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ABSTRACT 

Mitophagy prevents damaged mitochondria from compromising cell survival and 

homeostasis. Various mitophagy pathways have been discovered with the 

PINK1-Parkin pathway being most investigated. PINK1-Parkin mediated 

mitophagy occurs in stress-induced conditions. Interestingly, another pathway, 

the Nrf2-Keap1 pathway, which acts as sensor for stress within the cell, is also 

activated and mediates several cytoprotective functions, including redox and 

intermediary metabolism homeostasis, and autophagy. Studies have also 

indicated crossover between Nrf2 and mitophagy but there is limited knowledge 

of the underlying mechanisms. The aim of this research was to gain a deeper 

understanding of the relationship between the Nrf2-Keap1 pathway and 

mitophagy.  

Previous studies have shown PINK1 to be regulated by Nrf2 in conditions of 

stress. To elucidate the underlying mechanisms, experiments were carried out in 

wild-type and PINK1 knockout S-HeLa cells under basal and stress conditions 

induced by treatment with carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone 

(FCCP), an uncoupler of oxidative phosphorylation. PINK1 did not influence Nrf2 

transcript, protein levels, half-life, subcellular localisation or transcriptional 

activity. However, FCCP induced Nrf2 at the transcript and protein levels, and 

upregulated the expression of Nrf2-target genes, regardless of the presence of 

absence of PINK1. 

A sub-population of the Nrf2-Keap1 protein complex is tethered to mitochondria 

due to a Keap1-PGAM5 interaction, and it has been shown that Keap1 mediates 

the ubiquitination and proteasomal degradation of PGAM5. PGAM5, a 

mitochondrial serine/threonine phosphatase, stabilises PINK1 for mitophagy. 

Thus, it was hypothesised that Keap1 knockdown would lead to PGAM5 and 

PINK1 stabilisation and increase mitophagy. However, our studies showed that 

this was not the case, despite an over two-fold increase in PINK1 transcript levels. 

Instead, PINK1 protein levels decreased. 
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Overall, it was found that reduction in the Keap1 levels (consequent to FCCP 

treatment, Keap1 knockdown or high dose of the electrophilic cyanoenone, TBE-

31, which modifies cysteine sensors in Keap1) correlated with a reduction in the 

levels of PINK1. The implications of these findings are not fully understood and 

further investigation is necessary. 
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Chapter 1: Introduction 

1.1 Nrf2/Keap1 Pathway 

 

The nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) – Kelch-like ECH-

associated protein 1 (Keap1) pathway is essential for the maintenance of redox 

homeostasis and regulation of cellular stress responses (Motohashi and 

Yamamoto, 2004). It is typically regarded as the main defence mechanism 

against environmental insults where Keap1 is a biosensor for electrophiles and 

reactive oxygen species (ROS) and Nrf2, the coordinator of downstream 

responses (Kobayashi and Yamamoto, 2006).  

 

1.1.1 Nrf2 

Nrf2 belongs to the cap’n’collar (CNC) subfamily of basic leucine zipper (bZip) 

transcription factors (Moi et al., 1994).  It was initially discovered in 1994 and 

identified due to its ability to bind to the nuclear factor erythroid 2 (NFE2)-motif 

found in the β-globin locus control region; a region which is required for 

erythropoiesis and platelet development (Moi et al., 1994). Despite its discovery 

in haemopoietic tissue, Nrf2 is ubiquitously expressed and highly conserved 

across species (Moi et al., 1994, Maher and Yamamoto, 2010).   

Structurally, there are seven highly conserved regions known as Nrf2-ECH 

homology domains 1-7 (Neh1-7) (Figure 1.1). Of these domains, Neh1 contains 

a basic leucine zipper domain (bZip) required for DNA binding and dimer 

formation (Itoh et al., 1997). The Neh3, 4 and 5 regions are transactivation 

domains (Nioi et al., 2005, Katoh et al., 2001). The Neh5 region also contains a 

redox-sensitive nuclear-export signal (NES) which is involved in the regulation of 

Nrf2’s intracellular localization (Li et al., 2006). Alternatively, the presence of 

several destruction motifs in the Neh2 and Neh6 domains are involved in Nrf2 

repression (Itoh et al., 1999, McMahon et al., 2004). For example, within the Neh2 

domain there are two motifs, the lower affinity DLG and the higher affinity ETGE 
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motifs (Tong et al., 2006) (Figure 1.1). These are recognised by Keap1, the main 

negative regulator of Nrf2 which keeps it in low abundance in the cell (Tong et al., 

2006). The Neh7 domain is also involved in the repression of Nrf2 via an 

interaction with the DNA-binding domain of retinoic acid X receptor α (Wang et 

al., 2013). Additionally, the expression of Nrf2 can be also regulated, for example 

by epigenetic inactivation of its gene promoter. This occurs during mouse cortical 

neuronal development and has a critical role in creating a supportive redox 

environment (Bell et al., 2015).   

 

Figure 1.1. Nrf2 structure and regulation. Nrf2 is targeted for proteasome degradation through 

GSK3/β-TrCP/Cul1 and Keap1/Cul3 via the Neh6 and Neh2 domains, respectively. The 

Keap1/Cul3 pathway is the main pathway involved in Nrf2 degradation. In this pathway, Keap1 is 

able to bind to the DLG and ETGE motifs in the Neh2 domain of Nrf2. This then recruits the Cullin 

3 (Cul3-E2) complex which ubiquitinates seven lysine residues found between the two motifs. 

During electrophilic/oxidative stress or exposure to electrophilic activators of Nrf2, Keap1 is 

modified and unable to target Nrf2 for degradation. In addition to the Keap1/Cul3 pathway, Nrf2 

can also be phosphorylated by GSK3β which recruits the β-TrCP/Cul1 complex. This complex 

can also ubiquitinate Nrf2 for proteasomal degradation. Phosphorylation of GSK3β, for example 

by Akt, causes it to become inactive. Here it is unable to phosphorylate Nrf2 at the Neh6 domain 

and therefore prevents β-TrCP/Cullin 1 dependent degradation. 

 

1.1.2 Keap1  

Keap1 or KLHL19 is a member of the BTB-Kelch protein family discovered in a 

yeast two-hybrid screen as an Nrf2 binding partner (Itoh et al., 1999). It possesses 

three functional domains, a Broad complex, Tramtrack and Bric‐a‐Brac (BTB) 

domain, an intervening region (IVR) and a double glycine repeat (DGR)/ Kelch 
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domain (Itoh et al., 1999). Both the BTB and Kelch domains are protein-

interacting domains. The BTB domain facilitates homodimerisation (Zipper and 

Mulcahy, 2002) and binding of Cullin 3, a scaffold for the required E3 ubiquitin 

ligase involved in Nrf2 ubiquitination (Chauhan et al., 2013). The Kelch domains 

mediate Nrf2 binding via the Neh2 domains, bringing the E3-Cullin 3 complex in 

proximity of Nrf2 (Lo et al., 2006) (Figure 1.2).  

Aside from Nrf2, affinity purification and shotgun mass spectrometry has shown 

that Keap1 can interact with a variety of other proteins; all of which contain an 

ETGE motif or an ESGE motif (Hast et al., 2013). For example, PALB2 has an 

extended ETGE motif (LDEETGE) (Ma et al., 2012) and WTX tumour suppressor 

has an SPETGE motif (Camp et al., 2012). Other interactors include MCM3, 

TSC22D4, WDR1, DPP3, SLK, PGAM5 and p62 (SQSTM1) (Hast et al., 2013, 

Lo and Hannink, 2008, Lau et al., 2010).  

 A key property of Keap1 which enables its ability to act as an endogenous 

oxidative and electrophilic sensor, is its cysteine-rich nature. In total there are 27 

cysteine residues in the human Keap1 protein, all of which are reactive to varying 

degrees (Holland et al., 2008). In the presence of Nrf2 inducers and/or conditions 

of electrophilic or oxidative stress, these cysteine residues can be alkylated or 

oxidised, leading to conformational changes in Keap1 which result in the 

dissociation of the Nrf2-Keap1 complex (Li et al., 2012) (Dinkova-Kostova et al., 

2002). For example, oxidised cysteine residues in Keap1 can lead to the 

formation of disulphide bridges within the protein (Dinkova-Kostova et al. 2002). 

Another example of a chemical modification which can lead to conformational 

changes in Keap1 is treatment with inducers, such as dexamethasone 21-

mesylate that cause irreversible alkylation of cysteine residues (Dinkova-Kostova 

et al., 2002).    

Specific cysteines, such as cysteine 273 and 288 are shown to be vital for both 

Keap1-dependent basal Nrf2 repression and ubiquitination (Zhang and Hannink, 

2003, Saito et al., 2016). However, the best-characterised cysteine, cysteine 151, 

present in the BTB domain, is one of the most critical for the dynamic stress 



16 
 

response of the Keap1/Nrf2 pathway (Zhang and Hannink, 2003, Dayalan Naidu 

et al., 2018, Ohnuma et al., 2010). Evidence suggests that this cysteine is one of 

the most reactive and is often modified in a range of conditions (Eggler et al., 

2007, Hu et al., 2011, McMahon et al., 2010, Zhang and Hannink, 2003). Such 

heightened reactivity is thought be caused by its environment where it is 

surrounded by basic amino acids. This lowers its pKa under physiological 

conditions making it more likely for alkylation reactions to occur (Dinkova-Kostova 

et al., 2017).  Such conditions are also present in close proximity to cysteines 23, 

38, 241, 273, 288, 297, 319 and 613, making them increasingly reactive too 

(Dinkova-Kostova et al., 2002) (Figure 1.2).  

 

Figure 1.2. Keap1 Structure. Keap1 is made up of an amino terminal region (NTR), a Broad 

complex, Tramtrack and Bric‐a‐Brac (BTB) domain, an intervening region (IVR), a Kelch repeat 

domain and a carboxyl terminal region (CTR). The BTB domains are involved in the homo-

dimerisation of Keap1 and in the association with the Cullin3 ubiquitin ligase required for Nrf2 

ubiquitination. The Kelch repeats recognise Nrf2 and are fundamental for Nrf2 binding. Labelled 

in red are examples of the reactive cysteine residues present in Keap1.  

 

As Keap1 is susceptible to inactivation by electrophilic activity, it is expected that 

Keap1 must be turned over to maintain a stable population to keep Nrf2 

continuously supressed in homeostasis.  In contrast to Nrf2, evidence suggests 

that Keap1 is not degraded via an ubiquitin-dependent mechanism for 26S 

proteasome-dependent degradation, despite being ubiquitinated by the same 

Cul3-dependent complex which it serves as a substrate for (Zhang et al., 2005). 

NTR BTB domain IVR Kelch Repeats CTR

C613

Nrf2 binding domain

Cullin3 Binding
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Alternatively, it was considered that Keap1 turnover occurs through the process 

of autophagy, the bulk removal of excess or damaged cellular components 

(Taguchi et al., 2012). Taguchi et al. showed that in Sqstm1-deficient mouse 

livers, Keap1 protein accumulated and was unaffected by pharmacological 

inhibition of the proteasome. Similar observations were made in Atg7-deficient 

mouse livers. The Atg7 gene encodes autophagy-related protein 7 and like p62, 

functions in the process of autophagy. Despite these observations, treatment with 

a variety of autophagy inhibitors including bafilomycin A, did not show an increase 

in Keap1 protein levels suggesting autophagy may not be the main mechanism 

involved in Keap1 turnover (Taguchi et al., 2012). Additionally, Nrf2 was shown 

to bind to an ARE in the Keap1 promoter suggesting that continuous induction of 

Nrf2 causes Nrf2-dependent transcription of Keap1 required for its repression 

(Jain et al., 2010). Overall, the underlying mechanisms by which Keap1 is turned 

over remains enigmatic and requires further investigation.  

 

1.1.3 Nrf2 regulation 

In unstressed conditions, Keap1 is continuously binding to Nrf2 via its double 

glycine repeat (DGR)/Kelch domain and C terminal region, collectively known as 

the Keap1-DC domain (Itoh et al., 1999). More specifically, it forms a homodimer 

where each molecule binds to either the DLG or ETGE motif on Nrf2 (Tong et al., 

2006). Between these motifs, lie seven lysine residues which are correctly 

positioned, via Keap1 binding, for Cullin3-dependent ubiquitination (Tong et al., 

2007). Consequently, ubiquitinated Nrf2 is then targeted for degradation by the 

26S proteasome, keeping cellular levels of Nrf2 low (Stewart et al., 2003) (Figure 

1.3).  

In environments of oxidative and electrophilic stress, such as those observed in 

Parkinson’s disease or cancer, Nrf2 protein levels are stabilised (Beal, 2003, Liou 

and Storz, 2010, Sajadimajd and Khazaei, 2018, Ramsey et al., 2007). In such 

environments key cysteine residues within Keap1 are modified and therefore may 

consequently alter its Cullin-3 substrate adaptor function (Dinkova-Kostova et al., 
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2017). These alterations allow Nrf2 to bind, but prevent the crucial alignment of 

the lysine residues required for ubiquitination and hence ubiquitin-dependent 

degradation of Nrf2 (Taguchi et al., 2011). This saturates the Keap1 and allows 

newly synthesised Nrf2 to translocate to the nucleus to dimerise with small MAF 

(musculo-aponeurotic fibrosarcoma) proteins for gene transcription of Nrf2 

downstream targets (Li et al., 2008) (Figure 1.3).  

In addition to the described canonical pathway above, Nrf2 can also be regulated 

by Keap1’s other interactors. One hypothesis suggests that p62 can regulate Nrf2 

activity by outcompeting it for Keap1 binding (Dodson and Zhang, 2017). p62 has 

an STGE motif which can be phosphorylated to increase its binding affinity for 

Keap1 at the same position Nrf2 binds (Ichimura et al., 2013). This reduces the 

amount of Nrf2 bound to Keap1 and therefore reduces its systematic ubiquitin-

dependent degradation (Lau et al., 2010, Komatsu et al., 2010). Instead, unbound 

Nrf2 stabilises in the cell and can mediate ARE-dependent transcription (Lau et 

al., 2010, Komatsu et al., 2010). Interestingly, this includes the induction of p62 

as it is a recognised Nrf2 downstream target, establishing a positive feedback 

loop of Nrf2 induction (Jain et al., 2010). Conditions which lead to this 

phosphorylation event are poorly studied, however one study has shown it to 

occur in mouse embryonic fibroblasts in response to Salmonella infection 

(Ishimura et al., 2014). Other phosphorylation events in p62 have also been 

reported. For example, serine 403 is phosphorylated in response to mitochondrial 

depolarisation in cultured mouse neuroblastoma Neuro2a cells (Matsumoto et al., 

2015) and serine 293 (294, in humans) to insulin withdrawal in rat hippocampal 

neurones (Ha et al., 2017). Despite these findings showing effects on p62 activity 

and location, the potential knock on effects on Nrf2 were not explored. 

More recent findings show that Nrf2 can also be regulated by another ubiquitin 

dependent pathway, independently of Keap1, via the formation of a phosphor-

degron, DpSGIpS, in its Neh6 domain (McMahon et al., 2004). This is via the 

GSK3/β-TrCP/Cul1 (glycogen synthase kinase 3/ beta-transducin repeat-

containing protein/ Cullin1) complex. In this pathway, following priming by an 
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unidentified kinase, active GSK3 phosphorylates serine 335 and 338 within the 

DSGIS motif, causing the E3 ligase substrate adaptor, β-TrCP, to bind (Chowdhry 

et al., 2013, Rada et al., 2012). This leads to the formation of the complex causing 

ubiquitination and redox-independent proteasome degradation of Nrf2 (Rada et 

al., 2012) (Figure 1.3).  

Collectively, it is proposed that a ‘dual degradation’ model can explain why these 

two regulatory ubiquitin-dependent Nrf2 pathways are present (Rada et al., 2011). 

In normoxia, Nrf2 is predominantly targeted for degradation via the Keap1-

depenedent pathway due lack of modifications to the cysteine residues. In these 

same conditions, active kinases like Akt phosphorylate GSK3 making it inactive. 

However, in conditions of extreme oxidative or electrophilic stress, both pathways 

are altered. Firstly, cysteine residues become modified and lead to Keap1 

inactivation and ultimately Nrf2-dependent gene transcription. After, to shut down 

the Nrf2 activation loop, GSK3 is likely to become activated due to the inhibition 

of Akt by ceramide-activated phosphatases. This will then lead to Nrf2 

proteasomal degradation via the βTrCP/Cul1 complex reducing Nrf2 stabilisation 

and hence ARE-gene expression. The coordination of both pathways is essential 

as shutting down Nrf2-dependent transcription before homeostasis is achieved 

can result in cell death. Thirdly, in conditions of slight alterations to redox 

homeostasis and deprivation of growth or trophic support or signalling, Keap1 is 

unlikely to be modified but GSK3 is likely to be active. This causes Nrf2 to be 

targeted by both pathways simultaneously. Upon ROS accumulation, Keap1 is 

inactivated to initiate Nrf2-dependent gene transcription (Rada et al., 2011).  
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Figure 1.3. Nrf2 regulation in homeostasis and in electrophilic/oxidative stress. In oxidative/ 

electrophilic stress or exposure to electrophilic Nrf2 activators, Keap1 is unable to target Nrf2 for 

degradation. This is due to modifications in important cysteine residues of Keap1, causing it to 

change conformation. Nrf2 remains bound but is not ubiquitinated, saturating Keap1. Newly 

synthesised Nrf2 is able to stabilise in the cytoplasm and translocate to the nucleus. In the 

nucleus, Nrf2 binds to small Maf proteins and together they bind to antioxidant response elements 

(ARE) found in the promoters of Nrf2 target genes to initiate gene transcription. 

