated in the cisSGK3-PROTAC1 sample in comparison 

to DMSO treatment. This suggests that cisSGK3-PROTAC is not inhibiting the pathway (Figure 

4.18).  
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Figure 4.17 RXRXXS/T motif changes upon SGK3-PROTAC1 treatment, compared to DMSO. 

ZR-75-1 cells were treated for 6 h with SGK3-PROTAC1 (0.3 M) or DMSO, and cell lysates subject to 
quantitative mass spectrometry phosphoproteomic analysis after TiO2 enrichment for phosphorylated 
peptides. Data are presented as a volcano plot 

Of the significantly modulated sites detected, there were several overlaps with 

phosphoproteomic analysis of HEK293 cells either carrying an SGK3 KO or with SGK3 inhibited 

using 14H. These are indicated  on the heatmap with a red (SGK3 KO) or green (14H treatment) 

asterisk (Figure 4.18). 

STX7 is a member of the Syntaxin family of SNARE proteins and, along with STX12, was previously 

identified in our lab to be phosphorylated by SGK3 at S126, both in vitro and in cells, confirmed 

by phostag analysis. Recent data from the lab shows that phosphorylation of STX7 and STX12 at 

this site impacts on binding to their SNARE complex partners (VAMP4 and STX6 for STX12) and 

cellular localisation (Malik et al., 2019). Phosphorylation of these sites is specific to SGK3 over 

Akt, which is reported to favour large, hydrophobic residues after the phosphorylated Ser/Thr. 

Mutation of the +1 site of Syntaxin12 or Syntaxin7 sensitises the protein for Akt phosphorylation 
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in vitro (Malik et al., 2019). This represents a possible bioinformatic tool for delineating between 

SGK3 and Akt substrates. 

 

Figure 4.18 Heatmap of phosphorylation changes in RXRXXS/T sites across all 3 conditions. 
Phosphoproteomic changes between SGK3-PROTAC1, cisSGK3-PROTAC1 and DMSO treatment were 
analysed by two-tailed t-test. Heatmap demonstrates significant (FC>1.5, p<0.05) changes in RXRXXS/T 
sites in each comparison. The log2 values of each of the RXRXXS/T phosphosite is Z-score normalized and 
generated the heat map using Perseus software. 

 

Phosphorylation of WDR7 at Ser1121 was identified on 14H treatment in HEK293 cells. And 

ITSN1 is another protein identified both on SGK3 inhibition and knockout in HEK293 cells. Upon 
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further analysis, it was determined to be phosphorylated by both SGK3 and Akt  in vitro 

(Karapetsas et al., unpublished). 

The majority of modulated RXRXXS/T sites occur within potential 14-3-3 binding sites. Akt is 

known to modulate the activity of a range of proteins by phosphorylation on these sites, leading 

to protein sequestration in particular regions of the cell. As SGK3 is localised to endosomes, I 

analysed my data for any significantly modulated RXRXXpS/T sites on proteins annotated to have 

endosomal localisation. Apart from the previously discussed Syntaxins and Intersectin 1 (ITSN1), 

the only other significantly modulated protein was Melanophillin (MLPH). Melanophillin (also 

known as Synaptotagmin-like protein 2a) is an effector of Rab27-GTP and may regulate 

membrane trafficking. Therefore, the functional relevance of this site may be interesting to 

follow up in future work. 

Only relatively minor changes in phosphorylation were detected in all these sites, with a  

threshold of 1.5fold change used for detection. However, at the basal level in ZR-75-1 cells SGK3 

activity is very low. It would be important to repeat this assay under conditions inducing SGK3 

activity, such as prolonged PI3K inhibition, in order to observe more profound changes in SGK3 

substrates. 

4.4.2 CCNY-CDK16 – a putative pathway downstream of SGK3. 

Although I did not observe many significant changes in RXRXXS/T in these samples, there were 

several interesting phosphosites either up- or downregulated on SGK3-PROTAC1 treatment. 

Therefore, changes in these sites may, although not directly phosphorylated by SGK3, be 

downstream of a pathway regulated by SGK3. 

The most significant and clear change in the phosphoproteomic data is a dramatic reduction in 

phosphorylation of CDK16 at Ser138. This phosphorylation occurs in a proline-directed pSP site 

typically phosphorylated by Cyclin Dependent Kinases (CDKs) or Mitogen activated protein 

kinases (MAPKs). Although not a predicted SGK3 phosphorylation site, it is of particular interest 
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as previous phosphoproteomic screens in HEK293 cells by former PhD student Nazma Malik, 

identified an SGK3-dependent phosphosite in the upstream effector CCNY. Therefore, my data, 

identifying a modulated site downstream of CCNY using a separate approach, reinforces a 

possible role for SGK3 in this pathway. It remains doubtful, however, that CDK16 is a direct SGK3 

substrate. 

In addition, both this experiment and previously performed phosphoproteomic analyses 

studying SGK3 knockout or 14H treatment identified a high number of modulated pS/TP sites 

(Figure 4.19), suggesting that signalling involving Cyclin Dependent Kinases is somehow 

modulated downstream of SGK3 knockdown or inhibition. In comparison of the SGK3-PROTAC1 

and cisSGK3-PROTAC1 treated conditions, I detected 483 proline-directed Ser/Thr to be 

significantly modulated (FC>1.5, p<0.05). Of these, 57 sites were upregulated in response to 

SGK3-PROTAC1 treatment, and 426 were significantly downregulated. 

In order to further investigate changes in putative CDK substrates, I analysed the data for 

changes within the typical CDK substrate motif (pS/T-P-X-K/R) and the CDK16 substrate motif. It 

was determined that CDK16 has a very different preferred substrate motif than other CDKs, 

preferring basic residues at the +2 and +4 positions, and a small aliphatic residue instead of 

acidic residues at the +2 site. Additionally, CDK16 has a significant preference for Ser over Thr 

(pS-P-K/R- ϕ-K/R/H) (Shehata et al., 2012). From this analysis I found just 6 putative CDK16 sites 

modulated in response to SGK3-PROTAC1, and 66 sites within the canonical CDK motif.  
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Figure 4.19 pS/TP motif changes upon SGK3-PROTAC1 treatment, compared to cisSGK3PROTAC1. 

ZR-75-1 cells were treated for 6 h with SGK3-PROTAC1 (0.3 M) or cisSGK3-PROTAC1 (0.3 M), and cell 
lysates subject to quantitative mass spectrometry phosphoproteomic analysis after TiO2 enrichment for 
phosphorylated peptides. Data are presented as a volcano plot 

 

4.5 Discussion 

Study of SGK3 degradation in ZR-75-1 cells revealed several possible novel roles for SGK3. The 

detection of PDE4D downregulation downstream of SGK3 was a surprising finding and may 

represent an exciting undiscovered axis by which PI3K signalling and the PKA pathway can 

interact. Although this was initially detected in ZR-75-1 cells, this effect could also be confirmed 

in HEK293 cells and appears to be a ubiquitous mechanism of PDE4D regulation. Conversely, an 

unexpected upregulation of Electron Transport Chain components was discovered to be specific 

to the SGK3-dependent cancer cell lines, and very little effect was seen in HEK293. 
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Downregulation of PDE4D in response to SGK3-PROTAC1 

There are four subtypes of PDE4, namely PDE4A–PDE4D, which are highly specific for cAMP 

degradation but not for cGMP. PDE4 inhibition has been investigated as a potential therapeutic 

target in asthma, COPD and other inflammatory diseases (Li, Zuo and Tang, 2018). Inhibition of 

PDE4 results in accumulation of intracellular cAMP and activation of PKA, cyclic nucleotide gated 

ion channels and Epac1/2. Reactivation of the cAMP signaling pathway by PDE4D Inhibition has 

also been proposed as a novel druggable axis against tamoxifen resistance in ER+ breast cancer 

(Mishra et al., 2018). Therefore, regulation of PDE4D downstream of SGK3 degradation is 

potentially an important component to this signaling axis in chemo-resistant breast cancer. 

It is currently unclear from this data how PDE4D expression is reduced in response to SGK3-

PROTAC1. PDE4D activity is spatially and temporally controlled by both extensive post-

translational modification, and localization to ‘cAMP signalosomes’ in highly specific regions of 

the cell. Both methods of regulation are discussed regarding SGK3 degradation below. 

It is possible that PDE4D stability is altered in some way by SGK3 degradation. A phosphodegron 

motif has been identified in the C terminus of PDE4D, leading to its ubiquitylation and 

degradation by the proteasome. This dual phosphorylation motif is regulated by CK1 and GSK3β. 

The motif is protected from phosphorylation by Calcineurin (Zhu et al., 2010). Protein levels of 

PDE4D were not effective by SGK3 inhibition, and the phosphodegron motif lies outside of the 

RxRxxS/T SGK3 substrate motif, so it is unlikely to be a direct SGK3 substrate.  However, SGK3 

may act upstream on this motif, or alternatively act on another region of the protein. PDE4D 

expression can be induced in response to cAMP by cAMP response elements (CREs) in its gene 

promoter (Kim et al., 2019). It has not been tested whether alterations in PDE4D expression are 

as a result of transcriptional/translation regulation, however as expression is reduced within 2 

hours this is unlikely. 

  



[142] 
 

 

 
 
Figure 4.20 Domain structure of PDE4D and known regulatory posttranslational modification sites. 
From (Mika and Conti, 2016) 

The PDE4D gene generates at least 9 isoforms through alternative splicing. All isoforms contain 

a shared C terminal catalytic domain and differ in their variable N terminus and splicing of the 

regulatory UCR1 and UCR2 domains. It was interesting to observe that only longer forms of 

PDE4D containing UCR1 were downregulated in response to SGK3-PROTAC1 treatment. The 

UCR1 and UCR2 domains of PDE4D have been proposed to be regulatory domains controlling 

PDE4D activity. UCR2 regulates the enzyme activity by opening and closing over the active site, 

controlling access of cAMP (Mika and Conti, 2016). UCR1 also forms contacts with UCR2 to 

modulate this regulation. UCR1 has also been proposed to be required for dimerization of PDE4D 

isoforms (Richter and Conti, 2002, 2004). Interaction of SGK3 with this UCR1 domain may 

therefore impact on stability, reveal a degron motif or otherwise trigger downregulation of 

PDE4D. UCR1 is also extensively decorated by posttranslational modifications, modulating the 

activity of PDE4D, as shown in Figure 4.20 above. For example, phosphorylation of S54 by PKA 

increases activity by 60% in a presumed negative feedback loop (Sette and Conti, 1996; 

Hoffmann et al., 1998). 

Interrogation of the phosphoproteomic data revealed no global changes in PKA substrate 

phosphorylation, suggesting global cAMP signaling is not impacted by SGK3-PROTAC1 treatment. 

However, adaptor proteins such as RACK1, AKAPs and SH3 domain-containing proteins are 

interacting modules which affect the intracellular localization and function of PDE4 isoforms. 
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This results in highly localized modulation of cAMP signaling through ‘cAMP signalosomes’ 

through combination with cAMP effectors such as PKA and Epac1/2 (Maurice et al., 2014). This 

results in spatially and functionally distinct pools of cAMP. Therefore, reduction in PDE4D may 

result in modulation of very localized cAMP levels, not identified by a global phosphoproteomic 

approach. 

PDE4D has been found in T-cells to be recruited to sites of PI3K activation through formation of 

a complex with Akt and B-arrestin (Bjørgo et al., 2010). Co-recruitment to PIP3 sites via the PH 

domain of Akt implicated PDE4D in shutting off T-cell activation signals. Similarly, in Cardiac Cells, 

PDE4D was recruited to sites of PTEN inactivation, and was involved in inhibiting calcium 

overload and mPTP opening upon cardiac ischemia, inhibiting necrotic cell death (Zheng et al., 

2014). No interaction has previously been demonstrated between SGK3 and PDEs. The 

interaction domain of Akt with B-arrestin was mapped to 429-441 of Akt and, while the majority 

of this sequence is well conserved between Akt and SGK3, the critical Tyrosine residue for 

binding in Akt is an asparagine in SGK3 (Bjørgo et al., 2010). While the Akt complex forms via B-

arrestin, phosphodiesterases are known to form complexes with several adaptors, therefore 

complex formation may occur via an adaptor other than B-arrestin, therefore not requiring this 

binding site. In future work, it would be interesting to determine whether SGK3 is forming a 

stable complex in cells with PDE4D, and whether downregulation of PDE4D is occurring through 

collateral ubiquitylation or destabilization due to loss of the complex.   

Upregulation of electron transport chain components in response to SGK3-PROTAC1 

While downregulation of PDE4D was reproducible across several cell lines, it was interesting that 

upregulation of mitochondria proteins was observed as a cancer cell line specific effect of SGK3-

PROTAC1 treatment and could not be reproduced in HEK293 cells. This suggests a mitochondrial 

sensitivity of these ER+ breast cancer cell lines to degradation of SGK3. 
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Mitochondria are energy hubs to produce the majority of the cell’s ATP. They also have roles in 

regulating cellular calcium, apoptosis and synthesis of macromolecules. Increased glucose 

uptake and metabolism, coupled to mitochondrial dysfunction, has been traditionally 

considered a hallmark of the Warburg effect in cancer. However, the role of mitochondrial 

metabolism in cancer is much more complex, with many cancers in fact becoming 

mitochondrially driven with a high reliance on oxidative phosphorylation (Solaini, Sgarbi and 

Baracca, 2011). 

Mitochondrial function is known to be regulated downstream of PI3K. Akt phosphorylates Bcl2-

family proteins in order to block the release of cytochrome c from mitochondria, inhibiting 

apoptosis (Datta et al., 1997, 2000; del Peso et al., 1997). As described above, Akt may also 

mediate necrotic cell death through regulation of mPTP opening via PDE4D control of cellular 

calcium (Fujio et al., 2000; Murphy and Steenbergen, 2008). SGK1 has also recently been 

proposed to modulate mPTP opening through an interaction with mPTP and VDAC1, in a role 

not affected by PI3K inhibition and therefore possible a kinase-independent role of the SGKs 

(Zhou et al., 2019). Further, inhibition of SGK1 was coupled with vulnerability to redox 

dysregulation. After inhibition or downregulation of SGK1, the authors found an increase in ROS 

and cytotoxicity upon H2O2 stress, mediated through NRF2 target gene expression (Wang et al., 

2019). 

An increased expression of ETC genes, causing increased mitochondrial respiration, has been 

identified as a mechanism of resistance to BRAF inhibitors (Baenke et al., 2016). However, 

increased expression of mitochondrial enzymes is observed within 30-60 minutes of SGK3-

PROTAC1 treatment and therefore this effect is unlikely to be translational. Additionally, OxPhos 

proteins upregulated are transcribed from both mitochondrial and nuclear genes. Inhibition of 

complex 1 by Metformin has been shown to be anti-tumorigenic, and certain chemoresistant 
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cancers driven through mitochondrial metabolism become sensitized to combination treatment 

with metformin (Denise et al., 2015; Vellinga et al., 2015). 

 

Crosstalk between PDE4D and Mitochondrial Metabolism 

It is currently unclear whether the downregulation of PDE4D and the upregulation of ETC in 

cancer cell lines are linked. CAMA-1 cells presented the most mitochondrial sensitivity to SGK3-

PROTAC1 treatment; however they lack the longer PDE4D isoforms downregulated upon SGK3 

degradation. 

cAMP is not a freely diffusible molecule within the cytosol, and cAMP signalling is therefore 

compartmentalised in the cell under the regulation of adenylyl cyclases (ACs) and 

phosphodiesterases such as PDE4D. PKA is one of a variety of kinases which translocate to 

mitochondria to modulate mitochondrial function downstream of cAMP signalling. AKAPs 

relocate endogenous PKA and cAMP modifiers such as phosphodiesterases to distinct 

subcellular compartments to strategically enhance cAMP regulated signalling pathways. PKA can 

be recruited to mitochondria by associating with 3 different AKAPS to regulate mitochondrial 

dynamics, structures and respiration. AKAP1 splice variants import and dock PKA to the outer 

mitochondrial membrane, and are also involved in transport of nuclear-encoded mRNA 

encoding mitochondrial proteins (Ginsberg et al., 2003). Mitochondrial cAMP-PKA signalling has 

been shown to impact on OxPhos through phosphorylation of ETC components in complexes I, 

IV and V, impacting on both activity and protein stability. Therefore, via this mechanism 

downregulation of PDE4D may have an impact of PKA-controlled regulation of mitochondrial 

metabolism. 

One of the first described mitochondrial targets of PKA is the nuclear-encoded 18-kDa subunit 

of complex I (NDUFS4) (Papa, 2002). Phosphorylation by PKA at S173 facilitates its interaction 
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with Hsp70 and its import into the mitochondria (Papa, 2002; De Rasmo et al., 2008). cAMP-PKA 

signalling also modulates the stability of complex I by modulating degradation of its subunits by 

mitochondrial proteases. Inhibition of the mitochondrial adenylyl cyclase sAC, reducing cAMP 

signal within mitochondria, induces a decrease of complex I subunits (De Rasmo et al., 2015). 

cAMP signalling triggered either in the cytosol or in the mitochondria both impact on complex 

IV stability and activity. During hypoxia, PKA phosphorylates complex IV subunits I, IV and Vb, 

inducing their degradation and decreasing complex IV activity (Prabu et al., 2006; Shinzawa-Itoh 

et al., 2007). Additionally, an increase in cAMP signalling induces tyrosine phosphorylation of 

complex IV subunit I (Lee et al., 2005), inhibiting the complex’s enzymatic activity. This effect 

has also been seen with the PDE4 inhibitor theophylline (Lee et al., 2005). Finally, complex V can 

be modulated by PKA through phosphorylation of ATPase Inhibitory Factor AIF1 on Ser39, 

preventing binding to complex V and relieving inhibition of ATP synthase (García-Bermúdez et 

al., 2015). Again, intramitochondrial cAMP signalling modulates complex V via mitochondrial 

proteases, as a depletion of cAMP in mitochondria decreases levels of complex V connecting 

subunits and complex V oligomerisation (De Rasmo et al., 2016). The above describe a range of 

mechanisms by which a reduction of cellular or mitochondrial cAMP downstream of 

phosphodiesterases may impact on the stability and activity of ETC components. In particularly, 

the upregulation of ETC protein expression in response to SGK3-PROTAC1 treatment may lie 

downstream of inhibiting mitochondrial proteases against complexes I, IV and V. 

