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Abstract

Oncolytic viruses (OV) are viruses that can replicate selectively within cancer cells

and destroy them. While the past few decades have seen significant progress re-

lated to the use of these viruses in clinical contexts, the degree of success of viral

oncolytic therapies is currently dampened by the relatively low level of understand-

ing of the complex spatio-temporal tumour-OV dynamic interactions, whose main

characteristics are yet to be deciphered. In this work, we present a novel multiscale

moving boundary modelling for the tumour-OV interactions, which is based on cou-

pled systems of partial differential equations both at macro-scale (tissue-scale) and

at micro-scale (cell-scale) that are connected through a double feedback link. At

the macro-scale, we account for the coupled dynamics of uninfected cancer cells,

OV-infected cancer cells, extracellular matrix (ECM) and oncolytic viruses. At the

same time, at the micro scale, we focus on essential dynamics of urokinase plas-

minogen activator (uPA) system which is one of the important proteolytic systems

responsible for the degradation of the ECM, with notable influence in cancer in-

vasion. While sourced by the cancer cells that arrive during their macro-dynamics

within the outer proliferating rim of the tumour, the uPA micro-dynamics is crucial

in determining the movement of the macro-scale tumour boundary (both in terms

of direction and displacement magnitude).

In this investigation, we consider several scenarios for the macro-scale tumour-

xix



OV interactions. While assuming the usual modelling context of reaction-diffusion-

taxis coupled PDEs, these scenarios gradually explore the influence of the ECM taxis

over the tumour - OV interaction, in the form of haptotaxis of both uninfected and

infected cells populations as well as the indirect ECM taxis for the oncolytic virus.

The complex tumour-OV interactions are also investigated numerically through the

development a new multiscale moving boundary computational framework. Fur-

thermore, as there is increasing biological evidence that a sub-class of viruses that

contain fusion proteins (triggering the formation of syncytia) can lead to better on-

colytic results, we continue our investigation by exploring several scenarios for the

complex dynamics of syncytia formation in the presence of tumour - fusogenic virus

interactions. Since the details of the tumour dynamics following syncytia formation

are not fully understood, we consider a modelling and computational approach to

describe the effect of a fusogenic oncolytic virus within the multiscale dynamics of

a spreading tumour. For the parameter regimes that we considered, the numerical

investigation shows that a tumour reduction can be obtained in terms of choosing

different viral burst rates and death rates for individually-infected tumour cells in a

comparison with syncytia structures. Furthermore, we investigate the impact that

the type of syncytia diffussive transport (i.e., with either constant or density depen-

dent coefficient) has upon the outcome of the oncolytic viral therapy. Finally, we

study the local existence and uniqueness of solutions by using Banach fixed point

theorem for several macroscopic and microscopic models. To achieve this, we take

advantage of essential mathematical concepts involving the theory of semigroups,

the sectorial operator, the lipschitzianity properties, space embeddings for Holder

continuous functions, the triangle inequality, the continuity of the norm, and the

property of the Lebesgue Integral and Bochner Integral.
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Chapter 1

General Introduction

1.1 Thesis Outline

The main purpose of this thesis is to explore the dynamic interactions between

tumour growth and oncolytic virus (OV) by accounting for the first time for key

interlinked activities happening at both cell- and tissue- scales. To that end, we

extend the moving boundary multiscale framework first introduced in Trucu et al.

(2013) to describe the genuinely multiscale nature of tumour-OV interaction.

In Chapter 2 we will introduce the general multiscale moving boundary frame-

work (Trucu et al., 2013) and how this approach can be applicable in our work.

This approach is used to describe tumour invasion in the presence of matrix degrad-

ing enzymes (MDEs) of tissue. The mathematical modelling in this framework is

based on coupled systems of partial differential equations at both macroscopic and

microscopic scales. The framework considers at the macro-scale (tissue-scale) the

dynamics of cancer cell population and its interaction with the surrounding extra-

cellular matrix ECM, while at the micro-scale (cell-scale) they account for MDEs
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dynamics within the tumour boundary outer rim.

In Chapter 3 we will study the cancer responses to oncolytic viral therapy. To

that end, we will first extend the general framework of the moving boundary multi-

scale technique (Trucu et al., 2013) to accommodate the cancer invasion interactions

in the presence of oncolytic virus. At the macro-scale, we will investigate three dis-

tinct scenarios of tumour-OV interactions in terms of ECM haptotaxis directional

motility interactions with different types of cancer cells and OV, namely,

• Macro-dynamics scenario (1): we will present the baseline modelling approach

for the tumour-OV interaction;

• Macro-dynamics scenario (2): based on the modelling approach in scenario

(1), in addition to the random diffusion of viral-infected cancer cell density in

the evolving tumour site, this cells motility has also a haptotactic migration

feature against ECM gradients;

• Macro-dynamics scenario (3): with respect to the modelling approach in sce-

nario (2), the new macroscopic model will include ECM- OV taxis behaviour

assumption.

On other hand, at the micro-scale we extend the general framework to include a dif-

ferent proteolytic enzymatic system (Trucu et al., 2016; Peng et al., 2017), namely,

urokinase plasminogen activator (uPA). Furthermore, we will explore the “macro-

micro cross-talk” connection between the macro-scale dynamics and the uPA micro-

dynamics that takes place on a cell-scale neighbourhood of the tumour boundary.

Finally, we will investigate numerically the macro-scale scenarios for the parame-

ter regimes that we considered for which cancer response to oncolytic viral therapy

would be achieved. On the numerical side, we will further develop the novel numer-
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ical multiscale framework first introduced in Trucu et al. (2013) to include our new

macro-micro scenarios.

In Chapter 4 we will investigate the impact of syncytia presence on the overall

oncolytic therapy. Although syncytia formation within tumour site is not fully

understood, our new approach opens the door for further mathematical researches

to investigate this impact with more different scenarios and environments. However,

in order to take a look at the influence of syncytium formation, we will extend our

previous mathematical modelling framework of tumour-OV to include the cancer

interactions with a fusogenic OV in the presence of syncytia dynamics. Following

similar moving-boundary-multiscale technique (Trucu et al., 2013; Alzahrani et al.,

2019), we will consider four distinct assumptions upon the macroscopic scale in

terms of syncytium structures and motility within tumour site with respect to ECM

components, namely:

• Macro-dynamics case (1): syncytia cancer structures do not diffuse, but they

still play a central role on ECM remodelling and degradation;

• Macro-dynamics case (2): syncytia cells are able to diffuse, but they do not

move haptotactically towards higher ECM gradients;

• Macro-dynamics case (3): in addition to syncytia cancer cells diffusion abili-

ties, they also move haptotactically towards higher ECM gradients;

• Macro-dynamics case (4): syncytia diffusion coefficient is assumed to be a

density dependent function.

These macro dynamics cases are considered at the tissue scale, while at the cellular

scale we still have the same proteolytic enzymatic system, namely, uPA. Hence, we

will present a numerical results of the possibility of tumour reduction in the presence
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of OV and in terms of multiple syncytium factors such as: probability of syncytia

formation, syncytia diffusion coefficient, or syncytia diffusion coefficient dependent.

In Chapter 5 we explore the local existence and uniqueness of the solutions for

each of the coupled systems of PDEs involved at each scale. We will develop a

fixed point approach to ensure the existence of a unique local solution in time for

three mathematical models, namely, two macro-dynamics scenarios first introduced

in Alzahrani et al. (2019) (section 3.3), namely, scenario (1) and scenario (3) and the

micro-dynamics model introduced in section 3.4. In this chapter the proof of the ex-

istence of solutions will be investigated at two-scales (macroscopic and microscopic)

to support our numerical findings in Chapter 3 and Chapter 4. Specifically, we use

the classical semigroup methodology (Henry, 1981) applied on an appropriate Ba-

nach space with all the necessary properties that would ultimately enable us to apply

the Banach contraction theorem to prove the uniqueness of the local solution for the

macro-dynamics scenario (1) in section 3.3. Then, in the same manner, we will

follow a sequence of steps to show that there exists a unique locally-in-time solution

for the macro-dynamics scenario (3) section 3.3 and in addition to the microscopic

model (section 3.4).

1.2 Biological Background

Cancer is considered as one of the leading causes of death over this century and, in

particular, the biggest number of cancer deaths is due to metastases. The quest for

a deep understanding of this complex multiscale disease received broad attention

within the scientific community, motivating many researches to focus on exploring

the dynamic behaviour of cancer, with the ultimate hope of establishing the innova-

tive treatment strategies. One of the most important scientific efforts that focuses on
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cancer treatment is the treatment by using a special type of virus, namely, oncolytic

virus (OV). Indeed, viral therapy presents promising perspectives towards control-

ling the tumour growth and eventual cancer elimination. Therefore, this research

direction has motivated the purpose of this thesis, which focus on a mathemati-

cal and computational investigation of the dynamic interactions between malignant

tumour cells and an oncolytic virus as well as the impact that these have on the

process of cancer growth and spread.

In the following, we will present an overview of the cancer invasion process within

the human body alongside a biological background on OV and its related components

such as viral-selective-replication mechanism. In this context, we will briefly revisit

a number of key mathematical modelling developments for cancer invasion (based

on both temporal and spatio-temporal approaches), with and without the presence

of tumour-virus interactions.virus

1.2.1 Cancer invasion of tissue

Cancer is a fatal disease that involves several spatial and temporal scales, ranging

from genes to cells to tissues. The cancer cells invasion of tissue is considered as

one of the so-called “hallmarks of cancer ”(Hanahan and Weinberg, 2000, 2011), as

this not only leads to a degradation of the surrounding tissue, affecting their nat-

urally organised structure (developed through controlled and organised growth of

normal cells and naturally homeostatic molecular signaling pathways), but through

abnormal cell proliferation and complex active cell migration mechanisms along-

side the associated molecular processes this paves the way to metastatic spread of

the malignant tumour in the entire body, ultimately resulting in the death of the

individual.
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Cancer invasion process is a key stage within the overall cancer growth and

spread in the human body. Soon after significant local cancer growth and invasion

of tissue, the angiogenesis process is triggered through the secretion and local molec-

ular transport of vascular endothelial growth factors, which eventually lead to the

establishment of an auxiliary network of blood vessels which extend the main normal

vasculature until this eventually gets connected to the tumour (Pierce et al., 1978).

Then, once the auxiliary blood vessels get attached and eventually protrude the

tumour, some of the cancer cells will exercise an intravasation, penetration through

the walls of the blood vessels and getting this way by the blood stream. Once in the

blood stream these cancer cells are carried away by the blood, eventually getting

to extravasate the blood vessels at remote locations within the body where these

give rise to secondary tumours, called metastases, from where the process described

so far is continued and repeated (Weinberg, 2006). At that stage the cancer is vir-

tually out of control and if the metastases are not all detected early enough, then

this usually result in the death of the individual. For that reason, it is important

that cancer is detected early enough, eventually at the stage when the tumour is

still avascular and only pre-metastatic tumour invasion will have occurred. For that

reason, this thesis will consider that the cancer invasion process is in this particular

local invasive stage (before angiogenesis), at which an engineered oncolytic virus is

brought into the picture.

Taking advantage both on its heterotypic and heterogeneous nature, the tumour

explore favourably the tumour microenvironment during the local cancer invasion

to advance within the surrounding tissue (Russo et al., 2016). Indeed, right from its

early stages of development, not only that primary tumour cells undergo mutations

to secondary more aggressively invasive tumour cells, but besides the cancer cells

themselves the tumour microenvironment contains lots of other cells types such as
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immune cells, immune-inflammatory cells, macrophages, cancer associated fibrob-

lasts, and remarkable is that altered molecular signalling mechanisms enable the

cancer cells to positively instigate these other types of cells to undertake actions

that get to favour the tumour progression (Hanahan and Weinberg, 2000, 2011).

Furthermore, right from the early stages of its development, a well distinguished

inner structure of the tumour emerges, namely, the tumour will present a necrotic

core, a middle quiescent region, and an outer proliferating rim (which is the most

viable part of the tumour that is ideally placed in direct contact with nutrients and

oxygen). In this context, alongside random movement of the tumour cells and alter-

ing their cell-adhesion properties, the cancer cells from the outer proliferating rim

of the tumour (alongside other types of cells present in that region) secrete various

important proteolytic enzymes, such as several classes of matrix metalloproteinases

(MMPs) as well as the urokinase plasminogen-activator system (uPA) (Degryse,

2011; Sobel et al., 1952). These proteolytic enzymes play a key role in local cancer

invasion as once secreted and activated these come in contact with and degrade the

extracellular matrix (ECM), calving away a significant part of its components (such

as vitronectin (VN), fibronectin, and collagens), this way creating room for inva-

sion and ultimately facilitating a change in tumour spatial morphology, ultimately

leading to further tumour progression (Weinberg, 2006).

1.2.2 Molecular functionalities of two important proteolytic

enzymes: MMPs and urokinase plasminogen activator

components

Biological evidence shows that cancer invasion and migration is based on multiple

factors which exercise their spatio-temporal actions and have impact on key cell-

and tissue- scales associated processes (Hanahan and Weinberg, 2011), (Qian and
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Pollard, 2010), (Kalluri and Zeisberg, 2006). One of these important factors is the

proteolytic enzymes produced by cancer cells which degrade extracellular matrix

(ECM) and that in turn leads to cancer cells migration to the surrounding tissue.

Of notable importance among these proteolytic enzymes for cell-migration are the

classes of matrix metalloproinanses (MMPs) and urokinase plasminogen activator

(uPA), and for that reason in the following, we will revisit several biological char-

acteristics for some of the MMPs and the uPA system. In particular, uPA’s system

contains the following components, urokinase plasminogen activator (uPA), uroki-

nase receptor (uPAR), plasminogen activator inhibitor type1 (PAI-1), and plasmin.

MMPs The matrix metalloproteinases are a family of zinc-dependent enzymes

with common or distinct properties working together to degrade all components of

the ECM. The MMPs are secreted and activated both by the cancer cells (Endres

et al., 2016) as well as other by cells from the tumour micro-environment such as the

immuno-inflammatory cells or cancer-associated fibroblasts (Hassona et al., 2014).