 

1.1.4 Nrf2-dependent transcription 

Nrf2 regulates approximately 200 cytoprotective genes, all of which contain a cis-

acting element upstream of their promoters called an antioxidant response 

element (ARE) (Hayes and Dinkova-Kostova, 2014, Friling et al., 1990, Nguyen 

et al., 2009). Here, Nrf2-small MAF dimers bind to initiate gene transcription of an 

array of Nrf2-dependent genes. Interestingly, the ARE was discovered before 

Nrf2 in the late 1980s due to research focusing on the 5’-flanking sequences of 

the rat inducible glutathione S-transferase Ya subunit (GSTYa) (Telakowski-

Hopkins et al., 1988). In this study, it was discovered that there were two cis-

acting regulatory elements upstream of GSTYa, one of which was involved in 

basal level expression and the second involved in inducible expression of the 

gene. A few years later, the ARE core sequence GSTYa was found to be 5'-

puGTGAC---GC-3', which was confirmed with a series of deletion and mutational 
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experiments (Raghunath et al., 2018). The study showed that both ROS and 

oxidants could induce the ARE-dependent transcription of GSTYa, providing the 

first insight into the ARE being necessary to induce antioxidant genes in 

conditions of oxidative stress. It was later revealed that Nrf2 was the primary 

transcription factor which activated ARE-dependent gene transcription which 

conferred this protective response (Venugopal and Jaiswal, 1996, Itoh et al., 

1997). 

The discovery of the ARE sequence and the association to Nrf2 led to the 

identification of potential Nrf2 downstream targets, particularly those involved in 

detoxification processes within the cell. A well-established Nrf2 target is NQO1 

(NAD(P)H dehydrogenase [quinone] 1, a phase I detoxification enzyme which 

protects cells from quinone-mediated redox cycling, oxidative stress, and 

sulfhydryl depletion (Dinkova-Kostova and Talalay, 2000). Another Nrf2 target is 

the family of aldo-keto reductases, including enzymes AKR1B10 and AKR1C1, 

which are also involved in the detoxification pathways of the cell, reducing 

aldehydes and ketones (Lou et al., 2006). Nrf2 also plays a significant role in the 

maintenance of redox homeostasis through the replenishment of glutathione in 

the cell (Harvey et al., 2009). It does this through glutamate-cysteine ligase 

(GCL), the enzyme catalysing the rate-limiting step in glutathione biosynthesis, 

by regulating both its catalytic (GCLC) and modifier subunit (GCLM) (Erickson et 

al., 2002, Xiong et al., 2015). 

Besides detoxification and defending against electrophilic and oxidative stress, 

Nrf2 also regulates genes involved in a range of other biological processes. For 

example, it regulates heme-oxygenase 1 (HMOX1) and glucose-6-phosphate 

dehydrogenase (G6PD) which are involved in heme metabolism and the 

production of NADPH via the pentose phosphate pathway, respectively (Reichard 

et al., 2007, Thimmulappa et al., 2002). Nrf2 has also been reported to 

transcriptionally regulate proteasomal protein degradation by regulating subunits 

which make up the 26S proteasome (Kwak et al., 2003). Amongst these 

processes Nrf2 has also been described to regulate autophagy (Jain et al., 2010), 
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apoptosis (Niture and Jaiswal, 2012) and cell proliferation (Murakami and 

Motohashi, 2015).  

 

1.1.5. Small-molecule activators of Nrf2 (Nrf2 inducers)  

As previously mentioned, modified cysteine residues in Keap1 occur in 

environments of oxidative and electrophilic stress. Such modifications induce 

Nrf2’s elaborate cytoprotective transcription program to overcome the stress 

encountered. Based on this dogma, it is considered that many Nrf2 activating 

compounds work by targeting these cysteines on Keap1 to stabilise Nrf2 (He and 

Ma, 2009). Indeed, many Nrf2 inducers, both natural and synthetic, are 

electrophilic and react with sulfhydryl groups of Keap1 despite their structural 

differences (Prestera et al., 1993).  

Nrf2 inducers have previously been distributed across ten broad classes; 

including diphenols, phenylenediamines and quinones, Michael acceptors, 

isothiocynates and thiocarbamates (Tkachev et al., 2011). Aside from these types 

of compounds, Nrf2 can also be induced by cellular species or environments like 

heme complexes, oxidized lipoproteins and hypoxia (Lyakhovich et al., 2006). A 

well-studied Nrf2 inducer is sulforaphane (R,S-1-isothiocyanato-4-

methylsulfinylbutane) (Figure 1.4), an isothiocynate present in a variety of 

cruciferous vegetables (Zhang et al., 1992). Sulforaphane forms thiocarbamate 

products with Keap1’s reactive cysteine residues due to the high electrophilic 

carbon within the isothiocyanate group (Itoh et al., 1999, Mi et al., 2011, Zhang, 

2012). More specifically, it has been reported to react with cysteine 151 (Hu et al., 

2011) and a cysteine to serine mutation at this site repressed Nrf2 despite being 

in the presence of sulforaphane (Zhang and Hannink, 2003).  

Acetylenic tricyclic bis (cyano enone), TBE-31, is another potent Nrf2 inducer 

which contains a 3-ring system with two highly reactive Michael acceptor groups, 

ready to react with Keap1 (Figure 1.4) (Dinkova-Kostova et al., 2010). Like 

sulforaphane, TBE-31 primarily modifies cysteine 151, more specifically at lower 
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concentrations of up to 10nM (Dayalan Naidu et al., 2018). Interestingly, at higher 

concentrations (>30nM), Nrf2 induction occurs in the absence of cysteine 151 

suggesting an element of redundancy among the cysteines of Keap1 (Dayalan 

Naidu et al., 2018).  

 

Figure 1.4. Examples of small-molecule Nrf2 activators. Chemical structures of 10a-ethynyl-

4b,8,8-trimethyl-3,7-dioxo-3,4b,7,8,8a,9,10,10a-octahydrophenanthrene-2,6-dicarbonitrile (TBE-

31), 1-isothiocyanato-(4R)-(methylsulfinyl)butane (sulforaphane), 1-(3-iodophenyl)-4-(3-

nitrophenyl)-1,2,3-triazole (PMI) and dimethyl fumarate (Tecdifera).   

 

More recently, various peptides and small molecules have been developed which 

stabilise Nrf2 without covalently modifying Keap1’s cysteine residues (Zhuang et 

al., 2017). For example, reversible protein-protein interaction inhibitors which 

inhibit the Nrf2 and Keap1 interaction. An example of such compound is HB229, 

also identified as p62-mediated mitophagy inducer (PMI) (East et al., 2014). PMI 

was shown to upregulate Nrf2 and Nrf2-downstream target genes, NQO1 and 

HO-1 to a similar extent as sulforaphane (East et al., 2014). More interestingly, 
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PMI upregulated p62 and induced mitophagy, the select removal of mitochondria 

via autophagy (East et al., 2014). Despite the induction of p62, mitophagy was 

not observed with sulforaphane treatments (Georgakopoulos et al., 2017). 

Actually, sulforaphane was shown to prevent p62 recruitment, restricting 

mitochondrial ubiquitination, an essential process required for mitophagy 

(Georgakopoulos et al., 2017). Interestingly, it was recently shown that p62 

recruits Keap1 to mitochondria to promote mitochondrial ubiquitination and 

mitophagy independently of PINK1 and Parkin (Yamada et al., 2018, Yamada et 

al., 2019). A similar lack of mitophagy induction to that by sulforaphane was 

observed with other electrophilic Nrf2 inducers, tert-butylhydroquinone (TBHQ), 

dimethyl fumarate and curcumin (Georgakopoulos et al., 2017). Further 

investigation is essential to determine the mechanisms in which different types of 

Keap1 inhibitors can lead to different biological outcomes (Georgakopoulos et al., 

2017). 

 

1.1.6 Nrf2 and Keap1 sub-cellular localisation  

Although few studies have been carried out, it is considered that the majority of 

endogenous Keap1 is localised in the perinuclear region of the cytoplasm with 

few molecules in the nucleus and endoplasmic reticulum (Watai et al., 2007). 

When cells were treated with electrophiles or Leptomycin B, a nuclear export 

inhibitor, Keap1’s cytoplasmic localisation did not change whilst nuclear 

accumulation of Nrf2 occurred (Watai et al., 2007).  

Interestingly, it has also been shown that both Keap1 and Nrf2 are present on the 

mitochondria in a complex with phosphoglycerate mutase family member 5 

(PGAM5), a mitochondrial serine/threonine phosphatase (Lo and Hannink, 2008, 

Lu et al., 2014), suggesting a potential regulation of mitochondrial functions by 

the pathway. Indeed, it was shown that PGAM5 or Nrf2 depletion caused aberrant 

degradation of the mitochondrial Rho GTPase, Miro2, which is involved in linking 

mitochondria to microtubules (O'Mealey et al., 2017). This was carried out under 

proteasome inhibition where Keap1 was acting in a dominant negative manner 
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due to absence of its binding partners. This caused Keap1-dependent 

degradation of Miro2, ultimately, inhibiting mitochondrial retrograde trafficking in 

conditions of proteasome inhibition (O'Mealey et al., 2017). Still, it was not 

explained how Keap1 was still able to target Miro2 despite losing its mitochondrial 

anchor PGAM5. 

 

1.2 PGAM5  

 

PGAM5 is a 32kDa phosphatase due to its proposed existence on the 

mitochondria (Lu et al., 2014). However, its precise location on the mitochondria 

is still highly debated. On the one hand, it has been shown to be targeted to the 

outer mitochondrial membrane via its N-terminal transmembrane domain (Lo and 

Hannick, 2008). Identification of cytoplasmic binding partners like Keap1 and CK2 

support this hypothesis (Panda et al., 2016, Chen et al., 2014). Alternatively, 

PGAM5 has also been shown to be cleaved by inner mitochondrial membrane 

resident proteases such as rhomboid protease, PARL (Sekine et al., 2012). . 

PGAM5 is nuclear encoded and belongs to the wider histidine acid phosphatase 

superfamily, more specifically as the fifth member of the phosphoglycerate 

mutase branch (Lo and Hannink, 2008, Chaikuad et al., 2017). Despite sharing 

homology of its catalytic domain with various metabolic enzymes, it lacks 

characteristic phosphotransferase and/or phosphohydrolase activity for small 

metabolites. Instead, PGAM5 contains a serine/threonine (and potential histidine) 

phosphatase activity (Panda et al., 2016, Takeda et al., 2009). 

Two isoforms of PGAM5 have been reported (Panda et al., 2016). These are 

denoted as PGAM5-L and PGAM5-S, where PGAM5-L is the longer and main 

isoform compromising by 289 amino acids. In PGAM5-S, the shorter isoform 

derived from an mRNA splicing variation, there is a swap of 50 amino acids for 

16 amino acids at the C-terminal (Lo and Hannink, 2008). More importantly, 

overexpression of either isoforms caused opposing morphological changes in 
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mitochondria (Lo and Hannink, 2008). In both COS1 and HeLa cells, transfected 

PGAM5-S protein caused the typical reticular-tubular mitochondrial network to 

become detached and punctuate, dispersed throughout the cytoplasm (Lo and 

Hannink, 2008). However, when PGAM5-L protein was transfected, individual 

mitochondria formed perinuclear aggregates (Lo and Hannink, 2008). Despite 

these observations, the significance of these PGAM5 isoforms in mitochondrial 

function isn’t known. It is postulated that they are involved in regulating 

mitochondrial dynamics which is essential for several mitochondrial functions 

such as mitochondrial quality control (Lo and Hannink, 2008). 

Several studies have shown PGAM5 to bind to a variety of proteins to mediate 

various signalling processes (Moriwaki et al., 2016). Originally, PGAM5 was 

discovered as a binding partner to the antiapoptotic protein, BCL-XL (Hammond 

et al., 2001) and later as a substrate for Keap1. Via the ESGE motif present in 

the N-terminus, PGAM5 binds to Keap1 causing it to be ubiquitinated by the 

Keap1-Cullin3 complex for proteasomal degradation (Lo and Hannink, 2006). 

Similarly to Nrf2, this is prevented with oxidative stress and treatment with 

sulforaphane, allowing PGAM5 to stabilise (Lo and Hannink, 2006). The 

requirements of such stabilisation aren’t well-studied suggest that PGAM5 is likely 

to play a decisive role in the cell fate in environments of oxidative stress.  

Interestingly, it was also shown that this Keap1-PGAM5 interaction is actually part 

of a larger ternary complex present on mitochondria (Lo and Hannink, 2008). The 

Keap1 homodimer is considered to bind to Nrf2 and PGAM5 simultaneously via 

the ETGE and ESGE motifs present in each respective protein (Lo and Hannink, 

2008). The function of this mitochondrial complex remains to be elucidated, 

however PGAM5 and Keap1 knockdown was shown to increase Nrf2-dependent 

gene expression using an ARE-dependent firefly luciferase reporter gene 

construct (Lo and Hannink, 2008). However, how this population of Nrf2 on the 

mitochondria can induce cytoprotective gene transcription raises many questions. 

Such stoichiometry does not conform into what is currently understood about 
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canonical Nrf2 regulation and therefore necessitates further exploration of the 

complex.  

In addition to this complex, PGAM5 is also found to interact with apoptosis signal-

regulating kinase 1 (ASK1), a mitogen-activated protein kinase (MAPK) kinase 

(Takeda et al., 2008). It is hypothesised that PGAM5 may indirectly activate ASK1 

by direct dephosphorylation of unknown phosphorylation sites that contribute to 

the suppression of ASK1 kinase activity. This dephosphorylation event is 

considered to unleash phosphorylation of the residue threonine-838 in the kinase 

domain, leading to the activation ASK1 (Takeda et al., 2008).  

Another PGAM5 interactor is the protein kinase, RIP3, where the significance of 

this interaction in necroptosis is disputed (Wang et al., 2012, Lu et al., 2016). 

Moreover, PGAM5 has also been associated with the proteins involved in 

mitophagy. For example, PTEN-induced kinase 1 (PINK1) (Lu et al., 2014), 

BCL2L (Wu et al., 2014) and FUNDC1 (Chen et al., 2014). 

 

Figure 1.5. The Keap1-Nrf2-PGAM5 complex present on the mitochondria. The canonical 

Nrf2-Keap1 interaction is via the DLG and ETGE motifs present in the Neh2 domain of Nrf2. 

However, on the mitochondria, Nrf2 and Keap1 are found in a ternary complex with PGAM5. 

PGAM5 anchors the complex to the mitochondria and binds to Keap1 via an ESGE motif, a variant 

of the ETGE motif present in Nrf2. Nrf2 is then bound unconventionally to Keap1 via the ETGE 

motif alone.  
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1.3 Mitochondria and Mitophagy 

 

Autophagy is a catabolic, evolutionary conserved process where, under various 

cellular stress environments, cytoplasmic components are removed from the cell 

(Mizushima, 2007). These tend to be removed via autophagic vesicles which fuse 

with lysosomes for ultimate degradation. There are three types of autophagy: 

macroautophagy, microautophagy and chaperone-mediated autophagy, which 

are categorised according to how each substrate is delivered to the lysosomes 

(Mizushima, 2007). Macroautophagy relies on double-membraned 

autophagasomes to deliver cellular components to the lysosomes for bulk 

degradation. Macroautophagy (hereafter referred to as autophagy) can also be 

further divided into selective and non-selective autophagy. Non-selective 

autophagy is often a response to starvation and nutrient deprivation where amino 

acids and nutrients are made available from several cellular components for cell 

survival (Mizushima, 2007). However, selective autophagy occurs even in nutrient 

rich conditions and is often a way to remove dysfunctional organelles such as 

mitochondria (Mizushima, 2007). 

Mitochondria are double membrane bound, 1-10µM sized organelles which 

contain their own circular genome, encoding for tRNAs, rRNAs and 13 proteins 

(Nunnari and Suomalainen, 2012). They are often described as cellular 

“powerhouses” due to their crucial function in synthesising adenosine 

triphosphate (ATP) through the process of oxidative phosphorylation (OXPHOS). 

In addition to ATP synthesis, they also have key roles in other cellular processes 

such as apoptosis, iron metabolism and calcium regulation and storage (Duchen, 

2004, Paul et al., 2017, Jeong and Seol, 2008).  

ATP production via OXPHOS requires five complexes (I, II, III, IV, V). Complex I 

(NADH:ubiquinone oxidoreductase) and II (succinate dehydrogenase) are 

involved in the oxidation of substrates NADH and succinate, respectively. This 

leads to the transfer of electrons onto an electron carrier, called ubiquinone. 
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Ubiquinol (reduced ubiquinone) delivers the electrons to complex III (Coenzyme 

Q– cytochrome C reductase). Complex III’s iron ion is reduced and the electrons 

are passed onto another carrier called cytochrome C. Next, cytochrome C 

delivers the electrons to complex IV (Cytochrome C oxidase) to reduce oxygen 

and ultimately produce water. During this electron shuttling process, protons are 

being pumped across the inner mitochondrial membrane at complexes I, III and 

IV. This creates a proton electrochemical gradient. These protons travel down 

their electrochemical gradient via ATP synthase (complex V) and drives the 

phosphorylation of adenosine diphosphate to make ATP (Bergman and Ben-

Shachar, 2016). Electron leakage at complex I (Kussmaul and Hirst, 2006), II 

(Quinlan et al., 2012) and III (Kussmaul and Hirst, 2006) can partially reduce 

oxygen and lead to the formation of superoxide ions, a form of ROS (Kussmaul 

and Hirst, 2006). Unmanaged ROS can be detrimental to mitochondria, causing 

them to become dysfunctional and inefficient (Guo et al., 2013). This in turn 

creates further ROS, perpetuating the damage and sabotaging the cells chances 

of survival. Thus, it is imperative that quality control mechanisms for the 

mitochondrial network are present in the cell in order to maintain crucial functions 

and homeostasis. 