Phosphoproteomic changes upon SGK3-PROTAC1 treatment 

Complementary phosphoproteomic analysis revealed very few changes in RxRxxS/T motif 

phosphorylation sites. This was expected, as PI3K signaling through Akt is the primary driver of 

growth in these cells, and SGK3 is expressed at lower levels under basal conditions. However, 

identification of sites previously identified in HEK293 cells confirmed on target activity of the 

PROTAC and the potential to use this approach in SGK3-induced conditions to detect a range of 
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SGK3-dependent substrates. Of the modulated sites, many lie within 14-3-3 binding motifs. Akt 

phosphorylation of many of its substrates provides docking sites for binding of 14-3-3 proteins 

(Chen et al., 2003), therefore phosphorylation of these sites by SGK3 may well provide docking 

sties for 14-3-3 proteins and modulate protein localization and function. 

However, despite a relatively low number of changes in RxRxxS/T sites, many proteins did 

appear to be modulated at alternative sites. The reason for these changes is currently unclear. 

It is possible that degradation of SGK3 is regulating downstream kinases or phosphatases. No 

remarkable changes in the protein level or phosphorylation status of any protein 

kinases/phosphatases were detected in the proteomics, however a mild (20-25%) decrease was 

observed in the cyclin dependent kinases CDK18 and CDK17, and the CDK inhibitor CDKN1A. 

Additionally, such a large shift in mitochondrial proteins may result in modulation of further 

metabolic enzymes. Alternatively, these sites could be due to a currently unidentified off-target 

hit of SGK3-PROTAC1, or an unidentified substrate motif which can be phosphorylated by SGK3. 

A large number of modulated (S/T)P sites were also identified in previous phosphoproteomic 

screens (Malik et al., 2019), therefore increasing confidence that these alterations are an on-

target effect. 

 p(S/T)P sites were the most enriched throughout the sample set, representing 28% of the 

dataset and 23% of modulated sites. The p(S/T)P motif is a common substrate motif for many 

kinases, including the mitogen activated protein kinases (MAPKs) and cyclin dependent kinases 

(CDKs). Phosphorylation of many proteins is under the control of CDKs throughout the cell cycle, 

therefore this broad change in p(S/T)P sites may be a result of an impact on progress through 

the cell cycle in response to SGK3-PROTAC1 (Swaffer et al., 2016). 

In particular, the most downregulated phosphosite in response to SGK3-PROTAC1 treatment 

was phosphorylation of CDK16 and Ser138, which lies within a pSP site. Previous work from PhD 

student Nazma Malik and Postdoctoral researcher Athanasios Karapetsas has investigated the 
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interaction between CDK16 and Cyclin Y (CCNY). CCNY phosphorylation at Ser326 was identified 

in HEK293 cells as being reduced downstream of 14H treatment (Malik et al., 2019). Their work 

has demonstrated that, in vitro, both SGK3 and Akt can phosphorylate CCNY at Ser326. Ser326 

lies within an RXRXXS/T site, and alongside Ser100 phosphorylation leads to 14-3-3 binding of 

CCNY. 14-3-3 binding is critical for CCNY interaction with CDK16 and its subsequent activation. 

(Ou et al., 2010; Mikolcevic et al., 2012; Shehata et al., 2012, 2015), (Karapetsas, unpublished) 

(Figure 4.22). Follow-up analysis in cells, however, revealed some possible functional 

redundancy, as the CCNY-CDK16 interaction was still present in SGK3 knockout cells, and 

treatment with the SGK3-PROTAC1 compound had only a partial effect. 

Phosphorylation of CDK16 at Ser138 has not been studied in the literature, and the functional 

relevance of this site is not known. It is possible that the site is an autophosphorylation site upon 

CDK16 activation, or it is phosphorylated by an alternative upstream kinase. It would be 

interesting in future work to determine the kinase of this site, as it is unlikely to be mediated by 

SGK3 itself, and whether this site has any functional relevance for the activation of CDK16. 

 

Figure 4.22 Current Model of CDK16 activation downstream of SGK3. Phosphorylation of Cyclin 
Y (CCNY) at S326 promotes binding and activation of CDK16. Ser326 phosphorylation occurs in 
an RXRXXS/T motif site and can be phosphorylated by SGK3 and potentially other kinases. 
Phosphorylation of CDK16 at Ser138 may be a result of autophosphorylation or an alternative 
upstream kinase. 

Conclusion 

Global proteomic and phosphoproteomic analysis of SGK3-PROTAC1 treatment in ZR-75-1 cells 

revealed several potential new roles for SGK3 in cancer metabolism. Downregulation of PDE4D 

upon SGK3 degradation implicates the kinase in modulation of the cAMP-PKA pathway. This may 
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in turn have a role in modulating the stability of electron transport chain components and other 

mitochondrial functions. As chemoresistance in cancer has been associated with mitochondrial 

function, knockout of SGK3 may target mTORC1 signalling and mitochondrial metabolism 

simultaneously, offering a therapeutic benefit over kinase inhibition alone. In further work, it 

would be important to further validate the mechanisms of PDE4D downregulation and ETC 

upregulation and determine whether these two processes are linked via SGK3. 

Phosphoproteomic analysis revealed very few changes in SGK3 substrate RxRxxS/T motif sites. 

This was likely due to the activity of Akt in these cells in combination with relatively low 

expression of SGK3 in the unstimulated conditions. In future work this experiment could be 

improved by inducing SGK3 expression and activity with prolonged inhibition of PI3K or Akt, as 

described in Chapter 3. However, the findings of previously identified substrates STX7 and ITSN1 

and WDR7 confirmed the success of SGK3-PROTAC1 in downregulating SGK3 substrate 

phosphorylation. Further the  confirmation of these substrates in a second cell line increases 

confidence in these SGK3 substrates. In addition, phosphorylation of CDK16 at S138 was the 

most significantly downregulated phosphosite in the experiment, and although this isn’t an SGK3 

substrate motif site it reinforces a role for SGK3 in this pathway. 
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5. HaloPROTACs – a generalisable, targeted protein 

degradation approach 

5.1 Targeting of proteins with no validated binding ligands 

In the previous two chapters of this thesis I developed and validated SGK3-PROTAC1 and used 

this compound to directly target SGK3 for degradation. This compound was developed using 

known inhibitors of the SGK isoforms. PROTAC design, however, requires a ligand capable of 

interacting with the desired target, and high–affinity ligands are lacking for the vast majority of 

human proteins. In addition, detailed structural and biophysical analysis of the interaction 

between ligand and target protein is key for rational design of PROTAC compounds. In the case 

of SGK3, although we had known inhibitors of the kinase domain (Halland et al., 2015), we 

currently lack information on protein structure, and how these ligands are binding. 

In order to circumvent these issues, alternative strategies have been developed that involve 

attaching various tags to target proteins, to enable these to be targeted by a compound capable 

of inducing interaction with an E3 ligase machinery. One of the first approaches made use of the 

plant E3 ligase TIR1, exogenously expressed in non–plant cells, to trigger ubiquitylation and 

degradation of target proteins fused to an Auxin–Inducible Degron (AID) tag on addition of the 

plant hormone Auxin (Nishimura et al., 2009; Natsume et al., 2016; Nora et al., 2017). A more 

recent approach exploits the ability of a phthalimide–based chimeric compound called dTAG-13 

to bind proteins fused with a F31V mutant FKBP12 tag and induce degradation via the cereblon 

(CRBN) E3 ligase (Erb et al., 2017; Weintraub et al., 2017; Brunetti et al., 2018; Nabet et al., 

2018). CRBN is endogenously expressed in most mammalian cells and therefore does not need 

to be overexpressed. Other methods include deGradFP and AdPROM, which rely on the 

overexpression of the von Hippel–Lindau (VHL) E3 ligase fused to a GFP binding nanobody 

capable of inducing degradation of GFP–tagged proteins (Caussinus, Kanca and Affolter, 2012; 

Caussinus and Affolter, 2016; Fulcher et al., 2016), or the Trim–AWAY method that enables the 

TRIM21 E3 ligase to be recruited to targets via a specific antibody (Clift et al., 2018). 
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Another example of this is the recently published HaloPROTAC approach (Buckley et al., 2015). 

HaloPROTAC compounds contain a chloroalkane moiety conjugated to a ligand of an E3 ligase, 

typically VHL or cIAP1 (Buckley et al., 2015; Tomoshige, Hashimoto and Ishikawa, 2016). These 

compounds are then targeted toward a modified bacterial dehalogenase HaloTag7 fusion to the 

target protein (Los et al., 2008). HaloTag7 will covalently bind to the chloroalkane motif, and the 

fusion protein targeted for ubiquitylation and degradation (Fig 5.1). 

 

Figure 5.1 Mechanism of action of HaloPROTACs 
A. PROTACs are bivalent molecules, which bind to both the target protein of interest and an E3 ligase. 
These compounds function by recruiting the E3 ligase to the target protein, triggering polyubiquitylation 
and proteasomal degradation. B. HaloPROTAC compounds contain a chloroalkane motif which can be 
covalently targeted by HaloTag7. These compounds therefore target HaloTag7 fusion proteins for 
proteasomal degradation. 

At the time starting this study, previous HaloPROTAC studies had only been applied to 

exogenously overexpressed proteins, limiting their application to endogenous systems. In 

addition, the use of this method to degrade subcellularly localized proteins remains 

understudied. I therefore aimed to combine the HaloPROTAC approach with CRISPR/Cas9 to 

target endogenously labelled SGK3-Halo, and its upstream regulator Halo-VPS34. This project 

combined generation of novel HaloPROTAC compounds using previously described optimised 
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VHL ligands (Galdeano et al., 2014; Frost et al., 2016) with CRISPR/Cas9 to target and manipulate 

the endogenous hVPS34-SGK3 signalling axis. 

5.2 Generation of SGK3-Halo and Halo-VPS34 KI cell lines by CRISPR/Cas9 

In order to generate cell lines which could be targeted using the HaloPROTAC compounds, I first 

used CRISPR/Cas9 technology to endogenously knock in the HaloTag7 protein to the C-terminus 

of SGK3, or the N-terminus of VPS34 in HEK293 cells. The HEK293 cell line was chosen as these 

cells have previously been extensively used to study the hVPS34-SGK3 pathway (Malik et al., 

2018), and they are readily amenable to transfection and genetic alteration by CRISPR/Cas9, 

making them an ideal model cell line. The C-terminus of SGK3 was chosen as the protein contains 

an N-terminal Phox-homology (PX) domain critical for its localisation and activation, and SGK3 

has previously tolerated well a GFP tag on its C terminus (Malik et al., 2018). Similarly, VPS34 

has previously been successfully tagged on its N terminus with no impact on activity or 

localisation (Fulcher et al., 2016). VPS34 has previously been the subject of targeted degradation 

through the AdPROM system, which targets an exogenously overexpressed E3 ligase to a target 

protein via a fused nanobody. While this approach successfully degraded ~80% GFP-VPS34, the 

impact on SGK3 activity was only slight, although significant (Fulcher et al., 2016; Malik et al., 

2018). Further, the AdPROM system described was expressed through viral transfection, and 

could be inducible only if expressed under a tetracycline-inducible promoter (Fulcher et al., 

2016). 

Genome editing with CRISPR/Cas9 

The clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated 

protein 9 (Cas9) system evolved as a bacterial defence mechanism against phage infection and 

plasmid transfer. In recent years it has been repurposed in molecular biology as a RNA-guided 

DNA targeting platform for transcriptional perturbation, epigenetic modulation, genome 

imaging and, most commonly, genome editing (Jiang and Doudna, 2017). 
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For use in genome editing, the endonuclease enzyme Cas9 is targeted to a genomic target by a 

guide RNA (sgRNA). This sgRNA consists of a 20-nucleotide guide sequence within a scaffold 

which will bind to the Cas9 enzyme. The sgRNA guide sequence pairs with a DNA target directly 

upstream of a critical 5’-NGG adjacent motif (PAM site). The Cas9 enzyme then mediates a 

double strand break (DSB) ~3bp upstream of the PAM site (Ran, Hsu, Wright, et al., 2013). 

Following a DSB, the cell’s DNA repair machinery will repair the break by one of 2 mechanisms, 

non-homologous end joining (NHEJ) or homology driven repair (HDR). The more common 

mechanism of DNA repair is through NHEJ, which often leaves insertion/deletion mutations 

(indels) in the genome. Such indels in a coding exon can result in frameshift mutations and 

premature stop codons, resulting in gene knockouts if targeted toward the start of the gene 

(Perez et al., 2008). Alternatively, if a repair template is available, DNA repair may occur through 

HDR, although at a much lower frequency than NHEJ. HDR can be utilised to introduce defined 

modifications at the site of double strange breaks, for example specific point mutations, 

insertions, or addition of affinity tags such as GFP, RFP or HaloTag7. Repair templates consist of 

the desired DNA insertion flanked by short (~150bp) homology arms for integration into the 

target locus. Knock-in mutations mediated by CRISPR/Cas9 through HDR occur much less 

frequently than NHEJ knockout mutations, and HDR is generally only active in dividing cells 

(Saleh-Gohari and Helleday, 2004). Efficiency can also vary depending on cell type, and the 

genomic locus and template. 

 



[154] 
 

 

 

Figure 5.2 Mechanism of CRISPR/Cas9 mediated genome editing. 
A. The Cas9 endonuclease enzyme is targeted to the desired genomic locus by a guide RNA (sgRNA). This 
sgRNA targets a 20nt sequence upstream of a PAM site, targeted by the Cas9 enzyme. Cas9 mediates a 
double strand break (DSB). B. Cas9-mediated DSB is repaired by either non-homologous end joining (NHEJ) 
or homology driven repair (HDR). These two repair mechanisms can be utilized to generate knock-out or 
knock-in mutations respectively. For HDR, a repair template is also expressed with homology arms to 
target the desired genomic locus. From (Ran, Hsu, Wright, et al., 2013) 

A common problem in CRISPR-Cas9 genome editing is the possibility of off-target genomic 

alteration by the Cas9 enzyme. In order the reduce this risk, in this study the D10A ‘Nickase’ 

form of Cas9 was utilised (Ran, Hsu, Lin, et al., 2013). The D10A mutation in the active site of 

Cas9 removes the ability of the enzyme to form double strand breaks in DNA, instead generating 

single strand ‘nicks’. Therefore combination of this form of Cas9 with 2 sgRNAs leads to more 

specific targeting of the desired locus (Ran, Hsu, Lin, et al., 2013). 

Despite improvements in the approach, knock-in (KI) efficiency by the CRISPR/Cas9 method and 

HDR is still fairly low (1-2%). Therefore, when generating SGK3-Halo KI clones, an IRES2-eGFP 

cassette was included in the SGK3-Halo Donor cDNA to increase the likelihood of selecting 

positive clones. The IRES2-GFP cassette encodes GFP expression downstream of a second start 

site, therefore successfully edited clones express GFP without tagging the GFP protein on to 



[155] 
 

 

SGK3. Hence, cells could be positively selected for GFP expression when performing single cell 

sorting. For Halo-VPS34, the chosen sgRNAs have previously been shown to generate a 

surprisingly high KI efficiency (Fulcher et al., 2016), therefore these cells were selected by single 

cell sorting alone.  

 

Figure 5.3 Generation of HaloTag7 endogenous fusion proteins by CRISPR/Cas9. 
HEK293 cells were transfected with the D10A Nickase form of Cas9 and 2 sgRNAs and a HaloTag7 fusion 
donor targeted to each locus. The SGK3–Halo donor also included an IRES2–eGFP cassette, allowing 
successfully integrated cells to be selected for through FACs sorting for GFP positive cells. The Halo–VPS34 
donor contained HaloTag7 only. Cells were selected through single cell sorting. Clones were selected and 
lysates screened by Immunoblot analysis, using antibodies against the endogenous proteins and a mouse 
monoclonal antibody against HaloTag7. The clones were characterized by DNA sequencing. Clone wt (wild 
type) refers to parental HEK293 cells, and ko (knockout) refers to previously described SGK3–knockout cell 
line (Malik et al., 2018) 

To confirm successful, in frame integration of HaloTag7 to the desired genetic locus, the selected 

clones were analysed by DNA sequencing analysis. HEK293 cells are pseudotriploid (Bylund et 

al., 2004), and carry three copies of SGK3 and VPS34 (HEK293genome.org).Halo-VPS34 clone 56 

was selected as a homozygous knock-in cell line. SGK3-Halo clone 2 was selected for the SGK3 

studies. This cell line contained 2 alleles with in-frame insertions of the HaloTag7 protein to the 

SGK3 C terminus, and one large insertion, causing a frameshift and early truncation two residues 
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3’ of the critical hydrophobic motif activation residue Ser486, and is therefore predicted to 

produce an inactive protein.  

Addition of HaloTag7 does not affect localisation or complex formation of SGK3 and VPS34 

SGK3 and VPS34 are both localised to endosomal structures. SGK3 binds to PtdIns(3)P via its PX-

domain, and VPS34 localises by forming a complex with VPS15, a PH-domain containing protein, 

which colocalises to the endosome. It was important to consider, before using these cell lines 

for further biological characterisation, whether the addition of a large 33kDa tag to these 

proteins would affect their localisation or complex formation. The colocalization of SGK3-Halo 

and Halo-VPS34 to early endosomal marker Rab5 was analysed by immunofluorescence, in 

comparison to wildtype HEK293 cells. These cells were seeded onto coverslips and stained with 

the HaloTag7-TMR ligand, which covalently couples the TMR fluorophore to HaloTag7 via a 

chloroalkane motif. This allows easy visualisation of HaloTag7 fusion proteins by fixed 

immunofluorescence or live cell imaging. Cells were then fixed with 4% Paraformaldehyde (PFA) 

and co-stained for the endosomal marker Rab5 (Figure 5.4). It was observed that both Halo-

VPS34 and SGK3-Halo colocalised to Rab5-positive endosomal structures. As a negative control, 

analysis of HEK293 wildtype cells revealed no endosomal staining. On treatment with VPS34-

IN1, which inhibits VPS34 and reduces endosomal PtdIns(3)P, SGK3-Halo became diffuse 

throughout the cell, as previously observed (Bago et al., 2014; Malik et al., 2018). Conversely, 

VPS34-IN1 treatment caused Halo-VPS34 to become more punctate on endosomal structures. 