Once secreted, the MMPs could remain either as membrane-bound such as MT-

MMP, or as freely diffusing through the ECM. Once MMPs reach ECM, they have

the ability to destroy most important structural component for tissue connectivity

namely, collagen. However, there are several MMPs types having different impact in

ECM degradation, for instance MMP1, MMP2 and MMP14. Indeed, in some clinical

trials, inhibitors of MMPs could be used to be anti-cancer medicine (Stamenkovic,

2000).

uPA Urokinase plasminogen activator is basically a serine protease induced via

human or some animal cells. Indeed, the first description of the uPA system was

given by MacFarlane and Pilling in 1947 (Degryse, 2011; Macfarlane and Pilling,

1947) even though they did not named it as “uPA’s system”. However, in 1952 this
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enzyme was named as uPA (Degryse, 2011; Sobel et al., 1952). The importance

of uPA’s system originally came from their presence in the extracellular matrix of

various types of human tissues. As ECM degradation allows cancer cells to migrate

then invade other tissues, uPA is considered as one of most proteolytic enzymes in

which have more ability to destroy most ECM proteins. Precisely, the main role of

(uPA) is focused on turning the plasminogen into plasmin where this transformation

activates MMPs which promotes even more ECM degradation. Furthermore, (uPA)

enhances the binding process of the receptor (uPAR).

uPAR Urokinase plasminogen activator receptor is mainly known as a binding

multi-sites receptor for urokinase and vitronectin on the cell surface (Ploug, 2003).

The multi-sites property of uPAR allows for having two separate sites for each com-

ponents namely, uPA and vitronectin. Besides, in each distinct location on the cell

surface, uPAR creates a perfect binding environment such as signalling and prote-

olysis regulatory. In fact, uPAR plays a key role in terms of tissue reorganization in

a healthy body, therefore the malignant cells just hijack this role and takes advan-

tage of it in order to invade the surrounding tissue. Sometimes, uPAR with other

receptors could change the tumour from a dormancy to a metastasis scenario.

PAI-1 Urokinase plasminogen activator Inhibitor-1 is a serine protease considered

as a principal inhibitor of uPA (Andreasen et al., 1990). In a healthy human tissue,

the cells produce multiple types of inhibitors in order to protect themselves from

proteolysis induced via uPA. However, one of most powerful uPA’s inhibitor is PAI-1

where it plays a key role in terms of preventing the plasminogen activation. Again, as

known cancer cells hijack the uPA’s natural system role to exploit it in their benefit

to migrate and invade the surrounding tissues. However, PAI-1 could prevent this

exploitation case via their process of inhibiting uPA for which leading to decrease
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the ability of uPA to degrade ECM components.

Effect of uPA on VN (in human) Vitronectin (VN) is a protein existed within

ECM increasing cell adhesion and spread, in additional to regulating the proteolytic

enzymes by plasminogen activation. At its N-terminal, VN interacts with several

ligands such as PAI-1 and uPAR to promote cell migration, and invasion. Further-

more, VN-uPAR interaction enhances the clearance of apoptotic cells. Besides, the

inhibitor PAI-1 could prevent VN to play its pro-active role in the conversion of

plasminogen to plasmin. However, when VN is centralized on a neighbouring sur-

face of cellular site, VN has the chance to neutralize PAI-1 by making an imbalance

in benefit of the plasminogen activator and the active plasmin (Ploug, 2003).

Plasmin Plasmin is a serine protease (enzyme) present in ECM components in-

duced through a conversion of a zymogen called plasminogen (Andreasen et al.,

1997). Indeed, there are several enzymes that have the ability of converting the

plasminogen into plasmin such as tissue plasminogen activator (tPA), and uPA.

Besides, as mentioned above, uPAR plays a key role in this conversion and, in par-

ticular, within the activation process by uPA. However, the importance of plasmin

in uPA’s system comes from its diffusive spread within ECM components for which

playing an important role in digesting ECM proteins. Furthermore, it enhances the

MMPs Proteolysis process in order to increase the chance of ECM degradation.

1.2.3 Oncolytic virus (OV)

The aim of Oncolytic virus (OV) is to kill cancer cells by giving minimum effect

to normal body health tissues. These virus have the ability of replication within

tumour cells which drives to cancer cells lysis (Kim et al., 2014) (this tumour-OV

interactions being illustrated in Figure 1.1). At the early years of the last century,
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Figure 1.1: Schematic of tumour-OV interactions.

researchers were looking for natural oncolytic virus due to technological limitations

of virus customization. Later on, development of technology provides the abil-

ity of construction new virus or modifying current ones. The Chinese state food

and drug administration were the first organization that approved the world’s first

(OV) for clinical purposes in China, despite that the understanding of its spreading

properties within the tumour remains a challenge and brings questions regarding

its anti-tumour efficiency. Shanghai Sunway found the initial modified adenovirus

H101, which then contributed to obtaining the most important oncolytic adenovirus

ONYX-015 (Kim et al., 2014; Agarwal and Bhadauria, 2011).

The adenovirus ONYX-015 is a selectively ”genetic-engineering” modified virus

with two essential properties: it has the ability of replication and it enables to kill

cells in the absence of p53 (Balachandran et al., 2001; Kim et al., 2014). The protein

p53 is known as the human tumour suppressor, “the guardian of genome safety”,
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which has attributions in cells proliferation control and apoptosis. ONYX-015 can

survive and replicate when it infects cells that have low quantity of p53, resulting in

tumour cells death, otherwise, transcription factor of p53 will inhibit virus infection

(Agarwal and Bhadauria, 2011). (Larson et al., 2015) has studied the modified ver-

sion of ONYX-015 and its relation with E1b-55k gene. E1b-55k gene plays a central

role in preventing the tumour suppressing function of p53. Therefore, ONYX-015

has been modified by deleting E1b-55k gene in clinical trials, so that p53 will act

naturally on equivalency of cells proliferation with cells apoptosis. For 46% of pa-

tients that were injected with ONYX-015 in liver, the clinical trial shows that the

tumour cluster increased after 21 days of injection. However, later on, the tumour

cluster collapse started from the fourth month of the injection initial period to the

tenth month, leading finally to a successful therapy.

The imbalance between normal cells proliferation and apoptosis (i.e., “programmed

cells death”) is a key factor contributing to the tumour initial growth. This imbal-

ance is facilitated by many factors, such as antiviral proteins and virus-induced-

carcinogenesis (i.e., “oncogenesis”). First, Antiviral proteins has important role in

virus destruction. One of the antiviral proteins is zinc-finger antiviral protein (ZAP).

This protein is produced by infected-cells to prevent viral replication and propaga-

tion of certain types of virus such as: leukemia virus, sindbis virus and alphavirus

M1. Alphavirus M1 is a Getah-virus type extracted naturally from mosquitoes.

In fact, Getah-virus type are not related to any human diseases or even mice, but

they have the ability of transmission for some animals such as horses, therefore, al-

phavirus M1 was chosen as oncolytic therapy. The experimental study shows that,

for 66 different cancer and normal cells lines, there was very low destruction of nor-

mal cells (even though using 100 virus particles per cell), while there was (30%)
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destruction in 29 cancer cells lines (with only 10 virus particles per cell). Finally, it

was noted in this experiment, the zink-finger antiviral proteins ZAP controled the

temporal therapeutic dynamics, having the ability of speeding up or slowing down

the therapeutic period (Lina et al., 2014).

Second, virus-induced-carcinogenesis is almost causing (15 %) of human can-

cers via accumulating the genomic transformations which in turn leading to DNA-

deformation. DNA deactivation begins from a chemical transition of DNA base

which making a disruption in DNA strands. This disruption originally come from

p53 gene inhibition and inflammation resulting of virus. There are many types of

virus-induced-carcinogenesis such as SV40, KSHV, EBV and HTLV-I. As an ex-

ample, Simian virus 40 (SV40) ”oncogene” has been used since 1970s for forming

tumour in mice. SV40 plays a key role in p53 deactivation in which leading to sta-

bility of p53 production during time. In this case, p53 loses its ability of tumour

suppressing function i.e. SV40 interaction with p53 implies that cells apoptosis in

uncontrolled mechanisms. Moreover, SV40 has the ability for deactivating other

proteins such as p107 and p130 in which driving to massive production of cells pro-

liferation (Chen et al., 2014; Hudson and Colvin, 2016).

The tumour ECM plays a vital role in preventing the virus spreading, restricting

the viral duplication and lowering the effectiveness of cytolytic. The other com-

ponents that block the virus spread in neural ECM are hyaluronic acid (HA) and

proteoglycans. These structural elements are also famous for delaying large ther-

apeutic molecules. The utilization of ECM degradation enzymes can raise the ef-

fectiveness of OV treatments by allowing the virus to flow freely among uninfected

tumour cells. The remodeling of ECM is also a main component of brain tumour
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angiogenesis (Kim et al., 2014).

1.2.4 Virus tumour interactions

Heterogeneity Well documented biological evidence (Hanahan and Weinberg,

2000, 2011; Weinberg, 2006) highlights the presence of cancer heterogeneity man-

ifested through the emergence and coexistence of several subpopulations of cancer

cells who are sharing specific characteristics within a single neoplasm (Karev et al.,

2006; Russo et al., 2016). Regardless of the complexity of cancer, there are a cou-

ple of mechanisms which enable viewing the cancer as a robust system and that

manifest themselves through cellular redundancy and controlling the responses of

systems at the cell level. Indeed, the importance of cancer robustness comes from its

ability of enabling the system to maintain functionality and survival. In brief, two

important emerging aspects here are: on one hand we have the tumour heterogene-

ity manifested through the non-uniform abilities of cells to be infected by the virus,

moreover; and on the other hand the heterogeneity of virus implies leads to vari-

ability of cancer cells infection. The importance of heterogeneous tumour context

comes from its ability to present various tumour phenomenons such as cancer cells

recurrence and temporary dormancy, unlike that, homogeneous missed few tumour

phenomenons such as dealing with tumour size as constant during time (Karev et al.,

2006). Thus, heterogeneous nature of the cancer cell population and oncolytic virus

plays a central role on one hand achieving cancer invasion and on the other hand

ensuring the continuity of viral therapy.

Immunity mechanism In general, the immune system cells live in several body

tissues such as lymphatic, thymus and bone marrow, while only (2%) of them moves
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through human blood. T-cell is a particular type of immune system that produced

by thymus in which has the ability to recognise any foreign substances such as

virus and bacteria (anti-genes) via its receptor, simply called TCR. T-cells have

three distinct types: “helper, regulatory, and cytotoxic” T-cells. The helper T-

cells support immune cells to be more active in responses to anti-genes, unlike the

regulatory T-cells who turn off immune functions. The most important type is the

cytotoxic T-cells due to its ability of killing cancer and infected viral cells. Every cell

has complex mechanisms for expressing parts of its internal proteins on its surface.

Moreover, antigen presenting cells (AP-cells) helps the receptor TCR to connect and

display the anti-genes by major histocompatibility complexes (MHC). MHC class

I displays the anti-genes to cytotoxic T-cells, while class II displays the anti-genes

to helper T-cells. Sometimes, the connection between TCR and MHC could be

unstable, and in that case, for the binding purpose, the helper T-cells use their co-

receptors CD4 while the cytotoxic T-cells use their co-receptors CD8 (Nowak and

May, 2000).

Oncolytic virus interactions vs immune system Interferon (IFN) are small

protein produced and released by virus-infected cells to improve their immunity.

Moreover, INF are acting as signalling molecules for alerting surrounding cells. On-

colytic virus have distinct interactions with healthy tissues and tumour tissues. One

experimental research has studied the influence of viral replication in different types

of tissues: healthy, IFN responsive tumours, and IFN non-responsive tumours. On

healthy tissues, infection of OV produces very low density of infected cells in which

will be vanished by their IFN defence responses during time. On the IFN non-

responsive tumours tissues, the released virus by the infected cells and the free virus

particles diffuse quickly, leading to a faster diminution and eventual elimination of

the cancer cell population. However, on the IFN responsive tumours tissues, the

15



therapeutic results depend on the balance between the virus production and the

antiviral responses (Bœuf et al., 2013).

Oncolytic adenovirus release cytokines, which increase the immune reaction. Cy-

tokines are a class of multi-types of proteins secreted by cells that plays an impor-

tant role in cell signalling. Cytokines may work as inflammatory supporter such

as IL-1β and IL-6, or as anti-inflammatory such as IL-4 and IL-10. One of the

cytokines, Interleukin 12 (IL-12) acts as a T-cells motivating factor and promotes:

T-cells growth, IFN production and NK-cells proliferation. Another cytokine, 4-

1BBL, helps to distinguish T-cells and cytotoxic T-cells, in addition to its ability

to stimulating T-cells and AP-cells. Finaly, in experimental studies on the interac-

tions between cancer cells with OV therapy in mice, both IL-12 and 4-1BBl have

been chosen carefully as anti-inflammatory cytokines in parallel with promoting the

interferons levels and AP-cells activity for improving the immune responses (Zhang

and An, 2007; Huang et al., 2009).

Viral-selective-replication mechanism Viral replication mechanism is a method

for which having the ability for expanding during interactions with cancer cells and

promoting immune responses (Rommelfanger et al., 2011). In general, the life cycle

of viral-infection summarized into three basic procedures, namely: (1) viral-initial

adhesion and invasion, leading to uncover virus genetic material; (2) production of

virus proteins that on the one hand enable the interaction with the cancer cells,

and on the other hand these are used for assembling new virus generation; and

(3), releasing new virus for new life-cycle (i.e., starting a new process of adhesion

and invasion) (Nowak and May, 2000). Over the above procedures, the interactions

of virus and host cells could be understood after long-scale observation of immune

responses during the viral therapy. This interaction release Interferons (i.e., “collec-

16



tion of signaling proteins”). The functional changes of the immune responses leads

to oncolytic virus replications at the tumour location (Swift and Stojdl, 2016), i.e.

in most tumour sites where the anti-viral cells will not contain the protein kinase

R (which is a protein that is responsible for virus clearance) and that leads to viral

replication increasing.

Induction of anti-tumour immunity Induction of anti-tumour immunity plays

a key role in tumour destruction. Virus-infected cells release antigens (new-free-

virus particles), cytokines, interferon and interleukin (IL-12), which in turn support

the immune responses at the tumour location by activating the co-receptors (CD4

and CD8) (Kaufman et al., 2016). Although immune response plays a central role

in tumour suppressing and control, tumour cluster size is another important factor.

One of studies observes the efficacy of viral therapy for different tumour cluster sizes

on mice. The mice were classified into different groups according to their tumour

cluster size. After 7 days of the initiation of therapy, there was no change in all mice

groups and their survival chance at that level remained unaltered. After 103 days,

the mice group with the “smallest tumour cluster size” still survive. However, in

mice with small tumour clusters, the viral therapy carried out in parallel to strong

immune responses gives better and encouraging results (Rommelfanger et al., 2011).