Autophagy of mitochondria or mitophagy, is the selective removal of mitochondria 

in the cell (Lemasters, 2005). Mitophagy was first observed by Ashford and Porter 

(Ashford and Porter, 1962) in glucagon- treated rat hepatocytes where greater 

numbers of lysosomes were present. Besides this, each of these lysosomes 

contained a mitochondrial fragment. Various observations were later reported but 

the first mechanistic study of mitophagy was studied in yeast (Kanki and Klionsky, 

2008). It was revealed that the ATG11, ATG20 and ATG24 genes, essential to 

selective-autophagy, were also essential for mitophagy (Kanki and Klionsky, 

2008). More interestingly, a switch to amino acid starvation supplemented with 

glucose after cells were cultured with lactate as the only carbon source caused 

mitophagy to occur. This is because the glucose in media made the mitochondria 

non-essential. However, in media where lactate was the only carbon source, 

mitochondrial metabolism was required and therefore mitophagy was blocked. 
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Despite the different media conditions, macro-autophagy was strongly activated 

in both (Kanki and Klionsky, 2008). Collectively, this study showed that mitophagy 

is an example of selective autophagy but is likely to be induced by a specific set 

of conditions which differ to macro-autophagy.  

 

1.3.1 PINK1-Parkin dependent mitophagy 

Parkinson’s disease (PD), an incurable, neurodegenerative disorder, is 

pathologically characterised by dopaminergic neuronal death in the substantia 

nigra and the accumulation of proteinaceous aggregates in surviving neurones 

(Braak et al., 2003). Degeneration of these dopaminergic neurones leads to 

insufficient levels of dopamine, an essential neurotransmitter involved in the 

regulation of motor function. Despite this knowledge, the underlying molecular 

mechanisms leading to PD were marginally understood. However, seminal work 

in the past couple of decades has identified approximately 20 different genes 

linked to PD which have provided invaluable insights into the molecular pathways 

involved. Two examples are the genes encoding for PINK1 and Parkin, an E3 

ubiquitin ligase. Autosomal recessive mutations were reported in both of these 

genes (Valente et al., 2004, Kitada et al., 1998) giving rise to early autosomal 

recessive Parkinsonism and later found to be crucial for mitochondrial function.  

PINK1 is a ubiquitously expressed serine/threonine kinase encoded by the 

PARK6 (PINK1) gene. It is a 581 residue protein with a highly conserved C-

terminal kinase domain, a transmembrane helix and a unique sequence encoding 

for a mitochondrial targeting motif (Gandhi et al., 2006). In homeostatic 

conditions, PINK1 is rapidly turned over. More specifically, it has a half-life of 

approximately 30 minutes (Lin and Kang, 2008), making it difficult to detect in 

cells. This is due to mitochondrial-dependent processing which occurs following 

its translocation to the mitochondria. As it is imported to the inner mitochondrial 

membrane, the mitochondrial targeting motif in cleaved PINK1 is imported into 

the mitochondria via the translocase of the outer membrane (TOM) complex 

(Lazarou et al., 2012) and the inner mitochondrial membrane (IMM)-localized Tim 
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(translocase of the inner membrane) 23 complex (Neupert and Herrmann, 2007). 

Next, various proteases, such as the mitochondrial processing peptidase (MPP) 

and the presenilins-associated rhomboid-like (PARL) proteases, cleave PINK1, 

producing a final 52 kDa form of PINK1 (Jin et al., 2010). This 52kDa form is 

rapidly degraded, except in the presence of proteasome inhibitors where it is 

subsequently stabilised (Narendra et al., 2010b). This indicates that cleaved 

PINK1 was being retro-translocated to the cytosol followed by proteasome 

dependent-degradation. This was further supported by Yamano and Youle 

(2013), who decrypted the underlying mechanism of PINK1 re-translocation 

known as the N-end rule-dependent degradation. When PINK1 is cleaved by 

PARL, a phenylalanine at position 104 becomes the new N-terminal acid. This 

created an ‘N-degron’, more specifically a ‘type-2 N-degron’ which was previously 

shown to signal for ubiquitination (Tasaki et al., 2005). PINK1 is then degraded 

by E3 enzymes UBR1, UBR2, and UBR4, which recognize these type-2 degrons 

(Tasaki et al., 2005). 

In homeostatic conditions, PINK1 is found in low abundance so that mitophagy of 

healthy mitochondria does not occur. However, in situations of damage or stress, 

the mitochondrial membrane can become depolarised leading to mitochondrial 

dysfunctions and potential cell death. The mitochondrial membrane potential 

(ΔΨm) is crucial for healthy mitochondria to perform their vital functions for the 

cell. It is ultimately driven by several redox transformations which generate an 

electrical potential and a proton gradient (Mitchell, 1966). When the ΔΨm 

becomes unstable or worse, remains in a depolarised state, several imperative 

functions in the cell are lost (Dey and Moraes, 2000). Therefore, it is obvious that 

cells require mitochondrial quality control mechanisms like mitophagy to avoid 

such situations. Parkin was first linked to these quality control mechanisms 

through studies involving loss-of-function mutations in Drosophila melanogaster 

flies (Greene et al., 2003). It was then observed that the absence of PINK1 

created similar mitochondrial defects to those observed in the absence of Parkin 

(Clark et al., 2006, Park et al., 2006). Rescue experiments in these flies showed 

that the PINK1-KO phenotype could be rescued by Parkin overexpression 
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whereas the opposite was not the case. This disclosed that PINK1 was acting 

upstream of Parkin and was fundamental to understanding the mitophagy 

pathway induced in response to loss of ΔΨm.  

When mitochondria become depolarised, for example after treatment with 

uncouplers like carbonyl cyanide m-chlorophenylhydrazone (CCCP), full length 

PINK1 is stabilised on the mitochondria. This is due to lack of processing by MPP 

or PARL which allows PINK1 to span the outer mitochondrial membrane with its 

kinase domain exposed to the cytosol (Zhou et al., 2008). PINK1 undergoes auto-

phosphorylation at serine 402 and serine 228 via trans-phosphorylation of their 

activation loops; a similar mechanism used by many other auto-phosphorylating 

kinases (Okatsu et al., 2012). Activated PINK1 is then able to phosphorylate 

ubiquitin at serine 65 (Koyano et al., 2014). Phosphorylated-serine 65 ubiquitin 

binds to Parkin, priming it for phosphorylation by PINK1 at its equivalent serine 

65 residue within its ubiquitin-like domain (Kazlauskaite et al., 2014). This leads 

to full Parkin activity where various outer mitochondrial membrane proteins are 

ubiquitylated. For example, the voltage-dependent anion channel (VDAC), 

mitochondrial Rho GTPases (MIRO) 1 and 2 and components of the TOM 

complex (Chan et al., 2011, Yoshii et al., 2011). It isn’t fully understood how Parkin 

promotes mitophagy, but one hypothesis suggests that its targeted ubiquitination 

of these outer mitochondrial membrane proteins are critical to the process. Kirkin 

and colleagues (Kirkin et al., 2009) showed that ubiquitination played an important 

role in the selective removal of other cellular components and pathogens by 

autophagy. Adaptor molecules, such as the Nrf2 target p62, are thought to directly 

interact with both the ubiquitin chains on these proteins and LC3, microtubule-

associated proteins 1A/1B light chain 3B (Pankiv et al., 2007). LC3 can be found 

in two forms, in a cytosolic or lipidated form. The lipidated form is important in the 

formation of the autophagasome and is often used as a reliable marker for 

monitoring autophagy and autophagy-like processes (Tanida et al., 2004). 

Alternatively, other potential roles for Parkin in mitophagy have been described. 

For example, it has been shown to recruit proteasomes to depolarised 

mitochondria for selective removal of the outer mitochondrial membrane and 
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intermembrane space proteins (Chan et al., 2011, Yoshii et al., 2011). It also 

causes the outer mitochondrial membrane to rupture (Yoshii et al., 2011) and can 

interact with Ambra1, a protein involved in the activation of the class III 

phosphatidylinositol 3-kinase complex, involved in Beclin-1 dependent mitophagy 

(Van Humbeeck et al., 2011).  

 

Figure 1.6 Proposed mechanism of PINK1-Parkin mediated mitophagy. When mitochondria 

are stressed or unhealthy, the mitochondrial membrane potential (ΔΨm) drops. This causes full 

length PINK1 to be stabilised on the mitochondrial membrane. The kinase activity of PINK1 

causes it to autophosphorylate and phosphorylate ubiquitin. Parkin is then recruited to the outer 

mitochondrial membrane and ubiquitinates several outer mitochondrial membrane proteins. Such 

ubiquitin chains are then bound by mitophagic substrate adaptors like p62, which then bind to 

LC3-II to form an autophagosome. Here, damaged mitochondria are enclosed and fused with 

lysosomes for degradation. 
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Most knowledge linking PD to dysregulated PINK1-Parkin dependent mitophagy 

has been acquired in vitro. However, a recent study using Mito-QC reporter 

mouse in vivo, has shown the influence of knocking out PINK1 on basal 

mitophagy in various metabolically active organs (McWilliams et al., 2018). As 

expected, high levels of basal mitophagy were observed in neural cells but the 

absence of PINK1 didn’t alter this. However, knockout of PINK1 did affect 

mitophagy in pancreatic islets, suggesting that different mitophagy pathways or 

mechanisms may be involved in different cellular conditions in various organs.  

 

1.3.2 BNIP3 and Nix 

Aside from the PINK1-Parkin pathway, mitophagy has been reported to occur 

through other mediators. For example, the outer mitochondrial transmembrane 

proteins, BNIP3 and its related protein NIX. Structurally, both share 50% 

homology, contain uncharacteristic BCL2-homology 3 (BH3) domains and form 

homodimers through glycine zippers present in their transmembrane domains 

(Ney, 2015). In addition, these proteins also contain an LIR (LC3 interaction motif) 

suggesting their potential as autophagy receptors, particularly in hypoxic 

environments (Zhang and Ney, 2009).  

NIX was first associated with mitophagy when NIX-deficient mice displayed an 

atypical accumulation of mitochondria (Schweers et al., 2007). Moreover, NIX-

deficient reticulocytes cultured in vitro were shown to have dysfunctional 

mitochondrial clearance (Zhang et al., 2008). To further elucidate the role of NIX, 

using both wild-type and NIX deficient reticulocytes, ultrastructural studies have 

shown the importance of NIX in the recruitment of membranes for immature 

autophagasome formation around individual mitochondria (Ney, 2015). Moreover, 

also in reticulocytes, mutations in NIX’s LIR showed an effect on mitochondrial 

clearance (Novak et al., 2010). 

BNIP3 has also been shown to be involved in hypoxia-mediated mitophagy 

(Zhang et al., 2008). In hypoxic conditions, high levels of ROS occur and HIF-1 



35 
 

(hypoxia inducible factor 1) increases BNIP3 expression. In turn, BNIP3 interferes 

with the BCL2-Beclin-1 interaction allowing Beclin-1-dependent mitophagy to 

occur. This leads to a decrease in ROS and increased cell survival (Zhang et al., 

2008). 

 

1.3.3. FUNDC1 

The 155 amino acid protein, Fun14 domain-containing protein 1 (FUNDC1), is 

another important player in hypoxia-mediated mitophagy (Liu et al., 2012). 

Endogenously expressed FUNDC1 is exclusively found on the mitochondria. 

More specifically, it is thought to be an outer mitochondrial membrane protein with 

its amino acid terminus exposed to the cytosol and its carboxy terminus spanning 

across the intermembrane space (Liu et al., 2012). Within its N-terminal region, 

lies a motif of YxxL, a similar consensus sequence known as an LC3 interacting 

region (LIR), previously reported in autophagy receptors which bind to LC3 

(Pankiv et al., 2007, Noda et al., 2010). 

Overexpression of FUNDC1 in cell lines, such as HeLa and mouse embryonic 

fibroblasts, induced mitophagy (Liu et al., 2012). In the context of hypoxia, 

mitophagy was confirmed through western blot analysis of several mitochondrial 

markers, TOM20, TIM23 and VDAC1, all of which decreased. Treatment with 

bafilomycin A1, an inhibitor of the lysosomal ATPase responsible for lysosomal 

acidification, prevented this degradation (Liu et al., 2012). More importantly, 

FUNDC1-knockdown also prevented the degradation of these mitochondrial 

proteins and the loss of mitochondrial volume, suggesting FUNDC1 is an 

important regulator of hypoxia-mediated mitophagy. This was further established 

with rescue experiments in stably knocked down FUNDC1 cells transfected with 

wild-type but not mutant FUNDC1 (Liu et al., 2012).  

Mechanistically, in normoxia, FUNDC1 is phosphorylated by Src and CDK2 

kinases in the LIR motif at tyrosine 18 and serine 13, respectively (Liu et al., 2012, 

Chen et al., 2014). Phosphorylated FUNDC1 has a lower affinity for LC3 and 
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therefore downstream mitophagy does not occur. However, in hypoxic conditions, 

dephosphorylation of FUNDC1 occurs, allowing for a higher affinity for LC3 

binding via the LIR motif (Liu et al., 2012). Interestingly, the binding of FUNDC1 

to LC3 is unique, differing from other LC3-LIR binding structures found in other 

LC3 binding proteins like p62 (Kuang et al., 2016). It is also postulated that each 

phosphorylation event regulates FUNDC1 differently. Phosphorylation at tyrosine 

18 was shown to be crucial for LC3 binding but serine 13 phosphorylation is 

thought to be involved in enhancing mitophagy via mediating interactions with 

various mitochondrial fission/fusion factors such as DNM1L/DRP1 and OPA1 

(Chen et al., 2016, Kuang et al., 2016). 

 

1.3.4 Bcl2L13 

Previous studies in yeast have shown that Atg32 is vital for mitophagy. Atg32 

localised to the mitochondria and is considered to be a receptor involved in 

mitophagy where it interacts with proteins involved in recognition of cargo 

receptors (Okamoto et al., 2009). In mammals, the same group discovered an 

Atg32 homologue called Bcl2-like protein 13 (Bcl2L13) (Murakawa et al., 2015).  

Bcl2L13 belongs to the Bcl-2 family in an atypical fashion due to its lack of 

interaction with anti-apoptotic or pro-apoptotic Bcl-2 members despite containing 

four BH domains (Kataoka et al., 2001). Structurally, it has a C-terminal single 

transmembrane domain which embeds it into the outer mitochondrial membrane 

(Kataoka et al., 2001, Murakawa et al., 2015) and a LIR motif which binds to LC3. 

This interaction with LC3 is strengthened with CCCP treatment in HEK293 cells.  

In cells, Bcl2L13 overexpression and small interfering RNA-mediated knockdown 

caused mitochondrial fragmentation and elongation, respectively (Murakawa et 

al., 2015). Fragmentation was shown to be dependent on Bcl2L13 having its four 

BH domains and its mitochondrial localisation. Moreover, this phenotype was 

shown to manifest independently of LC3 binding or activity of dynamin-1 like 

protein (Drp-1), a GTPase which regulates mitochondrial fission (Murakawa et al, 
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2015). This is particularly unique as most mitophagy pathways require Drp-1 

activity (Chen et al., 2016, Park et al., 2018).  

Using LC3-I/LC3-II conversion and the mtKeima model, as measurements for 

mitophagy, Bcl2L13 overexpression caused mitophagy. This occurred through 

LC3 interactions as mutants in the LIR domain failed to induce mitophagy. It was 

also shown that this Bcl2L13-mediated mitophagy was independent of Parkin as 

mitophagy occurred in HeLa cells, a cell line with a lack of functional Parkin gene 

(Murakawa et al., 2015). Mechanistically, CCCP-mediated depolarisation caused 

both an increase in Bcl2L13 protein levels and phosphorylation of the serine 272 

(Murakawa et al., 2015). Despite this knowledge and observations of mitophagy, 

the underlying mechanisms involved in Bcl2L13-mediated mitophagy remain to 

be fully elucidated. 

 

1.3.5 Atypical forms of mitophagy - Iron regulated mitophagy 

Dysregulated iron metabolism is a common feature in neurodegenerative 

diseases (Matak et al., 2016). Interestingly, use of iron chelators like deferiprone 

(DFP) have been shown to induce mitophagy in a chemical screen (Allen et al., 

2013). Moreover, immunofluorescence showed increased LC3 and COXIV 

(component of the complex IV subunit) co-localisation suggesting specific 

autophagy of mitochondria (Allen et al., 2013). At the protein level, decreases of 

50% were observed in a variety of mitochondrial protein markers with a 24-hour 

DFP treatment (Allen et al., 2013). This decrease was prevented with autophagy 

inhibitor bafilomycin, further supporting the degradation of the mitochondria was 

dependent on lysosomal degradation (Allen et al., 2013). Most importantly, unlike 

many inducers of mitophagy, iron depletion-dependent mitophagy was shown to 

be independent of the Parkin-PINK1 machinery (Allen et al., 2013). How iron 

depletion induces mitophagy isn’t fully elucidated. The same study showed that a 

4-hour treatment with the iron chelator reduced basal and maximal respiration 

despite not affecting the mitochondrial membrane potential (Allen et al., 2013). 