This has not previously been observed and may give some further information on the 

mechanism of VPS34 inhibition and activity. 
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Figure 5.4 Endosomal localisation of SGK3 and VPS34 is unaffected by HaloTag7 fusion. 
HEK293 wildtype (A), SGK3-Halo (B) and Halo-VPS34 (C) cells were treated with either DMSO or the VPS34 inhibitor VPS34-IN1. Cells were stained for HaloTag7 (TMR-594) 
and the early endosomal marker Rab5. Images are representative of n=10 images.
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VPS34 forms a stable complex with VPS15 and Beclin1, either in complex I with UVRAG on Rab5-

postive endosomes, or complex II with ATG14 on Rab7 positive endosomes. To ensure the 

stability of this complex was not affected by the tag on VPS34, I performed immunoprecipitation 

of VPS34 from wildtype and Halo-VPS34 KI HEK293 cells, and analysed coimmunoprecipitation 

of complex members by immunoblot. I observed that coimmunoprecipitation of VPS15, Beclin1, 

ATG14 and UVRAG was unchanged between the wildtype and KI cell line, suggesting the 

complex was unaffected 

 

 

Figure 5.5 VPS34 complex stability is not affected by N-terminal HaloTag7 fusion. 
Endogenous VPS34 was immunoprecipitated from HEK293 wildtype or Halo-VPS34 KI cells. Co-
immunoprecipitation of complex members was detected by western blot. 

Addition of HaloTag7 does not affect PtdIns(3)P production by VPS34 

The critical role of VPS34 is to produce PtdIns(3)P from PtdIns on endosomal membranes. It was 

recently reported that this production of PtdIns(3)P was mediated in response to growth factor 

stimulation (Malik et al., 2018). To ensure the activity of VPS34 was unaffected by addition of 
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HaloTag7, I compared and quantified the levels of PtdIns(3)P, measured by a previously 

published fluorescent probe binding PtdIns(3) via a recombinant 2XFYVE peptide from HRS, 

conjugated to an AlexaFluor-593 fluorophore. Again, in these cells, I observed no defect in 

PtdIns(3)P production, and the staining was sensitive to VPS34 inhibition by VPS34-IN1. 

 

Figure 5.6 VPS34-mediated production of PtdIns(3)P is unaffected by HaloTag7 fusion. 
HEK293 wildtype (A) and HaloVPS34 (B) cells were stimulated with IGF1, after treatment with or without 
the Class I PI3K inhibitor GDC0941 or VPS34 inhibitor VPS34IN1. PtdIns(3)P production in these cells was 
measured with the 2XFYVE-AlexaFlour594 probe, and colocalised to the early endosomal marker Rab5. C. 
Quantification of PtdIns(3)P staining intensity/cell from n=10 images. 



[160] 
 

 

 

SGK3-Halo cells have similar levels of NDRG1 phosphorylation to wildtype, and 

phosphorylation is sensitive to SGK3 inhibition. 

 In order to determine potential effects of the HaloTag7 fusion on SGK3 activity, I analyzed 

phosphorylation of the well characterized SGK3 substrate NDRG1 at Thr346 (Malik et al., 2018) 

in HEK293 wildtype, SGK3-KO and SGK-Halo KI cells. NDRG1 is also phosphorylated at this site 

by the Akt kinases, therefore I assessed phosphorylation upon treatment with a selective Akt 

inhibitor (3 M AZD5363 (Davies et al., 2012)) in the presence or absence of a selective SGK3 

inhibitor (1 M 14H (Halland et al., 2015)). This assay revealed that SGK3 mediated 

phosphorylation of NDRG1 in wild type and SGK3–Halo cells was similar and higher than 

observed in SGK3 knock–out cells (Fig 5.7). Taken together, this evidence suggested that the 

addition of HaloTag7 does not alter the function and activity of SGK3 within the cell. 
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Figure 5.7 NDRG1 phosphorylation is equivalent in HEK293 wildtype and SGK3-Halo KI cells. 
HEK293 wildtype, SGK3 KO and SGK3-Halo KI cells were treated with SGK inhibitor 14H or AZD5363 and 
SGK3 substrate NDRG1 phosphorylation measured by Western blot. Quantification of NDRG1 
phosphorylation at Thr346 is shown above the blot. 

In vitro SGK3 kinase Activity is altered by a C-terminal HaloTag7 

In order to determine the effect that addition of a C-terminal HaloTag7 has on SGK3 kinase 

activity in vitro, I performed an immunoprecipitation experiment to purify endogenous SGK3 

from wildtype HEK293 and SGK3-Halo KI cells. The immunoprecipitated kinase was then subject 

to an in vitro kinase assay against the well characterised Crosstide peptide substrate. Efficiency 

of 32P-ATP incorporation into the substrate was then assayed by P81 paper assay (Fig 5.8). This 
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assay revealed that the activity of SGK3 immunoprecipitated from SGK3-Halo KI cells was much 

lower than that of the wildtype. 

As described in figure 5.3, the SGK3-Halo KI clone #2 used in these experiments contained 2 KI 

alleles, and 1 allele harboured a predicted inactive truncation.  SGK3-Halo KI clones #3 and #4 

contained 1 and 2 KI alleles respectively, with the remaining alleles wildtype. I could therefore 

use these clones to determine whether the reduced activity in clone #2 is due to the HaloTag7 

fusion, which would produce a ‘dose-dependent’ effect on SGK3 activity in the different cell lines, 

or a clonal effect of that cell line specifically. I therefore assayed the activity of each of these cell 

lines on stimulation with IGF1. This revealed that each SGK3-Halo KI allele reduced SGK3 activity 

by about 30% (Fig 5.9). This confirmed that reduction in SGK3 activity was likely due to the 

proximity of the tag, and not a clone-specific effect of the selected fusion clone. However, 

treatment with HaloPROTAC-A did reduce measured SGK3 kinase activity in clones 3 and 4, 

suggesting SGK3-Halo fusion protein does maintain some activity in these clones. The published 

SGK3-GFP KI cell line did exhibit reduced SGK3 activity, however responded normally to 

stimulation and inhibition of the pathway (Malik et al., 2018). Therefore, the effect is likely due 

to a large tag being in close proximity to the critical hydrophobic motif activation residue Ser486, 

blocking phosphorylation of SGK3-Halo by mTORC2. Although in vitro activity was reduced, in 

figure 5.7, I have observed that SGK3-Halo KI cells maintain phosphorylation of NDRG1 at Thr346, 

which is sensitive to SGK3 inhibition. Therefore, it is possible that SGK3 activity is maintained in 

cells, however the protein in less stable when immunoprecipitated for an in vitro kinase assay, 

thus explaining this result. 

In order to determine whether the proximity of HaloTag7 was blocking activation of SGK3, I 

performed an experiment overexpressing forms of SGK3-Halo in SGK3-KO 293 cells, with 

extended linkers from 5xGly to 20xGly, to determine if expanding the distance between SGK3 

and HaloTag7 may reduce this interference and rescue activity of the kinase. This revealed that 
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extension of the linker up to 15xGly,modestly improved the activity of SGK3-Halo (Fig 5.10). 

However, the improvements in activity were very slight, and additionally the 20xGly linker 

construct did not have improved activity, and this was not followed up further in the study. 

 

Figure 5.8  In vitro kinase activity of SGK3-Halo is substantially reduced. 
3mg lysate of HEK293 wildtype, SGK3-KO or SGK3-Halo cells were immunoprecipitated for SGK3 , and 

subject to  in vitro kinase assay against the Crosstide peptide, and incorporation of 32P -ATP measured. 

1 unit of activity = incorporation of 1nmol -phosphate into substrate per mg lysate. Error bars = SD, n=3. 
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Figure 5.9 SGK3-Halo fusion causes loss of SGK3 in vitro kinase activity. 
HEK293 wildtype, SGK3 KO or SGK3-Halo clones were treated with or without HaloPROTAC-A for 24 h, then serum-starved in empty DMEM overnight. Cells were harvested 
within or without prior stimulation with IGF-1 (50 ng/ml, 15 min). SGK3 was immunoprecipitated from 3 mg lysate, and subject to  in vitro kinase assay against the Crosstide 

peptide, and incorporation of 32P -ATP measured. 1 unit of activity = incorporation of 1nmol -phosphate into substrate per mg lysate. Error bars = SD, n=3. 
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Figure 5.10 Extending the linker between SGK3 and HaloTag7 increases SGK3 in vitro kinase activity. 
A. cDNA constructs were designed for transient transfection of SGK3 either alone of tagged with Flag, GFP 
or HaloTag7 with extending glycine linkers. B. SGK3-KO cells were transiently transfected with 30ng SGK3 
cDNA described in B. SGK3 was immunoprecipitated from 3 mg lysate, and subject to  in vitro kinase assay 

against the Crosstide peptide, and incorporation of 32P -ATP measured. 1 unit of activity = incorporation 

of 1nmol -phosphate into substrate per mg lysate. Error bars = SD, n=3. 

5.3 Compound design and screening 

To generate novel HaloPROTAC probes, I collaborated with the Ciulli lab (BCDD, Dundee) to 

produce 6 new compounds. HaloPROTAC3, previously described by the Crews Lab, contained an 

isoindolinone–based VHL targeting group conjugated to the chloroalkane moiety (Fig 5.11a) 

(Buckley et al., 2015). Based on recent publications from the Ciulli lab providing extensive 

understanding of structure–activity relationships and structure–based design of VHL ligands 

(Galdeano et al., 2014; Frost et al., 2016), it was hypothesized that substitution of the 

isoindolinone moiety of HaloPROTAC3 with other groups, optimized for VHL binding affinity 

could improve degradation activity (Fig 5.11b). In compounds A and B, the isoindolinone group 
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of HaloPROTAC3 was replaced with N–acylamides of L–tert–leucine on the left hand side of the 

molecule (as in VHL ligand VH032) (Galdeano et al., 2014), maintaining the chloroalkane linker 

attachment point at the phenyl ring on the right hand side (Fig 5.11c). Compounds A and B 

contained linkers of 15 and 21 atoms respectively. In a second compound set, the acetyl group 

at the left hand side was replaced with a  cyclopropylcyanoacetic moiety (as in VHL inhibitor 

VH298 (Frost et al., 2016)) in compounds E and F, while maintaining chloroalkane linkers of the 

same length as compounds A and B (Fig 5.11c). Additionally, we prepared two HaloPROTACs (C, 

D) having linkers of 16 and 22 atoms length respectively attached at the N–terminal acyl amine 

moiety of VH032. This conjugation pattern had been explored previously albeit with different 

linker lengths (13 and 19 atoms) (Fig 5.11d) (Buckley et al., 2015) 

 

Figure 5.11 Design of HaloPROTAC compounds. 

A. Chemical structure of previously published HaloPROTAC3 (Buckley et al., 2015). B. New VHL 
inhibitors published by Ciulli lab (Galdeano et al., 2014; Frost et al., 2016). C&D. New 
HaloPROTAC compounds derived from phenyl position (C) or acetyl position (D) of VHL ligands. 

To determine the efficacy of each HaloPROTAC compound for degradation of HaloTag7 fusion 

proteins, I treated both SGK3-Halo and HaloVPS34 HEK293 cell lines with increasing 

concentrations of compound for 48h. This revealed that HaloPROTAC-E was the most potent 

compound, with a DC50 between 3-10nM and DCmax of 95% achieved by 300nM. Overall the 
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structure-activity relationship of the compounds was very interesting, with 15/16 atom linkers 

much more potent than the longer chain versions. Additionally, as observed in Buckley et al, the 

more potent compounds derived the chloroalkane moiety from the phenyl position of the VHL 

ligand. Finally, adaptation of  the acetyl group to a cyclopropylcyanoacetic moiety in 

HaloPROTAC-E made it the most effective compound. This correlates with previous data that 

VH298, containing this cyclopropylcyanoacetic group is a much higher affinity ligand for VHL 

(Frost et al., 2016). 

 

Figure 5.12 Cellular characterisation of HaloPROTAC compounds. 
A. SGK3–Halo and Halo–VPS34 cell lines were treated for 48h with increasing concentrations of each 
HaloPROTAC in parallel. Degradation of target protein measured by Immunoblot analysis for HaloTag7. 
B&C.  Quantification of Western Blot intensity from A for SGK3–Halo (B) or Halo–VPS34 (C). Protein 
intensity was quantified and presented relative to an untreated control. 
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5.4 Mechanistic characterisation of HaloPROTAC-E 

It was important to fully characterise the kinetics and mechanism of degradation of 

HaloPROTAC-E. The above experiments demonstrated that HaloPROTAC-E mediated 

degradation was dose-dependent in HEK293 cells. I next demonstrated that degradation was 

time-dependent by treating SGK3-Halo and Halo-VPS34 cells with HaloPROTAC-E for up to 4 

hours and measuring degradation of the target protein by western blot (Figure 5.13A). This 

revealed rapid degradation of both target proteins. 50% degradation of SGK3 was achieved 

within 30-40 minutes, and VPS34 within 1-2 hours. The slightly delayed degradation of VPS34 

may be due to increased expression of VPS34 over SGK3, or due to the fact that VPS34 exists 

within a heterotetrameric complex. I also demonstrated HaloPROTAC-E mediated degradation 

to be reversible, as washout of the compound after 24h treatment resulted in rescued SGK3-

Halo expression within 10h, nearing complete rescue within 24h (Fig 5.13b). 

As in chapter 3, I used inhibitors of the ubiquitin-proteasome system to validate that this 

degradation occurred, as expected, via the CUL2VHL E3 Ligase complex and the proteasome. I 

pre-treated cells with various inhibitors of the pathway and measured blockade of HaloPROTAC-

E induced degradation. In addition to the MLN4924 and MG132 inhibitors described in chapter 

3, I also pre-treated cells with the VH298 high affinity, specific inhibitor of pVHL, recently 

published by the Ciulli lab (Frost et al., 2016). As expected, pre-treatment with these inhibitors 

substantially blocked degradation of HaloTag7 fusion proteins (Fig 5.13c&d). 
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Figure 5.13 Mechanistic characterization of HaloPROTAC–E. 
A. SGK3–Halo and Halo–VPS34 cells were treated for up to 4h with 300 nM HaloPROTAC–E. Cells were 
lysed and probed by Western Blot for HaloTag7 and quantified for percentage of remaining HaloTag7 
protein. B. SGK3–Halo cells were treated for 24h with 300 nM HaloPROTAC–E. After 24h, cells were washed 
3 times with DMEM and replaced with fresh media for the times indicated. Recovery of SGK3–Halo was 
analyzed by Immunoblot C.  Halo–VPS34 cells were treated for 6h with 300 nM HaloPROTAC–E, after pre–

inhibition of Cullin Neddylation by MLN4924 (3 M for 3h) or Proteasome by MG132 (50 M for 30 
minutes). Cells were lysed and remaining HaloTag7 fusion protein was analyzed by Immunoblot. D. SGK3–
Halo and HaloVPS34 cells were treated for 6h with 300 nM HaloPROTAC–E, after pre–inhibition of VHL by 

50 M VH298 for 15 minutes. 
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SGK3 and VPS34 are both endosomally-localised, as demonstrated in Figure 5.4. It was of particular 

interest whether these proteins could be easily degraded on the endosome, or if they were degraded 

in the cytosol. I therefore treated SGK3-Halo HEK293 cells with HaloPROTAC-E in the presence or 

absence of the VPS34 inhibitor VPS34-IN1. Inhibition of VPS34 results in a reduction of endosomal 

PtdIns(3)P and translocation of SGK3-Halo to the cytosol. Therefore, studying the degradation rates 

of SGK3-Halo in the presence of absence of VPS34-IN1 revealed whether this protein was more 

rapidly degraded when diffuse in the cytosol. I observed no difference between these two conditions 

(Figure 5.14), suggesting SGK3-Halo can be degraded on endosomes. 

 

Figure 5.14 SGK3 is degraded when localised both on endosomes and in the cytosol. 
SGK3-Halo HEK293 cells were treated for up to 24 h with HaloPROTAC-E, with or without treatment with 

VPS34-IN1 (1 M). Cells were lysed and subject to immunoblot analysis with the indicated antibodies. 

It was important to directly compare our new compound HaloPROTAC-E to the previously 

published HaloPROTAC3 (Buckley et al., 2015). The publication reported a DCmax of 90% could 

be achieved 625nM HaloPROTAC3, however this was performed against exogenously expressed 

HaloTag7 protein. Both timecourse analysis and dose-response curves demonstrated an 

improved potency and efficacy of HaloPROTAC-E in inducing degradation of Halo-VPS34 (Figure 

5.15). 
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Figure 5.15 Comparison of HaloPROTAC–E to previously characterized HaloPROTAC3. 
A. Halo–VPS34 cells were treated in parallel for 24h with 1–1000 nM HaloPROTAC–E or HaloPROTAC3. 
Cells were lysed and remaining HaloTag7 fusion protein was analyzed by Immunoblot. B. Halo–VPS34 cells 
were treated for up to 4h with 300 nM HaloPROTAC–E or HaloPROTAC3. Cells were lysed and probed by 
Western Blot for HaloTag7, and quantified for percentage of remaining HaloTag7 protein. 