Syncytium Formation As discussed in Section 1.2.3, Oncolytic viral therapy is

a promising treatment for cancer due to the replication mechanism of viral parti-

cles within tumour site. Although this therapy technique show effective results in

some clinical cases (Zeh et al., 2015), in addition to the physical barriers caused

by ECM, questions regarding the viral systemic delivery and forced elimination in-

duced via various immune responses remain as major challenges. However, there are

multiple types of cancer - OV therapies in clinical trials with varying success rates
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(Meerani and Yao, 2010; Kauman et al., 2015; Krabbe and Altomonte, 2018) that

bring increasing evidence suggesting that the formation of syncytia might lead to

better anti-tumour effects compared to the absence of fusogenic virus (Krabbe and

Altomonte, 2018; Ebert et al., 2004). For that reason, in the following we focus on

the syncytia formation mechanism.

Figure 1.2: Schematic of tumour-OV interactions in the presence of syncytia.

The viral hemagglutinin protein H interacts with the cell membrane receptor

CD46, leading to a transformation in the viral fusion F protein. This change in the

viral fusion F protein allows for mixing up virus with cell membranes and this in

turn leads to open up the cell’s door for the viral particle. Then, in like manner

we obtain the viral-infected cells population. Later, the viral-infected cell start to

collect the new virus generation materials in the purpose of releasing new particles.

Furthermore, the viral-infected cell will express parts of its internal proteins such as

H and F proteins on its surface. Again, these surface ”proteins” have the ability to

making a connection with the receptor CD46 of the neighbouring viral-uninfected
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cells for cell-to-cell fusion, i.e., viral-infected cells may be merged with neighbour-

ing cells to form a Syncytia cells population (Biesecker et al., 2009). Notably, each

Syncytium cell in the newly formed population contains multi-nucleus (for illustra-

tion, see Fig.1.2). Furthermore, it is notable that the average instantaneous velocity

of Syncytia cells could be slightly larger than the velocity of the normal infected

cells (Sylwester et al., 1993). Moreover, the presence of Syncytia cells could lead

to increase the spread of the oncolytic virus through the uninfected tumour and,

in addition to the natural deaths of Syncytia cells, this may lead to an increase

in anti-tumour immune responses. Therefore, Syncytia cells enhance the therapeu-

tic potential of the fussogenic virus for a faster destruction of cancer cells, offering

the perspective of a better viral therapy (Ebert et al., 2004; Ayala-Breton et al.,

2014; Krabbe and Altomonte, 2018). virus Finally, during the previous biological

presentation, we have addressed some topics related to immune system mechanism,

although the topic of immune system is not considered independently within this

work. However, taking a look over the immunity mechanism provides to us a big-

ger picture on the interactions between cancer cells and oncolytic virus in terms

of viral-selective-replication mechanism. Indeed, the immune system participates in

the interaction process between cancer cells and OV either in a bad way through the

elimination the oncolytic virus particles or standing for the benefit of viral therapy

via enhancing the tumour destruction and promoting the viral replication mecha-

nism. However, in this work we take into account the immune functions in indirect

way, i.e., the lysis of viral-infected cancer cells is a result of the work of the immune

system.
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1.3 Modelling Background on Cancer Growth and

Spread

Despite biological in-vitro and in-vivo advancements, cancer remains a tremendous

disease whose understanding remains one of the greatest challenges of the scientific

community. Cancer’s genuinely multiscale nature, with its dynamics spanning on

several interlinked spatio-temporal scales brings great difficulties to most lab inves-

tigations and involved imaging techniques, as, besides the costs involved, most of

these approaches are usually one-scale only and can capture only a reduced represen-

tation of the actual tissue reality. Thus, the quest for identifying a suitable analysis

framework remains one of the most difficult open problems, and to that end math-

ematical modelling and computational explorations became a natural avenue for

exploring fresh ideas and advancing new biological and therapeutical hypotheses

for controlling cancer. Indeed, the past thirty years or so have witnessed impor-

tant mathematical modelling efforts and computational approaches aimed both at

characterising various stages of cancer development as well as at exploring potential

treatment avenues (Greenspan, 1976; Adam, 1986; Anderson et al., 2000; Chaplain

and Stuart, 1993; Gatenby, 1995; Byrne and Chaplain, 1995b,a, 1996a,b; Gatenby

and Gawlinski, 1996; Perumpanani et al., 1996, 1998; Byrne and Chaplain, 1998;

Webb et al., 1999; Andasari et al., 2011; Anderson, 2005; Byrne et al., 2001; Chap-

lain and Lolas, 2005; Chaplain et al., 2006; Martins et al., 2007; Preziosi and Tosin,

2009; Stolarska et al., 2009; Alemani et al., 2012; Trucu et al., 2013; Deakin and

Chaplain, 2013; Psiuk-Maksymowicz, 2013; Peng et al., 2017).

The mathematical models for cancer growth and spread proposed so far could

be largely categorised as follows: discrete and individual base models, local ODEs

and PDEs models, nonlocal PDEs models and finally hybrid (discrete macro-scales
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models combined with ODEs and PDEs at the level of individual cells) and multi-

scale models. In the following we present a brief overview of the developments of

mathematical modelling of cancer invasion and growth that are relevant for research

developed in this thesis.

1.3.1 ODEs modelling for cancer growth and spread

We start our short modelling synopsis on tumour growth modelling by considering

early temporal approaches in the absence of any spacial considerations for tumour

growth, namely ordinary differential equations based modelling. Although ODEs

modelling faces lots of challenges in terms of representing a tumour growth scenario

with a time dependance only, it accounts however for the rate of change in cells

number per unit time. Clearly, the difference in cells number over time is based on

two main factors, namely: cells production and cells decay. To illustrate this, let’s

consider the basic mathematical model of tumour growth described in Enderling

and Chaplain (2013), namely:

dc

dt
= µ0c− δc, (1.1)

where c is the total population size of cancer cells, while µ0 and δ are the rates

of proliferation and the removal of cancer cells over time, respectively. Obviously,

the model (1.1) can be written in a simple exponential form (Malthusian growth

modelling approach) as:

dc

dt
= µ1c, (1.2)

where (µ1 = µ0 − δ) is the net growth rate of cancer cells population. Basically,

the overall outcome of the tumour population size depends on three cases of the net

growth rate µ1, namely:
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• when µ1 = 0, the population of cancer cells remains constant and that leads

to tumour dormancy state.

• when µ1 < 0, the population of cancer cells is decreased over time.

• when µ1 > 0, the population of cancer cells is increased over time.

However, the tumour growth rate must depend on the total tumour population size

c, hence µ1 should actually be replaced by a function f(c) instead of a constant µ1,

thus we have:

dc

dt
= f(c)c. (1.3)

Indeed, the function of the net growth rate of cancer cells population f(c) has been

represented in various forms, one such form is the logistic growth rate. The logistic

growth or Verhulst model is generally used to describe the birth and death rates as

a function of the total population and it can also be used to describe the tumour

growth (Enderling and Chaplain, 2013; Sebastien et al., 2014) as

dc

dt
= µ2c(1−

c

k0

), (1.4)

where µ2 represents the growth rate and k0 represents the carrying capacity. Pre-

cisely, the term µ2c indicates the growth rate, while the term µ2
c2

k0
corresponds to

competitivity of cells to remain alive. Here, the function of the new growth of cancer

cells is given by f(c) = µ2(1− c
k0

). Thus, for a small tumour volumes i.e. c < k0, the

growth dynamics is exponential, while when c tends to k0, the growth reaches to a

growth saturation scenario. However, this model does show a reasonable prediction

in vivo tumour growth (Sebastien et al., 2014). Furthermore, the function f(c) could

be represented by another growth law such as the power law and Gompertz mod-

elling approach, but such models do not reflect the realistic picture of tumour growth
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without taking the spatial dimension into a consideration. Therefore, most recent

mathematical cancer researches take into account the cancer cells spatial transport

(such as diffusive, advective or non-local transport) over time, and, in this regard, in

the following section we will explore several existing spatio-temporal mathematical

models that will be relevant for the research presented later in this thesis.

1.3.2 PDEs modelling for cancer growth and spread

Acknowledging the importance of space within the overall tumour evolution, we

start this section by reflecting on one of the first important mathematical models

for cancer invasion, namely the one proposed by developed by Gatenby and Gawl-

inski (1996), where a spatio-temporal perspective has been adopted. This spatial-

temporal system considers the dynamics of cancer cells c in relative to healthy cells

or extracellular matrix ECM u in the existence of Hydrogen ions (H+) a. Here, we

show the dimensionless version of the coupled reaction diffusion system as follows,

they first assumed that the population of cancer cells c is determined by the dif-

ference between the logistic growth at a rate µ1 and their reaction diffusion with

a motility rate Dc, while the extracellular matrix (normal cells) population is de-

termined by the difference between the logistic growth of normal cells or ECM and

their decay or degradation caused via the excess acid concentration at a rate δ1.

Furthermore, the excess Hydrogen ions a are produced and decayed at the same

rate µ2 with taking into account its chemical diffusion. Therefore, the mathematical

model is shown by the following form:


∂c
∂t

= ∇ · (Dc(1− u)∇c) + µ1c(1− c),
∂u
∂t

= −δ1ua+u(1− u),

∂a
∂t

= ∆a+µ2(c− a).

(1.5)
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It is obvious to see that the motility rate of cancer cells is controlled by the popula-

tion of ECM where lowering ECM leads to higher cancer cells diffusion. Since, ECM

population is determined by the difference between its growth and its degradation

caused via H ions, therefore ultimately the secretion of H ions plays a key role in

the cancer cells population. However, the main result of this study (where it is a

harmonious with clinical observations) is centred on hypocellular gap between the

normal or ECM and cancer cells. The expanding or shrinking of this gap depends

on the value of the critical parameter δ1, where in the case of δ1 > 1, the cancer

invasion occurs, otherwise when δ1 < 1, this gap is expanding and that means that

the tumour edge will be away from the surrounding ECM or heathy tissue.

Looking beyond the random motility expressed simply through diffusion, Ander-

son et al. (2000) developed one of the first modelling approaches for cancer invasion

and growth in one and two spatial dimensions that take into account the directional

movement against ECM gradients, referred to as “haptotaxis”. The deterministic

mathematical model is used to represent the dynamical interactions of cancer inva-

sion c, extracellular matrix or host tissue u and a general form of ECM degrading

enzymes a. In a comparison with the early model of cancer growth (Gatenby and

Gawlinski, 1996), here they look for the overall cancer invasion, therefore there is

no cancer logistic growth assumption. However, the cancer invasion density c is

given by the spatial diffusion at a rate Dc in parallel with a haptotactic directional

motility with a haptotactic rate ηc. Furthermore, the density of extracellular matrix

u is only assumed to be decayed due to the enzyme degradation at a rate δ1, while

the degradation enzyme density a is given by the difference between a production

caused via cancer invasion at a rate µ1 and a natural decay at a rate δ2 with tak-

ing into consideration their spatial diffusion at a rate Da. Thus, the mathematical
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model is given by the following formula:


∂c
∂t

= Dc∆c− ηc∇ · (c∇u),

∂u
∂t

= −δ1ua,

∂a
∂t

= Da∆a+ µ1c− δ2a.

(1.6)

Despite the deterministic model of this study does not include a cancer proliferation

term, it opens the door for the coming researches to investigate the ECM gradients,

for instance the studies Chaplain and Lolas (2005, 2006); Peng et al. (2017) take

into consideration the ECM degradation by the uPA proteolytic enzyme system.

Moreover, the model in Anderson et al. (2000) assumed that the directional motility

of cancer invasion is a haptotaxis towards gradients of a heterogeneous ECM. One

of the main outcomes of this study consists in emphasizing the importance of ECM

heterogeneity and the associated directional movement, and the takehome message

is that that these should be assumed in any cancer model due to its similarity to

the real ECM.

In a later study, Chaplain and Lolas (2006) investigate multiple scenarios of

cancer invasion in terms of cancer proliferation, random motility and/or cancer di-

rectional motility through ECM gradients, in the presence of the proteolytic enzymes

system enabled by the uPA (i.e., the urokinase plasminogen activator system). Here

the cancer cells population is denoted by c(x, t), ECM density is denoted by u(x, t),

and the density of uPA denoted by a(x, t). The mathematical model assumes that

the cell population exercises both random motility (expressed through diffusion) and

directional movement of cancer invasion through ECM (representhed there through

haptotaxis). Here, in addition to the previous model introduced in (Anderson et al.,

2000), this model is assumed to include a cancer logistic growth at a rate µ1. Fur-

thermore, ECM density is not only represented in a decay case as proposed by 1.6,

25



but it grows logistically at a rate µ2, therefore the density of ECM is represented

by this balance between the logistical growth and the decay caused via proteolytic

enzyme uPA. Thus, the resulting mathematical system of PDEs is:


∂c
∂t

= Dc∆c− ηc∇ · (c∇u) + µ1c(1− c− u),

∂u
∂t

= µ2u(1− c− v)− δ1ua,

∂a
∂t

= Da∆a+ µ3c− δ2a.

(1.7)

The numerical results for this model is represented in one dimensional space. The

initial outcome involves that the cancer cells moves to a region where ECM has

higher density. This results leads to examine the effects of haptotaxis rate ηc over

the overall outcome, therefore they have increased ηc ten times and then later on

further more. Numerically higher haptotaxis rate shows that the cancer cells migrate

much faster whenever ηc is increased. This migration does not necessary mean that

the cancer invasion is expanding, but it could migrate backwards and forwards in

respect to ECM gradients. Equally important is testing a different pattern of the

proteolysis production at the tumour site and as well as its invading edge. To study

this further case, Chaplain and Lolas (2006) assumed uPA’s production is given by a

logistic growth rule. Thereupon, the previous model 1.7 is rewritten in the following

form: 
∂c
∂t

= Dc∆c− ηc∇ · (c∇u) + µ1c(1− c− u),

∂u
∂t

= µ2u(1− c− v)− δ1ua,

∂a
∂t

= Da∆a+ µ3c(1− c)− δ2a.