After 24 hours of treatment, oxygen consumption was obliterated. Interestingly, 
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ATP levels remained similar despite loss of oxidative phosphorylation, suggesting 

a potential metabolic switch to glycolysis (Allen et al., 2013). Regardless of these 

observations, mechanistically how this metabolic switch occurs and how it is 

related to mitophagy remains to be investigated.  

 

1.4 Nrf2/Keap1 Pathway in Mitophagy   

 

Research in the past few years has highlighted the significance of Nrf2 in 

mitochondrial integrity and function (Dinkova-Kostova and Abramov, 2015). As 

previously mentioned, Nrf2 has a plethora of downstream targets involved in 

several diverse functions in the cell, one of which includes selective autophagy 

(Pajares et al., 2016). Key influencers of selective mitophagy, for example p62 

and autophagy-related gene 8 (ATG8), are downstream targets of Nrf2. More 

specifically to mitophagy, p62 is considered to be an important contributor to 

PINK1-Parkin mitophagy. Upon p62 knockdown in cells, some studies describe a 

decrease in mitophagy, suggesting p62 has an important role in the process 

(Geisler et al., 2010, Lee et al., 2010). However, another study found that p62 is 

important in aggregating damaged mitochondria but not for mitophagy (Narendra 

et al., 2010a).  

PINK1 plays a prominent role in the quality control of mitochondria by initiating 

the process of mitophagy in unhealthy damaged mitochondria. Interestingly, 

PINK1 has also been shown to have four potential ARE sequences in its 

promoter, suggesting PINK1 is regulated by Nrf2 (Murata et al., 2015). Indeed, it 

was shown that pharmacological induction of Nrf2, for example by tBHQ, caused 

increased PINK1 protein expression and mRNA levels, which was then lost when 

validated Nrf2 siRNAs were used (Murata et al., 2015). These inducers increased 

hydrogen peroxide levels and co-treatment of them with the antioxidant N-

acetylcysteine abolished the induction of PINK, suggesting the Nrf2-PINK1 axis 

is dependent on ROS (Murata et al., 2015). Further supporting the link between 

Nrf2 and PINK1, is the effect of tomatidine in the induction of mitophagy in C. 
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elegans, primary rat neurones and neuronal human cells via the SKN-1 (Nrf2 

homologue) pathway (Fang et al., 2017). Tomatidine, abundantly found in unripen 

tomatoes, induced mitophagy through DCT-1 (PINK1 homologue) and similar to 

Murata et al. (2015) it was proposed that ROS are key to this process. Low levels 

of ROS induction by tomatidine are thought to activate Nrf2 signalling, which 

ultimately leads to mitophagy (Fang et al., 2017). However, in this study, the effect 

of Nrf2/SKN-1 KO or KD was not shown and therefore other pathways may be 

involved. Ultimately, emerging evidence suggests that Nrf2 may be an important 

mediator of PINK1-induced mitophagy through the management of ROS and 

therefore overall may be crucial for mitochondrial integrity.  

Alternatively, a study also showed that PINK1 can influence Nrf2 activity and 

expression. In a model of ubiquitin proteasome system (UPS) dysfunction, mutant 

PINK1 (G309D) inhibited heme-oxygenase 1 (HO-1) expression, a Nrf2 target 

gene, in SH-SY5Y cells (Sheng et al., 2017). Moreover, in this MG132-induced 

model, nuclear translocation of Nrf2 was antagonised by G309D mutant PINK1 

(Sheng et al., 2017). Moreover, both Nrf2 protein and mRNA levels of NQO1, a 

Nrf2 downstream target, were decreased in the presence of mutant PINK1 

(Sheng et al., 2017). Firstly, this suggests that PINK1 has a role in regulating Nrf2 

transcriptional activity. Secondly, the location of this mutation on PINK1 is 

responsible for Nrf2 suppression. This missense mutation is known to cause PD, 

possibly through impairment of PINK1 kinase activity, substrate recognition and 

more interestingly, defects in complex I. Together, these findings suggest that 

Nrf2 may potentially require PINK1 dependent signalling to mediate its 

cytoprotective effects through downstream targets on mitochondria independently 

of mitophagy.  

Despite the consensus that Nrf2 can also be found tethered to the mitochondria 

in a quaternary complex with a Keap1 dimer and PGAM5, its actual function isn’t 

fully understood. In fact, the actual role of the complex itself isn’t clearly defined. 

Interestingly, knockdown of PGAM5 debilitated PINK1 induced mitophagy in vitro, 

led to degeneration of dopaminergic neurones and induced Parkinson-like 
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movement phenotype in mice (Lu et al., 2014).  The same study showed that 

PGAM5, through an evolutionary conserved region (amino acids 98-110), directly 

binds and stabilises wild-type, but not PD-associated mutant PINK1 (Lu et al., 

2014). The effect of Nrf2 within the PGAM5-Nrf2-Keap1 complex on mitophagy 

has yet to be studied. Collectively, based on the findings from the work of Murata 

et al. (2015) and Lu et al. (2014), it could be proposed that the PGAM5-Nrf2-

Keap1 complex may function with Keap1 as an immediate mitochondrial ROS 

sensor which allows newly synthesised Nrf2 to accumulate and induce PINK1 

expression. PINK1 is then stabilised by PGAM5 in the complex to initiate PINK1-

dependent mitophagy. 

Lastly, a non-electrophilic Nrf2 activator, PMI, was shown to drive mitophagy 

without dissipating the mitochondrial membrane potential or Parkin recruitment 

(East et al., 2014). PMI induces mitochondrial respiration, superoxide mediated 

mitophagy and expression of several autophagy-associated genes like 

p62/SQSTM1. Interestingly, other Nrf2 inducers such as sulforaphane and 

dimethylfumurate (DMF), which covalently modify Keap1, are unable to induce 

such a response. In fact, co-treatment of PMI with sulforaphane was shown to 

inhibit PMI-induced effects like the accumulation of p62 required for mitophagy 

(Georgakopoulos et al., 2017). However, both drugs induce similar alterations on 

mitochondrial morphology and bioenergetic profiles suggesting that the reversible 

inhibition of PMI is specifically important for mitophagy (Georgakopoulos et al., 

2017). As this was dependent on mitochondrial superoxide, it is likely that 

electrophilic Keap1 inhibitors are interfering with mitochondrial redox pathways 

concealing Nrf2’s effects (Georgakopoulos et al., 2017). Most importantly, the 

PINK1-Parkin pathway was not required for mitophagy induced by PMI 

(Georgakopoulos et al., 2017). This is particularly exciting as PMI can be used to 

rescue mitochondrial turnover without relying on the PINK1-Parkin pathway which 

is often defective in PD. 
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1.5 PGAM5 in Mitophagy 

 

Loss of the ΔΨm causes PARL to cleave PGAM5 (Sekine et al., 2012). 

Interestingly, PINK1 which is usually cleaved by PARL in homeostasis is actually 

stabilised under these conditions. Western blot analysis of a CCCP-dependent 

depolarisation time course showed that over 120 minutes, PINK1 stability 

coincided with PGAM5 cleavage (Sekine et al., 2012). This advocates that PARL 

can cleave different substrates leading to activation of different pathways 

depending on the health status of mitochondria and that PGAM5 may have 

significant role in mitophagy.  

To further support this reciprocal PARL-mediated regulation of PINK1 and 

PGAM5, Lu et al. (2014) showed that PGAM5 regulated PINK1 by protecting it 

from PARL-mediated cleavage in CCCP-mediated depolarisation. Reported 

PINK1 mutations found in PD were resistant to this PGAM5 mediated stability. It 

is thought that this stability may partly be due to the binding of PGAM5 and PINK1. 

Investigations attempting to understand the potential binding of PINK1 to Parkin 

found PGAM5 to be a PINK1-binding protein (Imai et al., 2010). This was further 

confirmed, where highly conserved residues 98-110 of PGAM5 were required to 

bind to PINK1 (Lu et al., 2014).  

Considering the significant amount of data showing the importance of PGAM5 in 

PINK1 stability, it is highly probable that PGAM5 can also affect PINK1-Parkin 

mitophagy. Swollen bulbous mitochondria lacking cristae were found in higher 

numbers in PGAM5 knockout mouse embryonic fibroblasts (MEFs) in comparison 

to the wild type (Lu et al., 2014). High levels of intracellular ROS and a small loss 

of mitochondrial potential were also observed in the PGAM5 knockout MEFs, 

suggesting that the presence of PGAM5 is important in the removal of unhealthy 

or damaged mitochondria (Lu et al., 2014). Further investigation using CCCP 

showed aggravated mitochondrial stress in wild-type MEFs leading to increased 

numbers of autophagosomes with some mitochondria enclosed and an overall 

decrease in mitochondria. Contrary to wild type, PGAM5 knockout MEFs only 

showed higher numbers of damaged mitochondria with no mitochondria 
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containing autophagosomes, suggesting the CCCP treatment failed to induce 

mitophagy in PGAM5 knockout cells (Lu et al., 2014). Biochemical analyses of 

mitochondrial clearance using the markers LC3I/II, the inner mitochondrial 

membrane protein COX IV and Tomm20, showed that PGAM5 knockout MEFs 

had reduced mitophagy (Lu et al., 2014).  This was also confirmed using a 

lysosomal resistant, inner mitochondrial membrane targeted fluorescent protein, 

mt-Keima (Lu et al., 2014). 

The fate of cleaved PGAM5 isn’t fully understood. One study showed that despite 

being cleaved in CCCP-induced depolarisation, PGAM5 was not released from 

the mitochondria in HeLa cells, a cell line with no endogenous Parkin expression 

(Yamaguchi et al., 2019). However, with stable expression of HA-tagged Parkin, 

PGAM5 was diffusely distributed in approximately 30% of the cells (Yamaguchi 

et al., 2019). This may allow us to postulate that the cleaved PGAM5 form is 

unconstrained to the mitochondria in a potentially Parkin-dependent manner. Due 

to its involvement in ubiquitination of outer mitochondrial membrane proteins, it 

was hypothesised that the ubiquitin-proteasome system was involved.  Indeed, 

treatment with proteasome inhibitors MG132 or epoxomicin reduced PGAM5 

release but not its cleavage (Yamaguchi et al., 2019). Collectively, this may be 

due to proteasome-mediated rupture in mitophagy (Yoshii et al., 2011) which 

causes cleaved PGAM5 release, however further investigation is essential. The 

significance of cleaved PGAM5 release hasn’t been elucidated. However, a 

recent study showed that cleaved PGAM5 dephosphorylated beta catenin in the 

cytosol to mediate Wnt signalling and ultimately mitochondrial biogenesis 

(Bernkopf et al., 2018).  
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Figure 1.7. PARL activity in homeostasis and conditions of mitochondrial depolarisation. 

In homeostatic conditions, where the mitochondrial membrane potential (ΔΨm) is intact, 

presenilins-associated rhomboid-like (PARL) protease cleaves PINK1, causing it to be released 

into the cytoplasm where it is degraded by the proteasome. Under mitochondrial stress, where 

the ΔΨm drops, PARL cleaves PGAM5 and allows PINK1 to be stabilised on the outer 

mitochondrial membrane. PGAM5 is essential for the stabilisation of PINK1 which is required for 

the induction of mitophagy.  

 

Aside, from PINK1-Parkin mitophagy, PGAM5 has also been reported to regulate 

other forms of mitophagy. For example, as previously mentioned, FUNDC1 de-

phosphorylation is required for mitophagy. This is carried out, in part, by PGAM5 

which dephosphorylates the serine 13 residue in FUNDC1 under hypoxic 

conditions or after FCCP treatment (Chen et al., 2014). Such de-phosphorylation 

event enhanced FUNDC1’s interaction with LC3 which was lost following 

knockdown of PGAM5 (Chen et al., 2014). Moreover, it was observed that CK2 

phosphorylates at this same residue to reverse the effect of PGAM5 in initiating 

mitophagy (Chen et al., 2014). Collectively, this suggests that there is a potential 

‘on/off’ switch for FUNDC1-mediated mitophagy via regulation of CK2 and 

PGAM5 activity.  
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1.6 Measuring Mitophagy  

 

In the last few decades, several methodologies have been developed to measure 

mitophagy. For example, exposure to specific conditions or mitophagy inducers 

have been used to exaggerate the levels of mitophagy so that it is within a 

detectable range of these methodologies. Examples include pharmacological 

treatments with compounds like CCCP or DFP, or environments of hypoxia (Allen 

et al., 2013, Villa et al., 2017, Zhang et al., 2016). A major caveat of the available 

methodologies is that they provide indirect measurements of mitophagy. They 

tend to focus on one step of the process and assume that this will ultimately lead 

to mitochondrial turnover. For this reason, it is therefore important to use a couple 

of independent methodologies to obtain robust data. 

Nonetheless, the use of mitophagy inducers coupled to fluorescence microscopy 

has provided substantial insight to what is currently understood in the field of 

mitophagy. Immunofluorescence microscopy with fixed cells has been used to 

detect a variety of mitochondrial proteins and proteins involved in selective 

autophagy. Co-localisation of these proteins often indicates whether the selective 

autophagy machinery is assembled to carry out mitophagy (Dolman et al., 2013). 

Examples include, co-localisation of mitochondria with mitophagy-related proteins 

like LC3 (Dolman et al., 2013). Such studies require mitochondrial labelling which 

is independent of its functional state. Examples include fluorescent dyes like the 

MitoTracker® dyes and fluorescent proteins targeted to the mitochondria (Dolman 

et al., 2013). These can be used to look at mitochondrial quantities, mass and 

morphology at different stages of mitophagy (Dolman et al., 2013)  

Alternatively, fluorescent proteins can also be used to monitor mitophagy in live 

cells. For example, by labelling LC3 with green fluorescent protein (GFP) and a 

mitochondrial protein with mCherry, a combined yellow fluorescence will be 

emitted when the two co-localise in mitophagy. However, several issues need to 

be considered when transfecting these DNA plasmids into cells as contaminants 

or transfection reagents can cause autophagy responses to occur, confounding 

the outcomes of the study (Klionsky et al., 2012). Another issue is the likelihood 
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of a heterogeneous level of expression of the fluorescent protein in the cell which 

again can distort the outcomes of the study (Dolman et al., 2013). This could 

potentially be overcome with the production of a stable cell line. However, not 

only is this technically difficult and time consuming, the addition of this fluorescent 

protein-protein fusion can interfere or alter the function of the cell (Dolman et al., 

2013) 

Aside from measuring co-localisation of the autophagic machinery in cells, the 

delivery of mitochondria to the lysosomes can also be used to monitor mitophagy 

(Dolman et al., 2013). Similarly, antibodies and fluorescent proteins are employed 

to tag lysosomal resident proteins such as the lysosomal-associated membrane 

protein 1 (LAMP1) (Dolman et al., 2013). Additionally, lysosomal dyes, such as 

the LysoTracker® Deep Red, are available to label the lysosomes (Dolman et al., 

2013). Using a combination of lysosomal protein markers and mitochondrial dyes 

or vice-versa, co-localisation of mitochondria and lysosomes can be used to 

measure mitophagy (Dolman et al., 2013).  

A more sophisticated approach used to measure delivery of the mitochondria to 

the lysosomes was developed using a tandem fluorescent tag, coined as the 

MitoQC approach (Allen et al., 2013). Generally, a mitochondrial protein, Fis1, is 

tagged with two fluorescent proteins, GFP and mCherry. Under physiological 

conditions and the early stages of mitophagy, both mCherry and GFP fluoresce, 

producing a combined yellow fluorescence. However, when the dysfunctional 

mitochondria are delivered to the lysosome via autophagasomes, the fluorescent 

signal becomes predominately red. This is due to the acidic environment within 

the lysosome which quenches the green fluorescence emitted by GFP but not the 

red fluorescence emitted by mCherry (Figure 1.7). The number of red punta in the 

is then used to quantify the number of mitochondria undergoing mitophagy. 

Similar ratiometric fluorescence techniques have also been developed on similar 

principles. For example, mitochondrial matrix targeting pH-sensitive probe, the 

mt-Keima, which is often used to measure mitophagy in-vitro (Katayama et al., 

2011, Sun et al., 2017).  
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Transmission electron microscopy (TEM) is a well-established tool to directly 

observe mitophagy. Using this technique key elements of mitophagy, such as the 

presence of the double-membraned autophagasomes capsuling the 

dysfunctional mitochondria, can be observed (Ding and Yin, 2012). Despite 

providing visual evidence of mitophagy occurring, TEM can be difficult to quantify 

due to large variations, limited cell numbers and sections (Ding and Yin, 2012). 

Moreover, it is time consuming and requires expertise in identification of cell types 

in tissues (McWilliams et al., 2016). 
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Figure 1.8. The mitoQC-assay used to measure mitophagy. Fis1, a mitochondrially localised 

protein, is tagged with two fluorescent proteins, mCherry and GFP (mCherry-GFP-Fis1). In 

environments of ~pH7, like the cytoplasm, a yellow fluorescent signal is observed at the 

mitochondria. This is due to both mCherry and GFP emitting red and green fluorescence 

respectively. In environments where the pH decreases, for example those of the lysosome, the 

GFP signal is quenched, leaving mCherry to fluoresce red alone. This occurs in mitophagy where 
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mitochondria containing autophagasomes are delivered to the lysosomes for degradation. The 

ratio between the GFP and mCherry signal is then used to quantitatively measure mitophagy. 