5.5 Global proteomic analysis for specificity of compound 

The global specificity of HaloPROTAC-mediated degradation has yet to be determined in the 

published literature. Therefore, to answer this, I performed a quantitative Tandem-Mass-

Tag(TMT)-labelled global proteomic analysis of Halo-VPS34 cells, treated in the presence or 

absence of 300nM HaloPROTAC-E for 4 hours. This experiment was undertaken in quadruplicate, 

and analysis in Proteome Discoverer v2.2 using Mascot search engine allowed relative 

quantification of 9786 proteins. This unbiased approach revealed that HaloPROTAC–E was 

remarkably selective. Halo-VPS34 was the most substantially and significantly degraded protein, 

with a 70% reduction in detected protein levels. The only other proteins with a significant 

reduction in protein levels were the known regulatory subunits of the VPS34 complex. VPS15 

(50%), Beclin1 (20%), ATG14 (30%) and UVRAG (15%) were all reduced to a statistically 

significant value (p<10-4) (Figure 5.16a). This exquisite selectivity is a clear advantage of the 

HaloPROTAC approach. This reduction in associated complex members has previously been 

observed when VPS34 was degraded constitutively in cells via the AdPROM method (Fulcher et 
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al., 2016; Malik et al., 2018), and was confirmed by Immunoblot analysis (Fig 5.16b). As 

HaloPROTAC-mediated degradation offers temporal control, I next analysed whether expression 

of these components was lost in parallel to VPS34, or followed at a later timepoint due to loss 

of complex stability. Time course analysis of VPS34 degradation revealed that at very early time 

points of 10–20 minutes, VPS15 was reduced at a similar rate to VPS34, whereas the reduction 

in Beclin1 expression was slower (Fig 5.16c&d). 

 

Figure 5.16 Degradation of HaloTag7 fusions is highly specific and has a biological impact. 
A. Volcano plot quantifying proteins significantly downregulated on 4h HaloPROTAC–E treatment in Halo–
VPS34 cells. B. Immunoblot analysis of lysates taken for Mass Spectrometry analysis C&D. HaloVPS34 cells 

were treated with 0.3 M HaloPROTAC–E for up to 4 hours. C. Immunoblot analysis of these lysates for 
VPS34 complex members. D. Quantification of relative protein levels of VPS34 complex members from 
5.16C. 

5.6  Biological impact of HaloPROTAC-E mediated degradation of target 

proteins 

The advantage of combining a HaloPROTAC approach with CRISPR/Cas9 is that these tools can 

be deployed to investigate the endogenous roles of a protein. Additionally, this approach can 

be used to validate potential targets for PROTAC development and support the rationale for 
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targeted degradation. I therefore investigated known roles of SGK3 and VPS34, and the impact 

on these pathways by targeted degradation. 

Degradation of SGK3-Halo and Halo-VPS34 results in reduced phosphorylation of the SGK3 

substrate NDRG1. 

The best validated substrate of SGK3 is phosphorylation of NDRG1 at its Thr346 residue. This 

site is also shared with SGK1 and Akt. VPS34 acts upstream of SGK3, generating PtdIns(3)P on 

early endosomal membranes, triggering SGK3 activation. I chose to investigate whether 

degradation of Halo-VPS34 or SGK3-Halo was able to downregulate the hVPS34-SGK3 signaling 

axis and inhibit the phosphorylation of NDRG1. In order to remove the effect of Akt activity on 

NDRG1 phosphorylation, all conditions were performed in the presence of Akt inhibitor 

AZD5363. A timecourse analysis of HaloPROTAC-E mediated protein degradation revealed that 

degradation of both proteins induced dephosphorylation of NDRG1. Degradation of SGK3 

reduced NDRG1 phosphorylation within 4 h, whereas dephosphorylation of NDRG1 through 

VPS34 degradation took up to 24h (Figure 5.17). 

 

Figure 5.17 NDRG1 phosphorylation is reduced on degradation of SGK3-Halo and HaloVPS34. 
SGK3-Halo and Halo-VPS34 HEK293 cell lines were treated for up to 24h with HaloPROTAC-E to induce 
degradation of HaloTag7 target proteins. In the final hour before lysis, cells were treated with Akt inhibitor 
AZD5363 (1 µM). Phosphorylation of the SGK3 substrate NDRG1 at Thr346 was measured by western blot. 

in vitro studies of SGK3 activity had revealed a significant reduction in SGK3 kinase activity on 

addition of a C-terminal HaloTag7 fusion (figures 5.8-5.10). However, this data reveals that 
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NDRG1 phosphorylation is still mediated by SGK3 activity, and degradation of SGK3 reduces 

phosphorylation of its substrate.  

Degradation of HaloVPS34 marginally impacts on known VPS34 functions 

VPS34 is known to play a number of important roles in the cell. It catalyses the phosphorylation 

of PtdIns in order to produce PtdIns(3)P on endosomal membranes. This PtdIns(3)P is critical in 

the formation of authophagosomal vesicles in autophagy, and also the recruitment of PX 

containing effector proteins such as SGK3, stimulating its activation. I therefore used my Halo-

VPS34 cells to investigate whether degradation of VPS34 via HaloPROTAC-E has an impact on 

these biological readouts 

First, I used Halo-VPS34 KI cells to assay the activity of SGK3 on degradation of VPS34. Inhibition 

of this lipid kinase with VPS34-IN1 results in a substantial reduction in SGK3 activity, as 

PtdIns(3)P is reduced on endosomal membranes (Bago et al., 2014). I therefore compared SGK3 

activity in the immunoprecipitation assay described above, on inhibition or degradation of Halo-

VPS34. I also combined these treatments with the Class I PI3K inhibitor GDC0941 (0.5 µM), to 

remove the effect of SGK3 activation through the Class I PI3K pathway (Malik et al., 2018). I 

unveiled a slight, although statistically significant, reduction in SGK3 activity on HaloPROTAC-E 

treatment, however not as great an effect as seen on inhibition (Figure 5.18). This is in line with 

what was previously observed when degrading VPS34 via the AdPROM system (Fulcher et al., 

2016; Malik et al., 2018).  
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Figure 5.18 SGK3 activation in response to growth factors is marginally reduced by Halo-VPS34 
degradation. 
HEK293 Halo-VPS34 cells were treated with or without HaloPROTAC-E for 24 h, then serum-starved in 
empty DMEM overnight. Prior to stimulation with IGF-1 (50 ng/ml, 10 min), cells were treated with DMSO, 
GDC0941 (0.5 µM) or VPS34IN1 (1µM). SGK3 was immunoprecipitated from 3 mg lysate, and subject to  in 

vitro kinase assay against the Crosstide peptide, and incorporation of 32P -ATP measured. 1 unit of 

activity = incorporation of 1nmol -phosphate into substrate per mg lysate. Error bar = SD, n=3. Statistical 
analysis 2-way ANOVA with posthoc Tukey multiple comparisons test. 

However, a caveat of this assay is that long-term degradation of VPS34 (24 h degradation before 

16 h serum starvation), was being compared to short-term inhibition (1 h inhibition before IGF-

1 stimulation).  I therefore performed a second assay to determine the immediate effect of 
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VPS34 degradation, and whether the cells react and compensate for loss of VPS34. I also 

performed this assay under basal conditions to remove the effect of growth factor stimulation 

of the Class I PI3K pathway. I observed that 1 h degradation of VPS34 caused an immediate 

reduction in SGK3 activity, but that this activity was then recovered after 24 h. Further, I 

observed that co-treating with VPS34-IN1 in the final hour before lysis was now unable to further 

reduce SGK3 activity (Fig 5.19). This suggests that a compensatory mechanism, perhaps via Class 

II PI3K or lipid phosphatases, may be responsible for this SGK3 activity, and that activity was 

being mediated independently of VPS34. 

 

Figure 5.19 After prolonged Halo-VPS34 degradation, SGK3 activity is not mediated by VPS34. 
HEK293 Halo-VPS34 cells were treated with or without HaloPROTAC-E for 1 or 24 h. Prior to lysis, cells 
were additionally treated with VPS34IN1 (1 µM) for 1 h. SGK3 was immunoprecipitated from 3 mg lysate, 

and subject to  in vitro kinase assay against the Crosstide peptide, and incorporation of 32P -ATP 

measured. 1 unit of activity = incorporation of 1nmol -phosphate into substrate per mg lysate. Error bars 
= SD, n=3. 
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Given this response in SGK3 activity, I decided to assess the impact of HaloPROTAC-E mediated 

degradation of HaloVPS34 on production of endosomal PtdIns(3)P, as described in section 5.2 

(Figure 5.6). However, I only observed a very mild decrease in PtdIns(3)P on treatment with 

HaloPROTAC-E. Whereas in the SGK3 activity assay I observed a resistance to VPS34IN1 

treatment after degradation, when analysing PtdIns(3)P I could observe phospholipid levels 

were still sensitive to VPS34 inhibition after 24 h of degradation (Figure 5.20). Therefore, 

PtdIns(3)P production is still under the control of the remaining ~15% VPS34 in these cells.  

 

Figure 5.20 Production of PtdIns(3)P on endosomes is marginally decreased on Halo-VPS34 degradation. 
A. HEK293 Halo-VPS34 cells were seeded onto coverslips and allowed to adhere overnight. Cells were then 
treated for 1 or 24 h with HaloPROTAC-E and treated with or without VPS34IN1 (1 µM) 1h before lysis. 
Production of PtdIns(3)P on endosomal membranes was measured with the 2XFYVE-AlexaFlour488 
PtdIns(3)P probe. B. Quantification of PtdIns(3)P intensity/nuclei. Error bars = SEM, n=10 
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Aside from the activation of SGK3, VPS34 is more commonly associated with an important role 

in regulating autophagy. PtdIns(3)P production in response to, for example, nutrient starvation 

is critical for the formation of autophagosomes. I therefore chose to investigate the effect of 

Halo-VPS34 degradation has on autophagic flux. This can be measured by inducing autophagy 

by total nutrient starvation with EBSS, and blocking fusion of autophagosomes to lysosomes 

with the inhibitor Bafilomycin A (Ohkuma et al., 1993). Under these conditions, levels of 

lipidated LC3 can be measured by Western Blot, as a measure of autophagosomes formed. 

Under these conditions, I was able to observe a slight decrease in lipidated LC3 on HaloVPS34 

degradation, however not as much as was observed upon VPS34 inhibition by VPS34-IN1 (Figure 

5.21). More specifically, while basal autophagy appeared to be substantially inhibited, induction 

of high levels of autophagy by serum and amino acid starvation with EBSS could still occur after 

VPS34 degradation. However, as with the previous kinase assay, this assay was performed after 

24 h of VPS34 degradation, in comparison to short term inhibition. Therefore, this pathway may 

have been subject to compensatory mechanisms. If repeated at earlier timepoints, a greater 

effect may be observed. 
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Figure 5.21 Autophagic flux is mildly inhibited on degradation of Halo-VPS34. 
HEK293 HaloVPS34 cells were treated for 24h with DMSO or HaloPROTAC-E to induce degradation of 
VPS34. 2h before lysis, cells were washed twice with EBSS and media replaced with either DMEM or 
EBSS to induce autophagy. At this point, cells were treated with out without VPS34IN1 (1 µM) to 
inhibit VPS34, and Bafilomycin A (50nM) to block lysosome fusion of autophagosomes. Autophagic 
flux was measured by quantification of lipidated LC3b (lower band). 

5.7 Mutation of surface lysines of HaloTag7 does not significantly impact 

on the rate of degradation 

Proximity-driven ubiquitylation occurs on surface lysines of the target protein. In an attempt to 

increase the rate of ubiquitylation and therefore proteasome-mediated degradation of SGK3, I 

generated several mutant forms of SGK3-Halo, in which positive surface residues were mutated 

to extra lysines on the surface of HaloTag7. These residues were selected by inspection of the 

X-ray crystal structure of HaloTag7 (PDB: 4KAF) and selecting Arginine or Histidine residues on 
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the surface which were predicted to tolerate mutation to lysine without altering the properties 

of the protein surface (Figure 5.22). I also investigated swapping the 5XGly Linker between SGK3 

and HaloTag7 to 5XLys, to see if this would increase proteasomal degradation further. These 

proteins were overexpressed in HEK293 FlpIn cells by 24 h doxycycline induction, then rate of 

degradation measured after up to 16 h treatment with HaloPROTAC-A. These experiments were 

performed with HaloPROTAC-A as the final HaloPROTAC-E compound had not yet been 

optimised at the time of performing the experiments. It would be interesting to repeat these 

experiments with HaloPROTAC-E and determine any differences with an optimised compound. 

The exchange of a 5XGly linker for 5XLys showed no significant increase in the rate of 

degradation (Figure 5.23), in fact early timepoints of degradation were marginally slower. The 

first set of mutations, summarised as ‘MUT1’ partially increased the rate of degradation, and 

total degradation achieved within 16 h. However, any further mutations did not increase the 

rate of degradation. These mutations may have destabilized the protein or impacted on its 

catalytic activity, as degradation was often seen on addition of further mutations (Figure 5.23). 
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Figure 5.22 Design of HaloTag7 surface mutants. 
A series of  SGK3-Halo surface mutants were designed by Alessio Ciulli (BCDD), to increase lysine residues 
on the surface of the protein. Residues were selected based on the crystal structure of HaloTag7 (PDB: 
4KAF), to reduce impact on surface characteristics.
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Figure 5.23 Addition of surface lysines to HaloTag7 does not significantly increase the rate of HaloPROTAC induced degradation. 
HEK293 FlpIn cell lines were produced expressing SGK3-Halo with a range of modifications, with the aim to induce more rapid degradation of SGK3-Halo protein. These changes 
included exchange of the 5XGly linker for 5XLys, and a series of surface mutations to decorate the protein surface with lysines to increase potential ubiquitylation. Expression 
of SGK3-Halo was induced with doxycycline (0.1 µg/ml) and degradation induced with HaloPROTAC-A for up to 16h. Degradation of SGK3-Halo was measured (A) and 
quantified (B)  by western blot
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5.8 Discussion 

In this chapter, I present the design and synthesis of a new, potent HaloPROTAC compound, 

termed HaloPROTAC–E. More specifically I generated CRISPR/Cas9 KI cell lines of both SGK3 and 

its upstream regulator VPS34, and show that HaloPROTAC-E induces the rapid and efficient 

degradation of both target proteins. HaloPROTAC–E induced potent degradation, with a DC50 

between 3–10 nM. Both SGK3 (20–30 min for 50% degradation) and VPS34 (1–2 h for 50% 

degradation), which forms part of a complex, were rapidly degraded. A direct comparison 

revealed the HaloPROTAC compound described in this study was more effective than the 

previously reported compound HaloPROTAC3. The design and publication of HaloPROTAC-E is 

therefore an important addition to the field for the validation of potential PROTAC targets. As 

SGK3 and VPS34 are both endosomally localised, I have demonstrated in this study that the 

HaloPROTAC approach is capable of inducing degradation of both endosomally localised and 

cytosolic proteins. Treatment of SGK3-Halo cells with VPS34-IN1, to reduce endosomal 

PtdIns(3)P and move SGK3 to the cytosol, had no impact on the rate at which SGK3-Halo could 

be degraded. This is of great importance to the field as it demonstrates that subcellularly 

localised proteins can be targeted for degradation.  

The goal of this project was to target the HaloPROTAC approach towards endogenous proteins, 

and therefore manipulate an endogenous signalling pathway. Phosphorylation of the SGK3 

substrate NDRG1 at Thr346 was substantially reduced on degradation of either SGK3-Halo or 

Halo-VPS34. This demonstrated the ability of this approach to target endogenous proteins, and 

act as validation for the selection of target proteins for PROTACs or other chemical modulation 

approaches. Quantitative mass spectrometry studies also revealed that degradation mediated 

by HaloPROTAC-E is strikingly selective, not degrading any other proteins in the Halo-VPS34 cell 

line other than Halo-VPS34 itself and its known regulatory subunits. Again, this is a clear strength 

for the use of this approach in understanding and manipulating endogenous systems. It is 

unclear from these studies whether the reduction in VPS34 complex members is due to loss of 
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stability of the complex upon VPS34 degradation, a hypothesis that is supported by previous 

siRNA knock–down data (Itakura et al., 2008). Alternatively, these subunits could be degraded 

through a “by–stander” effect, receiving collateral ubiquitination by the VHL ligase as a result of 

being part of the same complex (Maniaci et al., 2017). 

While NDRG1 phosphorylation was clearly impacted on degradation of SGK3-Halo and Halo-

VPS34, other biological readouts of VPS34 activity gave only marginal or conflicting results on 

degradation of Halo-VPS34. Only a mild reduction in autophagic flux, measured by production 

of lipidated LC3b, was observed after Halo-VPS34 degradation. It is possible that this milder 

effect may be due to the remaining VPS34 being sufficient to carry out necessary functions. 

Alternatively, compensatory pathways could be activated on degradation of VPS34, for example 

generating PtdIns(3)P from PtdIns(3,4,5)P3 via the lipid phosphatases INPP4B and SHIP2 (Malik 

et al., 2018). As VPS34 is an essential gene and cannot be knocked out at the genome level, 

relatively little is known about compensatory pathways which may occur in the absence of 

VPS34. A mechanism for inducible reduction in VPS34 expression in cells is therefore a very 

powerful tool. 

Similarly, after 24h degradation of Halo-VPS34, in vitro SGK3 kinase activity was only marginally 

reduced. This was also observed when constitutively degrading GFP-VPS34 using the AdPROM 

system, which resulted in only a mild reduction in SGK3 activity (Fulcher et al., 2016; Malik et al., 

2018). However, an advantage of the HaloPROTAC system is temporal control of protein 

expression, as degradation is both inducible and reversible. Using shorter HaloPROTAC 

treatments, I was able to demonstrate that short-term loss of VPS34 significantly reduced SGK3 

in vitro kinase activity, however after 24 h SGK3 activity was rescued, and could no longer be 

modulated by VPS34 inhibition. However, conflictingly, I also demonstrated by western blot that 

SGK3-mediated phosphorylation of NDRG1 is not rescued at this timepoint, and by 

immunofluorescence that PtdIns(3)P is still under the control of remaining VPS34. The biological 
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explanation behind these apparently conflicting results is still unclear, and merits further 

investigation. Perhaps, SGK3 activated independently of PtdIns(3)P is incorrectly localised for 

phosphorylation of its substrate NDRG1. Alternatively, an autoinhibition mechanism may inhibit 

its activity in cells, but kinase activity can still occur in vitro. 