(1.8)

In order to examine the new assumption numerically, the authors used the same

parameter baseline values as for the previous model 1.7 except of increasing the rate

of uPA’s production µ3 and decreasing the natural decay rate of uPA δ2. Under

those circumstances, the cancer cells start to accumulate at the tumour edge, then
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as a result, ECM is degraded at the same place as well. Thus, the cancer cells are

now able to migrate haptotactically to another region. However, there is an evidence

of that the over-expression of uPA does not only affect cancer cells migration on the

tumour edge, but it also affects both the proteolysis process and the proliferation

of cancer cells. Hence, in order to adopt further assumptions to regulate cancer

invasion, Chaplain and Lolas (2005) takes into consideration the interaction between

cancer cells, c(x, t), and ECM, u(x, t) in the presence of the full uPA system, which

alongside the urokinase plasminogen activator a(x, t) also considers the plasminogen

activator inhibitor-1 (PAI-1), whose density is denoted here by p(x, t), and plasmin

that has its density denoted by m(x, t). In addition to the previously presented

assumptions in the system 1.8, here it is assumed that the logistical proliferation (at a

rate µ1) of cancer cells is enhanced by the presence of uPA at a rate µ2. Furthermore,

cancer cells move in a chemotaxis directional cell movement in response to uPA and

PAI-1 at rates ηa and ηp respectively, as well as they move in a haptotactic manner in

response to ECM gradients at a rate ηu. Thus, the evolution of cancer cells density

is represented by the following parabolic PDEs:

∂c

∂t
= Dc∆c︸ ︷︷ ︸

diffusion

−∇ · [ ηac∇a︸ ︷︷ ︸
uPA-chemo

+ ηpc∇p︸ ︷︷ ︸
PAI-1-chemo

+ ηuc∇u︸ ︷︷ ︸
ECM-hapo

] + µ1c(1− c) + µ2ca︸ ︷︷ ︸
proliferation

. (1.9)

Besides this, the change per unit time in the extracellular matrix density is rep-

resented by the difference between the ECM remodelling and ECM degradation.

The remodelling process is represented by the logistical growth at a rate µ3 and the

production caused by binding of uPA/PAI-1 at a rate µ4. On other hand, the ECM

degradation is caused due to binding with PAI-1 at a rate δ1 and a decay caused via

the impact of plasmin at a rate δ2. Hence, the ECM dynamics can be represented
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as

∂u

∂t
= µ3u(1− u)︸ ︷︷ ︸

production

+ µ4ap︸︷︷︸
uPA/PAI-1

− δ1up︸︷︷︸
PAI-1/ECM

− δ2um︸ ︷︷ ︸
degradation

. (1.10)

While uPA is being produced by cancer cells at a rate µ5, this diffuses on the tumour

domain at a rate Da, and at the same time it is removed from the system both due

to inhibition induced via binding of PAI-1 at a rate δ3 as well as by the binding

exercised to the cells’ surface uPA receptors (uPAR) at a rate δ4. Therefore, the

spatio-temporal dynamics of the uPA density is given by the following reaction-

diffusion equation:

∂a

∂t
= Da∆a︸ ︷︷ ︸

diffusion

− δ3pa︸︷︷︸
uPA/PAI-1

− δ4ca︸︷︷︸
uPA/uPAR

+ µ5c︸︷︷︸
production

. (1.11)

Moreover, the inhibitor PAI-1 density is produced through the activation of plasmin,

hence (since the plasmin activation process is not captured explicitly by the model)

here this us assumed to be indirectly brought into the system by the presence of

plasmin at a rate µ6. On the other hand, PAI-1 is removed from the system through

binding to both uPA (at a rate δ5) and the surrounding ECM (at a rate δ6). In

this context, as per unit time the inhibitor molecules are assumed to exercise a

random motility (represented through diffusion), the dynamics of PAI-1 is given by

the following PDE:

∂p

∂t
= Dp∆p︸ ︷︷ ︸

diffusion

− δ5pa︸︷︷︸
uPA/PAI-1

− δ6pu︸︷︷︸
PAI-1/ECM

+ µ6m︸︷︷︸
production

, (1.12)

where Dp > 0 is a constant diffusion coefficient.

Finally, the plasmin is assumed to be produced by the activation from plasmino-

gen in the ECM both by uPA (bound to its cell-surface receptors uPAR) and by the

binding of the inhibitor PAI-1 to ECM. Thus, as per unit time, in the presence of
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these production factors and natural decay, plasmin molecular population exercise

a random movement, its dynamics is therefore given by the following PDE:

∂m

∂t
= Dm∆m︸ ︷︷ ︸

diffusion

+ µ7ca︸︷︷︸
uPA/uPAR

+ µ8pu︸︷︷︸
PAI-1/ECM

− δ7m︸︷︷︸
degradation

. (1.13)

where Dm > 0 is a constant diffusion coefficient, µ7 represents the binding process

between uPA and uPAR, µ8 is the rate at which PAI-1 bind to ECM components

(such as vitronectin), and δ7 > 0 is the constant natural decay rate.

1.4 Modelling Background on Tumour Virus In-

teraction

Despite the already very advanced mathematical models developed to describe the

cancer growth and spread process, the modelling of tumour - oncolytic virus inter-

action still has a long way to go. This interaction has been approached over the

past two decades mostly from temporal dynamics perspective (Wodarz et al., 2014;

Laaroussi et al., 2014; Bajzer et al., 2008; Wodarz, 2016; Agarwal and Bhadauria,

2011; Wodarz and Komarova, 2009; Kim et al., 2015; Malinzi et al., 2015; Dingli

et al., 2009; Nowak and May, 2000), with only few works in the area that consid-

ers also the spatial dynamics (Malinzi et al., 2015; Nowak and May, 2000; Wodarz

et al., 2012; Wollmann et al., 2005; Camara et al., 2013; Malinzi et al., 2017). In

the following we will present a synopsis of existing ODE and PDE based models of

tumour - OV interaction that are relevant for the research carried out in this thesis

29



1.4.1 ODEs mathematical modelling on tumour virus inter-

action

Mathematical modelling helps experimental studies in virology to understand the

complexity and nonlinearity of tumuor growth and the virus propagation dynamics

which could be contributed in treatment scenarios. The initial and basic dynamical

system to study the interactions between host cells and virus was proposed by Nowak

and May (2000) and considers the coupled dynamics between an uninfected cancer

cells population c(t), an infected cancer cells population i(t), and free virus density

v(t). This is expressed by three nonlinear ordinary differential equations;


dc
dt

= µ1 − δ1c− ρcv,
di
dt

= ρcv − δ2i,

dv
dt

= µ2i− δ3v.

(1.14)

where µ1 is the production rate of uninfected cells, δ1 is the death rate of uninfected

cells, ρ is the infection rate caused by virus, δ2 is the death rate of infected cells,

µ2 is rate of the virus production caused by infected cells and δ3 is the virus decay

rate.

This basic model has been applied to study the dynamics of population behaviour

during time for multi virus such as (HIV), Hepatitis B and C.

Based on the mass action assumption for only one infection cycle in vitro ex-

periment, Wodarz et al. (2014) developed further model (1.14) and proposed the
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following governing coupled dynamics


dc
dt

= µ1c− ρcv,
di
dt

= ρcv − δ2i,

dv
dt

= −δ3v − ρcv

(1.15)

with taking into account that there is no any new virus production caused by in-

fected cells. The term ”ρcv” is usually ignored in the rate of change in virus density

in most mathematical models of virus due to its very small contribution compared

to the virus removal rate δ3 caused by ECM.

Laaroussi et al. (2014) propose a model describing the interaction between on-

colytic virus and tumour cells in the presence of logistic growth, namely


dc
dt

= µ1c(1− c+i
k

)− ρcv − γci,
di
dt

= ρcv − δ2i,

dv
dt

= bδ2i− δ3v − ρcv

(1.16)

Here, the rate of change in uninfected cancer cells c(t) is given by a combination

between logistic proliferation and removal from the system through viral infection

and fusion between infected and uninfected cells. The constant k > 0 is the car-

rying capacity, ρ is the cell infection rate by virus, and γ is the rate of fusion of

uninfected and infected cells. The rate of change in the infected cancer cells i(t) is

described by the difference between the infection rate and the cells death rate δ2i.

The rate of change of the free virus v(t) is the difference between the virus ability

of replication bδ2i and virus removal rate by any reason (ECM) δ3v or by infection

ρcv. Analytically, reaching the free equilibrium points implies that tumour will be

completely removed. The system free equilibrium stability is controlled by the basic
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reproduction number R0 = bρk
ρK+δ3

, when R0 < 1, the equilibrium point is globally

asymptotically stable and when R0 > 1, the equilibrium point stability is monitored

by a particular function performing the virus replication. While numerically, they

show that when R0 > 1; c(t) decreases and both i(t), v(t) increase, otherwise, when

R0 < 1, the viral therapy will be unsuccessful (Laaroussi et al., 2014). Moreover,

the previous model was modified by Bajzer et al. (2008), by using a different form

of tumour growth (Bertalanffy-Richards), namely

dc

dt
= µ1c(1−

cε

kε
), (1.17)

where the exponent ε is used for enabling the elasticity of growth curve, describing

the shape of growth curve. In addition to that, Bajzer et al. (2008) model assume

that the infected cells able to release new virus at rate α, namely


dc
dt

= µ1c(1− (c+i)ε

kε
)− ρcv − γci,

di
dt

= ρcv − δ2i,

dv
dt

= αi− δ3v − ρcv

(1.18)

Wodarz (2016) considers again the model (1.18) and assumes that the virus is at

steady state and obtains a governing dynamics as


dc
dt

= µ1c(1− c+i
k

)− δ1c− ρci,
di
dt

= ρci− δ2i.
(1.19)

where k > 0 is the carrying capacity.

Agarwal and Bhadauria (2011) proposes a model that describes the interactions

between cancer cells and oncolytic virus, also with the virus at stead-state. Their
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model is expressed mathematically in the form of two nonlinear ordinary differential

equations, namely:


dc
dt

= µ1c(1− c+i
k

)− bci
c+i+a

,

di
dt

= µ2i(1− c+i
k

) + bci
c+i+a

− δ2i.
(1.20)

In this model, there are two new assumptions: first, the infected cancer cells prolif-

erates at rate µ2, and second, the term “ bi
c+i+a

” represents saturation effect, where

a is the immune response measuring rate and b is the transmission and replication

rate (i.e., improvement of immune system at one point will lead to prevent virus

entry and replication). Simulation results show that tumour density will decrease

when high virus replication is considered and µ2 ≤ δ2.

Therefore, as formalised by (Wodarz and Komarova, 2009), in the absence of the

immune responses, the basic ODEs modelling framework of tumour cells interaction

with an oncolytic virus that is at steady-state is generally given by


dc
dt

= cF (c, i)− ρiG(c, i),

di
dt

= ρiG(c, i)− δ2i.
(1.21)

The function F (c, i) > 0 denotes the growth law for the uninfected cancer cells, while

G(c, i) > 0 represents the removal from the system of the uninfected cancer cells due

to viral infection or fusion with the infected cells . Wodarz and Komarova (2009)

have considered various scenarios for the two functions F and G, such as: “expo-

nential” for F (c, i) = 1; “logistic” for F (c, i) = 1 − c+i
k

; “2-D surface growth” for

F (c, i) = ( η
η+c+i

)−
1
2 ; and “3-D surface growth” for F (c, i) = ( η

η+c+i
)−

1
3 . It has been

concluded that the use of exponential growth is not reasonable in tumour growth
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due to its boundness of cells growth, while the logistic and surface growth model fit

the data in a better way. Moreover, the logistic growth model has the lowest error

based on previously experimental data, but ”Why?”. The logistic growth is the

outcome of gradual saturation of the proliferation as this approaches the carrying

capacity (i.e., there is a maximum number of cancer cells those could be alive in

the system), while there is no upper limit for the number of cancer cells in surface

growth models (i.e., the tumour growth is continuous over time until organism dies,

which is not true in most human cancer cases).

Kim et al. (2015) models the rate of change at time variable for different cells

population types and their interactions with four adenovirues, expressing and co-

expressing of 4-1BBL adenovirues type, and expressing and co-expressing IL-12,

namely as



dc
dt

= µ1c− ρ cvN − k(i) cT
N
,

di
dt

= ρ cv
N
− δ2i− k(i) iT

N
,

dv
dt

= u(t) + δ3δ1i− δvv,
dT
dt

= ST (i) + pA− δTT,
dA
dt

= SA(i)− δAA.

(1.22)

The virus population v interacts with the overall cells population N = c+ i+T +A,

where c is uninfected cells, i is the infected cells, T is the T-cells and A is the

AP-cells. The uninfected cells proliferate at rate µ1, and initially they are being

infected by v at rate ρ. The functions k(i) = cki and sT (i) = cT i represent the

amount of cells production of 4-1BBL, T-cell death rate and T-cell supplying rate

proportionally to i. The infected cells die after getting infected by virus at rate δ2.

The rate of change in virus size is given by the balance between injection at rate
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u(t), virus removal by infection at rate δ3, and inactivated virus at rate δv. The

T-cells activates by AP-cells at rate p and die at rate δT . Lastly, the AP-cells die

at rate δA, and during the infection stage, the production of IL-12 leads to AP-cells

motivation, which is explored through the term SA(i) = cAi.

The following mathematical model (Malinzi et al., 2015) represents the dynami-

cal interactions between three cells types, namely: cytotoxic T-cells T (t); uninfected

cancer cells c(t); and infected cancer cells by oncolytic virus i(t). Its dynamics is

mathematically given as


dT
dt

= s− δ1T + fCi
g1+i
− a1Ti+ (a2 + a3p)cz,

dc
dt

= µ1c(1− k1c)− bic
g2+i

,

di
dt

= µ2i(1− k2i) + bic
g2+i
− a1ci+ (a2 + a3(1− p))ci,

(1.23)

where δ1 is the death rate of cytotoxic T-cells, µ1 and µ2 are the growth rates of

uninfected and infected cancer cells respectively, while k−1
1 and k−1

2 are the carrying

capacities. The term fCi
g1+i

represents immune responses (i.e., cytotoxic T-cells prolif-

eration), a1 is the connection rate between c to i, a2 is rate of infected cells lysis, a3p

is the probability of the complex cells death rate. Further, the function bic
g2+i

describes

the oncolytic virus replication into the cancer cells where b is the replication rate

of OV. Finally, by receptor-ligand kinetics theory, the ”complex cancer-cytotoxic

T-cells” denoted by ci is the output cell of the connection between T and i. This

resulting complex cell lead to either infected cells death or cytotoxic T-cells sup-

pression. Moreover, the destroyed infected cells release new virus particles, which

motivate the anti-tumour cytotoxic T-cells responses. Hence, mathematically, this
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was expressed as:

dci
dt

= a1Ti+ (a2 + a3)ci.

Furthermore, taking into account the differences on time scale of cancer and T-cells

(slow-time-scale) and complex cells (fast-time-scale), it is assumed that ci = 0, which

results in the system


dT
dt

= s− δ1T + ρ1T i
g1+i
− lT i,

dc
dt

= µ1c(1− k1c)− bic
g2+i

,

di
dt

= µ1i(1− k2i) + bic
g2+i
−mTi,

(1.24)

where l = Ka3(1− p), ρ1 = fK, m = Ka3p and K = a1

(a2+a3)
.