 

In addition to microscopy techniques a variety of other biochemical approaches 

also provide indirect measurements of mitophagy. For example, using a 

fluorescence-activated cell sorting (FACS) technique with a mitochondrial stain 

like the Mitotracker® dyes, mitochondrial mass can be quantitatively measured 

(Ding and Yin, 2012). Similarly, an alternative to using mitochondrial retaining 

dyes, immunostaining of a mitochondrial markers like TOM20 or TIM23 can be 

used with FACS for measurements of mitochondrial mass (Ding and Yin, 2012). 

A consequence of such technique, if using the MitoTracker® dyes, is the reliance 

on an intact ΔΨm (Ding and Yin, 2012). This means that damaged or unhealthy 

mitochondria may not be included in the total mass. Moreover, care must be taken 

when selecting the mitochondrial marker for FACS. A recent study showed that 

some mitochondrial outer membrane proteins were degraded via the proteasome 

instead of mitophagy and therefore incorrect selection of the marker can confound 

results obtained (Ding and Yin, 2012, Yoshii et al., 2011).  

Western blot analysis is another method often used to indirectly measure 

mitophagy. Such analysis requires a selection of mitochondrial markers spanning 

the various compartments of the mitochondria, including proteins from the outer 

and inner membranes, intermembrane space and mitochondrial matrix (Ding and 

Yin, 2012). Although outer mitochondrial membrane proteins like TOM20 and 

VDAC are used, it is important to consider that these may be turned over by other 

mechanisms like proteasomal degradation (Ding and Yin, 2012). Proteins like 

heat-shock protein 60 (HSP60), a mitochondrial matrix protein and TIM23, a 

translocase of the inner mitochondrial membrane, should also be considered for 

the panel of mitophagy markers due to their differing mitochondrial localisations 

(Ding and Yin, 2012). To determine whether decreases in the mitochondrial 

protein marker panel are in fact due to mitophagy, autophagy inhibitors are often 

used. Treatment of cells with bafilomycin A1 after triggering mitophagy will 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=3630798_nihms441631f2.jpg
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=3630798_nihms441631f2.jpg
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provide further evidence of whether the decrease in protein levels are due to an 

autophagic mechanism. 

Lastly, measuring the activity of several enzymes involved in mitochondrial-

mediated metabolism can also be used to indirectly monitor mitophagy. The lower 

the mitochondrial mass, the less activity detected from these enzymes. For 

example, monitoring citrate synthase, an enzyme involved in the citric acid cycle, 

is used to measure mitochondrial mass (Ding and Yin, 2012). Despite the 

acknowledgement that citrate synthase activity is not affected by factors that 

affect mitochondrial function, for example disruption of the electron transport 

chain, it must be considered that other factors may influence its activity (Ding and 

Yin, 2012).  

 

1.7 Clinical relevance of mitophagy  
 

Healthy mitochondria are fundamental for cell homeostasis and survival. 

Physiological quality control mechanisms, like mitophagy, are present in cells in 

order to keep the mitochondrial network functioning optimally. These mechanisms 

are of particular importance in post-mitotic cells, such as cardiomyocytes (Kubli 

and Gustafsson, 2012) and neurones (Granatiero and Manfredi, 2019), which 

cannot rely on being replenished after cell death or on cell division to dilute the 

damaged mitochondria. Moreover, these cells require optimal mitochondrial 

function to meet their high metabolic needs. High metabolic activity often leads to 

mitochondrial ROS production when unmanaged could cause damage to various 

cellular components such as proteins and lipids, making them ineffective and 

vulnerable to mitochondrial dysfunction and ultimately cell death.  

One clinical disorder which may be associated to dysfunctional or inefficient 

mitophagy is Parkinson’s disease (PD). As previously explained, PINK1 and 

Parkin are two reported genes that are mutated in Parkinsonian-like disorders 

(Gao et al., 2017). Many investigations into the effects of Parkin and PINK1 on 

mitophagy have been carried out in Drosophila. For example, deficiency in either 
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gene led to damaged mitophagy and elongated mitochondria (Ziviani et al., 2010). 

Furthermore, Parkin mutants also had significant locomotor issues due to 

significant defects in flight muscle (Greene et al., 2003). Parkin and PINK1 mutant 

flies were also more susceptible to oxidative stress (Pesah et al., 2004, Clark et 

al., 2006) and had swollen mitochondria in indirect flight muscles and in 

dopaminergic neurones (Clark et al., 2006, Park et al., 2006). In drosophila brains, 

a subset of dopaminergic neurones degenerated and the levels of dopamine were 

lower in mutant-Parkin models (Cha et al., 2005, Whitworth et al., 2005). In aged 

mice, PINK1 knockouts had lower levels of dopamine and reduced motor function. 

More surprisingly, there was no significant neuron degeneration but instead, there 

was progressive mitochondrial dysfunction (Gispert et al., 2009). Mitochondria 

isolated from the brain of PINK1 knockout mice also showed defects in calcium 

ion regulation and increased the vulnerability of neurones to oxidative stress 

(Gandhi et al., 2009, Heeman et al., 2011). Contrary to these studies, PINK1-

knockout mice with MitoQC reporters for the detection of mitophagy did not show 

decreased levels of mitochondrial clearance in PD related tissues (McWilliams et 

al., 2018). Further investigations using more extreme factors like aging may 

provide better understanding of how mitophagy defects become more apparent 

with stress.  

Interestingly, aged PGAM5-knockout mice also displayed Parkinson-like 

movement difficulties with overall less locomotor activity, development of 

Parkinsonian gait, bradykinesia and defective balance (Lu et al., 2014). This 

phenotype was not directly associated with mitophagy due to lack of evidence 

for reduced mitochondrial clearance or PINK1 instability in vivo. However, 

biochemical analyses using isolated cells from these mice strongly suggest a 

significant role of PGAM5 in mitophagy, particularly in PD (Lu et al., 2014).  

Several neurodegenerative disease models aside from PD are also reported to 

have dysfunctional mitophagy. For example, Huntington’s disease (HD) and 

Alzheimer’s disease (AD) are also reported to have mitochondrial dysfunction and 

excessive ROS (Mao et al., 2012). In HD fly models, mitochondria in the 
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photoreceptor neurones were abnormally ring-shaped and mitophagy was 

impaired in the striatal neurones. When PINK1 was overexpressed, 

improvements in ATP levels, neuronal integrity and survival were observed. In 

addition, mitophagy was also partially restored. This suggests that in HD, 

increasing the activity of the PINK1/Parkin pathway may offer neuroprotection and 

partially restore mitochondrial integrity (Khalil et al., 2015). With regards to AD, 

using AD animal models, impaired mitochondrial function has been reported prior 

to the amyloid-beta accumulation in the brain (Yao et al., 2009, Du et al., 2017). 

PINK1 deficiency was shown to accelerate amyloid-β accumulation by and 

exaggerates abnormalities in LTP, learning and memory, and mitochondrial 

function in mAPP mice (Du et al., 2017). When PINK1 was restored in these mice, 

decreases were observed in amyloid-beta levels, amyloid-associated pathology, 

oxidative stress, as well as mitochondrial and synaptic dysfunction (Du et al., 

2017). Overexpression of PINK1 via gene therapy was also shown to stimulate 

removal of damaged mitochondria via autophagy receptors, OPTN and NDP52, 

reducing cognitive decline and amyloid-beta dependent synapse loss in AD mice 

(Du et al., 2017). 

BNIP3 and NIX, in addition to PINK1 and Parkin, have also been implicated in a 

range of other diseases. For example, in mammary tumour cells, BNIP3 

knockdown led to accumulation of dysfunctional mitochondrial and elevated ROS 

levels (Chourasia et al., 2015). This promoted HIF-1α stabilisation and expression 

of its downstream target genes involved in angiogenesis and glycolysis; two key 

hallmarks of cancer (Chourasia et al., 2015). Moreover, deficiency in BNIP3 was 

shown to be a prognostic marker of metastasis in triple-negative breast cancer 

(Chourasia et al., 2015).  

With mitophagy being such a crucial physiological process in the cell, it would be 

of interest to manipulate the pathway for clinical use in a range of diseases. 

Indeed, a variety of in-vivo and in-vitro models using molecular techniques such 

as over-expressions, mutations and knockdowns of mitophagy-related proteins 

have provided promise for therapeutic targeting. Unfortunately, these techniques 
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cannot be mirrored in humans and therefore alternative ways of regulating 

mitophagy in cells must be explored. In order to target these alternative pathways, 

initial understanding of how mitophagy fits into the greater paradigm of cellular 

stress responses needs to be investigated. For example, the evidence explored 

here suggests a potential association between redox and mitophagy signalling 

pathways. Indeed, it has been shown that high levels of ROS can trigger 

autophagy (Scherz-Shouval and Elazar, 2011) and that dysfunctional 

mitochondria producing excessive ROS are targeted for mitophagy. Therefore, 

targeting the Nrf2-Keap1 complex, a “druggable” target, or PGAM5, may be 

exploited to potentially induce mitophagy, providing a desired treatment for 

defective-mitophagy related diseases such as PD. 

  



53 
 

1.8 Aims of the thesis 

 

Based on the evidence discussed here, a potential regulatory pathway of 

mitophagy is the Nrf2/Keap1 pathway. Previous work suggests that Nrf2 and 

Keap1 have important functions in mitochondrial activity and autophagy. More 

importantly, accumulating studies suggest that the Nrf2/Keap1 complex may play 

a significant role in mitophagy but the underlying mechanisms remain to be 

elucidated.  

To further explore the potential of Nrf2/Keap1 in mitophagy, my aims were: 

1. To investigate whether PINK1 deficiency affects the half-life, sub-cellular 

localization, inducibility and transcriptional activity of Nrf2. 

2. To investigate the effect of Keap1 knockdown on mitophagy.  

3. To investigate the effect of pharmacological Nrf2 activators on mitophagy.  
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Chapter 2: Materials and Methods 

2.1 Materials 
 

2.1.1 Chemicals 

All chemicals were purchased of analytical grade from Sigma-Aldrich or Merck 

Millipore (now merged into Merck) and stored in DMSO stocks at -20oC unless 

otherwise specified.  

 

2.1.2 Cells  

S-HeLa wild-type and CRISPR-Cas9 S-HeLa PINK1-knockout cells were a 

generous gift from Professor Miratul Muqit (University of Dundee, UK). The 

ARPE-19 MitoQC reporter cell line (expressing mCherry-GFP-FIS1; hydromycin 

resistant, 800ug/mL) and the SH-SY5Y MitoQC reporter cell line were a kind gift 

from Dr Ian Ganley (University of Dundee, UK).  

 

2.1.3 Buffers  

The buffers used for the work in this thesis are listed in Table 2.1. When 

necessary, DTT and complete protease inhibitor cocktail tablets were added 

prior to use. 

Table 2.1. Composition of buffer and stock solutions used in this project. 

Buffer and Solutions Composition 

Blocking buffer 5% (w/v) milk powder, 0.1% (v/v) Tween 20, 1X 
PBS 

Formaldehyde Fixing 
Solution 

3.7% formaldehyde (w/v) 200mM HEPES, pH 7 

PBS-Tween (PBST) 0.1% (v/v) Tween 20, 1X PBS 

Ponceau  5% (w/v) acetic acid, 0.1% (w/v) Ponceau S 

Running Buffer (1X) 25mM Tris, 192mM glycine, 0.1% (w/v) SDS 

Transfer Buffer (1X) 25mM Tris, 192mM glycine, 20% (v/v) methanol 
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SDS-lysis Buffer (2X) 4% SDS (w/v), 125mM Tris (pH6.8), 20% (w/v) 
glycerol (1% (v/v) bromophenol blue added to 
produce ‘blue 2X SDS lysis buffer’ 

Subcellular Fractionation 
Buffer 

20mM HEPES ph7.4, 10mM KCL, 2mM MgCl2, 
1mM EDTA, 1mM EGTA 

Reagent B for BCA 
assay 

4% CuSO4 

 

 

 

2.1.4 Antibodies 

The antibodies (primary and secondary) used for Western blot are listed in 

Table 2.2. 

Table 2.2. Antibodies used in this project. 

Target Host 
Species 

Supplier and 
Catalogue 

Antibody 
Details 

Western Blot 
Concentration 

Β-Actin Mouse Sigma, A5441 Monoclonal 1:15000 (milk) 

AKR1B10* Rabbit Home-made  1:1000 (milk) 

Anti-
Mouse  

Goat LI-COR, 925-
68070 

IRDye® 
680RD  

Secondary 
IgG 

1:15000 (milk) 

Anti-
Rabbit 

Goat LI-COR, 925-
32211 

IRDye® 
800CW 

Secondary 
IgG  

1:15000 (milk) 

Anti-Rat Goat LI-COR, 925-
32219 

IRDye® 
800CW 

Secondary 
IgG 

1:15000 (milk) 

KEAP1 Rat Merck, 
MABS514 

Monoclonal  
Clone 144 

1:16000 (milk) 

HSP60 Rabbit Cell Signalling 
Technology, 

4870 

Polyclonal 
D307 

1:1000 (milk) 

Lamin B2 Rabbit Thermo Fisher, 
PA5-22066 

Polyclonal 1:1000 (milk) 

LC3 Rabbit Cell Signalling 
Technology, 

3868 

Monoclonal 
(D11) XP® 

1:1000 (milk) 

NQO1* Rabbit Home-made  1:1000 (milk) 
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Nrf2 Rabbit Cell Signalling 
Technology, 

2721 

Monoclonal  
(D1Z9C) 

XP® 

1:1000 (milk) 

p62 Mouse Abcam, 
ab56416 

Monoclonal 1:1000 (milk) 

PGAM5 Rabbit Merck, ABC517 Polyclonal  1:1000 (milk) 

PINK1 Rabbit Cell Signalling 
Technology, 

6946 

Monoclonal  
(D8G3) 

1:1000 (milk) 

TIM23 Rabbit Abcam, 
ab230253 

Polyclonal 1:1000 (milk) 

VDAC1 Rabbit Abcam, 
ab154856 

Monoclonal 1:1000 (milk) 

* Both NQO1 and AKR1B10 antibodies were a kind gift from John Hayes lab. 

 

 

2.1.5 TaqMan™ Probes 

For qPCR, all TaqManTM probes were purchased from Thermo Fisher Scientific 

and are listed in Table 2.3. 

Table 2.3. TaqManTM probes used in this project. 

Target Species Catalogue Probe Details 

HMOX1 Human Hs01110250_m1 Exon spanning, 
FAM-MGB dye 

GCLC Human Hs00155249_m1 Exon spanning, 
FAM-MGB dye 

GAPDH Human Hs02786624_g1 Single exon probe, 
FAM-MGB dye 

KEAP1 Human Hs00202227_m1 Exon spanning, 
FAM-MGB dye 

NFE2L2 Human Hs00975961_g1 Exon spanning, 
FAM-MGB dye 

NQO1 Human Hs01045993_g1 Exon spanning, 
FAM-MGB dye 

SQSTM1/P62 Human Hs01061917_g1 Exon spanning, 
FAM-MGB dye 

PGAM5 Human Hs00540846_g1 Exon spanning, 
FAM-MGB dye 

PINK1 Human Hs00260868_m1 Exon spanning, 
FAM-MGB dye 
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2.1.6 SiRNA Reagents 

All small interfering RNAs (siRNAs) purchased are from the ON-TARGET plus 

SMART pool range supplied by Dharmacon and are listed on Table 2.4. 

Table 2.4. Small interfering (siRNA) used in this project. 

Target Species Catalogue 

PINK1 Human L-004030-00-0005  

NRF2 Human L-003755-00-0005 

KEAP1 Human L-012453-00-0005 

Scrambled Negative Human D-001810-10-50 

 

2.2 Methods 
 

2.2.1 Cell Culture 

2.2.1.1 Culturing Conditions 

All cells were maintained and grown in sterile conditions at 37oC with 5% CO2. To 

passage, cells were washed twice with PBS and detached using trypsin-EDTA 

(0.25%) (Gibco) at 37oC. CRISPR generated PINK1-knockout and wild-type HeLa 

cells were cultured in DMEM media (Gibco) supplemented with 10% (v/v) heat-

inactivated FBS (Invitrogen). SH-SY5Y MitoQC cells were cultured with a 1:1 mix 

of DMEM and Ham’s 12 nutrient mix (Gibco) containing 15% (v/v) heat-inactivated 

FBS (Invitrogen). The ARPE-19 MitoQC cells were cultured in a 1:1 mix of DMEM 

and Ham’s F12 media (Gibco) supplemented with 10% (v/v) heat and charcoal-

inactivated FBS (Invitrogen).  

2.2.1.2 Freezing and Thawing of Cells 

Cells cultured in 175cm2 flasks at low passage and at 80% confluency were frozen 

down for long-term storage stocks. Once cells were detached using trypsin-EDTA 

(0.25%), 10 ml of complete medium was added to inactivate the trypsin. The cells 

were collected by centrifugation at 1000 rpm for 5 minutes. The trypsin/EDTA 



59 
 

containing medium was removed from the above the cell pellet, and the cells were 

resuspended in fresh mediaum. Next, the pelleted cells were resuspended in 3 

ml of FBS containing 10% (w/v) DMSO. Approximately 1 ml of cell suspension 

was added per 1.5 ml cryogenic vial (Corning incorporated) and placed in a 

Mr.FrostyTM Freezing Container (Thermo Scientific) for a minimum of 48 hours at 

-80oC. The vials were then transferred into liquid nitrogen for long-term storage.  