Because the chloroalkane handle reacts covalently with HaloTag7, a potential limitation of the 

HaloPROTAC approach is that stoichiometric occupancy of the tagged protein is required to 

achieve complete degradation of the target protein. A key advantage to PROTACs bearing non–

covalent target ligands is that they can function catalytically at sub–stoichiometric 

concentrations relative to the target protein. Despite the clear strengths of non–covalent 

protein degradation modalities, potent ligands are often required and structure–guided PROTAC 

design requires structural information on ternary complexes (Gadd et al., 2017). Even with this 

knowledge, many variables affecting efficacy of PROTACs are still not thoroughly understood, 

and are highly target dependent. The HaloPROTAC approach removes these issues, allowing for 

exquisite selectivity and high affinity. 

A caveat to the HaloPROTAC approach is the size of the required HaloTag7 fusion onto the target 

of interest. Such a large tag may interfere with the activation, complex formation or function of 

a target protein. This study demonstrates that both N- and C-terminal fusions can be degraded 

using HaloPROTAC-E, and the kinetics of degradation was similar for both proteins. Therefore, 

for most proteins with a regulatory terminal domain this issue can be avoided. However, the 

addition of a large 33kDa tag may impact on protein function and should always be evaluated. 

In the case of SGK3-Halo, we observed a significant reduction in its in vitro kinase activity on 

addition of the HaloTag7 fusion. This is likely due to the proximity of such a large tag to the 

critical hydrophobic motif activating residue, therefore blocking SGK3’s phosphorylation by 

mTORC2. As both the N- and C- terminus are critical for SGK3 activation, this has limited the 

HaloPROTAC approach for further use targeting SGK3 in this thesis. Preliminary data suggested 



[186] 
 

 

that extending the linker between SGK3 and HaloTag7 began to rescue the activity of SGK3, 

however this was not followed up in this study. For this reason, I therefore continued with the 

approach described in Chapter 4, with the development of an inhibitor derived PROTAC against 

SGK3, which interacts with the protein directly in its kinase domain. This approach requires a 

more intensive optimization of compounds, however removes the caveats of placing a large tag 

on the protein. An advantage of having tried both approaches is that HaloPROTAC-E could be 

used to determine the specificity and any off-target effects of SGK3-PROTAC1, by treatment of 

SGK3-Halo cells with both compounds. Overall this optimized HaloPROTAC approach, combining 

HaloPROTAC–E with CRISPR/Cas9 mediated endogenous protein tagging, has been 

demonstrated to provide a useful tool to interrogate an endogenous system and validate the 

therapeutic potential of degrading its protein target.
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6. How is SGK3 activated in the context of PI3K Inhibition? 

6.1 Activation of SGK3 by Class I and Class III PI3K 

In common with other AGC protein kinases, SGK3 is activated by phosphorylation on its 

hydrophobic motif by mTORC2, and T-loop by PDK1. This activation has been demonstrated to 

also be dependent on the PX domain of SGK3, which recruits the kinase to PtdIns(3)P on 

endosomal membranes. In the case of Akt, this activation mechanism is dependent on the 

activity of Class I PI3K generating PtdIns(3,4,5)P3 on the plasma membrane. Recent work 

published by the lab has demonstrated that SGK3 can be activated by Class I PI3K, possibly 

through the action of lipid phosphatases INPP4B and SHIP2 (Malik et al., 2018), however it can 

also be activated by alternate mechanisms in the context of prolonged PI3K inhibition. Bago et 

al., demonstrated that SGK3 is activated by the activity of Class III PI3K VPS34, which generates 

PtdIns(3)P on endosomal membranes (Bago et al., 2014, 2016). Malik et al went on to 

demonstrate that activation via VPS34 could be stimulated by growth factors, similarly to Class 

I PI3K. However, the mechanism by which VPS34 is activated by growth factors in yet to be 

determined, as the paper demonstrated IGF stimulation did not increase in vitro kinase activity 

of VPS34, or the amount of VPS34 localised to endosomal membranes (Malik et al., 2018). 

Therefore, as part of my thesis I decided to investigate how VPS34 was activated by growth 

factors, and consequently activated SGK3. 

VPS34 exists in the cell in 2 complexes. The core VPS34 complex of VPS34, VPS15 and Beclin1 

can be found in complex I, with ATG14 on Rab7 containing membranes, commonly involved in 

nutrient sensing and autophagy. Alternatively, Complex II contains UVRAG in the place of ATG14 

and is found primarily on Rab5 containing membranes. A number of more transient accessory 

interactors bind to these complexes and modulate VPS34 activity. I was interested to determine 

whether complex composition of VPS34 was altered on growth factor stimulation, and whether 

interaction with known or unknown effectors may be altered on IGF1 stimulation, impacting on 

VPS34’s activity and generation of PtdIns(3)P. I therefore undertook a proximity biotinylation 
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approach, TurboID, to selectively biotinylate and identify interactors of GFP-VPS34 , in the case 

of serum starvation or IGF1 stimulation. 

Bago et al. demonstrated that when cancer cell lines activate SGK3 in the context of PI3K 

inhibition, this activation still occurs via mTORC2, as demonstrated by shRNA experiments 

against the mTORC2 component Rictor which blocked SGK3 activation (Bago et al., 2016). Under 

these conditions, mTORC2-dependent phosphorylation of SGK3 is observed, but not of Akt, 

which remained dephosphorylated at S473. This finding suggested differential mechanisms by 

which SGK3 and Akt can be recognised and phosphorylated my mTORC2, which would be an 

important mechanism to understand in preventing PI3K-inhibitor resistance in breast cancer. 

It was recently proposed by Liu et al that mTORC2 activity was determined by the complex 

member mSin1, in particular the PH domain binding PI(3,4,5)P3 on the plasma membrane (Liu et 

al., 2015). However, under conditions of Class I PI3K inhibition, SGK3 was targeted by mTORC2 

independently of PtdIns(3,4,5)P3. I therefore chose to investigate how SGK3 phosphorylation by 

mTORC2 was regulated, and how this regulation differed from Akt. I also chose to focus on mSin1 

as a regulatory component of mTORC2 and generated various truncations and mutants of mSin1 

to determine which elements were required for activation of Akt and SGK3 respectively.  

6.2 PI3K-independent activation of mTORC2 mediated by mSin1 

6.2.1 SGK3 activation is mediated by mTORC2, and reliant on mSin1. 

I first aimed to generate CRISPR/Cas9 knockout of mSin1 in HEK293 TREx and U2OS TREx cells. 

The purpose of this was to remove endogenous mSin1, therefore any activity of mTORC2 should 

be mediated by the mSin1 mutants introduced to the cells via the Flp-In™ T-REx™, Doxycycline-

inducible system. Using the D10A Nickase form of Cas9 described in Chapter 5, mSin1 gRNAs 

were designed targeting Exon 5. As generation of gene knockouts occurs by non-homologous 

end joining (NHEJ) rather than homology driven repair (HDJ) a donor template was not required. 

Exon 5 was chosen as this is the first common exon between all known transcript variants, and 
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therefore all isoforms of mSin1 should be affected. Using this approach, I generated 9 mSin1 KO 

clones in HEK293 TREx cells, and 3 knockout clones in U2OS TREx (Figure 6.1). The entire gel was 

analysed to ensure no expression of truncated forms of mSin1 remained. All U2OS clones and 4 

HEK293 clones were confirmed by Sanger sequencing. 

 

Figure 6.1 CRISPR/Cas9 KO of mSin1 from HEK293 TREx and U2OS TREx cells. 
CRISPR/Cas9-mediated knockout of mSin1 was performed in HEK293 TREx and U2OS TREx cells by sgRNA 
targeting exon 5 of the MAPKAP1 gene. Successful knockout clones were subject to immunoblot analysis 
with the given antibodies before confirmation by Sanger Sequencing. 

I first studied the mSin1 KO cells in comparison to parental cells to confirm that knockout of 

mSin1, and therefore loss of mTORC2 activity, blocks phosphorylation and activation of SGK3. I 

used 2 HEK293 mSin1 KO clones and performed a comparison with the parental cell line. Cells 

were serum starved overnight then stimulated with IGF1 for 10’ at 50 ng/ml. This revealed 

strong activation of SGK3 and an increase in its phosphorylation at T320 on stimulation with IGF 

in the parental cell line, but not in the 2 knockout clones (Figure 6.2). 



[190] 
 

 

Similarly, phosphorylation of Akt at S473 which is also modulated by mTORC2 was fully blocked 

by mSin1 KO, and phosphorylation of the shared substrate NDRG1 was significantly reduced, 

although could still be partially induced by IGF1 stimulation. 

 

Figure 6.2 CRISPR/Cas9 knockout of mSin1 in HEK293 ablates activation of SGK3 and phosphorylation 
of its activation site. 
Parental U2OS TREx cell lines and 2 mSin1 KO clones were serum starved overnight and stimulated with 
50 ng/ml IGF1 10 minutes before lysis. SGK3 activity was measured by immunoprecipitation of SGK3 from 
3 mg lysate and in vitro kinase assay against a peptide substrate. Lysates and eluted immunoprecipitated 
proteins were also subjected to immunoblot analysis using the antibodies specified. Error bars = SD, n=3. 

6.2.3 Development of tools to study hydrophobic motif phosphorylation of 

SGK3 

In order to robustly detect and study phosphorylation of SGK3 on its hydrophobic motif, it was 

necessary to develop a set of tools to assay this function. I first tested and optimised antibodies 

against both (a) Total SGK3 (S848D) and (b) the S486 hydrophobic motif site of SGK3 (LGF*SYAP) 

developed with MRCPPU Reagents and Services. As hydrophobic motif phosphorylation is 

necessary for activation of SGK3, I also assayed SGK3 phosphorylation by measuring (c) SGK3 in 
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vitro kinase activity as well as phosphorylation of its substrates in cells. In addition, I optimised 

(d) an in vitro mTORC2 kinase assay, by co-immunoprecipitating mTORC2 via HA-mSin1, to 

determine whether mSin1 mutations altered the ability of mTORC2 to phosphorylate SGK3 

directly in vitro, or just in cells. 

a. Total SGK3 antibody S848D 

One of my first tasks in the lab was to develop a new polyclonal antibody against SGK3. The aim 

was to produce an antibody which could detect SGK3 by western blot, and also 

immunoprecipitate it from cells. In order to obtain an antibody specific for SGK3 over the other 

isoforms, the antibody was raised against a peptide corresponding to the N-terminal PX-domain 

of SGK3 (Residues 1-130, DU2034, Figure 6.3A). I tested the specificity of 7 bleeds of the antibody 

for western blot by comparing 10 μg HEK293 WT lysate with 10 μg lysate from SGK3-KO HEK293 

cells. I determined from this assay that the 6th Bleed of the S848D antibody gave a very clean, 

specific signal, which was stronger than the previous S037D antibody (Figure 6.3B). 

I also tested the ability of all bleeds to immunoprecipitate SGK3. Immunoprecipitation of SGK3 

is critical for detection of SGK3’s activation sites, T320 and S486 phosphorylation, and in vitro 

kinase assays against a peptide substrate. For each bleed of the antibody, I immunoprecipitated 

from 3 mg HEK293 lysate using a ratio of 1 μg antibody to 1 mg lysate. I compared the ability of 

these antibodies to immunoprecipitate SGK3 to the previous S037D antibody and a pre-immune 

IgG antibody as a negative control. I determined that all bleeds of the antibody were capable of 

immunoprecipitating SGK3 and, although none of the antibodies were able to fully deplete SGK3 

from the supernatant, the best immunodepletion was again from the 6th bleed of S848D (Figure 

6.3C). In this experiment I blotted with the panSGK antibody from Sigma Aldrich and found that 

only SGK3 was pulled down over the other isoforms, as expected. I also performed an in vitro 

kinase assay as a quantitative measure of immunoprecipitation and to confirm 

immunoprecipitated SGK3 still maintained kinase activity, and found bleeds 2-7 to give very 
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similar readouts, with substantially better activity than S037D (Figure 6.3D). I therefore used 

bleed 6 of the S848D anti-SGK3 antibody for the rest of this project.  

 

Figure 6.3 Characterisation of SGK3 antibody S848D. 
A. S848D was raised against residues 1-130 covering the PX domain of SGK3. B. 7 bleeds of S848D were 
tested for their ability to detect SGK3 in 10 μg HEK293 lysate compared to an SGK3-KO control. C. 7 bleeds 
of S848D were tested for their ability to immunoprecipitate SGK3 from HEK293. D. in vitro kinase assay of 
SGK3 immunoprecipitated using S848D antibody bleeds 1-7. Error bars = SD, n=3. 
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b. Hydrophobic Motif antibody 

To understand regulation of hydrophobic motif phosphorylation of SGK3, an antibody to detect 

phosphorylation of this site is critical for the progress of the project. Previous work in the lab 

has used a SGK1 pSer422 antibody to study this site, as after immunoprecipitation of SGK3 this 

antibody can cross-react to detect SGK3 phosphorylation. However, the cross-reactivity is very 

weak for SGK3, therefore this signal is not robust or reliable to assay hydrophobic motif 

phosphorylation. I therefore tested several antibodies against this site in order to generate a 

more robust readout of SGK3 phosphorylation. 

I first tested 2 commercial antibodies, 1 SGK1 pS422 antibody from Abcam, and a PDK1-docking 

motif antibody from Cell Signalling Technology. This PDK1-Docking motif antibody is designed to 

recognise the hydrophobic FXXpS/TY/F motif which docks into the PIF-Pocket of PDK1. I tested 

the ability of these antibodies to detect SGK3 phosphorylation after serum starvation, 

stimulation of SGK3 phosphorylation with IGF1 and blockade of SGK3 phosphorylation by 

treatment with mTOR inhibitor AZD8055. In parallel, I also overexpressed SGK3 and stimulated 

with IGF as a positive control. Testing these antibodies against either 10 μg lysate or after 

immunoprecipitation of SGK3 from 3 mg lysate, I determined that these antibodies detected 

overexpressed, phosphorylated SGK3, but not the endogenous protein (Figure 6.4). 

While the commercial antibodies were able to detect phosphorylation of overexpressed SGK3, I 

was interested in this project in analysing phosphorylation and activation of the endogenous 

protein. I therefore generated an antibody with MRCPPU Reagents and Services raised against 

the Hydrophobic motif site of SGK3. Antibody SA517 was raised against the sequence indicated 

in the sequence alignment below (Figure 6.5). In order to generate the antibody, 2 immunogenic 

peptides were produced of this sequence, tagged with an Ahx-Cys motif in either terminus for 

purification purposes. 
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Figure 6.4 Commercial antibodies tested do not recognise S486 phosphorylated endogenous SGK3. 
HEK293 cells were serum starved overnight, before stimulation with 50 ng/ml IGF1 for 15 minutes before 
lysis. mTORC2 activity was modulated by treatment with and without mTOR inhibitor AZD8055 (0.1 μM, 
1h) and IGF1 stimulation (50 ng/ml, 10 min). Ability of antibodies to detect immunoblot was tested from 
10 μg lysate or after a 3mg IP of SGK3. 

 

 

Figure 6.5 Sequence alignment of the SGK1 and SGK3 hydrophobic motif sites. 
Antibody SA517 was raised against the residues indicated in the alignment. 

The resultant antibody was then purified using either the N-terminally tagged Peptide A or the 

C-terminally tagged Peptide B. In order to determine the sensitivity and selectively of these 

antibodies, I first tested their ability to recognise overexpressed SGK3. As before, I serum starved 

cells overnight, then stimulated SGK3 phosphorylation by addition of IGF1, in the presence or 

absence of an mTOR inhibitor. Figure 6.6 shows the results for Bleeds 1 and 5. Antibodies were 

dissolved to 1 μg/ml in the presence of 10 μg/ml non-phosphorylated peptide. While all bleeds 

of the antibody were able to detect overexpressed SGK3, this detection was found not to be 

phospho-specific, as detection was equal across all conditions (Figure 6.6). 
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Figure 6.6 SA517 recognises overexpressed SGK3, however is not phosphospecfic. 
SGK3 was exogenously overexpressed in HEK293 cells for 24 h. Following transfection, cells were serum 
starved overnight before treatment with or without mTOR inhibitor AZD8055 (0.1 μM, 1 h) and IGF1 (50 
ng/ml, 10 min). Lysates were subject to immunoblot analysis with the indicated antibodies. SGK3 pS486 
antibodies were incubated with 10 μg/ml non-phosphorylated peptide corresponding to the phosphosite. 