The following mathematical model shows the dynamical behaviour between can-

cer cells and oncolytic virus in the presence of syncytia cells s. Over the infection

stage by the virus, the virus fragments bind with the cancer cells at rate ρ. This

may lead to fusion scenario between infected and uninfected cells to form syncytia

cells at rate γ. Both infected cells and syncytia cells release new virus at rate α. In

this context, the total population of the cancer cells is given by (c + i + s), where

the infected cells population will be (i + s). Denoting by λ the probability rate by

which the new infected cell will remain in the infected cells density, the term (1−λ)

is the probability by which the new infected cell will merge with uninfected cell to

form syncytia cell. The infected and syncytia cells die at the same rate δ1. The

above biological assumptions were formalised mathematically by Dingli et al. (2009)

through the system of ordinary differential equations as following:
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

dc
dt

= µ1c(1− (c+i+s)ε

kε
)− ρcv − γci,

di
dt

= ρcv − δ1i+ λγci,

dv
dt

= α(i+ s)− δ2v − ρcv,
ds
dt

= (1− λ)γci− δ1s.

(1.25)

Finally, alongside the usual uninfected cancer cells c, virus-infected cancer cells

i, and the oncolytic virus v, the work proposed by Rommelfanger et al. (2011) brings

into discussion also the immune response denoted by z, and so the resulting coupled

is given by: 

dc
dt

= µ1c(1− (c+i)ε

kε
)− ρcv − λ1c(z + z0),

di
dt

= ρcv − δ1i+ λ1i(z + z0),

dv
dt

= αi− ρcv − δ2v,

dz
dt

= λ2i(z + z0)(1− z
ζ
)− δ3z.

(1.26)

Here, the virus infect the cancer cells at rate ρ. The new generated infected cancer

cells i will release new virus particles at rate α. However, taking into account that

there is a part of the infected cells would not release any new virus particles, this

leads to a virus removal at rate δ2. The immune response rates are equal for both

uninfected cancer cells and infected cancer cells and is taken to be λ1 > 0. Moreover,

the terms λ1c(z + z0) and λ1i(z + z0) are the uninfected and infected cancer cells

growth rate with respect to cellular immune responses. The term (1− z
ζ
) describes

the limitation of immunity responses, while δ3 is the elimination rate of immunity

responses.
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1.4.2 PDEs mathematical modelling on tumour virus inter-

action

An early spatio-temporal model describing the interaction between tumour cells was

proposed by Nowak and May (2000). Here both uninfected cancer cells c, infected

cancer cells i and virus v were assumed to be diffusing in the presence of logistic

growth, and so, its spatio-temporal dynamics was mathematically given as:


∂c
∂t

= Dc∆c+ µ1c(1− c+i
k

)− ρ1cv,

∂i
∂t

= Di∆i− δ1i+ ρ1cv,

∂v
∂t

= Dv∆v + δ1bi− δ2v.

(1.27)

where Dc > 0, Di > 0, and Dv > 0 are the diffusion constants for uninfected cancer

cells, infected cancer cells, and virus particle, respectively. µ1 is the growth rate of

cancer cells, k is the carry capacity, ρ1 is the infection rate of cancer cells, δ1 is death

rate of infected cells, δ2 is the death rate of free-virus and b is the virus replication

number.

Building on Nowak and May (2000) model, Wodarz et al. (2012) adopts the

assumptions of homogeneously free virus in steady-state, i.e., ∂v
∂t

= 0, and that no

spatial transport is assumed for the virus, i.e., ∆v = 0. These assumptions lead

to v = δ1bi
δ2

, for the case of δ2 > δ1, and taking ρ2 = ρ1δ1b
δ2

, the following system is

obtained:


∂c
∂t

= Dc∆c+ ac(1− c+i
k

)− ρ2ci,

∂i
∂t

= Di∆i− k2i+ ρ2ci.
(1.28)

However, as challenges for this model, we note that the death rate of virus δ2 must
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be greater than the death rate of infected cells δ1, but when choosing δ2 very close to

δ1 will be unsatisfied. Second, by a comparison with Nowak’s model, the decreasing-

increasing term ρ1cv of virus caused infection is missed. Later on, Rioja et al. (2016)

expanded the modelling assumptions considered in Wodarz et al. (2012) while avoid-

ing previous challenges (by having for instance v not proportional to the infected

cells i.

In a more recent modelling development, building on experimental study, Woll-

mann et al. (2005) assume that the tumour is shaped as a circle in which has injected

by the virus at the centre. Thus, the mathematical model is represented by partial

differential equations to describe the interactions between tumour cells and virus,

namely


∂c
∂t

= Dc∆c+ µ1c(1− c+i
k

)− ρcv,
∂i
∂t

= ρcv − δ1i,

∂v
∂t

= Dv∆v − ρcv + δ1bi− δ2v.

(1.29)

Virus particles diffuse through the tumour and lead to an infected cells density. On

the other hand, in that particular experiment, the infected cells do not exercise a

random motility, hence, they are not assumed to diffuse.

An important interaction between aggressively invasive Glioma cancer cells and

the free oncolytic virus ”ONYX-015” was explored by Camara et al. (2013). In that

work the highly migratory Glioma cancer cells lead to highly diffusive behaviour

for both uninfected and infected cancer cells as well as for the virus particles into

many neural axis. Entry of virus into target cells is based on the Coxsackievirus

and Adenovirus Receptor (CAR), which is also playing a central factor for tracing
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the cancer cells by viral therapy. Moreover, the mitogen-activated protein kinase,

known as “MEK” inhibitors helps (CAR) to increase its ability for tracing cancer

cells. In this context, while the uninfected cancer cells are assumed to proliferate

logistically at rate µ1, these are considered to be infected by the virus at a rate ρ

and in accordance to the saturation of virus infection “ rv
1+εv

”, where r > 0 is the

receptors average level. Infected cells could either die naturally at rate δ2 or undergo

lysis by the virus at rate a. Virus particles production at rate µ2 of all possible ways

are increasing in the absence of inhibitor. All these lead to the governing partial

differential equations system:


∂c
∂t

= Dc∆c+ µ1(1− n)c(1− c
k
)− δ1c− ρrcv

1+εv
,

∂i
∂t

= Di∆i+ ρrcv
1+εv
− δ2i− ai(1− n),

∂v
∂t

= Dv∆v + µ2i(1− n)− δ3v.

(1.30)

Finally, using the same biological assumptions as those for the ODE based

model(1.23), Malinzi et al. (2015) proposed also a spatio-temporal model to de-

scribe the interactions between cells with different types; cytotoxic T-cells T (t, x),

uninfected c(t, x) and infected i(t, x) cancer cells and the chemokines m(t, x), namley



∂T
∂t

= Dt
∂2T
∂x2 − χ ∂

∂x
(T ∂h

∂x
) +H(x)− δ1T + ρ1T i

g1+i
− lT i,

∂c
∂t

= Dc
∂2c
∂x2 + µ1c(1− k1c)− bic

g2+i
,

∂i
∂t

= Di
∂2i
∂x2 + µ2i(1− k2i) + bic

g2+i
−mTi,

∂h
∂t

= Dh
∂2h
∂x2 + ρ2T i

g1+i
− δ2h.

(1.31)

where Dt > 0 Dc, Di > 0, and Dh > 0 are diffusion constants, χ> 0 is chemotaxis

constant, H(·) is a Haviside function which describes the immune cells prolifera-
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tion and δ2> 0 is the death rate of chemokines. The function ρ2T i
g1+i

is the resulting

responses of chemokines replication in the tumour site. Numerical simulation of

the problem shows that oncolytic viro-therapy minimises the tumour density by

removing the infected cancer cells. Long run simulation show that T (t, x) grows

exponentially and c(t, x) decreases during time.
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Chapter 2

The General Multi-scale Moving

Boundary Framework

In contrast to previous studies (Anderson et al., 2000; Byrne and Chaplain, 1996a;

Chaplain, 1996; Chaplain and Lolas, 2005, 2006; Gerisch and Chaplain, 2008; Painter

and Hillen, 2011; Preziosi and Tosin, 2009), the modelling framework (Trucu et al.,

2013) develops a new perspective to study the tumor evolution by two scale spatio-

temporal dynamics . The novel two-scale mathematical model describes the cancer

cell invasion of tissue which dynamically connects on macroscopic and microscopic

tumour activities. In brief, the macroscopic dynamics describing the evolution of

the cancer cells and extracellular matrix ECM densities is coupled with microscopic

dynamics that explore the spatio-temporal evolution of certain degrading enzymes.

This coupling is done via top-down and bottom-up links. The top-down link provides

the source for the micro-scale induced by the macro-dynamics. The bottom-up link

provides the law for macro-scale tumour boundary relocation which is determined

at from the micro-dynamics.

As the modelling in this thesis builds upon this multi-scale modelling framework,

42



we devote this chapter to explore the main features of the multi-scale modelling

framework and the associated computational platform.

2.1 Overview of Multi-scale Modelling Hypothe-

sis and Settings

In this section, we consider the novel multi-scale modelling framework presented

first in (Trucu et al., 2013). For simplicity, we start with a short description of

the overall methodology of this approach. This novel multi-scale framework aims

to explore the dynamics of cancer invasion scenario with taking into consideration

multiple interlinked actions at both tissue-scale (macro-scale) and cell-scale (micro-

scale).

As cancer invasion is a complex multi-scale phenomenon, occurring on several tem-

poral and spatial scales (Hanahan and Weinberg, 2011), the involvement of multiple

dynamic components at critically different spatial scales requires an appropriate

multiscale modelling platform, as it is not realistic to count two very different in

size components on the same scale (for instance plasmin is a very small substance

in a comparison with a cancer cell size). To address this important aspect, Trucu

et al. (2013) has developed the multiscale-moving boundary modelling approach,

that considers the integrated two-scales tumour dynamics connecting the macro-

and through micro- scale dynamics through a double feedback link. In the following,

we present the multi-scale technique and also we explain the linking methodology

between the macroscopic and the microscopic systems, as introduced in Trucu et al.

(2013).

We assume that the tumour evolution occurs on a domain Ω(t) that grows within

a maximal tissue cube Y ⊂ Rn (n = 2, 3) over a time interval [0, T ], as illustrated
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in Fig. 2.1. Further, as the proteolytic activity of tumour that occurs within a

cell-scale neighbourhood of the tumour interface is critical for the changes in the

tumour boundary morphology and ultimately for the spatial progression of the tu-

mour (Weinberg, 2006), a boundary tracking bundle of small micro-domains has

been designed to capture the entire leading edge region where these important cell-

scale boundary molecular processes take place.

Figure 2.1: Schematic diagram to illustrate a tumour cluster Ω(t0) centered at the
origin within a three dimensional maximal reference region Y . The dashed lines indicates
the Euclidean directions {e1, e2, e3}. The micro-domain consists all εY -cubes located on
the tumour boundary edge ∂Ω(t0).
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2.2 Construction of the covering bundle of bound-

ary micro-domains in 2D

First, for a small scale ε > 0 given as a negative power of 2, alongside the uniform

decomposition of Y in small cubes of size ε, we consider also their associated “half-

way shifted” copies in every direction, and collect all these in the family:

Fε :=
⋃

i,j,k∈{−1,0,1}

{
εY i

2
, j
2
, k
2

∣∣εY is in the ε-resolution of Y
}

(2.1)

where, for any (i, j, k) ∈ {(i, j, k)|i, j, k ∈ {−1, 0, 1}}, the “half-way shifted” cubes

in the direction iē1 + jē2 + kē3 are given by:

εY i
2
, j
2
, k
2

= εY +
ε(iē1 + jē2 + kē3)

2
, (2.2)

with {e1, e2, e3} representing the standard Euclidean basis of R3 and

ē1 : = e1, ē2 : = e2, and, ē3 : =

 0 for n = 2,

e3 for n = 3.
(2.3)

Then, in a second step, we sub-select all those ε-cubes sub-family F εΩ(t) ⊂ F that

intersect with the interface of the tumour edge ∂Ω(t) and has one face inside the

tumour, namely:

F εΩ(t) := {εY ∈ F|εY ∩(Y \Ω(t)) 6= ∅ and has exactly one face included in int(Ω(t))}.

(2.4)

As illustrated in Fig. 2.2, for each ε-cube within the family F εΩ(t) we can distinguish:

the side inside Ω(t) denoted by ΓintεY ; Γj,⊥εY , j = 1, 2 represent the perpendicular sides

to the interior side; and lastly, the exterior side of the ΓextεY . Indeed, the exterior side
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Figure 2.2: Schematic of the multiscale modelling approach.

ΓextεY for each squared interface of the sub-family F εΩ(t) would be either completely

outside the tumour boundary ∂Ω(t) or partly intersected with ∂Ω(t). On the other

hand, as ΓintεY ⊂ int(Ω(t)), let us denote by:

• [∂Ω(t)]εY the connected component part Ω(t)∩εY that intersects Γj,⊥εY , j = 1, 2;

• [Ω(t)]εY the confined area lying between ΓintεY and the tumour boundary [∂Ω(t)]εY

(this turning out to be the only connected component of Ω(t)∩ εY containing

ΓintεY )

(as illustrated in Fig. 2.2). With these notations, we sub-select the following bound-

ary sub-family of ε−cubes PFε
Ω(t)

given by the following properties:

PFε
Ω(t)

:= {εY ∈ F εΩ(t)| [Ω(t)]εY ⊂ εY and [∂Ω(t)]εY ∩ ΓextεY = ∅}, (2.5)

Finally, using compactness properties of the tumour interface alongside the prop-

erties of the dyadic εY cubes , we obtain the ε−micro-scale as being given by
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ε
Ω(t)

:=sup

{
ε | ∃Hε ⊂

⋃
ε∈{2−p|p∈N}

PFε
Ω(t)
, with |Hε| <∞, such that

⋃
εY ∈Hε

εY ⊃∂Ω(t)

}
.

Finally, the desired ε−scale covering bundle for ∂Ω(t) is given by P∗ε (t):= Hε
Ω(t)

.

For simplicity, in the following, we will drop the index for ε
Ω(t)

, and we will refer

to ε as the size of the micro-scale. Furthermore, the ε−cubes εY ∈ P∗ε (t), will sim-

ply be referred to as micro-domains. Finally, this bundle of covering overlapping

micro-domains for the tumour interface ∂Ω(t) enable us to decompose the prote-

olytic cell-scale dynamics occurring on the cell-scale neighbouring region
⋃

εY ∈P∗ε (t)

εY

into a bundle of micro-dynamics occurring on individual micro-domains εY ∈ P∗ε (t).