To thaw the cells, the cryogenic vials were placed in a 37oC water bath and then 

transferred into a 75cm2 flask (Thermo Scientific) with 12 ml of pre-warmed 

media.  

 

2.2.2 RNA Interference (RNAi) 

Reverse transfections were carried out for all knockdown experiments. For 6-well 

dishes, 2.5 μL of 20 μM siRNA stock was added to 500 μL of Opti-MEM (Gibco). 

This solution was then added to the designated well and 5 μL of RNAiMax 

(Invitrogen) was added to the siRNA/Opti-MEM solution in the well. After mixing 

the RNAiMax thoroughly in the solution, the dish was left to incubate for 10-15 

minutes at room temperature. Cells were then added to each well at a density of 

2.5x105 for ARPE-19 MitoQC and 3.5x105 for SHSY5Y mitoQC cells in a 2 mL 

volume of culture media, producing a total volume of 2.5 mL and a final 

concentration of 20 nM siRNA.  

For knockdowns in 15-cm dishes, 3x106 SHSY5Y cells and 2x106 ARPE-19 cells 

were seeded. A concentration of 20 nM siRNA was achieved by mixing 20 µL of 

20 µM siRNA and 4 mL of Opti-MEM per dish. Next, 40 µL of RNAiMax was mixed 

into the 4 mL in the dish and this was left for 10-15 minutes at room temperature. 

The cell suspension was then added to the dish in a volume of 16 mL to make a 

total media volume of 20 mL.  

The same protocols were simultaneously carried out with the scrambled siRNA 

and the Opti-MEM controls. All knockdown reactions were incubated for 48 hours 

in sterile conditions at 37oC with 5% CO2 before cells were harvested. 
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2.2.3 Drug Treatments 

Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) was dissolved in 

DMSO to produce 100 mM stocks which were sequentially diluted in PBS to make 

100 µM working stocks. All DMSO stocks were stored at -20oC and were 

ultimately diluted in medium to make a final concentration of 10 µM (unless 

otherwise stated). To induce FCCP-dependent stress, cells were treated with a 

final concentration of 10 µM (for SH-SY5Y and S-HeLa) or 20 µM (for ARPE-19 

MitoQC) of FCCP in growth media. All treatments lasted for 3 hours unless 

otherwise stated.  

Analysis of mitophagic flux by immunoblotting required bafilomycin (dissolved in 

DMSO, 200 µM or 50 µM stocks) to be added to the cell media for a final 

concentration of 50 nM (for ARPE-19 MitoQC) or 20 nM (for SH-SY5Y). 

Bafilomycin A1 was added 6 or 8 hours before cells were harvested.  

Deferiprone (DFP) was used as a positive control for mitophagy activation. DFP 

powder was stored at room temperature and was made fresh for each experiment 

by adding sterile water to make a 0.125M solution, which was then dissolved at 

95oC for five minutes. Finally, a 1mM solution was made in growth medium and 

added to the cells for 24 hours when necessary.  

TBE-31 was dissolved in acetonitrile to obtain a stock concentration of 5mM and 

was stored at -20oC. A 500-μM intermediate stock was made in acetonitrile before 

it was further diluted in cell culture medium to 50 nM or 100 nM, and added to 

cells for 24 hours.  

PMI was stored at -20oC as a 50 mM stock dissolved in DMSO. A 50 μM stock 

was produced in DMSO before it was further diluted in cell culture medium to 

make 10 μM or 20 μM and added to cells for 24 hours. 
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2.2.4 Protein Extraction and Quantification  

Cells were lysed in 2X SDS-lysis buffer (50% 2X SDS-lysis Buffer, 45% water 

supplemented with a complete protease inhibitor cocktail, 5%) after being washed 

twice with PBS. Cell lysates were then boiled for 2 minutes and sonicated using 

the following settings: 25% amplitude, total of 20 seconds with 4 seconds on and 

1 second off. Protein concentrations were determined using the BCA assay 

(Pierce ™ BCA Protein Assay Reagent A and lab-made reagent B, see Table 2.1) 

according to the manufacturer’s protocol. All samples were measured in triplicate 

and concentrations were determined by absorbance of 552nm using a plate 

reader spectrophotometer SpectraMax M2 (Molecular Devices) with the SoftMax 

Pro 5.4 software program. Bovine serum albumin (BSA) (Thermo Scientific) was 

used to produce a standard curve between 1-32 µg.  

 

2.2.5 Cycloheximide Experiment 

Cells were seeded between 0.3-1x106 cells per well into either 6-well plates or 6-

cm dishes. At each time point, 10 uL of 2mg/ml cycloheximide was added to each 

designated well. At time point 0, all cells were washed with PBS twice and lysed 

with 1X SDS lysis buffer (50% 2X SDS-lysis Buffer, 45% water supplemented with 

a complete protease inhibitor cocktail, 5%). Cell lysates were then processed for 

protein extraction and quantification as described above. Proteins were resolved 

by SDS/PAGE and transferred to nitrocellulose membranes using wet transfer. 

Membranes were immunoblotted for Nrf2 and the loading control -actin. The 

intensity of each band was then quantified using the Li-Cor Image Studio. The 

Nrf2 band density for each time point was normalised to the corresponding -

actin band for the same sample. The density of the band was then plotted against 

time and an exponential equation was fitted to the data. The Nrf2 half-life was 

then calculated using the following equation:  

𝑡1
2
= 

𝑡

𝑙𝑜𝑔1
2
 (
𝑁(𝑡)
𝑁0

) 
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N(t = final quantity; N0 = initial quantity; t = time 

 

2.2.6 RNA Extraction, cDNA and Quantitative Real-time PCR 

Cells were seeded at a density of 2.5-4x105 cells per well in 6-well dishes.  

Depending on the experiment, cells were lysed 24 or 48 hours after seeding, and 

RNA extraction was carried using the RNeasy Kit (Qiagen Ltd.). RNA 

concentrations were measured using the Nanodrop Spectrophotometer ND-1000 

(NanoDrop Technologies).   

Using the Omniscript Reverse Transcription Kit (Qiagen Ltd.), either 500 ng or 

1000 ng of cDNA was produced from the extracted RNA. Each cDNA sample was 

either diluted 1:10 (for 500 ng) or 1:20 (for 1000ng) with sterile water before 

quantitative real-time PCR was performed. 

All quantitative real-time PCR experiments were performed using the 

QuantStudio® 5 Real Time PCR System with a 96-well 0.2 mL block (Thermo 

Fisher Scientific). For each studied gene a master-mix was produced with the 

following constituents per sample: 0.75 µl of the correct TaqMan probe (listed in 

Table 2.3), 4.75 µl of sterile water and 4.50 µl of the TaqMan Universal Master 

Mix II (Applied Biosystems by Life Technologies). Of this master-mix, 10 µl were 

pipetted into a MicroAmp® optical 96-well reaction plate (Applied Biosystems by 

Life Technologies) in addition to 5 µl of diluted cDNA, providing a final reaction 

volume of 15 µl.  All data were normalised to GAPDH as an internal control and 

presented as a fold-change of the specified control sample.  

 

2.2.7 Subcellular Fractionation  

For subcellular fractions, cells were seeded in 15-cm dishes and pooled together 

when necessary. The cells were washed twice with ice-cold PBS before scraping 

in 1 ml of subcellular fractionation buffer into Eppendorf tubes. Cells were lysed 

using a 25G needle by syringing approximately 20 times before being left on ice 
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for 20 minutes. Lysis was confirmed using a light microscope. Next, cell lysates 

were subjected to centrifugation at 720 x g for five minutes to produce a pellet 

containing nuclei, cell debris and un-lysed cells. The supernatant was then spun 

at 10,000 x g for five minutes to obtain a mitochondrial pellet. Lastly, the remaining 

supernatant was centrifuged at 10,000 x g for 15 minutes to acquire a cytoplasmic 

fraction. Each fraction, with the exception of the cytoplasmic fraction, was lysed 

with SDS lysis buffer, boiled and sonicated at 15% amplitude for 15 seconds. All 

centrifugation steps were carried out at 4oC and multiple washes and 

centrifugations were carried out using the subcellular fractionation buffer before 

lysing each pellet.  

 

2.2.8 Protein Resolution by SDS/PAGE and Wet Transfer 

Denatured proteins were diluted in blue SDS-lysis buffer (50% 2X SDS-Lysis 

Buffer with 0.5% bromophenol blue, 10% DTT and 40% water) and were loaded 

onto either 10% or 13% 10-well polyacrylamide (30% Bio-Rad) gels with a pre-

stained standard protein marker (Pageruler, Invitrogen) flanking the samples 

Equal amounts of total protein (20-40 µg), at a concentration of 1µg/µl, were used 

for separation by sodium dodecyl sulphate-polyacrylamide gel electrophoresis 

(SDS-PAGE). Proteins were resolved using 75V for 15 minutes and 120V for 1 

hour in running buffer (1X).  

Resolved proteins in the gel were then transferred onto a 0.45 µm nitrocellulose 

membrane (Amersham Biosciences) at 75V for 1 hour 45 minutes surrounded by 

transfer buffer (1X). Once transfer was complete, membranes were blocked in 

5% (w/v) milk (Marvel) prepared in PBS containing 0.1% Tween 20 (PBST) for an 

hour under constant agitation at 50-80 rpm on a shaker (SSM1, Stuart).  
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2.2.9 Immunoblotting 

All primary antibodies (listed in Table 2.1.4) were prepared in 5% (w/v) milk 

(Marvel) dissolved in PBST and stored at -20oC in 50 ml Falcon tubes (Corning). 

After blocking, membranes (except membranes used for detection of Nrf2) were 

added to 50 mL Falcon tubes containing 10 mL solutions of milk with the primary 

antibody of choice (see Table 2.2 for dilutions). The tubes were then placed on a 

rotator (SRT6, Stuart) at 4oC overnight or at room temperature for 3-4 hours. Due 

to low abundance and weak antibody signal, Nrf2 membranes were placed in 

trimmed plastic pockets with excess primary antibody and were left at 4oC 

overnight under constant agitation (Stuart, SSL4).  

After incubation with the primary antibodies, membranes were washed thrice with 

PBST for a minimum time period of 10 minutes per wash. Appropriate LI-COR 

secondary antibodies were prepared in 5% (w/v) milk (Marvel) dissolved in PBST 

and membranes were left to incubate under agitation for 1 hour at room 

temperature. Excess secondary antibodies were washed three times with PBST 

for a minimum time period of 10 minutes per wash. Proteins were then revealed 

using the Odyssey® CLx Imaging System (Li-Cor). 

 

2.2.10 Mitophagy Assay 

To determine the effect of TBE-31 on mitophagy, ARPE-19 MitoQC cells were 

seeded onto glass coverslips (22x22mm, 1.5mm thickness; VWR) in 6-well dishes 

at a density of 2.0 x 105/2.5 x 105 cells per well for 48 hours. Each well was then 

washed twice with PBS before fixation with 3.7% formaldehyde solution for 10 

minutes at room temperature. Next, cells were washed twice with phenol red free-

DMEM/10mM HEPES (pH 7). DAPI (1:1000 in phenol red free-DMEM/10mM 

HEPES, pH 7), used to stain cell nuclei, was incubated for 15 minutes at room 

temperature in the absence of light. Cells were washed again in phenol red free-

DMEM/10mM HEPES (pH 7) and incubated with the solution for 10 minutes 

before a final PBS wash. Coverslips were gently mounted onto super premium 
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microscope slides (VWR) using 20 µl of ProLong Gold Antifade Mountant 

(Invitrogen). Slides were left to cure overnight at room temperature in the absence 

of light. 

Images of each sample were acquired using with the Deltavision Elite (GE 

Healthcare) microscope. Acquisition settings including intensity, objective and 

exposure were fixed for each channel across all samples. Images were visualised 

using ImageJ. For the microscopy experiment with ARPE-19 cells (Figure 5.5), 

30–40 cells per treatment were selected at random for quantitative analysis in 

Image J. Cells were drawn around and within the selected area, fluorescence 

intensity of the GFP channel and mCherry channel were measured using a 

macro. This ultimately provided the number of red puncta that as present within 

the cell.  

In parallel, cells were also seeded for western blot analysis and subjected to 

bafilomycin A1 (50nM) treatment 8 hours before harvest. The levels of 

mitochondrial markers TIM23 (inner mitochondrial membrane) and HSP60 

(intramitochondrial chaperone), and the autophagy marker LC3 I/II were 

determined by immunoblotting as an independent measure of mitophagy and 

mitophagic flux. For experiments measuring mitophagy in cells after Keap1 

knockdown, a similar western blot analysis was carried out. 

 

2.2.12 Statistical Analysis  

Data are presented as the mean ± standard deviation (SD) unless otherwise 

stated. Differences between groups were determined by a Student’s t-test or an 

analysis of variance (ANOVA). Post-hoc tests were also carried out where 

appropriate. All data analyses were performed using Excel (Microsoft Corp.) or 

GraphPad Prism 7. 
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Chapter 3: Results 

3.1 Investigating the effect of PINK1 deficiency on the half-life, sub-cellular 

localization, inducibility and transcriptional activity of Nrf2 

 

To understand whether Nrf2 half-life, sub-cellular localisation, inducibility and 

transcriptional activity are associated with PINK1 status, CRISPR knockout (KO) 

PINK1 S-HeLa cells and the parental control cell line (WT) were used. 

 

3.1.1 Basal protein and mRNA levels of Nrf2 and its downstream targets do not 

alter in PINK1-KO S-HeLa cells 

Both protein and mRNA levels of Nrf2 and its downstream target genes were 

measured in basal conditions. Protein levels of Nrf2’s negative modulator, Keap1, 

were also measured to investigate whether any changes in Nrf2 are due to effects 

on Keap1. 

Nrf2 protein levels and its downstream targets NQO1 and p62 were all shown to 

have similar levels in both PINK1-WT and KO cells. AKR1B10 was the only 

downstream target of Nrf2 that showed a slight decrease at the protein level in 

PINK1-KO cells.  Keap1 was also slightly lower in the PINK1-KO however this did 

not seem to affect Nrf2 and its downstream targets (Figure 3.1, A).  

At the transcript level, PINK1-KO showed no effect on transcript levels of NFE2L2, 

NQO1, SQSTM1 (gene encoding p62), GCLC or HMOX1 under basal conditions.  
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Figure 3.1. Nrf2 and downstream targets protein and mRNA levels under basal conditions 

in PINK1 wild-type (WT) and knockout (KO) S-HeLa cells. (A) Each cell line was seeded and 

lysed on the following day for protein analysis. Nrf2, KEAP1, p62, NQO1, PINK1, AKR1B10 and 

Actin were detected in cell lysates by Western blot analyses. Equal amounts of protein were 

loaded, and Actin was used as the loading control. Experiments were conducted three times, 

independently. (B) Each cell line was seeded and lysed on the following day for quantitative real-

time PCR. PINK1, NFE2L2, NQO1, SQSTM1, GCLC, HMOX1 and GAPDH mRNA transcripts 

were all detected using individual TaqMan™ probes. Data were normalised to GAPDH, the 

housekeeping gene, using the ∆∆Ct method and the fold change was then calculated relative to 

WT samples using the 2-∆∆Ct method. Data are from three independent experiments. *** p<0.001 

(Two-way ANOVA with Bonferroni post-hoc test).  

 

3.1.2 Nrf2 and downstream targets are induced with FCCP-induced stress in both 

PINK1-WT and KO S-HeLa cells 

PINK1, similar to Nrf2, is continuously degraded under homeostatic conditions in 

the cell. It was therefore hypothesised that in order to investigate PINK1’s effects 

on Nrf2 and its downstream targets, PINK1 would need to be stabilised on the 

mitochondria. In these experiments, PINK1 was stabilised using FCCP, a potent 

uncoupling agent of the mitochondrial electron transport chain. Both PINK1-WT 

and KO cells were treated with 10 µM of FCCP (or the vehicle, 0.001% DMSO) 

for 3 hours and were either lysed then (0 hours after treatment, 0h) or 24 hours 

later (treatment media was changed at time point 0 hours after FCCP treatment 

with fresh growth media) for protein or mRNA analysis (Figure 3.2.). 
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After 3 hours of 10 µM FCCP treatment, PINK1 protein was clearly stabilised in 

PINK1-WT cells with no significant effect on PINK1 transcript levels. Within 24 

hours, PINK1 protein levels returned to their basal levels, and were even lower 

than in vehicle-treated cells, whilst transcript levels remained unaffected (Figure 

3.3, Figure 3.4). Nrf2 protein levels increased to a similar extent in PINK1-WT and 

KO cells after the 3-hour treatment, suggesting the stabilisation of Nrf2 was 

PINK1 independent (Figure 3.3). After 24 hours, Nrf2 protein levels decreased. In 

agreement with the western blots, Nrf2 transcript levels increased approximately 

2-fold in both PINK1-WT and KO cells after the 3-hour treatment (Figure 3.4 A) 

but returned to basal levels 24 hours later (Figure 3.4 B). On the protein level p62 

was higher in FCCP treated PINK1-WT and KO cells at the 24-hour time point in 

comparison to the 0-hour time point (Figure 3.3). However, transcript levels 

remained similar at the 0 hour and 24-hour time point (Figure 3.4). NQO1 levels 

were slightly higher in the PINK1-KO cells with both the DMSO and the FCCP 

treatment in comparison to the PINK1-WT cells (Figure 3.3). However, after 24 

hours, a slight increase in NQO1 protein levels in both cell lines occurred and was 

clearly observed with an over 2-fold increase in transcript levels (Figure 3.4 B).  