It was possible that this lack of phosphospecificity was due to the large amounts of protein being 

detected, masking a phospho-specific signal. I therefore used the best antibody from this screen, 

Bleed 1 purified by peptide B, to probe the phosphorylation of endogenous SGK3. In this 

experiment I found that, even after immunoprecipitation, this antibody was unable to detect 

phosphorylation of endogenous SGK3, although again it could recognise overexpressed protein 

(Figure 6.7) 
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Figure 6.7 SA517 does not recognise endogenous phosphorylated SGK3. 
Endogenous or exogenously overexpressed SGK3 was immunoprecipitated from HEK293 cells, which had 
been starved of serum for 16 h. Before lysis, cells were treated with or without mTOR inhibitor AZD8055 
(0.1 μM, 1 h) and IGF1 (50 ng/ml, 10 min). Immunoprecipitated SGK3 and whole cell lysate were subject 
to immunoblot analysis with the antibodies shown. 

c. Substrate phosphorylation 

Another readout for studying the activation of SGK3 is through analysing phosphorylation of its 

substrates. NDRG1 phosphorylation at Thr346 has been extensively used in our lab as a readout 

of SGK3 phosphorylation, however use of this substrate is complicated by the fact NDRG1 

phosphorylation is also carried out by Akt and SGK1. I have used phosphorylation of NDRG1 as 
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a readout in my assays however this will be confounded by Akt-driven phosphorylation. As 

described in Chapter 4, two members of the Syntaxin family, STX7 and STX12 appear to be 

specifically phosphorylated by SGK3, and PostDoc Athanasios Karapetsas has developed a robust 

PhosTag assay for detection of Syntaxin phosphorylation (Malik et al., 2019). This assay will 

provide a useful tool in assaying SGK3 activity, and therefore hydrophobic motif phosphorylation, 

and will be used in future assays. In addition, a phospho-specific antibody for detection of STX12 

phosphorylation by SGK3 is in development. I also measure in vitro kinase activity of SGK3 

against a peptide substrate Crosstide after immunoprecipitation from cells. 

d. mTORC2 in vitro kinase assay 

In order to determine whether mSin1 variations impacted on the ability of mTORC2 to 

phosphorylate SGK3, SGK1 or Akt in vitro, I developed an in vitro mTORC2 kinase assay via 

immunoprecipitation of HA-mSin1 constructs and incubation with recombinantly expressed 

substrate SGK3, SGK1 and Akt protein. 

To produce recombinant substrate protein, I expressed GST-tagged kinase inactive (KI) SGK3, 

Akt and SGK1 in HEK293 cells. Kinase inactive constructs were chosen to remove the chance of 

autophosphorylation of the site in in vitro conditions. To ensure full dephosphorylation of the 

hydrophobic motif site, I serum starved cells overnight and treated with mTOR inhibitor 

AZD8055 for 1 h before lysis. By GST purification I was able to produce large amounts of 

relatively pure substrate protein, as shown in figure 6.8 
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Figure 6.8 Substrate purification of GST-SGK3, GST-Akt and GST-deltaN SGK1. 
Kinase-inactive (KI) GST-SGK3, GST-Akt and GST-(60-end)-SGK1 were transiently expressed in HEK293 cells. 
24 h after transfection, cells were serum starved overnight, and treated with mTOR inhibitor AZD5363 (0.1 
μM, 1 h) before lysis, to remove any hydrophobic motif phosphorylation of the substrate protein.  

I then used Akt as a positive control substrate and was able to robustly detect phosphorylation 

of Akt after immunoprecipitation from HA-mSin1 cells, but not the mSin1 KO cells, as expected. 

This in vitro phosphorylation was also blocked by mTOR inhibitor AZD8055 (Figure 6.9A). 

Phosphorylation of Akt could be specifically detected by both the specific Akt p473 antibody and 

the pPDK1-Docking Motif antibody (Figure 6.9A). 

Using these same conditions against substrate SGK1 and SGK3, I was again able to produce 

specific phosphorylation of substrate protein at the hydrophobic motif site, as measured by the 

SGK1 p422 antibody from Sigma Aldrich. Unfortunately, the pPDK1-Docking Motif antibody 

displayed poor recognition of the phosphorylated SGK isoforms, and therefore could not be used 

as a readout for all substrate proteins (Figure 6.9B). However, it was evident from this 

experiment that detection of SGK3 phosphorylation with the pSer422 antibody was very weak, 

so I therefore optimized these blotting conditions and determined that a 1:1000 dilution of the 

pSGK antibody specifically detected 40ng of phosphorylated SGK3 (Figure 6.9C). Meanwhile, 
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phosphorylated SGK1 was better detected using a 1:2000 dilution of the antibody against 10ng 

substrate protein (Figure 6.9C).  

 

Figure 6.9 Development of an mTORC2 in vitro kinase assay. 
A. mTORC2 immunoprecipitated from HA-mSin1 expressing cells phosphorylated substrate Akt in vitro. B. 
in vitro kinase assay against SGK3 and SGK1 C. Optimisation of antibody concentration and protein loading 
for specific identification of substrate phosphorylation 

6.2.4 Reintroduction of mSin1 variants 

I next proceeded to generate a series of stable cell lines expressing mSin1 variants (described in 

Fig 6.10) from a doxycycline-inducible promotor in the TREx mSin1 KO cells. Information from 

these cell lines could determine the ability of mSin1 variants to activate mTORC2 against SGK3 

or Akt and therefore determine the functional role of different regions of mSin1.  

Several functional domains have been annotated within the sequence of mSin1, as shown in 

figure 6.10. Incorporation of mSin1 into mTORC2 is mediated by the N-terminal sequence (Yao 

et al., 2017). Evolutionary sequence analysis also revealed a Raf-like Ras-binding domain, with 

the ability to bind activated Ras, and a Pleckstrin-Homology (PH) domain, which mediates 
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membrane and lipid binding (Schroder et al., 2007). The Conserved Region in the Middle (CRIM) 

domain is less well characterised, but may play a role in mTORC2 substrate recognition (Tatebe 

et al., 2017). 

I first introduced the 5 known transcript variants of mSin1. If activation of SGK3 in the absence 

of PI3K is mediated by mSin1, one naturally occurring form of mSin1 would theoretically be 

responsible. These transcript variants are shown in Figure 6.10. The most highly expressed 

variants of mSin1 are the full length TV1 and TV2, which contains a small deletion in the RBD. 

TV3-5 are less commonly expressed. All variants except TV4 are believed to be able to form a 

complex with mTORC2, whereas TV4 lacks the N-terminal domain critical for binding the 

complex. TV5 carries a C-terminal variant which lacks the PH domain proposed to be critical for 

activity of mTORC2 (Liu et al., 2015). 

I also generated point mutations and truncations designed to disrupt the RBD and PH Domain. 

The point mutations in the mSin1-PHmut construct are R393C K428A K464A, as described in Liu 

et al., 2015. These residues were predicted by modelling against the PH domain of Akt to disrupt 

binding to PtdIns(3,4,5)P3. The mSin1-RBD mutant sequence carries an R312L mutation, which I 

designed by sequence alignment and homology to the R89L inactivating mutant of cRAF (Zeng 

et al., 1999). These mutants are also shown in Figure 6.10 
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Figure 6.10 Transcript variants and mutants of mSin1 used in this study. 
Variants were incorporated in TREx cells with a C terminal HA tag. 

Figure 6.11 shows  the re-expression of these constructs under the doxycycline-inducible system 

in the U2OS mSin1 KO clone P1E7. With the exception of Transcript Variant 4 (TV4) which does 

not incorporate into mTORC2, all variants rescued turn motif phosphorylation of Akt, which 

occurs cotranslationally and is not under the control of growth factor signalling. I proceeded to 

use these cell lines to perform initial assays to survey the effects of each of the variants and 

mutants on SGK3 and Akt phosphorylation. 

As an initial screen of these mSin1 variants, and their ability to mediate phosphorylation of Akt 

and SGK3, all cell lines were stimulated with IGF1 following serum starvation and assayed for 

SGK3 kinase activity and Akt Hydrophobic motif phosphorylation (Figure 6.12).  This screen 

revealed a number of interesting results for further investigation. The full-length variant TV1 

and near-full length TV2 both showed activity comparable to the parental cell line. As expected 

TV4, lacking the N-terminal domain is unable to mediate activation of Akt or SGK3. This agrees 
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with previous published data suggesting TV4 cannot integrate into an active mTORC2 complex 

as this occurs through the N-terminus of mSin1. 

 

Figure 6.11 Doxycycline-induced re-expression of mSin1 variants in U2OS mSin1 KO cells. 
Stable cell lines were generated to express mSin1 variants under a doxycycline-inducible promotor. Cells 
were stimulated in the presence or absence of 0.1 μg/ml Doxycycline for 24 h, and after lysis were subject 
to immunoblot analysis with the specified antibodies. 
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Figure 6.12 Reexpression of mSin1 in KO cells rescues phosphorylation and activation of SGK3. 
The mSin1-HA variants were expressed in mSin1-KO U2OS cells by induction with 0.1 μg/ml Doxycycline. 
These cells, alongside parental (P) and mSin1-KO (KO) cells were serum starved overnight, before 
stimulation with or without IGF1 and cell lysis. SGK3 was immunoprecipitated from 3 mg lysate for in vitro 
kinase assay against Crosstide substrate, and immunopreciptates and whole cell lysate subject to 
immunoblot analysis with the antibodies indicated. Error bars = SD, n=3 
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Previous data from, for example Liu et al, suggested that the PH domain of mSin1 is critical for 

mTORC2 activity against Akt, and that this activity is mediated via PI(3,4,5)P3. However, in this 

assay, both Akt and SGK3 could be partially activated by the PH-domain deletion and binding-

mutant mSin1 cell lines, although not to the same extent as the full-length version. This suggests 

that a second mechanism aside from the PH domain may play a secondary role in Akt/SGK3 

activation. Another interesting result was that both TV3 and TV5 mSin1 were able to mediate 

activation of Akt, but not SGK3, suggesting a differing mechanism of substrate recognition of 

SGK3 and Akt by mTORC2. 

6.2.5 Full length mSin1 does not fully reactivate SGK3 

Although the initial screen using these cells revealed full phosphorylation and activation of SGK3, 

in this assay TV1 was very highly expressed in comparison to the parental cell line and many of 

the other mSin1 variants. In figure 6.13, I repeated this assay with expression of mSin1 

normalised to parental expression. I determined in this assay that full length mSin1 only partially 

rescues the phosphorylation and activation of SGK3. I also repeated this assay in 2 independent 

HEK293 KO clones and found similar results (Figure 6.14) 
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Figure 6.13 Reexpression of full length mSin1 does not fully rescue SGK3 phosphorylation in mSin1 
knockout cells. 
Full length mSin1-HA (mSin1-TV1) was expressed in mSin1-KO U2OS cells by induction with 0.1 μg/ml 
Doxycycline. These cells, alongside parental (P) and mSin1-KO (KO) cells were serum starved overnight, 
before stimulation with or without IGF1 and cell lysis. Endogenous SGK3 was immunoprecipitated from 3 
mg lysate for in vitro kinase assay against Crosstide substrate, and immunopreciptates and whole cell 
lysate subject to immunoblot analysis with the antibodies indicated. Error bars = SD, n=3 
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Figure 6.14 In 2 HEK293 mSin1 KO clones, re-expression of mSin1 only partially rescues the phenotype. 
Full length mSin1-HA (mSin1-TV1) was transiently overexpressed in 2 independent mSin1-KO HEK293 cells. 
These cells, alongside parental (P) and the relevant mSin1-KO (KO) cells were serum starved overnight, 
before stimulation with or without IGF1 and cell lysis. Endogenous SGK3 was immunoprecipitated from 3 
mg lysate for in vitro kinase assay against Crosstide substrate, and immunopreciptates and whole cell 
lysate subject to immunoblot analysis with the antibodies indicated. Error bars = SD, n=3 

However, I determined that when expressing mSin1-TV2 in these cells, SGK3 phosphorylation 

and activity was fully rescued. Interestingly, I also saw full rescue of activity from the mSin1-RBD 

binding mutant. This is interesting as mSin1-TV2 differs from the full length transcript of mSin1 

through a short deletion within the RBD. As mutation of this domain has the same effect on 

activity, this therefore suggests this region of the protien is important in regulating SGK3 

phosphorylation and activation. 

However, a caveat to this experiment is that both TV2 and RBD expressed much higher than 

parental levels and TV1 expression, and therefore cannot be directly compared. Akt rescue is 

also deficient in TV1 in this experiment but not rescues in Figure 6.13 and 6.14. Experiment 

ought to be repeated with equalised expression. An alternative to avoid unequal expression 

would be to restore variants at the native mSin1 locus by CRISPR/Cas9. 
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Figure 6.15 TV2 and RBD fully rescues SGK3 phosphorylation and activity. 
The indicated mSin1-HA variants were transiently overexpressed in mSin1-KO HEK293 clone P1A2. These 
cells, alongside parental (P) and mSin1-KO (KO) cells were serum starved overnight, before stimulation 
with or without IGF1 and cell lysis. Endogenous SGK3 was immunoprecipitated from 3 mg lysate for in vitro 
kinase assay against Crosstide substrate, and immunopreciptates and whole cell lysate subject to 
immunoblot analysis with the antibodies indicated. Error bars = SD, n=3 
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6.2.6 How is the mSin1 PH domain impacting on phosphorylation of SGK3. 

In my initial screen (figure 6.12) I identified that, although reduced, SGK3 and Akt 

phosphorylation and activation could still occur upon mutation or deletion of the mSin1 PH 

domain. This is in contradiction of previous literature (Liu et al, 2015), which proposed that PH 

domain binding to PtdIns(3,4,5)P3 was critical for activity of mTORC2 against Akt. I therefore 

repeated expression of mSin1-TV1, mSin1-PHdel and mSin1-PHmut in U2OS mSin1 KO cells to 

validate the result. Again, I found that, although phosphorylation was impacted, SGK3 

phosphorylation and activation could still occur. Conversely, Akt phosphorylation at its Ser473 

site was relatively unaffected (Figure 6.16). 

In this and future experiments, I also measured phosphorylation of mSin1 at T86 using a 

phospho-specific antibody. The role of this phosphorylation site is unclear, it lies within the 

canonical RxRxxS/T motif, and has previously been associated with positive feedforward 

phosphorylation by Akt or negative feedback regulation by S6K1 in different cell types (Liu et al., 

2014; Humphrey, Azimifar and Mann, 2015; Yang et al., 2015). I therefore was interested in any 

association with this phosphorylation site and SGK3 phosphorylation and activation downstream 

of mTORC2. In this experiment, I observed that T86 phosphorylation was reduced in the PH-

domain mutation and deletion mutants, which were deficient in SGK3 activation, despite fairly 

equal expression of mSin1. 

As these mutants are deficient for phosphorylation of SGK3 in cells, I decided to study the effect 

these mutations had on mTORC2 function in vitro. I therefore immunoprecipitated the same 

mSin1-HA variants from cells and performed an in vitro mTORC2 kinase assay against SGK3. In 

this in vitro assay, mTORC2 immunoprecipitated by these constructs showed no defect in 

phosphorylation of SGK3, in fact phosphorylation appeared to be enhanced (Figure 6.17).  
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Figure 6.16 PH deletion and mutation constructs still maintain partial activity against SGK3 and Akt. 
Full length mSin1 (TV1) and PH-domain deletion and mutation variants were re-expressed in mSin1 KO 
U2OS cells. SGK3 was immunoprecipitated from cells and assayed for its in vitro kinase activity, alongside 
blotting for the T320 and S486 phosphorylation sites. Error bars = SD, n=3 
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Figure 6.17 PH deletion and mutation have no effect on ability of mTORC2 to phosphorylate SGK3 in 
vitro. 
mTORC2 was immunoprecipitated from mSin1 KO cells expressing full length (mSin1-TV1), or PH-domain 
deletion and mutation variants. Immunopreciptates were assayed against recombinantly expressed SGK3 
in an in vitro kinase assay. The resulting protein was blotted for phosphorylation on its hydrophobic motif. 
Immunoprecipitates from mSin1 KO cells not expressing mSin1-HA and mTOR inhibitor AZD8055 were used 
as negative controls 

6.2.7 How is the mSin1 Ras Binding Domain (RBD) impacting on activation of 

SGK3? 

Given that PH-binding deficient variants of mSin1 were still able to partially lead to 

phosphorylation of SGK3, I next tested whether this deficiency could be compensated for the 

Ras Binding Domain (RBD) of mSin1. Therefore, I generated a double mutant cell line carrying 

both the PH-binding point mutations and mutation of the Ras Binding Domain. Unexpectedly, 

instead of this second mutation further inactivating mTORC2 and reducing SGK3 activation, I 

discovered a recovery of activity upon inactivation of the RBD (Figure 6.18). This therefore 

suggests that the RBD may be a negative regulator of SGK3 phosphorylation by mTORC2 and 

warrants further investigation. Additionally, it will be interesting to measure the effect of PH-

domain mutations in mSin1 TV2, which carries a deletion of the Ras Binding Domain. It is possible 

that, without the Ras binding activity, TV2 is not reliant on the PH domain and is therefore not 

subject to PtdIns lipid regulation and may therefore be responsible for activation of SGK3 in the 

absence of Class I PI3K activity. Sequence analysis predicted the RBD of mSin1 to be a Raf-like 

RBD, which is able to bind to bind to activated Ras (Schroder et al., 2007). It has been previously 

demonstrated that activating mutations in Ras can activate SGK3 (Malik et al., 2018). 
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Figure 6.18 Reexpression of TV1,PHmut and PH/RBD double mutant in mSin1 KO cells. 
U2OS mSin1 KO cells reexpressing mSin1 under a doxycycline-inducible system were analysed for their 
ability to activate SGK3. mSin1_TV1, mSin1_PHmut and mSin1_PHmut/RBDmut were expressed, cells were 
serum starved overnight and stimulated with 50 ng/ml IGF1 for 15 minutes, in the presence or absence of 
Akt inhibitor MK2206. SGK3 activity upon IGF1 stimulation was measured by immunoprecipitation and in 
vitro kinase assay. Error bars = SD, n=3 

Again, in this experiment I observed that T86 phosphorylation was reduced in the PHmut form 

of mSin1, which was partially rescued by the PH/RBD double mutant. Additionally, treatment 
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with the Akt inhibitor MK2206 reduced T86 phosphorylation in these cells, suggesting in U2OS 

T86 is a substrate of Akt, and may mediate the observed downregulation of SGK3 activity in 

these cells upon MK2206 treatment. 

 

6.2.8 What is the significance of mSin1 T86 phosphorylation? 

As mentioned above, I observed in several experiments that phosphorylation of Thr86 of mSin1 

was substantially reduced in variants of mSin1 which are less able to induce phosphorylation of 

SGK3. This site lies within the canonical RxRxxS/T motif, and has previously been proposed to be 

phosphorylated by Akt and S6K1 in different cellular contexts (Liu et al., 2014; Humphrey, 

Azimifar and Mann, 2015; Yang et al., 2015). While I could observe a defect in phosphorylation 

of this site, it could not be determined from this data whether T86 phosphorylation was a 

necessary upstream regulator for SGK3 phosphorylation or was itself a substrate of SGK3. 