2.3 The macro-scale dynamics

Adopting the most simplistic perspective, at the macro-scale the invading tumour

is a mixture of:

• a cell population, c(x, t), mixed with

• an ECM density, u(x, t),

for which, in the simplest possible case, the spatio-temporal dynamics (exercised on

the progressing tumour region Ω(t)) assumes that the rate of change per unit time

is given as follows:

• for the cell population, this is at least a combined effect of:

- cell proliferation;

- diffusive transport; and
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- taxis and haptotaxis (directed movements against ECM gradients);

• for the ECM density, this is the net balance between

- degradation by the cancer cells (via various proteolytic enzymes); and

- matrix remodelling.

Thus, the macro-dynamics can be summarised in general form of an operator

equation

T (c, u) = 0. (2.6)

that is given by a 2D-reaction-diffusion-taxis differential operator of order 2

T : C1([0, T ];H2(Ω(·)))× C1([0, T ];H2(Ω(·))) 7−→ C([0, T ]; Ω(·))× C([0, T ]; Ω(·))

and is accompanied by appropriate initial conditions as well as zero-flux boundary

conditions. As a particular example for (2.6) we have the tissue scale dynamics

adopted in Trucu et al. (2013), namely


∂c
∂t

= Dc∆c− ηc∇ · (c∇u) + f1,1(c, u),

∂u
∂t

= −αccu+ f2,1(c, u).

where f1,1 is a general function representing the cancer cells proliferation and f2,1

represents the ECM remodelling.
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2.4 The boundary micro-dynamics and the non-

local top-down and bottom-up feedback links

between macro- and micro- scales

Biological evidence shows that the tumour cells that arrive within the outer prolif-

eration rim region, are able to secrete matrix degrading enzymes (MDEs), such as

the MMPs or uPA (Weinberg, 2006), and once secreted, these enzymes exercise a

cross-interface spatio-temporal molecular transport within the cell scale region along

the tumour invasive edge where they degrade the matrix. Therefore, in the presence

of macro-dynamics (2.6), for any t0 ∈ [0, T ] and any micro-domain εY ∈ P∗ε (t), at

any spatio-temporal microscale node (y, τ) ∈ εY ∩ ×[0,∆t], a source of degrading

enzymes gets created as a collective contribution of the tumour cells c(x, ·) that

arrive within a certain distance δ > 0 from y, and hence this could be formulated

mathematically in the following non-local operator terms as:

f εYMDEs(y, τ) =


∫

B(y,δ)∩Ω(t0)

c (x,t0+τ) dx

λ(B(y,δ)∩Ω(t0))
, if y ∈ εY ∩ Ω(t0)

0, if y ∈ εY \ (Ω(t0 + {y ∈ Y | ‖ z ‖2< γ}))
(2.7)

where λ(·) is the usual Lebesgue measure, while the ball B(y, δ) := {ξ ∈ Y | ‖

y−ξ ‖∞≤ δ} has the radius δ > 0 of the size of the thickness of the outer proliferation

rim (Weinberg, 2006), and γ is simply a small mollification radius, that enable us

to have a smooth decay to 0 beyond the tumour interface ∂Ω(t0).

Thus, denoting with m(y, τ) the amount of proteolytic enzyme distributed at a

given micro-scale node (y, τ) ∈ εY ∩×[0,∆t], in the presence of source (2.7) a cross

interface transport is exercised by m(·, ·), and under the simplest assumptions, as

considered also in Trucu et al. (2013), this transport is simply given by a diffusion
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process on εY , namely as

∂m

∂τ
= Dm∆m+ f εYMDEs(y, τ) (2.8)

where Dm > 0 is a molecular diffusion coefficients for the MDEs.

2.4.1 Discretisation of top-down link

On the other hand, at the micro-scale, the micro-dynamics is computed with taking

into account the following assumptions and numerical approaches. For simplicity, we

try to list all required discretization of the spatial micro-domain. As mentioned in

section 2.1, the micro-domain consists of the union of εY -cubes from P∗ε (t) located on

the tumour boundary ∂Ω(t). Now, let us first discretize the micro-domain εY with

uniformly mesh size 2∆x = ε, where the tissue domain has already discretized with

uniformly mesh size ∆x (as illustrated in Fig. 2.3). Then based on the finite element

approach, we could choose a random micro-domain εY ∈ P∗ε (t) involving uniformly

triangular elements on a micro-mesh. Hence, in a such spatial discretization, we

definitely have common mesh points between the macro and micro domains located

on the tumour boundary ∂Ω(t), specifically on the confined area εY ∈ PF∂Ω(t)
∩Ω(t).

Accordingly, we can define these contact mesh points by:

x1, x2, ..., xpεY ∈ εY ∩ Ω(t0). (2.9)

So, before presenting the micro-system computation procedures, we should first show

the computation process of the integral source function 2.7 (Trucu et al., 2013). In

order to do that, let us suppose the region M within R2 contains finite subdivided

elements where these elements domains are denoted by the entire generic element
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Figure 2.3: Sketch for illustrating the macroscopic domain Ω(t0) (left rectangle) and
the microscopic domain εY (right rectangle) within the tissue domain Y . The orange thick
line represents the expanded cancer region Ω(t0 +∆t) where it is given by the set of points
x̃εY := x∗εY + s(x∗εY ) (see details in 2.4).

domain E. Hence, the integral 2.7 on the region M could be approximated by the

following midpoint formula (Trucu et al., 2013):

∫
M

f =
∑

f(Ec)λ(E), (2.10)

where Ec is the central mass of E and λ(E) is the Lebesgue measure of E. Moreover,

we denote the time of the source funtion 2.7 to be constant within the interval [0,∆t].

Hence, the source integral 2.7 is computed at each macro-micro contact mesh points

2.9 namely,

f̂ εYMDEs(x
∗
c) =

∫
B(x∗c ,2ε)∩Ω(t0)

c (x∗c , t0 + ∆t) dx

λ(B(x∗c , 2ε) ∩ Ω(t0))
, (2.11)

where x∗c represents the common points of the macro and the micro mesh points

i.e. c = 1, 2, ....., pεY . In additional to calculating the source integral on the contact
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mesh points, we still need to compute the source function over the remaining micro-

domian namely, for all y belonging to εY ∈ P∗ε (t). To this done, they take advantage

of the current contact macro-micro nodes, then they denote the basis functions Bf

of the set of the entire finite element for these nodes as follows:

Bf = {φx∗c |c = 1, 2, ....., pεY }. (2.12)

Consequently, for each single node of the micro-domain who does not contact with

any point of the tissue domain nodes, and with taking into account the convex combi-

nation principle, we assume that, for any three points xi1, xi2, xi3 ∈ {x1, x2, ..., xpεY }

within the closure of εY ⊂ P∗ε (t) where y ∈ Convex{xi1 , xi2 , xi3}, we suppose the

source function is given by the following finite element approximated form:

f̂ εYMDEs(y) = f̂ εYMDEs(xi1)φxi1 (y) + f̂ εYMDEs(xi2)φxi2 (y) + f̂ εYMDEs(xi3)φxi3 (y),

otherwise, we have

f̂ εY
MDEs

(y) = 0.

Accordingly, the values of the source function 2.7 is obtained on all micro-domain

nodes namely, for all εY ∈ P∗ε (t). Hence, the microscopic dynamics system through

the finite element method to obtain the spatial distribution of MDEs at the final

microscopic time. However, for the time integration, this uses trapezoidal predic-

tor corrector method. Furthermore, the moving boundary approach of the tumour

is obtained through the following assumption, for every y ∈ εY , the midpoint of

[∂Ω(t0)]εY (x∗εY ) would take a direction ηεY to reach to the closest macro-mesh point

if and only if the transitional probability exceeds the threshold ωεY ∈ (0, 1). Other-
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wise, the midpoint x∗εY does not move to any other location.

2.4.2 Tissue Thresholds within the bottom-up feedback link

As discussed in Trucu et al. (2013), for each εY ∈ P(t0), the tissue thresholds

ω(β, εY ) explore the level of ECM degradation on εY \ Ω(t0), this way assessing

the likelihood of movement of the midpoint x∗εY to the new location prescribed by

s(x∗εY ), namely to its new position x̃εY := x∗εY + s(x∗εY ). We adopt here the same

form as in Trucu et al. (2013), and so these tissue thresholds are given by

ω(β, εY ) =


Q1(β, εY ), if

uΩ(t0)(x̃εY ,t0+∆t)

sup
z∈∂Ω(t0)

(uΩ(t0)(z,t0+∆t))
≤ β,

Q2(β, εY ), if
uΩ(t0)(x̃εY ,t0+∆t)

sup
z∈∂Ω(t0)

uΩ(t0)(z,t0+∆t)
> β

(2.13)

where β ∈ (0, 1) represents the most suitable conditions that facilitate invasion, with

the expressions Q1(β, εY ) and Q2(β, εY ) denoting

Q1(β, εY ) := sin(π
2
(1− 1

β

uΩ(t0)(x̃εY ,t0+∆t)

sup
z∈∂Ω(t0)

uΩ(t0)(z,t0+∆t)
)),

and

Q2(β, εY ) := sin( π
2(1−β)

(
uΩ(t0)(x̃εY ,t0+∆t)

sup
z∈∂Ω(t0)

uΩ(t0)(z,t0+∆t)
− β)).
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2.5 Movement of the tumour boundary triggered

by the micro-dynamics

On each micro-domain εY ∈ P∗ε (t0), the MDEs interact with the ECM that they

meet once transported in the peritumoural region εY \ Ω(t0), causing degradation

that significantly influence the pattern of tumour progression. Indeed, the topo-

logical shape and degree of degradation of the ECM is in direct correlation with

the pattern of advancing front of MDEs that exercise their cross interface random

movement as well as the amount of MDEs being transported by this molecular front.

This molecular activity is up-taken at macro-scale, giving rise to direction of chore-

ographic movement, ηεY , and displacement magnitude, ξεY , for the relocation of

the tumour boundary captured by the micro-domain, i.e, [∂Ω(t)]εY , that is repre-

sented at tissue level through the movement of the associated boundary midpoint

x∗εY ∈ [∂Ω(t)]εY . This will ultimately dictate the relocation of the tumour boundary

provided that significant but not complete degradation of the ECM has taken place

on the εY

In brief, to these two movement characteristics ηεY and x∗εY ∈ [∂Ω(t)]εY , as

detailed in Trucu et al. (2013), the regularity property of the Lebesgue measure is

used as a selection criterion to identify a suitable dyadic decomposition {Di}i=1,2s on

epsilonY . Then, from collection {Di}i=1,2s , we sub-select only those furthers away

dyadic cubesDj from the tumour interface where a significant level of enzymesm(·, ·)

have been transported, i.e, a level of enzymes above the mean-values of the enzymes

transported outside the cancer region, namely above 1
λ(εY \Ω(t0))

∫
εY \Ω(t0))

m(y, τ)dy,

which corresponds to the level of significant ECM degradation. Collecting all these

cubes in a subfamily {Dj}j∈I∗ ⊂ {Di}i=1,2s , and considering also their associate

barycentral positions {yj}j∈I∗
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ηεY = x∗εY + ν
∑
l∈I∗

(∫
Dl
m(y, τf )dy

)
(yl − x∗εY ), ν ∈ [0,∞]. (2.14)

ξεY :=
∑
l∈I∗

∫
Dl
m(y, τf )dy∑

l∈I∗

∫
Dl
m(y, τf )dy

∣∣−−−→x∗εY yl
∣∣. (2.15)

Notably, the movement of each unique midpoint εY ∗ through ECM components is

depends on a particular transitional measure controlling ECM degradation. This

measure explore the strength of peritumoural ECM degradation by the incoming

front of MDE within the micro-domain εY, and is defined by:

q∗(A) :=
1∫

Am(y, τf )dy

∫
A\Ω(t0)

m(y, τf )dy, ∀ A ∈
∑( ⋃

εY ∈P∗ε

εY
)
, (2.16)

where
∑( ⋃

εY ∈P∗ε
εY
)

is the usual Borel σ−algebra on εY . Hence associating to each

midpoint x∗εY ∗ , a discrete transitional measure q̃∗(xεY ∗) := q∗(εY ), if this exceeds

a certain tissue threshold threshold ωεY ∈ (01, ) to indicate that enough but not

complete ECM degradation occurred, then the movement prescribed earlier will be

exercised in the direction ηεY and with a displacement magnitude ηεY . Hence, the

new tumour edge will be formed as a combination of both unmoved points and the

moved points, thus the new tumour boundary will consists the union of both set of

points:

{x̃∗εY ∗|εY ∈ P
∗
εY such that q∗(xεY ∗) ≥ ωεY } (2.17)

and

{x∗εY ∗|εY ∈ P∗εY such that q∗(xεY ∗) < ωεY }. (2.18)

Consequently, the new generated initial conditions of the macroscopic system will
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be in the following form (Trucu et al., 2013):

cΩ(t0+∆t)(x, t0) := c(x, t0 + ∆t)(χ
Ω(t0)\

⋃
εY ∈P∗ε

εY
∗ ψγ),

vΩ(t0+∆t)(x, t0) := v(x, t0 + ∆t)χ
Y \

⋃
εY ∈P∗ε

εY
∗ ψγ). (2.19)

2.5.1 Generating the initial conditions for the next macro-

stage on [t0 + ∆t, t0 + 2∆t]

Based on both computational process on Ω(t0+∆t) and the interpolation points x̃∗εY ,

we obtain a new expanded tumour boundary ∂Ω(t0+∆t). Hence, at the macro-scale,

we get a new initial condition as follows (Trucu et al., 2013):

c(xi,j, t0 + ∆t) =


cki,j, xi,j ∈ Ω(t0),

1
4
(cki−1,j + cki+1,j + cki,j−1 + cki,j+1), xi,j ∈ B(Ω(t0), h)\Ω(t0),

0, xi,j /∈ B(Ω(t0), h),

where {xi,j|i, j = 1, ..., q} represents the macro mesh points in the tissue domain Y .