Alike NQO1 and p62, small increases in AKR1B10 occurred 24 hours after FCCP 

treatment. AKR1B10 transcript levels were detectable outside the linear range 

and therefore were not measured in this experiment. Interestingly, Keap1 protein 

levels decrease 24 hours after the FCCP treatment in both PINK1-WT and KO.  

Collectively, these results suggest that independently of PINK1, FCCP stabilises 

Nrf2. Initially, this stabilisation of Nrf2 is independent of the levels of KEAP1, 

which remain unchanged 3 hours post-exposure to FCCP, and may be due to 

increased transcription of NFE2L2. However, the stabilization of Nrf2 at the 24-

hour time point could potentially be due to increased Keap1 protein degradation, 

in turn allowing Nrf2-dependent gene transcription to occur.   
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Figure 3.2. Experimental set-up to measure protein and transcript levels of Nrf2 and Nrf2 

targets at 0 hours and 24 hours after FCCP (10 µM) or DMSO (0.001%, Veh) treatment. PINK1 

WT and PINK1 KO S-HeLa cells were seeded 6-well dishes. Once 75% confluent cells were either 

treated with FCCP or the vehicle DMSO for 3 hours. Half of these cells were harvested after 3 

hours for protein and transcript analyses. The remaining cells were washed with fresh media and 

were incubated for 24 hours in fresh media. After 24 hours, these cells were also harvested for 

protein and transcript analyses. 

 

 

Figure 3.3. Protein levels of Nrf2 and Nrf2 targets at 0 and 24 hours after FCCP treatment 

(10 µM, 3 hours). Cells were seeded and the following day treated with 10 µM of FCCP or 0.001% 

DMSO (vehicle, Veh) for 3 hours. Cells were either harvested after the treatment or growth media 

were changed. Cells with media changed were harvested 24 hours later. Cell lysates were subject 

to protein analysis via Western blot where equal amounts of protein were loaded. Membranes 

were blotted for Nrf2, Keap1, p62, NQO1, PINK1, AKR1B10 and the loading control, Actin. Data 

shown are representative of three independent experiments. 
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Figure 3.4. Transcript levels of Nrf2 and Nrf2 targets at 0 and 24 hours after FCCP treatment 

(10 µM, 3 hours). Cells were seeded and on the following day treated with 10 µM FCCP or 0.001% 

DMSO (vehicle, Veh) for 3 hours. Cells were harvested after the treatment (A) or had their media 

changed and were harvested 24 hours later (B) for quantitative real-time PCR. PINK, NFE2L2, 

NQO1, GAPDH and SQSTM1 mRNA transcripts were all detected using individual TaqMan™ 
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probes. Data were normalised to GAPDH, the housekeeping gene, using the ∆∆Ct method and 

the fold change was then calculated relative to WT Veh samples using the 2-∆∆Ct method. Data are 

from three independent experiments. * p<0.05, ** p<0.01, *** p<0.001 (Two-way ANOVA with 

Bonferroni post-hoc test). 

 

3.1.3 Nrf2 turnover does not change in PINK1-WT and KO S-HeLa cells under 

basal conditions 

To determine whether Nrf2 turnover changes in the absence of PINK1, 

cycloheximide was added to wells containing either S-HeLa KO and WT cells as 

shown in Figure 3.5. Under basal conditions, the half-life for Nrf2 was 13.6 and 

13.03 minutes for PINK-WT and KO, respectively (Figure 3.6). Such values 

suggest that Nrf2 turnover is not altered in the absence of PINK1. 

 

Figure 3.5. Cycloheximide experiment to measure Nrf2 turnover in S-HeLa PINK1 WT and 

KO cells. Each cell line was seeded onto six 6-cm dishes. Each dish was designated a specific 

time point of either 75, 60, 45, 30, 15 and 0 minutes in which the cells were subjected to 10µL of 

2 mg/mL cycloheximide to inhibit protein synthesis. At 0 minutes, all cells were harvested for 

protein analysis.  
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Figure 3.6. Nrf2 protein turnover in PINK1-WT and KO S-HeLa cells under basal conditions.  

Each cell line was seeded onto six 6-cm dishes. Each dish was designated a specific time point 

of either 75, 60, 45, 30, 15 and 0 minutes in which the cells were subjected to 10µL of 2 mg/mL 

cycloheximide. At 0 minutes, all cells were lysed and equally loaded for Western blot analysis. 

Membranes were blotted for Nrf2 and the loading control ACTIN. Band intensities were quantified 

using Image Studio Ver 5.2 (Li-Cor). Nrf2 band intensities were normalised to Actin band 

intensities and are expressed as a percentage of the band at 0 minutes. Exponential equations 
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were fitted to the data and half-lives were calculated. Data are from three independent 

experiments. 

 

3.1.4 Nrf2 turnover does not change in PINK1-WT and KO S-HeLa cells under 

FCCP-induced stress conditions 

Previously, FCCP was used to depolarise the mitochondrial membrane and 

stabilise PINK1 (Deas et al., 2011). We wanted to determine whether its presence 

on the mitochondria is important for Nrf2 regulation and function. In a preliminary 

experiment, we also looked at whether PINK1 stabilisation would affect Nrf2 

turnover. Cells were treated with 10µM FCCP for 3 hours before carrying out the 

experiment described in Figure 3.5. The half-life of Nrf2 was approximately 17 

minutes under all experimental conditions and cell types except for KO S-HeLa 

cells treated with FCCP in which Nrf2 had a half-life of approximately 15 minutes 

(Figure 3.7). 
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Figure 3.7 Nrf2 protein turnover in PINK1-WT and KO S-HeLa cells under FCCP induced 

conditions. Cells were seeded onto 6-cm dishes and were treated with either 10µM of FCCP or 

0.001% DMSO (Vehicle) for 3 hours the following day. Each dish was designated a specific time 

point of either 60, 45, 30, 15 and 0 minutes in which the cells were subjected to 10µL of 2 mg/mL 

cycloheximide At 0 minutes, all cells were lysed and equally loaded for Western blot analysis. 

Membranes were blotted for Nrf2 and the loading control Actin. Band intensities were quantified 

using Image Studio Version 5.2 (Li-Cor). Nrf2 band intensities were normalised to Actin band 
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intensities and are expressed as a percentage of time point 0 minute (0). Exponential equations 

were fitted to the data and half-lives were calculated. Data is from one experiment. (n=1). 

 

3.1.5 Nrf2 localisation does not differ in basal or FCCP-induced stress conditions 

between PINK1 WT and KO cells 

To understand if PINK1 could affect the subcellular localisation of Nrf2, 

subcellular fractionation was carried out in both PINK1-KO and -WT cells in the 

presence and absence of FCCP (10 μM). Nrf2 and Keap1 were found in all three 

fractions and no difference was observed in Nrf2 localisation between PINK1-WT 

and -KO under basal or FCCP-induced stress conditions. This experiment further 

revealed that Nrf2 stabilisation upon FCCP treatment occurred primarily in the 

mitochondria, and possibly the nucleus (Figure 3.8). The latter is difficult to assess 

as the nuclear fraction contained a significant amount of mitochondria, based on 

the readily-detectable levels of VDAC1 in the nuclear fraction
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Figure 3.8. Nrf2 localisation in subcellular fractions in S-HeLa PINK1 WT and KO cells. Cells were subjected to treatment with 10µM FCCP or 

0.001% DMSO (Vehicle) for 3 hours. They were then harvested for subcellular fractionation using ice-cold PBS and subcellular fractionation buffer. 

Several rounds of centrifugation were carried out to obtain a nuclear, mitochondrial and cytoplasmic pellet. Each fraction (except the cytoplasmic) 

was lysed with SDS buffer and quantified for Western blot analysis. Membranes were blotted for PINK1, KEAP1 and Nrf2. VDAC1, Actin and Lamin 

B2 were used as loading controls for the mitochondrial, cytoplasmic and nuclear fractions respectively. Data are representative of three experiments 

(n=3).  



78 
 

 

3.1.6 Nrf2 knockdown in WT PINK1 S-HeLa does not alter PINK1 protein and 

transcript levels 

The data so far suggest that the PINK1 status does not alter Nrf2 function, 

subcellular localisation or expression in S-HeLa cells. It was next investigated 

whether Nrf2 status could alternatively influence PINK1 at the protein and mRNA 

level. siRNA-mediated Nrf2 knockdown was successful at the protein level as no 

band was detected in the siNRF2 samples. Moreover, NQO1, a downstream 

target gene of NRF2 also decreased in these cells. As expected, PINK1 protein 

was stabilised with FCCP treatment (3 hours). However, in Nrf2 knockdown cells 

treated with FCCP, PINK1 protein levels were slightly lower (Figure 3.9). When 

cells were treated with FCCP for 6 hours, a similar trend was observed (Appendix 

Fig 5.1). At the RNA level, Nrf2 knockdown had no effect on PINK1 transcripts in 

the presence of FCCP or DMSO (3 hours) (Figure 3.10). 
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Figure 3.9. Protein levels after Nrf2 knockdown in WT PINK1 S-HeLa cells in the presence 

and absence of FCCP. Nrf2 was knocked down using RNAiMax reverse transfection for 48 

hours. Three hours before harvest, cells were treated 0.001% DMSO or 10µM of FCCP. After 

lysis with SDS buffer, all samples were equally loaded for Western blot analysis. Membranes 

were blotted for Nrf2, NQO1, PINK1 and the loading control Actin. These blots represent one 

experiment (n=1). 
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Figure 3.10. Transcript levels after Nrf2 knockdown in WT PINK1 S-HeLa cells in the 

presence and absence of FCCP. Nrf2 was knocked down using RNAiMax reverse transfection 

for 48 hours. Six hours before harvest for quantitative PCR, cells were treated 0.001% DMSO or 

10 µM of FCCP. PINK, NFE2L2 and GAPDH mRNA transcripts were all detected using individual 

TaqMan™ probes. Data were normalised to GAPDH, the housekeeping gene, using the ∆∆Ct 

method and the fold change was then calculated relative to Optimem DMSO using the 2-∆∆Ct 

method. 

  

3.2 Investigating the effect of Keap1 knockdown on mitophagy 

 

Studies show that Keap1 (and indirectly Nrf2) are tethered to the mitochondria via 

PGAM5 which has an important role in the stability of PINK1 and PINK1-induced 

mitophagy (Park et al., 2018).  It was therefore hypothesised that Keap1 and Nrf2 

may serve a function in the process of mitophagy through the regulation of 

PGAM5.  

Co-expression of Keap1 with the long isoform of PGAM5 increased ubiquitin 

conjugation on PGAM5 and Keap1-dependent ubiquitination of PGAM5 by a 

Cul3-Rbx1-dependent E3 ubiquitin ligase complex. Additionally, Keap1 
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expression was shown to decrease steady-state levels of co-expressed PGAM5. 

However, PGAM5 levels were recovered with the inhibition of the 26S 

proteasome suggesting that Keap1 promotes ubiquitination and proteasomal 

degradation of PGAM5. Further supporting this, treatment with tert-

butylhydroquinone (tBHQ) or sulforaphane, both of which inactivate Keap1, also 

caused elevated levels of PGAM5 (Lo and Hannink, 2008).  

To determine if PGAM5 regulation mediated by Keap1 influences mitophagy 

Keap1 knockdown was carried out in Mito-QC SHSY5Y cells. The hypothesis was 

that Keap1 knockdown would increase mitophagy due to increased stability of 

PGAM5 and therefore increased stability of PINK1 on the mitochondria. 

 

Figure 3.11. Hypothesis: Keap1 influences PINK1-induced mitophagy through the 

regulation of PGAM5. In situations of oxidative stress, Keap1’s cysteines are modified leading 

to a conformational alteration. Like Nrf2, this may stop it from ubiquitinating PGAM5, preventing 

proteasomal-mediated degradation. Instead PGAM5 is stabilised, allowing for increased stability 

of PINK1 on the mitochondrial membrane for PINK1-mediated mitophagy.  

 

3.2.1 Keap1 knockdown increases PINK1 transcript levels 

Keap1 was effectively knocked down in SHSY5Y cells at the transcript level 

(Figure 3.12). In addition to Keap1, transcript levels of Nrf2, PGAM5 and PINK1 

were also measured (Figure 3.12). Keap1 knockdown slightly, but statistically 

significantly increased Nrf2 transcript (p<0.05) but decreased PGAM5 transcript 

levels (p<0.01). However, Keap1 knockdown had the greatest impact on PINK1 

transcript levels, increasing them by 2-fold (p<0.001).  
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Figure 3.12 Transcript levels of KEAP1, NFE2L2, PGAM5 and PINK1 after Keap1 knockdown 

in SHSY5Y cells. Keap1 was knocked down using RNAiMax reverse transfection for 48 hours. 

KEAP1, NFE2L2, PGAM5, PINK1 and GAPDH mRNA transcripts were all detected using 

individual TaqMan™ probes. Data were normalised to GAPDH, the housekeeping gene, using the 

∆∆Ct method and the fold change was then calculated relative to Optimem (Vehicle) using the 2-

∆∆Ct method. Data are from three independent experiments (n=3). * p<0.05, ** p<0.01, *** p<0.001 

(Two-way ANOVA with Bonferroni post-hoc test). 

 

3.2.2 Keap1 knockdown increases PINK1 protein 

Protein analysis was carried out to determine if Keap1 knockdown had an effect 

on PGAM5 and PINK1 stability. FCCP (10 μM) treatment was also given to cells 

3 hours before harvest to better visualise PINK1. Forty-eight-hour knockdown of 

Keap1 using RNAiMax reverse transfection successfully knocked down Keap1 on 

the protein level (Figure 3.13). Consequently, this led Nrf2 protein to stabilise. 

Either in the presence of DMSO or FCCP, PGAM5 protein levels did not differ 

between scrambled siRNA treated cells and Keap1 siRNA treated cells, 

suggesting that Keap1 knockdown had no effect on PGAM5 stability. However, 
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FCCP treatment clearly showed a distribution change in band density in the 

PGAM5 blot with the bottom band becoming denser than the top.  

In DMSO treated cells, Keap1 knockdown did not appear to influence PINK1, 

perhaps due to the very low levels of this protein at basal conditions. In SHSY5Y 

cells treated with FCCP, PINK1 protein levels decreased with Keap1 knockdown. 

Although this trend was inconsistent across replicate experiments (data not 

shown), it is noteworthy that the reduced levels of PINK1 upon Keap1 knockdown 

in cells treated with FCCP correlate with the lower levels of PINK1 and Keap1 

24h after FCCP treatment in HeLa cells (Figure 3.3). Consistently, in ARPE-19 

cells, PINK1 protein levels decreased with Keap1 siRNA (Appendix, Figure 5.2) 

under both basal and FCCP-treatment conditions. ARPE-19 cells appear to have 

higher PINK1 protein levels than SHSY5Y cells, making it easier to observe 

changes in PINK1.  Together, these experiments suggest that the levels of Keap1 

and PINK1 are related, where the levels of PINK1 might be determined in part by 

the levels of Keap1. Furthermore, the increase in the mRNA for PINK1 under 

conditions of Keap1 knockdown (Figure 3.12) could represent a compensatory 

mechanism for the reduction in PINK1 protein.  
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Figure 3.13. Protein levels after Keap1 knockdown in SHSY5Y cells in the presence and 

absence of FCCP. Keap1 was knocked down using RNAiMax reverse transfection for 48 hours. 

Three hours before harvest, cells were treated 0.001% DMSO or 10µM of FCCP. After lysis with 

SDS buffer, all samples were equally loaded for Western blot analysis. Membranes were blotted 

for Nrf2, PINK1, PGAM5, Keap1 and the loading control Actin. This is a representative blot of 

three independent experiments (n=3).  

 

3.2.3 Keap1 knockdown does not affect basal mitophagy 

To determine if Keap1 knockdown could influence PINK1-mediated mitophagy, 

protein analysis via western blot was carried out using ARPE-19 cells (see 

Appendix) and SHSY5Y cells. Protein analysis involved blotting for the autophagy 

marker LC3 and the mitochondrial markers HSP60 and TIM23 in the absence and 

presence of bafilomycin, an inhibitor of autophagy.  

As observed previously, Keap1 knockdown led to Nrf2 stabilisation at the protein 

level. Contrary to before, PINK1 marginally increased with Keap1 knockdown but 

PGAM5 did not change. The mitochondrial markers TIM23 and HSP60 were not 
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affected by Keap1 knockdown in comparison the scrambled control suggesting 

basal mitophagy was not affected. This was further confirmed with LC3 protein 

levels remaining the same across all treatments (Figure 3.14).  

In ARPE-19 cells, Keap1 knockdown had no effect on the mitochondrial markers 

HSP60 and TIM23 (Appendix, Figure 5.3), confirming that there was no effect on 

basal mitophagy. The distribution between the two LC3 bands (LC3 I/II) altered 

across the different treatments. Of note, in this experiment too, there appeared to 

be a correlation between the levels of Keap1 and PINK1.   