In order to answer these questions, I have generated cell lines expressing both mSin1-TV1 and 

mSin1-TV2 carrying T86A and T86E mutations. In future work it will be important to use these 

cell lines in order to study the effect of these mutations on SGK3 phosphorylation and whether 

T86 phosphorylation was required for activity. 

I additionally studied phosphorylation of mSin1 downstream of SGK3, by inducing SGK3 activity 

in ZR-75-1 cells with 5 day Akt inhibitor treatment (MK2206, 1 μM). As described in previous 

chapters, prolonged treatment of ZR-75-1 cells with MK2206 results in a transcriptional 

upregulation and activation of SGK3, and the protein kinase can substitute for Akt activity in the 

phosphorylation of substrates. 

Under basal and prolonged inhibitor conditions, I treated cells for 1 h before lysis with the 

MK2206 (1 μM) or the SGK inhibitor 14H. In basal conditions, as in the U2OS cells, treatment 

with the Akt inhibitor reduced phosphorylation of mSin1 at T86. However, treatment with the 

14H inhibitor had no effect. Therefore, mSin1 is likely a substrate of Akt and not significantly 
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phosphorylated by SGK3 under these conditions. Upon 5 day treatment with MK2206, 

phosphorylation of mSin1 and the common substrate NDRG1 was recovered. Under these 

conditions I observed that Sin1 phosphorylation was not reduced by treatment with SGK3 

inhibitor 14H, whereas SGK3 substrate NDRG1 phosphorylation was affected (Figure 6.19). 

Therefore, mSin1 is likely not a direct substrate of SGK3. It would be of interest to further 

characterise this phosphorylation site in future work, to determine its relevance to 

phosphorylation and activation of SGK3 by mTORC2. 

 

Figure 6.19 mSin1 phosphorylation is not downstream of SGK3 in Akt inhibitor-induced ZR-75-1 cells. 
ZR-75-1 cells were treated for 5 days in the presence or absence of Akt inhibitor MK2206 (1 μM). 1 h before 
lysis, cells were treated with MK2206 (1 μM) or SGK3 inhibitor 14H ( 1 μM). Cell lysates were subject to 
immunoblot analysis with the indicated antibodies. 

6.2.9 Q68H mutation has no effect on SGK3 activation 

It has previously been reported that a Q68H mutation in mSin1 completely ablates 

phosphorylation of SGK1 but not Akt (Lu et al., 2011).This was proposed to be due to a direct 

interaction with SGK1 via this residue determining substrate specificity. I was therefore very 

interested to test whether this mutation impacts on SGK3 phosphorylation downstream of 
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mTORC2. I introduced this mutation in full length mSin1 and tested the ability of this construct 

to mediate SGK3 phosphorylation at S486 in comparison to mSin1-TV1 and mSin1-PHmut as a 

negative control. Immunoprecipitation and immunoblot of SGK3 for the T320 and S486 sites 

revealed no defect in phosphorylation of SGK3 upon Q68H mutation (Figure 6.20). 

 

 

Figure 6.20 Q68H mutation does not impact on hydrophobic motif phosphorylation of SGK3. 
A. Domain structure of Q68H and PH domain mutants of mSin1. B. Full Length (TV1), Q68H mutant and 
PH-domain mutant mSin1 were transfected into mSin1 KO cells. Cells were serum starved overnight then 
stimulated with IGF-1 (50 ng/ml). SGK3 was immunoprecipitated and blotted for S486 and T320 
phosphorylation. 

6.2.10 Localisation of mSin1 in U2OS 

I was interested to determine the cellular localisation of various mSin1 transcripts. Further, 

functional information could be gained by analysing how localisation changes upon activation 
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and inhibition of the PI3K signalling pathway. It was hypothesised that different variants or 

mutants of mSin1 may alter SGK3 activation by changing localisation of mTORC2 in the cell. It 

has been reported that mSin1 is localised to the plasma membrane, through binding of its PH 

domain to PtdIns(3,4,5)P3 generated in response to growth factors. I therefore expressed 

different transcript variants of HA-mSin1 and stained by immunofluorescence for HA and 

costained using Wheat Germ Agglutin (WGA) conjugated to Alexa Fluor 594 to identify the 

plasma membrane. mSin1 stably expressed in the TREx system revealed mSin1 to be largely 

cytoplasmic, with some localisation to the plasma membrane and intracellular vesicles (Figure 

6.21). This is in agreement with Ebner et al, who studied the localisation of GFP-tagged mSin1 in 

cells, and similarly determined that mSin1 was localised to the cytoplasm and endosomal 

vesicles. Transcript Variant 5 (TV5), which lacks a PH domain, was discovered to be primarily 

localised in the nucleus. It would be interesting to continue this analysis of the PH-domain 

mutant constructs, as presumably these mutations would affect cellular localisations. Further, 

mutation of the Ras Binding Domain or the T86 phosphorylation site may also have an impact 

on cellular localisation. 

As mSin1 Transcript Variant 2 (TV2) and others presented possible localisation to intracellular 

vesicles, I decided to study colocalization with early endosomal marker Rab5. In this experiment, 

I used a freeze-thaw method of permeabilization to remove cytosolic protein and therefore only 

membrane-bound proteins remained in the sample. I determined that HA-mSin1 did localise to 

internal membranes, however surprisingly did not colocalise with the Rab5 marker as expected 

(Figure 6.22). It would therefore be important to continue this analysis with further markers of 

internal membranes, such as EEA1 as another early endosomal marker, Rab7 as a late 

endosomal marker, as well as mitochondrial and lysosomal trackers. Surprisingly, the full length 

TV1 was not observed to stain to many internal structures. 
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Figure 6.21 mSin1 variants are cytosolically diffuse through throughout cell. 
mSin1 transcript variants were expressed under a Doxycycline-inducible system in U2OS cells. Localisation of mSin1 was analysed by immunofluorescence and compared to 
WGA staining of the plasma membrane. Images are representative of n=10 images. 
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Figure 6.22 mSin1 Transcript variants localised to intracellular membranes, which do not colocalise with Rab5. 
mSin1 transcript variants were expressed under a Doxycycline-inducible system in U2OS cells. Cells were subject to freeze-thaw permeabilization to remove diffuse cytosolic 
proteins. Localisation of mSin1 was analysed by immunofluorescence and compared to anti-Rab5 staining of early endosomal membranes. Images are representative of n=10 
images.



[218] 
 

 

Additionally, these analyses were undertaken under basal signalling conditions. It would be 

interesting to use this assay to determine how localisation of various mSin1 variants differ upon 

stimulation with growth factors or inhibition of the PI3K pathway. 

Despite some information on subcellular localisation of cells, a large proportion of the mSin1 

protein was cytoplasmic. This is in agreement with previous literature (Ebner et al., 2017). If 

mTORC2 is present and active all over the cytoplasm, these localisation differences may not be 

as important. However, as this study, and previous literature, was performed using 

overexpressed proteins, it may be the case that this cytoplasmic localisation is an artefact of this 

overexpression system. However, during amino acid starvation mTORC1 is diffuse in the cytosol 

(Laplante and Sabatini, 2012; Jewell, Russell and Guan, 2013), therefore this may also be true of 

mTORC2. I have therefore generated endogenous GFP knockins to Rictor and mSin1 by 

CRISPR/Cas9 to investigate endogenous localisation in future work. 

6.3 Activation of VPS34 by growth factors 

6.3.1 Proximity-driven Biotinylation to identify interactors of VPS34 upon IGF1 

stimulation.  

Co-immunoprecipitation has been extensively used for identification of interactors of a protein 

of interest for decades. In this approach, a target protein is subject to immunoprecipitation and 

any co-eluting proteins measured by western blot or by mass spectrometry analysis. This 

powerful technique has led to a number of important discoveries and enhanced our 

understanding of major protein complexes such as mTOR and identification of high affinity 

binding protein kinase substrates. However, a caveat to this approach is that co-

immunoprecipitation relies upon a stable, high affinity interaction with effectors, as more 

weakly associated, transient interactors may not immunoprecipitate with the target protein, or 

may be lost through extensive wash steps during the purification process. Therefore recently, 

Proximity-based Biotinylation techniques, such as BioID, APEX2 and TurboID, have been 

developed as an alternative to co-immunoprecipitation for identification of co-localised or 



[219] 
 

 

interacting proteins (Burke et al., 2013; Han et al., 2017; Branon et al., 2018). These approaches 

work by either endogenously expressing a target protein in tandem with a biotin ligase or 

expressing a biotin ligase targeted to the endogenous target protein by, for example, a GFP tag 

(Branon et al., 2018). In this approach, activation of the biotin ligase, in proximity to the target 

protein, leads to biotinylation of any nearby, interacting proteins. Biotinylated proteins can then 

be isolated by streptavidin pulldown and identified by mass spectrometry. This approach has an 

advantage over classical co-immunoprecipitation for identification of interactors, as more 

transient interactors can be permanently biotinylated and identified, rather than relying upon a 

stronger, high affinity interaction.  

The hypothesis of this study was that, upon stimulation with growth factors, a transient change 

in VPS34 complex members could occur to increase the capability of VPS34 to phosphorylate 

PtdIns. The APEX2 approach allows for rapid labelling of interacting proteins within 1 minute, 

however is reliant upon Biotin phenol and requires activation with H2O2 (Han et al., 2017). This 

approach was unsuitable for study of VPS34, as previous work as shown that H2O2 leads to 

inhibition of lipid phosphatases and significantly alters proteins on the plasma membrane within 

1 minute (Cheung et al., 2007).  BioID uses Biotin as a substrate and does not require hydrogen 

peroxide for activation, however the labelling kinetics are very slow, requiring 18-24 hrs and are 

not suitable for dynamic processes such as VPS34 activation (Burke et al., 2013). TurboID was 

recently developed through targeted evolution as an optimized biotin ligase, with the simplicity 

of BioID, but with decreased labelling times. I therefore chose this technique for studying any 

rapid changes in VPS34 complexes in response to growth factors. 

I therefore generated cell lines stably expressing TurboID biotin ligase targeted against GFP-

tagged VPS34. I could therefore then stimulate these cells in the presence or absence of IGF1, 

to identify any differential interactors of VPS34 under these conditions (Figures 6.23, 6.24). 
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Figure 6.23 VPS34 Complexes in cells. 
VPS34 is found in 2 stable complexes in cells. Both complexes contain VPS34, VPS15 and Beclin1, while 
complex I is formed with ATG14L and complex II is formed with UVRAG. Other transiently binding proteins 
interact with these complexes to modulate VPS34 activity. 

 

 

Figure 6.24 TurboID Mechanism of action. 
TurboID Biotin ligase is targeted to the substrate GFP-VPS34 by an anti-GFP nanobody (aGFP). Interacting 
proteins are biotinylated by the enzyme and can be isolated using streptavidin-conjugated beads. 

6.3.2 Viral generation of TurboID into GFP-VPS34 cell lines 

HEK293 cell lines expressing GFP-VPS34 had been generated in the lab previously by bachelor’s 

student Annika Hornberger. These were fully characterised and the GFP-tag demonstrated not 

to impact on VPS34 activity (Malik et al., 2018). I therefore chose these cells to virally transfect 

aGFP-TurboID, and study interactors of VPS34. 

The TurboID construct used in this study is targeted by a destabilised anti-GFP nanobody. 

Therefore, in the presence of GFP, the biotin ligase will be targeted towards GFP and stabilized 

on GFP binding. In the absence of GFP, for example in control, wildtype HEK293 cells or regions 
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of the cell not expressing GFP, the ligase will be unstable and rapidly degraded and turned over. 

This reduces non-specific off target biotinylation which could be observed when exogenously 

overexpressing a biotin ligase. I therefore transfected this construct into wildtype, 5 GFP-VPS34, 

and 3 Beclin1-GFP HEK293 cell lines, and selected for TurboID integration by puromycin 

resistance. Of these transfections, 2 Beclin1-GFP and 3 GFP-VPS34 cell lines survived 

transfections and expressed the TurboID Biotin Ligase. The wildtype cell line was designed to be 

a negative control to account for any remaining off-target biotinylation. 

Figure 6.25 demonstrates the resultant cell lines from this transfection and selection process, 

with or without stimulation with 500 μM Biotin. First, the untransfected wildtype, Beclin1-GFP 

and GFP-VPS34 cell lines are shown with only biotinylation of the native carboxylases recognised 

by Streptavidin-HRP. The wildtype TurboID transfected cell line presents with a smear of 

biotinylated proteins which is increased on addition of Biotin. The Beclin1-GFP cell lines did not 

have any appreciable increase in biotinylation, likely due to relatively low expression of GFP-

tagged protein and, upon streptavidin pulldown of biotinylated proteins, there was only weak 

detection of VPS34 complex members. Comparatively, GFP-VPS34 cell lines expressed increased 

general biotinylation. In addition, additional bands appeared in the streptavidin blot specifically 

in the GFP-VPS34 TurboID samples, representing target proteins which were specifically 

biotinylated when TurboID is targeted toward VPS34. Upon streptavidin pulldown, all core 

VPS34 complex members could be detected by western blot, with greater efficiency than the 

Beclin1-GFP TurboID cell lines. Further, both ATG14 forming complex I, and UVRAG forming 

complex II could be detected. While all complex members were identified by streptavidin 

pulldown, the VPS34 core complex forms a very tight high affinity complex, therefore this does 

not necessarily mean the entire complex is being biotinylated. Since GFP-VPS34 TurboID clone 

#1 cell line gave the strongest biotinylation of VPS34, I selected this cell line for further 

investigation. 
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Figure 6.25 Screening of TurboID cell lines. 
TurboID constructs were transfected into wildtype HEK293 cells and Beclin1-GFP and GFP-VPS34 cell lines. 
Cells were stimulated with 500 μM Biotin and analysed for global biotinylation. Biotinylated proteins were 
isolated by Streptavidin-conjugated sepharose beads and eluted for analysis by immunoblot. Global 
biotinylation was also analysed in cell lysates using Streptavidin-HRP. Lysates and biotinylated proteins 
were analysed by immunoblot with the indicated antibodies. 

Optimisation of TurboID stimulation conditions 

In figure 6.25 above I used a 15 minute standard stimulation time with 500 μM Biotin to 

stimulate biotinylation of colocalising proteins by TurboID. However, in the cell line screen I 

noted only a slight increase in general biotinylation in the GFP-VPS34 cell line after stimulation. 

I therefore next tested a timecourse of Biotin treatments up to an hour to determine the best 

time point to detect specific biotinylation. I observed that, although non-specific biotinylation in 

the wildtype cell line increase over time, I only observed a slight increase in specific biotinylation 

at 15 minutes in the VPS34 cell line which did not increase further (Figure 6.26). This result was 

surprising, as the nanobody is stabilized in the GFP-VPS34 cell line, but not in the wildtype. 

However, this result is possibly due to the stabilized nanobody being highly localised to VPS34 

on endosomes, while the destabilized nanobody is diffuse in the cytosol and therefore able to 
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biotinylate more substrate proteins. This could be investigated further by immunofluorescent 

analysis either against FLAG to determine the localisation of the nanbody or with fluorescently 

labelled biotin to determine where biotinylation is occurring in the cell. 

 

Figure 6.26 Timecourse of Biotin stimulation in TurboID cell lines. 
HEK293 WT, Beclin1-GFP or GFP-VPS34 cells expressing TurboID Biotin Ligase were stimulated for up to 60 
minutes with 500 μM Biotin before cell lysis. Biotinylated proteins were isolated by Streptavidin-
conjugated sepharose beads and eluted for analysis by immunoblot analysis with the indicated antibodies. 
Global biotinylation was also analysed in cell lysates using Streptavidin-HRP. 

Biotinylation of substrate proteins by the TurboID biotin ligase is an ATP-dependent process. 

Therefore, it was important to determine, before moving further with the assay, whether serum 

starvation of cells or stimulation with IGF1 would impact on biotinylation efficiency. An increase 

in biotinylation efficiency on IGF1 stimulation could result in false positives, as increased 

biotinylation in the IGF1 stimulated samples would not necessarily represent increased 

interaction with the VPS34 complex. I therefore studied stimulation of wildtype and GFP-VPS34 

TurboID cell lines with IGF1, either from a serum starved or basal state, and assayed overall 

biotinylation by the Streptavidin-HRP blot, and also specific biotinylation of the VPS34 complex. 

I observed that, although there was a very slight decrease in general biotinylation upon serum 
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starvation the complex could still be readily detected by streptavidin pulldown. In addition, IGF1 

stimulation did not impact on global biotinylation changes (Figure 6.27). 

 

 

Figure 6.27 Serum starvation and IGF1 stimulation do not impact on TurboID-induced biotinylation. 
 HEK293 WT or GFP-VPS34 cells expressing TurboID Biotin Ligase were either grown in serum or serum 
starved overnight. Cells were then stimulated for 15 minutes with 500 μM Biotin in the presence or absence 
of IGF before cell lysis. Biotinylated proteins were isolated by Streptavidin-conjugated Sepharose beads 
and eluted for analysis by immunoblot analysis with the indicated antibodies. Global biotinylation was also 
analysed in cell lysates using Streptavidin-HRP. 

6.3.3 Mass Spectrometry Analysis of Streptavidin pulldown 

Based on the results above, I set up an assay to compare GFP-VPS34 TurboID cells by TMT-

labelled Mass Spectrometry in triplicate, stimulated with or without IGF1 (50 ng/ml, 15 minutes), 

in parallel with 15 minutes Biotin Stimulation. These were compared to the wildtype TurboID 

cell line also stimulated with IGF1 as a negative control for off-target biotinylation. Cells were 

serum starved overnight, stimulated with IGF1 and Biotin and washed 5 times with PBS before 

lysis in RIPA buffer, to remove any exogenous Biotin which would reduce the efficiency of the 

streptavidin pulldown. I performed a pulldown of biotinylated proteins overnight from 500 μg 

lysate using Agarose-conjugated streptavidin, and digested peptides from the beads by trypsin 
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digestion. The resultant peptides were then labelled using TMT labelling reagents for 

quantitative mass spectrometry. 