Moreover, the over-line represents the topological closure of the set (see details in

(Trucu et al., 2013)).
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Chapter 3

Novel Multiscale Modelling of

Cancer Response to Oncolytic

Viral Therapy

Oncolytic viruses (OV) are viruses that can replicate selectively within cancer cells

and destroy them. While the past few decades have seen significant progress related

to the use of these viruses in clinical contexts, the success of oncolytic therapies

is dampened by the complex spatial tumour-OV interactions. In this work, we

present a novel multiscale moving boundary modelling for the tumour-OV interac-

tions, which is based on coupled systems of partial differential equations both at

macro-scale (tissue-scale) and at micro-scale (cell-scale) that are connected through

a double feedback link. At the macro-scale, we account for the coupled dynamics of

uninfected cancer cells, OV-infected cancer cells, extracellular matrix (ECM) and on-

colytic viruses. At the same time, at the micro scale, we focus on essential dynamics

of urokinase plasminogen activator (uPA) system which is one of the important pro-

teolytic systems responsible for the degradation of the ECM, with notable influence
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in cancer invasion. While sourced by the cancer cells that arrive during their macro-

dynamics within the outer proliferating rim of the tumour, the uPA micro-dynamics

is crucial in determining the movement of the macro-scale tumour boundary (both in

terms of direction and displacement magnitude). In this investigation, we consider

three scenarios for the macro-scale tumour-OV interactions. While assuming the

usual context of reaction-diffusion-taxis coupled PDEs, the three macro-dynamics

scenarios gradually explore the influence of the ECM taxis over the tumour - OV

interaction, in the form of haptotaxis of both uninfected and infected cells popula-

tions as well as the indirect ECM taxis for the oncolytic virus. Finally, the complex

tumour-OV interactions is investigated numerically through the development a new

multiscale moving boundary computational framework. While further investigation

is needed to validate the findings of our modelling, for the parameter regimes that

we considered, our numerical simulations indicate that the viral therapy leads to

control and decrease of the overall cancer expansion and in certain cases this can

result even in the elimination of the tumour.

3.1 Introduction

Oncolytic virotherapy (based on either naturally-occurring or genetically-engineered

viruses) is a promising therapeutic approach for cancer treatment Lawler et al.

(2017). However, despite the fact that multiple oncolytic viruses are currently under

clinical development Lawler et al. (2017), this type of therapy still has some limita-

tions in terms of efficacy (as observed in various clinical trials) Fukuhara et al. (2016).

This relatively modest oncolytic efficacy is not only the result of premature virus

clearance due to circulating antibodies and various immune cells Alemany (2013),

but also the result of physical barriers inside tumours (e.g., interstitial fluid pressure,

extracellular matrix (ECM) deposits, or tight inter-cellular junctions) Vähä-koskela
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and Hinkkanen (2014); Wong et al. (2010). To improve the intra-tumoural spread of

oncolytic viruses, different experimental and clinical approaches are currently being

considered: from modifications of the immune response to favour virus replication

and tumour lysis Wong et al. (2010), to modifications of the physical barriers (e.g.,

via ECM degradation) to improve virus spread Dmitrieva et al. (2011).

In this study we consider a mathematical modelling and computational approach

to help us improve our understanding of the physical barriers that limit virus spread.

The use of mathematical models to understand the temporal and spatio-temporal

dynamics of viruses (including oncolytic viruses) has seen great developments over

the last three decades Perelson et al. (1993, 1996); Nowak and May (2000); Wodarz

and Komarova (2009); Macnamara and Eftimie (2015); Wodarz (2016); Santiago

et al. (2017). While the majority of these models focused on the temporal dynamics

of oncolytic viruses (mainly due to the availability of temporal data) Wodarz et al.

(2014); Laaroussi et al. (2014); Bajzer et al. (2008); Wodarz (2016); Agarwal and

Bhadauria (2011); Wodarz and Komarova (2009); Kim et al. (2015); Malinzi et al.

(2015); Dingli et al. (2009); Nowak and May (2000), more recent advances in tumour

imaging generated data on the spatial spread of tumours and viruses, which then

led to the development of different mathematical models investigating the spatial

spread of these viruses Malinzi et al. (2015); Nowak and May (2000); Wodarz et al.

(2012); Wollmann et al. (2005); Camara et al. (2013); Malinzi et al. (2017).

All these temporal and spatio-temporal models for oncolytic virus therapies usu-

ally focus on one single spatial or temporal scale. In this context potential insights

from the wide range of singe-scale spatio-temporal modelling approaches for cancer

invasion (such as those proposed in Adam (1986); Anderson et al. (2000); Byrne and

Chaplain (1996b); Gatenby and Gawlinski (1996); Greenspan (1976); Perumpanani

et al. (1996, 1998); Webb et al. (1999); Andasari et al. (2011); Anderson (2005);
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Byrne et al. (2001); Chaplain and Lolas (2005); Deakin and Chaplain (2013) and, in

particular, those involving the theory of mixtures proposed in Chaplain et al. (2006);

Preziosi and Tosin (2009); Psiuk-Maksymowicz (2013)) become increasingly relevant

to this area, as highlighted and explored by a number of recent works Jacobsen et al.

(2015); Friedman and Lai (2018); Kim et al. (2014); Ratajczyk et al. (2017). Nev-

ertheless, since the process of cancer development is a complex phenomenon that

involves interlinked phenomena that occur at different scales, it is important to cap-

ture these multiscale aspects also during the tumour-oncolytic virus interactions. To

that end, the multiscale modelling of cancer invasion introduced over the past decade

in the mathematical literature Martins et al. (2007); Stolarska et al. (2009); Alemani

et al. (2012); Trucu et al. (2013); Peng et al. (2017) paved the way for exploring the

tumour-OV interaction in a multiscale fashion. However, to our knowledge, there

are not many multi-scale mathematical models for the oncolytic viral therapies and

tumour-viral interactions, with Paiva et al. (2009) being the only reference that we

could find in the literature. In that study (Paiva et al., 2009), the mathematical

model is assumed to be given at two scales, namely, the tissue scale (macroscopic

scale) and the cellular (mesoscopic scale). At the macroscopic scale, the distribution

of nutrients and free viruses is represented by reaction-diffusion equations, while the

cell division, death, infection, and lysis are computed within the mesoscopic scale

by basic probabilistic rules.

In this paper we will introduce a novel multiscale modelling framework for the

tumour-OV interaction in which the macroscopic (tissue-scale) dynamics of the can-

cer and oncolytic virus densities will be connected via a double feedback loop to the

microscopic (cell-scale) proteolytic dynamics of the urokinase plasminogen activator

system (uPA) that takes place at the invasive edge of the tumour.
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3.2 Multiscale Hypothesis and Settings: the Novel

Two-Scale Moving Boundary Modelling Ap-

proach for Tumour-OV Interactions

Building on the two-scale moving boundary framework introduced first by Trucu et

al. in (Trucu et al., 2013) and later explored in (Peng et al., 2017) in the context

of the uPA System, in this work we address the genuinely multiscale nature of

tumour-OV interaction through a new multiscale modelling approach. Specifically,

the tissue-scale (macro-scale) in tumour-OV interaction is here coupled with the

cell-scale (micro-scale) tumour invasive edge molecular dynamics of the uPA System.

Therefore, before exploring further their crucial cross-talk, we distinguish here the

two levels of dynamics, namely macro-scale and micro-scale, which at this stage can

be generally described mathematically as follows.

On one hand, at macro-scale, at any spatio-temporal macro-node (x, t), a part

of the cancer cells population c(x, t) becomes dynamically infected by an incom-

ing oncolytic virus v(x, t), giving rise to an infected cancer cells population i(x, t),

causing these to die, and this way to be eliminated from the total tumour mass

(c+ i)(x, t). As this interaction does occur in the presence of the surrounding ECM

density u(x, t) and, per unit time, this is governed by both random motility and by

various forms of taxis of both uninfected and infected as well as of the oncolyotic

virus towards ECM gradients. Thus, denoting for the moment with T the result-

ing 4D-reaction-diffusion-taxis differential operator of order 2, we obtain that the

macro-dynamics can be written as

T (c, i, u, v)T = 0 (3.1)
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were T will be specified in detail in the next section.

On the other hand, at micro-scale, the proteolytic activity of the uPA System

occurring at the invasive edge of the tumour exercises a cross-tumour boundary local

enzymatic transport within a cell-scale neighborhood of the interface of the expand-

ing tumour Ω(t), crucially contributing towards its dynamics changes in morphology

with respect to time. Therefore, at any spatio-temporal micro-node (y, τ), consid-

ering the three components of the uPA System, namely the urokinase plasminogen

activator (uPA) a(y, τ), plasminogen activator inhibitor (PAI-1) p(y, τ) and plas-

min m(y, τ), per unit time their dynamics is driven by random molecular motility

as well as their production and natural decay. Therefore, we can express this in

the form of a coupled system of reaction diffusion equations. Hence, similar to the

macro-scale, denoting here the resulting 3D-reaction-diffusion operator by Z, the

micro-dynamics can therefore be expressed as

Z(a, p,m)T = 0 (3.2)

where the form of the differential operator Z will be made explicit in the next section.

Following a similar two scale approach as in (Trucu et al., 2013; Peng et al., 2017),

within a maximal tissue-scale region Y , the macro-scale tumour-OV dynamics (3.1)

occurring on the growing tumour support Ω(t) ⊂ Y is directly linked through a

“macro-micro cross-talk” to the uPA micro-dynamics (3.2) that takes place on a

cell-scale neighbourhood of the tumour boundary ∂Ω(t), as illustrated in schematic

Fig. 3.1. To that end, the cell-scale neighbourhood of ∂Ω(t) that was introduced

in (Trucu et al., 2013) and is given by a covering bundle of overlapping (half-way)

micro-domains {εY }
εY ∈P(t)

enables the decoupling of the micro-dynamics in a bundle

of micro-processes taking place on each εY ∈ P(t), and as a consequence, this macro-

micro cross-talk is realised through a double-feedback loop consisting of both top-
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Figure 3.1: Schematic of the multiscale modelling approach to tumour-virus interaction

down and bottom-up links between the macro-dynamics on Ω(t) and the uPA micro-

dynamics occuring on each εY ∈ P(t). While we postpone the detailed description of

the double feedback loop until the next section, briefly, this is structured as follows.

On one hand, the top-down link between macro-scale and micro-scale explores

the naturally arising source for the uPA and the non-local behaviour of PAI-1 re-

moval, which are enabled by the cancer cells and ECM micro-environment within

the neighbourhood of the tumour outer proliferating rim that secrets them. Thus,

on a time perspective [t0, t0 + ∆t] this arises as the direct contribution of the macro-

scopic densities of cancer cells c and i as well as of the ECM u, and in brief, at any

spatio-temporal microscopic node (τ, y) ∈ [0,∆t]× εY , these can be mathematically

expressed via non-local terms of the form

f
εY

uPA
(τ, y) =

∫
B(y,δ)∩supp{c+i}

K1(c(s, t0+τ), i(s, t0+τ), s−y)ds

λ(B(y, δ) ∩ supp{c+i})
(3.3)
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and

f
εY

PAI−1
(τ, y) =

∫
B(y,δ)

K2(u(s, t0+τ), s−y)ds

λ(B(y, δ))
, (3.4)

where λ is the Lebesgue measure on R2 and the mappings R 3 z 7−→K1(·, ·, z)∈R

and R 3 z 7−→ K2(·, z) ∈ R are compactly supported radially symmetric kernels

that quantify the contribution of the involved macroscopic densities with respect to

their spatial distribution and whose choice will be discussed in Section 3.4. In the

presence of these non-local behaviours induce from the macro-scale, the uPA System

exercise its spatio-temporal micro-dynamics briefly outlined above and detailed in

Section 3.4.

Finally, the bottom up link is conveyed by the key contribution that the micro-

dynamics has in determining the characteristics of macro-scale tumour boundary

movement. The tumour boundary relocation is caused by the local invasion of the

peritumoural region whose extent and orientation are dictated by the pattern of

degradation of the ECM by the uPA System acting at micro-scale within the outer

part of the cell-scale neighbourhood of the tumour boundary (which is given here

by the union of all the micro-domains εY ∈ P(t)). In its turn, the pattern of ECM

degradation is dictated by the regions of significant transport of proteolytic enzymes

within each micro-domain εY . Proceeding as in (Trucu et al., 2013), these regions are

determined here by the furthest away part of the level sets of significant proteolytic

enzymes within each εY with respect to the tumour boundary ∂Ω(t) ∩ εY , whose

cumulative revolving orientation leads to the establishment of the characteristics of

the tumour boundary movement

s : ∂Ω(t)→ S1 × (0,∞),

given by

s(z) := (ν(z), ξ(z)), ∀z ∈ ∂Ω(t),

(3.5)
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with S1 being the usual unit sphere in R2, and ν(·) and ξ(·) representing the direction

of movement and displacement magnitude, respectively. Provided that sufficient

degradation but not complete destruction of the ECM has been exercised by the

micro-scale uPA processes, the boundary will be relocated in the direction dictated

by the boundary movement law s(·) introduced above, and the macro-dynamics is

continued on the newly obtained domain.

3.3 Macroscopic Modelling Scenarios for the Virus-

Tumour Interaction

In the following we describe in detail the various macro-scale components and their

dynamics relations, which were compactly represented by the macroscopic operator

equation (3.1) introduced in the previous section. These components are: the density

of uninfected cancer cells c(x, t), the density of infected cancer cells i(x, t), the

density of the extracellular matrix u(x, t), and the density of the oncolytic virus

particles v(x, t).

Uninfected Cancer Cells: c(x, t) Following biological evidence from several ex-

perimental studies (Stroock and Varadhan, 1997), we assume that the cancer cells

density changes due to random cell movement (with Dc the random motility coeffi-

cient) and to directed haptotactic movement towards higher ECM gradients (with

ηc the haptotactic coefficient). Moreover, cancer cells can proliferate logistically at

a rate µ1 Laird (1964); Guiot et al. (2003), and can decay due to virus infection at

a rate ρ. These assumptions can be translated into the following equation:

∂c

∂t
= Dc∆c− ηc∇ · (c∇u) + µ1c(1− c)− ρcv. (3.6)
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Infected Cancer Cells: i(x, t) We assume that also the infected cancer cells can

move randomly (with Di the random motility coefficient) (Petrie et al., 2009; Weiger

et al., 2013; Huda et al., 2018; Wu et al., 2014; Stroock and Varadhan, 1997). As

discussed above, these cells are infected at a rate ρ by the oncolytic virus. Finally,

these infected cells die at a rate δi. These assumptions are described by the following

equation:

∂i

∂t
= Di∆i+ ρcv − δii. (3.7)

Extracellular Matrix (ECM): u(x, t) We assume that the ECM (and its com-

ponents) does not move, and thus we ignore any migration and diffusion terms.