 

Figure 3.14. Protein levels of autophagy and mitochondrial markers in the presence and 

absence of bafilomycin after Keap1 knockdown in SHSY5Y cells. Keap1 was knocked down 

using RNAiMax reverse transfection for 48 hours. Six hours before harvest, cells were treated 

with 20 nM bafilomycin. After lysis with SDS buffer, all samples were equally loaded for Western 

blot analysis. Membranes were blotted for Nrf2, Keap1, PINK1, TIM23, HSP60, PGAM5, LC3 and 

the loading control Actin. This is a representative blot of three independent experiments (n=3). 
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3.3 Investigating the effect of Nrf2 activators with different mechanisms 

of action on mitophagy 

 

Traditionally, most drugs which stabilise Nrf2 are electrophilic activators that 

modify cysteine residues on Keap1 (Cuadrado et al., 2019).This leads to a 

conformational change in Keap1, preventing Nrf2 ubiquitination and degradation 

by the 26S proteasome. However, more recently new molecules have been 

designed to specifically disrupt the Nrf2 protein and Keap1 protein interaction 

(Cuadrado et al., 2019). Studies have shown that unlike the electrophilic 

activators, these protein-protein disrupters can induce mitophagy (East et al., 

2014). This led to further investigation as to how Nrf2 stabilising drugs with 

different mechanisms of action could trigger different cellular responses. In these 

experiments SHSY5Y MitoQC cells were treated with either TBE-31, an 

electrophilic activator or PMI, a protein-protein interaction inhibitor, and 

mitophagy was measured using both mitochondrial protein analysis and 

fluorescence microscopy.  

Deferiprone (DFP), an iron chelator shown to induce mitophagy, was included in 

this set of experiments. This was to determine whether these cells were capable 

of inducing mitophagy as reported in (Allen et al., 2013). 

 

3.3.1 The effect of DFP treatment on mitophagy in SHSY5Y cells  

 The effect of DFP treatment on Nrf2 was difficult to elucidate due to the quality 

of the Nrf2 blots (Figure 3.15). However, Keap1 protein levels decreased with 

DFP treatment and bafilomycin was partially rescued this, suggesting that a 

fraction of Keap1 might be degraded during mitophagy. PINK1 protein levels 

increased with DFP treatment and further increased with bafilomycin treatment. 

p62 protein levels were highest in cells treated with bafilomycin and DFP. 

Mitochondrial marker TIM23 decreased with DFP treatment and this was partially 

rescued with bafilomycin. However, protein levels of the other mitochondrial 

marker HSP60 in cells treated with DFP remained the same as the vehicle DMSO. 
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The same levels were observed in cells with DFP and bafilomycin treatment. The 

autophagy marker LC3 suggests that autophagy or mitophagy may have occurred 

in cells with DFP treatment as a faint band (LC3-II) was observed. LC3-II 

increased with DFP and bafilomycin treatment.  

In ARPE-19 cells, DFP also appeared to induce autophagy or mitophagy as the 

LC3-II band appeared (Appendix, Figure 5.3). Microscopy data of these cells 

showed an increase in the number of red puncta with DFP treatment in 

comparison to the untreated control. This further supports that DFP induced 

mitophagy in ARPE-19 cells. 

 

3.3.2 The effect of TBE-31 treatment on mitophagy in SHSY5Y cells 

Twenty-four-hour treatment with TBE-31 at a concentration of 50 nM or 100 nM 

clearly stabilised Nrf2 (Figure 3.15). A similar trend was observed in p62 levels. 

Co-treatment with TBE-31 and bafilomycin further increased p62 protein levels 

but did not increase Nrf2 protein levels further. 100 nM of TBE-31 reduced PINK1 

protein levels but this was rescued with bafilomycin treatment. A similar effect 

was observed on the levels of Keap1. Mitochondrial protein HSP60 was not 

affected by TBE-31 treatments but TIM23 protein levels decreased with 100 nM 

TBE-31. This was not rescued with bafilomycin treatment. LC3II (bottom band on 

the blot) did not appear in cells treated with TBE-31 alone. Overall, these data 

suggest that TBE-31 does not induce mitophagy in SHSY5Y cells.  

Similarly, to SHSY5Y cells, TBE-31 did not appear to induce mitophagy or 

autophagy in ARPE-19 cells (Appendix, Figure 5.3). Microscopy data showed 

that cells treated with TBE-31 had a similar number of red spots to cells treated 

with the vehicle control, acetonitrile, and untreated cells. 

 

3.3.3 The effect of PMI treatment on mitophagy in SHSY5Y cells 
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PMI treatment (24 hours) at 10 μM or 20 μM stabilised Nrf2 but in the presence 

of bafilomycin Nrf2 protein levels decreased (Figure 3.15). Keap1 protein levels 

remained stable with PMI treatment in presence and absence of bafilomycin. 

PINK1 and p62 protein levels were also weakly stabilised with 20 μM PMI 

treatment. The mitochondrial markers HSP60 and TIM23 did not decrease in 

protein levels with PMI treatment and these did not increase when the cells were 

treated with bafilomycin, suggesting no mitophagy was induced with PMI 

treatment. Further supporting this, LC3II (bottom band of the blot) did not appear 

in cells treated with PMI alone.  
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Figure 3.15. Protein levels of autophagy and mitochondrial marker in the presence and absence of bafilomycin after PMI, TBE-31 and DFP 

in SHSY5Y cells. Cells were treated with PMI, DFP and TBE-31 for 24 hours. Six hours before harvest, cells were treated with 20 nM bafilomycin. 

After lysis with SDS buffer, all samples were equally loaded for Western blot analysis. Membranes were blotted for Nrf2, Keap1, PINK1, TIM23, 

HSP60, PGAM5, LC3 and the loading control Actin. This is a representative blot of two independent experiments (n=2). 
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Chapter 4: Discussion 

Nrf2 and PINK1 play significant protective roles in response to stress within the 

cell. Limited studies have begun exploring the potential relationship between 

these two proteins and what this provides cells in conditions of stress. To 

investigate the potential relationship between PINK1 and Nrf2 further, Nrf2 and 

Nrf2 downstream targets protein and transcript levels were measured in PINK1 

knockout and wild-type S-HeLa cells under basal and stressed conditions. The 

absence of PINK1 had no effect on basal Nrf2 transcript and protein levels (Figure 

3.1). Similarly, after three hours of FCCP treatment, stabilisation of Nrf2 and its 

downstream targets did not differ between the PINK1 wildtype and knockout cells 

(Figure 3.3, Figure 3.4)). Together, this suggests that PINK1 does not influence 

Nrf2 protein or transcript levels. Measuring Nrf2 downstream targets at 0 hours 

and 24 hours showed that PINK1 does not influence Nrf2 transcriptional activity 

either. As Nrf2 is a short-lived protein under basal conditions due to its continuous 

degradation by the 26S proteasome, it was hypothesised that PINK1 could 

influence Nrf2’s half-life. Under both basal (Figure 3.6) and FCCP-mediated 

stress conditions (Figure 3.7), Nrf2’s half-life was similar in PINK1 wild-type and 

knockout S-HeLa cells. Sub-cellular localisation of Nrf2 was also not influenced 

by the absence of PINK1 (Figure 3.8). Generally, it can be concluded that the 

absence of PINK1 does not affect Nrf2 protein and transcript levels, it’s half-life, 

subcellular localisation and transcriptional activity in S-HeLa cells.  

These findings do not support published studies, which have shown that PINK1 

can influence Nrf2. For example, loss of function mutant PINK1 (G309S) has been 

shown to antagonise Nrf2 translocation to the nucleus and inhibit heme-

oxygenase 1 (HO-1) expression, an Nrf2 target gene. The reasons for these 

differences could be the use of different cell lines and/or the use of MG132 

treatment to model ubiquitin proteasome system dysfunction, which also prevents 

the degradation of Nrf2 (Sheng et al., 2017). It should also be noted that the gene 

expression of HO-1 has a complex regulation and Nrf2 is not the only transcription 

factor involved. 
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We also assessed whether the absence of Nrf2 would affect PINK1. The protein 

levels of PINK1 were slightly lower in siNrf2-transfected cells than in cells 

transfected with scrambled siRNA after 3 and 6 hours of FCCP treatment (Figure 

3.9 and Figure 5.1) without affecting its mRNA levels (Figure 3.10). This very 

modest effect is surprising as Murata et al (2015), showed that Nrf2 regulated 

PINK1 expression under oxidative stress conditions, as well as following 

treatment with the Nrf2 activator tert-butylhydroquinone (tBHQ). FCCP uncouples 

the mitochondrial respiratory chain, which leads to increase in ROS that in turn, 

can activate Nrf2. Therefore, we expected to see a significant decrease in PINK1 

protein and transcript levels in siNrf2 cells treated with FCCP. However, the 

highlighted differences may be attributable to the different mechanisms of action 

of FCCP and tBHQ. FCCP targets the mitochondria (Reily et al., 2013) whereas 

tBHQ targets Keap1, activating Nrf2 (Li et al., 2005). Nrf2 is largely found in the 

cytoplasm and therefore tBHQ may have a greater effect on Nrf2 than FCCP. 

Although Nrf2 can be found tethered to the mitochondria, the concentrations of 

FCCP used may not have been enough to elicit such an effect on PINK1 

expression. However, this is not to say that these compounds do not have off-

target effects, which could also explain the differences observed. Future 

experiments could involve ROS measurements before and after treatment with 

FCCP and tBHQ to see whether the level of ROS is the reason for the different 

results.  

We found that Nrf2 is stabilised by FCCP at the protein level (Figure 3.3). Several 

hypotheses explain why this may occur. For example, FCCP is electrophilic and 

may directly modify Keap1’s thiols, inducing a conformational change and 

preventing Keap1 from correctly binding or degrading Nrf2 (Kane et al., 2018). 

Alternatively, the effect on Keap1 may occur indirectly, via FCCP-mediated ROS 

production. Another observation was the reduced Keap1 protein levels and the 

increased p62 protein levels 24-hours after the 3-hour FCCP treatment (Figure 

3.3). Supporting our experimental data, Kane et al. also suggest that FCCP may 

increase p62-Keap1 complexes which facilitates autophagy and hence 
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degradation of Keap1 due to p62-dependendent recruitment of autophagosomes 

(Kane et al., 2018). Additionally, FCCP treatment increased Nrf2 transcript levels 

within 3 hours. Mirroring this, NQO1 transcript levels also increased after 24 hours 

suggesting that FCCP increases Nrf2 transcriptional activity (Figure 3.4). 

Interestingly, p62s transcript levels increased with FCCP treatment (3 hours) in 

comparison to the vehicle, earlier than NQO1 (Figure 3.4). Thus far, there has 

been limited experimental data on the relationship between FCCP treatment and 

the Nrf2-Keap1 pathway. In this set of experiments, we have clearly demonstrated 

that FCCP leads to Nrf2 activation. 

Lo and Hannick (2008) have shown that Keap1 tethers Nrf2 to the mitochondria 

in a quaternary complex with PGAM5. The importance or role of this complex is 

not entirely understood. However, it has been shown that in SHSY5Y cells, 

PGAM5 is involved in stabilising PINK1 which is essential for PINK1-induced 

mitophagy (Park et al. 2018). Loss of PGAM5 inhibited mitochondrial recruitment 

of PINK1 and Parkin and inhibited CCCP-mediated mitophagy (Park et al. 2018). 

PGAM5 is ubiquitinated by Keap1 (Lo and Hannick, 2008), therefore it was 

hypothesised that through the regulation of PGAM5, Keap-Nrf2 may have a role 

in PINK1-mediated mitophagy.  

Keap1 knockdown led to an increase in PINK1 transcript levels by two-fold (Figure 

3.12). At first glance, this agrees with results from Murata et al’s study, where Nrf2 

activation led to increased PINK1 expression. However, in our study, despite the 

increase in mRNA, the protein levels of PINK1 were not correspondingly 

increased, and even showed a tendency to be slightly decreased, both basally as 

well as after FCCP treatment (Figure 3.13 and Figure 5.2). This is also consistent 

with results from experiments where we measured mitophagy in Keap1 

knockdown cells and found that basal mitophagy was unaffected by the lack of 

Keap1. Overall, we propose that the increase in PINK1 mRNA mediated by Keap1 

knockdown may be a compensatory mechanism for the decrease in PINK1 

protein. Therefore, PINK1 levels may be determined, in part, by Keap1 levels. 

However, this effect is subtle, does not appear to influence mitophagy, and might 
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be counteracted by the fact that Nrf2 activation, one of the consequences of 

Keap1 knockdown, promotes macroautophagy (Pajares et al., 2016). Further 

investigation is required with a more robust and sensitive measure of PINK1 

protein levels. This may include additional cell lines or microscopy with a 

fluorescent PINK1 protein in which fluorescence could be measured in cells with 

and without Keap1 knockdown.  

The third aim of this project was to determine if pharmacological Nrf2 activators 

with two different mechanisms of action affect mitophagy. PMI, a small-molecule 

protein-protein interaction inhibitor, was shown by East et al. (2014) to stabilise 

Nrf2, increase NQO1 protein levels and induce PINK1/Parkin-independent 

mitophagy when SHSY5Y cells were exposed to the compound at a concentration 

of 10 μM for 24 hours. We also used TBE-31, an electrophilic Nrf2 activator, which 

modifies cysteines in Keap1. A 24-hour treatment with either PMI (10 μM or 20 

μM) or TBE-31 (50 nM or 100 nM) did not induce mitophagy in our SHSY5Y cells, 

although both types of compounds stabilised Nrf2 and increased p62 protein 

levels (Figure 3.15). This is in contrast with the positive control, DFP, which 

decreased the levels of Nrf2 and induced mitophagy. Interestingly, PINK1 protein 

levels increased with all treatments except for the high dose of TBE-31. This is 

consistent with the slightly decreased levels of PINK1 that were observed upon 

Nrf2 knockdown (Figure 3.9 and Figure 5.1). 
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CHAPTER 5: CONCLUSION 

 

 

 

 

 

 

 

 

 

 

 

  



96 
 

 
 
 

Chapter 5: Conclusion 

Overall, it has been demonstrated that FCCP activates Nrf2, although the 

underlying mechanism was not investigated and remains unclear. In addition, we 

found a subtle, but consistent correlation between the Keap1 protein levels and 

the PINK1 protein levels, whereby reduction in the Keap1 levels (consequent to 

FCCP treatment, Keap1 knockdown or high dose TBE-31) correlated with 

reduction in the levels of PINK1.  

 

 

 

 

 

 

 

 

 

 

 

  



97 
 

 
 
 

 

 

 

 

 

 

 

 

 

CHAPTER 6: APPENDIX 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



98 
 

 
 
 

Chapter 6: Appendix 

 

Figure 5.1. Protein levels after Nrf2 knockdown in WT PINK1 S-HeLa cells in the presence 

and absence of FCCP. Nrf2 was knocked down using RNAiMax reverse transfection for 48 hours. 

Six hours before harvest, cells were treated 0.001% DMSO or 10µM of FCCP. After lysis with 

SDS buffer, all samples were equally loaded for Western blot analysis. Membranes were blotted 

for Nrf2, NQO1, PINK1 and the loading control Actin. These blots represent one experiment (n=1). 

 

  

Figure 5.2. Protein levels after Keap1 knockdown in ARPE-19 cells in the presence and 

absence of FCCP. Keap1 was knocked down using RNAiMax reverse transfection for 48 hours. 

Three hours before harvest, cells were treated 0.002% DMSO or 20 µM of FCCP. After lysis with 
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SDS buffer, all samples were equally loaded for Western blot analysis. Membranes were blotted 

for Nrf2, Keap1, PINK1, p62, PGAM5 and the loading control Actin. These blots are representative 

of three independent experiment (n=3). 

 

 

Figure 5.3. Protein levels of autophagy and mitochondrial markers in the presence and 

absence of bafilomycin after Keap1 knockdown in ARPE-19 cells. Keap1 was knocked down 

using RNAiMax reverse transfection for 48 hours. Six hours before harvest, cells were treated 50 

nM with bafilomycin. After lysis with SDS buffer, all samples were equally loaded for Western blot 

analysis. Membranes were blotted for Nrf2, Keap1, PINK1, TIM23, HSP60, PGAM5, LC3 and the 

loading control Actin. This is a representative blot of three independent experiments (n=2). 
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Figure 5.3 Protein levels of autophagy and mitochondrial markers in the presence and 

absence of bafilomycin after TBE-31 and DFP in ARPE-19 cells. Cells were treated with DFP 

(1 mM) and TBE-31 (100 nM) for 24 hours. Six hours before harvest, cells were treated 20 nM 

with bafilomycin. After lysis with SDS buffer, all samples were equally loaded for Western blot 

analysis. Membranes were blotted for Nrf2, Keap1, PINK1, TIM23, HSP60, PGAM5, LC3 and the 

loading control Actin. This is a representative blot of two independent experiments (n=3) 
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Figure 5.4 Using fluorescence microscopy to measure mitophagy in ARPE-19 cells. These 

are ARPE-19 cells have two fluorophores, mCherry and GFP, attached to the mitochondrial 

protein FIS1. When mitophagy occurs, GFP fluorescence is quenched and red puncta (mCherry 

fluorescence) can be detected. The number of red puncta were measured after 24-hour treatment 

with acetonitrile (ACN), DFP (1mM) and TBE-31 (100 nM).  
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