In order to determine the efficiency of the streptavidin pulldown ahead of TMT labelling, I 

performed a streptavidin blot on the lysates, supernatant and pulldown of this experiment. I 

determined that the pulldown was largely efficient with most biotinylated proteins removed 

from the supernatant (Figure 6.28). However, while in the lysate I observed slightly higher 

biotinylation levels in the wildtype cell line compared to the GFP-VPS34, upon streptavidin 

pulldown I noticed substantially higher levels of general biotinylation. However, IGF1 stimulation 

in the GFP-VPS34 cell line resulted in no noticeable changes in general biotinylation. 

 

Figure 6.28 Many more biotinylated proteins are detected in HEK293 WT TurboID cells than GFP-VPS34 
TurboID. 
HEK293 WT or GFP-VPS34 cells expressing TurboID Biotin Ligase were serum starved overnight, then 
stimulated for 15 min with 500 μM Biotin in the presence or absence of IGF1 stimulation before cell lysis. 
Biotinylated proteins were isolated by Streptavidin-conjugated sepharose beads and analysed by mass 
spectrometry. Global biotinylation in lysates, streptavidin immunoprecipitation and the resulting 
supernatant was analysed using Streptavidin-HRP. 
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I also observed, upon analysis of the quantified mass spectrometry data, that many more non-

specific biotinylated peptides were identified in the wildtype samples compared to the GFP-

VPS34 samples (Figure 6.29). The excessive number of non-specific peptides impacted on the 

sensitivity of the mass spec approach, as only PIK3C3 (VPS34) and PIK3R4 (VPS15) were detected 

in the GFP-VPS34 samples. 

 

Figure 6.29 Comparison of Biotinylated proteins in GFP-VPS34 and WT TurboID cells 
Biotinylated proteins from HEK293 WT or GFP-VPS34 cells expressing TurboID were isolated using 
streptavidin-conjugated sepharose beads. Peptides were eluted from beads by Trypsin Digestion overnight 
and the resultant peptides analysed by TMT-labelled quantitative mass spectrometry. Data comparing 
GFP-VPS34 and WT HEK293 cells is demonstrated by Volcano plot. Full dataset available in Appendix Table 
5. 

This low sensitivity resulted in very few changes being observed when comparing the IGF1 

stimulated cell to serum starvation (Figure 6.30). I observed, as expected, that amounts of VPS34 

and VPS15 were not affected by IGF1 stimulation. This is in agreement with previous literature 

than VPS15 is an obligate dimer with VPS34 and this interaction is not impacted by external 

signals. However, very few changes were observed between the two conditions. It was however 
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promising that I identified the autophagy-related protein ATG2B to be enriched in the serum 

starved condition in comparison to IGF stimulation.  However, changes were very slight due to 

low sensitivity of the experiment. This experiment should therefore be repeated without the 

wildtype control samples, as in this case the cell line does not serve well as a negative control. 

 

Figure 6.30 Comparison of Biotinylated proteins in GFP-VPS34 TurboID cells 
Biotinylated proteins from GFP-VPS34 cells expressing TurboID in the presence or absence of IGF1 
stimulation were isolated using streptavidin-conjugated sepharose beads. Peptides were eluted from 
beads by Trypsin Digestion overnight and the resultant peptides analysed by TMT-labelled quantitative 
mass spectrometry. Data comparing IGF1-stimulation and serum starvation in GFP-VPS34 cells is 
demonstrated by Volcano plot. 

6.4 Discussion 

In this chapter, I present preliminary experiments investigating how SGK3 is activated under 

prolonged Class I PI3K inhibition. Current understanding in the field is that SGK3 is recruited to 

PtdIns(3)P produced on early endosomes by VPS34 and is there phosphorylated by mTORC2 and 

PDK1 for its activation. However, questions still remain over how mTORC2 is directed to SGK3 

under these conditions, as compared to mTORC1 this complex is relatively poorly studied and 
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most literature relates its activity to PI3K activation. Additionally, our current data does not 

explain how VPS34 is activated by growth factor signals. 

In order to further understand mTORC2 activation and targeting towards SGK3, I performed 

genome level knockout of the critical mTORC2 component mSin1 in HEK293 and U2OS TREx cells, 

and re-expressed several isoform variants and mutants under a doxycycline-inducible promotor. 

I first confirmed that my knockout of mSin1 inactivated mTORC2, as observed by a loss of Akt 

phosphorylation at Ser473, and that this loss of mTORC2 activity resulted in lost SGK3 activation 

and phosphorylation of its activation loop residue T320 (published in Malik et al., 2018). This 

confirmed previously published data using shRNA knockdown of Rictor that demonstrated 

activation of SGK3 was reliant on mTORC2 (Bago et al., 2016). Re-expression of the 5 transcript 

variants of mSin1 also reproduced current literature proposing that transcript variant 4, carrying 

an N-terminal truncation, cannot integrate into and activate mTORC2, and as such SGK3 was not 

activated in response to IGF1 stimulation in this cell line. This increases confidence in my chosen 

model for studying SGK3 activation by mTORC2 as these results agree with current literature. 

A key limitation to this study was that the chosen antibody for detecting SGK3 hydrophobic motif 

phosphorylation, raised against pSer422 of SGK1, had limited sensitivity for detecting pSer486 

of SGK3, and therefore this assay was not robust enough for detection in every experiment 

described. Although Thr320 phosphorylation and SGK3 in vitro activity could be used as a proxy 

for hydrophobic motif phosphorylation, to truly study phosphorylation of SGK3 by mTORC2 an 

improved tool would be required to detect this site. In this study, I tested several antibodies 

against the hydrophobic motif site, however none offered any improvement over the current 

pSer422 antibody, including a sheep polyclonal antibody raised in house. The development of a 

PhosTag assay for monitoring the phosphorylation of SGK3-specific substrates by Athanasios 

Karapetsas. will also be a powerful tool in continuing this project 
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In this model, phosphorylation and activation of SGK3 could be rescued by mSin1 with a deletion 

of binding mutations in the PH domain. This is in contrast with Liu et al., who published that the 

PtdIns(3,4,5)P3 binding was critical for activation of mTORC2 and phosphorylation on the 

hydrophobic motif of Akt. The model proposed in the paper was that the PH domain acts by 

autoinhibition of the kinase domain of mTOR, which is released upon PtdIns(3,4,5)P3 binding (Liu 

et al., 2015). Within this model, it would make sense for the PH deletion mutant to be active, if 

mislocalised, as this inhibition is released, however it does not explain the activity of the 

PtdIns(3,4,5)P3-binding deficient mutant, which would still be autoinhibitory in the mTOR active 

site. Additionally, the PH-domain is not performing any auto-inhibitory roles by in vitro kinase 

assay. My data also propose a possible inhibitory role of the Ras-Binding domain of mSin1. 

Mutation of this domain appeared to rescue the decreased activity of the PH-domain mutant, 

and additionally this mutation in the full-length protein further increased its activity. It is 

possible that transcript variant 2, lacking this region of the RBD is not affected by the 

autoinhibitory effects of the PH-domain, and therefore is capable of activating mTORC2 in the 

absence of PI3K signals. This would provide a mechanism by which SGK3 could be activated by 

mTORC2 under prolonged Class I PI3K inhibition, however further experiments would be 

required to validate this mechanism. In order to fully characterise these effects, I would further 

analyse the ability of Ras Binding mutant or Isoform 2 of mSin1 to initiate phosphorylation and 

activation of SGK3. This would include combinations of the PH-domain mutations in TV2 to 

determine if the mutations have an effect in this cell line. It would also be interesting if the Ras 

Binding domain mutation altered the localisation of full length Sin1, and whether this was 

affected by PH domain mutations. Sequence analysis predicted the RBD of mSin1 to be a Raf-

like RBD, which is able to bind to activated Ras (Schroder et al., 2007). This study also suggested 

the RBD acted as an inhibitor or Ras signalling. It would be interesting to follow up this work by 

comparing Ras-like effectors which bind the mSin1 in the presence or absence of IGF1 

stimulation or prolonged inhibition of the PI3K pathway. 
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Analysis of the cellular localisation of HA-mSin1 revealed a largely diffuse, cytoplasmic 

localisation of mSin1. However, it was unclear from these experiments whether this is 

representative of the true localisation of the endogenous protein or an artefact of the 

overexpression approach. mTORC1 has been shown to be diffuse in the cytosol upon amino acid 

starvation (Jewell, Russell and Guan, 2013). I therefore decided to generate endogenous 

CRISPR/Cas9 knockin cell lines of mSin1-GFP and GFP-Rictor, another mTORC2 component, and 

use these cells to study endogenous localisation. While these experiments do not allow the 

analysis of different variants and mutants of mSin1, they provide an overview of endogenous 

subcellular localisation, and the response to stimulation and inhibition of the pathway. 

Several recent papers have proposed mechanisms by which mTORC2 could be activated 

independently of PI3K, and propose independent pools of mTORC2 with differing sensitivity to 

modulation of the PI3K pathway. Ebner et al., used a fluorescent biosensor of mTORC2 activity 

tethered to different cellular compartments to investigate independent mTORC2 pools. They 

determined that mTORC2 activity was most prominent at the plasma membrane, followed by 

the late and early endosomes. It is therefore surprising that I did not detect any strong 

localisation to either the plasma membrane or Rab5-positive early endosomal membrane 

structures. Using this system they determined that pools of active mTORC2 are present on the 

plasma membrane and mitochondria which are unaffected by GDC0941 treatment and are 

therefore regulated in a PI3K-independent manner (Ebner, Sinkovics, et al., 2017). Two recent 

papers have suggested mechanisms by which mTORC2 can be regulated independently of PI3K 

activity. Further, Jia et al recently published data  suggesting that, as with mTORC1, lysosome 

positioning had an impact on reactivation of certain pools of mTORC2 after serum starvation (Jia 

and Bonifacino, 2019). Given evidence that pools of mTORC2 are regulated independently, it is 

reasonable that an endosomal pool of mTORC2 could be activated to phosphorylate SGK3 

independently of Class I PI3K signals. Kazyken et al. have recently described that mTORC2 can 
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be activated by phosphorylation of mTOR and Rictor by AMPK in response to a range of AMPK 

agonists (Kazyken et al., 2019). 

In this chapter I also set up an assay for studying how VPS34 is activated to produce further 

PtdIns(3)P in response to growth factor stimulation. Using the TurboID Proximity-based 

Biotinylation system. I was able to set up a cell line in which the VPS34 complex was specifically 

biotinylated in GFP-VPS34 cells. However, a high degree of background biotinylation limited the 

depth of analysis, and detection of specifically biotinylated peptides. Therefore, in future work 

this system can be used to modify conditions and determine changes in complexes in response 

to stimuli. Further controls should also be used to optimise the TurboID system before 

proceeding to mass spectrometry analysis. The increased biotinylation in the wildtype cell line 

may be due to increased viral load on transfection of these cells. Additionally, 

immunofluorescent analysis can be used to ensure correct colocalization of GFP-VPS34 and the 

Flag-aGFPTurboID. By a similar method, streptavidin staining can be applied to ensure 

biotinylation is colocalised to GFP-VPS34. 

 Additionally, a miniTurbo biotin ligase was also published to be 1.5-fold less active than TurboID 

but exhibit less labelling before addition of exogenous biotin. This construct would potentially 

allow for more precise temporal control of labelling in highly dynamic processes (Branon et al., 

2018). In my samples, biotinylation in the VPS34-TurboID cell line only slightly increased on 

biotin stimulation compared to labelling from endogenous biotin. Therefore, changes within a 

15-minute stimulation may not be detected as easily. Therefore, repeating this process with the 

miniTurbo construct may allow for more sensitive detection of any potential changes in 

response to growth factors. 

Another interesting area to study would be whether post-translational modification of VPS34 is 

affected by prolonged PI3K inhibitor treatment. For example, VPS34 activity is known to be 

modulated by acetylation at K29, K771 and K781 by p300, and p300 is also regulated 
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downstream of Akt (Huang and Chen, 2005; Su et al., 2017). Additionally, Beclin1 is heavily 

decorated with posttranslational modifications which modulate VPS34 complex activity (Hill, 

Wrobel and Rubinsztein, 2019). It is therefore possible that phosphorylation or acetylation 

changes occur over prolonged PI3K inhibition which impact on VPS34 activity. To answer this 

question, I would perform acetylation mapping and phosphosite mapping of VPS34 from ZR-75-

1 cells in the presence or absence of Class I PI3K inhibition for 5 days. Any identified changes in 

acetylation or phosphorylation sites could then be followed up to determine whether they have 

any impact on activity. 
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7. General Discussion and Future Directions 
Prior to the start of my PhD, SGK3 had been demonstrated to lie downstream of PI3K signalling 

and play a key role in resistance to PI3K-Akt pathway inhibitors in breast cancer. It is therefore 

critical to develop tools to modulate and understand this resistance pathway. 

In this study I generated 2 tool compounds for studying the biology of SGK3. SGK3-PROTAC1 

rapidly and specifically induced degradation of SGK3 from a range of cancer cell lines allowing 

modulation of downstream signalling. Importantly, degradation of SGK3 was observed to have 

a greater effect on inhibiting growth of cancer cells in the context of PI3K-Akt pathway inhibition. 

PROTAC compounds have recently grown in use to study the non-enzymatic functions of 

proteins, for example studying the non-kinase functions of FAK or CDK6. That degradation of 

SGK3 can have a greater impact on PI3K inhibitor resistance than inhibition of its activity 

suggests that SGK3 may have cellular roles beyond its kinase activity. 

Further to this hypothesis, mass spectrometry analysis of SGK3 degradation in ZR-75-1 cells 

revealed surprisingly cellular effects not observed upon SGK3 inhibition. I first demonstrated the 

degradation of SGK3 resulted in reduced expression of the phosphodiesterase PDE4D. As PDE4D 

acts in signalling complexes to mediate highly localised pools of cAMP, it may therefore form a 

complex with SGK3 to mediate endosome-localised cAMP. Further work would be required to 

determine the functional impact and mechanism by which PDE4D is downregulated. I also found 

a surprising upregulation of proteins forming the electron transport chain complexes in 

mitochondria. This could represent an exciting role for SGK3 in mediating cancer cell metabolism 

and warrants further investigation in future work. Importantly, in this study I have not 

functionally characterised the mechanism leading to the upregulation of these proteins, and 

whether mitochondrial function is being activated or inhibited in response to SGK3 degradation, 

and this would be an important future experiment to follow up from this work. Overall, SGK3-

PROTAC1, developed and characterised in this thesis, is a powerful tool for the further 

investigation of SGK3 signalling in cancer resistance. 
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In addition to the specific SGK3-PROTAC1, I worked with Alessio Ciulli’s lab to develop 

HaloPROTAC-E. This compound utilizes the bacterial dehalogenase activity of HaloTag7 to 

specifically induce degradation of any endogenously Halo-tagged protein. I demonstrated that 

HaloPROTAC-E was able to induce degradation of the entire VPS34 complex to impact on 

downstream biology. The compound can also be used in future work to determine the specificity 

and off-target effects of SK3-PROTAC1, by comparing the effects of both compounds on the 

SGK3-Halo cell line. This compound will be a useful tool within the unit and wider field to study 

proteins with no known ligands or validate target proteins for potential PROTAC development. 

I also set up assays to study the upstream regulation of SGK3 and determine how SGK3 can be 

activated in PI3K inhibitor resistance. I generated mSin1 KO cell lines and used these tools to set 

up a range of assays to study phosphorylation of SGK3 by mTORC2. The data generated from 

this model system demonstrated that the PH domain of mSin1 is dispensable for the 

phosphorylation and activation of SGK3, in contradiction with previous literature (Liu et al., 

2015). Additionally, the data suggests a negative regulatory role of the Ras Binding Domain of 

mSin1. Given that mTORC1 is regulated by the Rag GTPases it would be interesting if activation 

of mSin1 was regulated by G protein binding of the Ras Binding Domain of mSin1. Further work 

would involve further investigating the effect of PH domain and RBD mutations on the 

localisation of mSin1, and how these change in response to pathway stimulation and inhibition. 

It would also be interesting to combine my model with biosensors of mTORC2 activity such as in 

Ebner et al., 2017, to determine if stimulation and inhibition alters the activity of mTORC2 in 

particular cellular compartments. For the study of VPS34 regulation by growth factors, I have 

developed a proximity based Biotinylation assay to identify novel interactors of VPS34, and how 

these interactions change in response to growth factor stimulation. It is important to understand 

regulation of VPS34 as this is a key component in the activation of SGK3 in inhibitor resistance. 

The system I have set up in preliminary experiments will be an important tool in investigating 

VPS34 protein function. 



[235] 
 

 

To conclude, the aim of my PhD was to develop tools to dissect the roles of SGK3 in PI3K-Akt 

inhibitor resistance. As such, I developed 2 compounds, SGK3-PROTAC1 and HaloPROTAC-E, 

which were able to induce rapid, reversible degradation of SGK3 in a variety of cell lines. From 

this work, I identified 2 potential new roles for SGK3 in cancer cells, possibly modulating cAMP 

signalling through the phosphodiesterase PDE4D, and mitochondrial metabolism. Important 

future work would determine the functional impact of these alterations and whether they have 

a relevant regulatory role in cancer progression. I also developed tools to study the mechanisms 

by which SGK3 can be activated upon Class I PI3K inhibition. These tools will be useful to the 

field to further understand SGK3 activation and therefore determine methods to modulate its 

activity in the cancer setting.  
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8. Appendix Tables 
Appendix Tables are held online and are available at: 

 https://benchling.com/s/etr-D7NWzXp03rRSWREFOqeH 
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