However, since ECM is continuously remodelled by cells in the environment (Cox

and Erler, 2011), we describe this remodelling process as the difference between a lo-

gistic growth term (describing the deposition of ECM components – in the presence

of cancer – at a rate µ2) and a degradation term (with αc the rate of ECM degra-

dation by uninfected cancer cells, and αi the rate of ECM degradation by infected

cancer cells.) These assumptions are described by the following equation:

∂u

∂t
= −u(αcc+ αii) + µ2u(1− u− c− i). (3.8)

The growth in equation (3.8) describes the logistic remodelling of the ECM, which

depends on the presence of all variables in the system. Similar terms have been con-

sidered in Andasari et al. (2011); Chaplain and Lolas (2005); Deakin and Chaplain

(2013); Trucu et al. (2013); Peng et al. (2017). In contrast, the growth in equation

(3.6) models cancer proliferation in the presence of nutrients and its slow down when

nutrients are consumed, as justified by the shape of the logistic term Laird (1964);

Guiot et al. (2003).
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Oncolytic Virus: v(x, t) Based on previous studies (Nowak and May, 2000; Woll-

mann et al., 2005; Wodarz et al., 2012), we assume that the oncolytic virus can move

randomly through the environment, with Dv the random motility coefficient. The

level of virus particles increases due to the burst (at a rate b) of the infected tu-

mour cells, which release the new virions in the environment. The reduction in the

number of free virus particles is the result of the natural virions’ death rate δv, and

the trapping of these virus particles into the cancer cells at a rate ρ. Therefore, the

evolution of the density of virus particles is described by the equation:

∂v

∂t
= Dv∆v + bi− ρcv − δvv. (3.9)

Remark: Note that for simplicity, in the above equations (3.6)-(3.8), all variables

have been rescaled by their maximum values (i.e., the carrying capacities of the

tumour cells and the extracellular matrix).

Therefore, accounting for at the above macro-scale modelling considerations, the

macro-dynamics that we have obtained so far is as follows:

Macro-dynamics scenario 1 The new macro-scale scenario of the multiscale

modelling approach for the tumour-OV interaction is given by the following system:



∂c
∂t

= Dc∆c− ηc∇ · (c∇u) + µ1c(1− c)− ρcv,

∂i
∂t

= Di∆i+ ρcv − δii,

∂u
∂t

= −u(αcc+ αii) + µ2u(1− u− c− i),

∂v
∂t

= Dv∆v + bi− ρcv − δvv.

(3.10)

However, expanding now the modelling perspective by accounting within the

macro-scale spatial dynamics of the infected cell population not only on its random
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movement (approximated here by diffusion) but also on its haptotactic migration

against ECM gradients, equation (3.7) is therefore evolved into:

∂i

∂t
= Di∆i− ηi∇ · (i∇u) + ρcv − δii. (3.11)

This leads us to a second scenario for the macro-dynamics which is summarised as

follows:

Macro-dynamics scenario 2 In the presence of haptotactic behaviour for the

infected cell population, the macro-scale modelling scenario for tumour-OV interac-

tion is therefore extended and is given now by the system:



∂c
∂t

= Dc∆c− ηc∇ · (c∇u) + µ1c(1− c)− ρcv,

∂i
∂t

= Di∆i− ηi∇ · (i∇u) + ρcv − δii,

∂u
∂t

= −u(αcc+ αii) + µ2u(1− u− c− i),

∂v
∂t

= Dv∆v + bi− ρcv − δvv.

(3.12)

Finally, we note that a major obstacle that creates difficulties in having a success-

ful viral therapy is virus motility blockage exercised by ECM components. Recent

efforts to minimising virus size makes it possible for the virus particles to move

through ECM components (Vähä-koskela and Hinkkanen, 2014). While knowing

that though viruses do not have an autonomous motility, the penetration of the

ECM is done via other factors, such as matrix degrading enzymes as detailed in

Choi et al. (2013). Therefore, for the dynamics of the virus population, in addition

to the usual consideration of virus diffusion, assumed by other authors Nowak and

May (2000); Wollmann et al. (2005); Camara et al. (2013); Malinzi et al. (2015);

Vähä-koskela and Hinkkanen (2014), we will also consider here the ECM-OV interac-
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tions. To that end, as discussed in Vähä-koskela and Hinkkanen (2014), while ECM

acts usually as a barrier agains OV motility, its regions of lower levels of density

provide opportunities for OV to penetrate through its components and potentially

interact with a larger cancer cell-surface cumulated areas, this way gaining further

opportunities to infect the nearby cancer cells. This leads to an ECM-OV taxis be-

haviour that affects the random motility of the virus, which mathematically can be

incorporated into equation (3.9) leading to the following reaction-advection-diffusion

equation:

∂v

∂t
= Dv∆v − ηv∇ · (v∇u) + bi− ρcv − δvv, (3.13)

where ηv is the ECM-OV-taxis rate. This brings us to the last and most extended

macro-dynamics scenario that we consider in this paper, namely:

Macro-dynamics scenario 3 Accounting also upon the presence of ECM-OV

taxis behaviour included in (3.13), the macro-dynamics component of our multiscale

approach to tumour-OV interaction is therefore given by:



∂c
∂t

= Dc∆c− ηc∇ · (c∇u) + µ1c(1− c)− ρcv,

∂i
∂t

= Di∆i− ηi∇ · (i∇u) + ρcv − δii,

∂u
∂t

= −u(αcc+ αii) + µ2u(1− u− c− i),

∂v
∂t

= Dv∆v − ηv∇ · (v∇u) + bi− ρcv − δvv.

(3.14)

Remark: Note that since the focus of the model is the interaction between virus

and cancer cells in a multi-scale moving boundary context, for simplicity we assume

that the outside environment is represented only by the ECM. Therefore, we ignore

any other types of cells in the environment: healthy cells, immune cells, etc.
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3.4 The Microscopic Proteolytic Dynamics and

the Macro-Micro Double Feedback Loop

As established biologically (Hanahan and Weinberg, 2000; Weinberg, 2006; Hana-

han and Weinberg, 2011), the cell-scale molecular dynamics of the matrix degrading

enzymes at the tumour invasive edge plays a critical role within the cancer cells

invasion process. Several important families of matrix degrading enzymes are col-

lectively secreted by the cancer cells within the outer proliferating rim of the tumour

exercise a spatial transport in a cell-scale neighbourhood of the the tumour interface

and this way cause a degradation of the peritumoural ECM, leading to continuous

morphological changes in the macro-scale tumour boundary and ultimately resulting

in further progression of the cancer in the surrounding tissue. Among these prote-

olytic enzymes, alongside the notable contribution of the family of matrix metallo-

proteinases (MMPs), a pivotal role within cancer invasion is played by the urokinase

plasminogen activator (uPA) system, which not only that decomposes the ECM but

also has implications in activating some of the MMPs as well as interfering with the

activity of cytokines and growth factors (see Venkatraman et al. (2012)).

As briefly outlined in Section 3.2, both uninfected and infected tumour cells

arriving during their dynamics within the outer proliferating rim of the tumour

are able to secrete uPA. Thus, at any time instance t0, within any micro-domain

εY ∈ P(t0), a source of uPA arises this way at any micro-point y ∈ εY ∩ Ω(t0)

as a collective contribution of both infected and uninfected cells from the outer

proliferating rim that arrive within a δ > 0 distance from y. Therefore, assuming,

no spatial discrimination between the cells secreting the uPA within B(y, δ)∩Ω(t0) ,

we obtain that the spatially radial symmetric diffusion kernel K1 appearing in (3.3)
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is constant with respect to the spatial variable, this being given by

K1(c(·, ·), i(·, ·), z) = [λcc(·, ·) + λii(·, ·)]χB(y,δ)∩Ω(t0)(·). (3.15)

where χB(y,δ)∩Ω(t0)(·) is the usual characteristic function for the set B(y, δ) ∩ Ω(t0).

Thus, we have that the micro-scale uPA source at a spatio-temporal micro-node

(y, τ) ∈ (εY ∩ Ω(t0))× [0,∆t] is given by

f
εY

uPA
(y, τ) =

∫
B(y,δ)∩supp{c+i}

(λcc(s, t0 + τ) + λii(s, t0 + τ))ds

λ(B(y, δ) ∩ supp{c+i})
(3.16)

and is zero at any other micro location y ∈ εY \ Ω(t0). Once secreted, the uPA

exercises a local cross-interface transport process, activating plasmin from its in-

active state, plasminogen, which is freely available within the ECM. In turn, once

activated, plasmin degrades various ECM components.

However, the plasminogen activation process is accompanied also by inhibitors, a

notably important one being PAI-1, who binds to the activated uPA and manage to

inhibit this. Produced through the activation of plasmin, besides natural decay and

binding to uPA, PAI-1 is removed also through binding to the surrounding ECM.

Thus, proceeding similar to the case of uPA source, at each spatio-temporal micro-

node (y, τ) ∈ εY ×[0,∆t] this loss of PAI-1 through indiscriminate ECM binding can

be quantified through (3.4), for the following projection kernel K2 that is constant

with respect to space, namely

K2(u(·, ·), z) = u(·, ·). (3.17)
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which gives

f
εY

PAI−1
(y, τ) =

∫
B(y,δ)

u(s, t0+τ)ds

λ(B(y, δ))
. (3.18)

Thus, denoting the micro-scale densities of uPA by a(y, τ), PAI-1 by p(y, τ), and

plasmin by m(y, t), and proceeding as in Trucu et al. (2016), in brief, the dynamics of

the tumour invasive edge proteolytic micro-processes can be is described as follows.

Per unit time, the uPA molecular population a(·, ·) changes through diffusion (with

a random motility coefficient Da) while being produced (at a rate ψ12) and bound

by cancer cells’ uPA receptors (uPAR) (at a rate ψ13), as well as being inhibited by

PAI-1 density p(·, ·) (at a rate ψ11). Therefore, its dynamics is given by

∂a

∂τ
= Da∆a︸ ︷︷ ︸

diffusion

− ψ11ap︸ ︷︷ ︸
uPA/PAI-1

+ ( ψ12︸︷︷︸
production

− ψ13a︸︷︷︸
uPA/uPAR

)f
εY

uPA
(y, τ) (3.19)

Further, the inhibitor PAI-1 density change per unit time is triggered by local dif-

fusion (with a diffusion coefficient Dp), production through plasmin activation (at a

rate ψ23) as well as removal from the system through binding to uPA (at a rate ψ21)

and to surrounding ECM (at a rate ψ22). Thus, PAI-1 micro-dynamics is given by

∂p

∂τ
= Dp∆p︸ ︷︷ ︸

diffusion

− ψ21ap︸ ︷︷ ︸
uPA/PAI-1

−ψ22p f
εY

PAI−1
(y, τ)︸ ︷︷ ︸

PAI-1/ECM

+ ψ23m︸ ︷︷ ︸
production

. (3.20)

Finally, the change in plasmin density per unit time is due to local diffusion (with

a diffusion coefficient Dm), natural degradation (at a rate ψ33) and production due

to both direct plasminogen activation (through uPA binding to uPAR at a rate ψ31)

and as well as binding of PAI-1 to neighbouring ECM (at a rate ψ32) that indirectly

enable further opportunities for plasmin activation. Thus, plasmin’s micro-dynamics
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is given by

∂m

∂τ
= Dm∆m︸ ︷︷ ︸

diffusion

+ψ31af
εY

uPA
(y,τ)︸ ︷︷ ︸

uPA/uPAR

+ψ32pf
εY

PAI−1
(y,τ)︸ ︷︷ ︸

PAI-1/ECM

−ψ33m︸ ︷︷ ︸
decay

. (3.21)

Therefore, the microscopic proteolytic dynamics is given by the following 3D-reaction-

diffusion-taxis system:



∂a
∂τ

=Da∆a− ψ11ap+ (ψ12 − ψ13u)f
εY

uPA
(y, τ),

∂p
∂τ

=Dp∆p− ψ21ap− ψ22p f
εY

PAI−1
(y, τ) + ψ23m,

∂m
∂τ

=Dm∆m+ ψ31af
εY

uPA
(y,τ) + ψ32pf

εY

PAI−1
(y,τ)− ψ33m,

(3.22)

as we assume “no molecular memory” from any previous macro-micro stages, the

micro-dynamics system (3.22) is accompanied by zero initial conditions, i.e.,

a(y, 0) = 0, p(y, 0) = 0, m(y, 0) = 0, ∀y ∈ εY.

Furthermore, as we there is no molecular transport across the interface of the micro-

domains εY , we assume also zero Neumann boundary conditions, i.e.,

∂a

∂n

∣∣∣∣
εY

= 0;
∂p

∂n

∣∣∣∣
εY

= 0;
∂m

∂n

∣∣∣∣
εY

= 0.

As introduced and detailed in Trucu et al. (2013), on each boundary micro-

domain εY , it is the pattern of significant ECM degradation (caused by the advanc-

ing distribution of plasmin) that will dictate the relocation of the tumour boundary

within the peritumoural region. Indeed, the micro-scale proteolytic dynamics de-

termines directly the direction of movement and displacement magnitude that is
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briefly summarised in (3.5) and is represented back at the macro-scale through the

movement of the micro-domains mid points {x∗
εY
}
εY ∈P(t0)

, as detailed in Trucu et al.

(2013); Peng et al. (2017). However, the boundary point x∗
εY
∈ εY will exercise the

movement prescribed by s(x∗
εY

) provided that the extent of degradation of ECM,

which is explored here through the outer degradation measure outlined in Trucu

et al. (2013); Peng et al. (2017),

q∗ : Σ(
⋃

εY ∈P(t0)

)→ [0,∞]

given by

q∗(G) :=


∫

G\Ω(t0)

m(y,∆t)dy∫
G

m(y,∆t)dy
, λ(G) > 0,

0, otherwise,

(3.23)

is significant but not complete. Therefore, the representative mid point will exercise

the movement prescribed by s(x∗
εY

) provided that

q∗(εY ) > ω(εY, β) (3.24)

where ω(εY, β) is a local tissue threshold and the parameter β ∈ (0, 1) explore the

optimal conditions for movement, see 2.4.2. Once the movement has been exercised,

the macro-scale tumour domain Ω(t0) progresses to its new shape Ω(t0 + ∆t), where

the multiscale dynamics is continued with the next macro-micro stage.

In other words, the cross-interface transport exercised by the uPA system within

each micro-domain εY (captured in (3.22)) leads to a pattern of degradation of

the peritumoural ECM within εY \ Ω(t0) resulting into an important bottom-up

feedback to the tissue-scale that ultimately dictates the way the macro-scale tumour

boundary is relocated, as illustrated in Figure 3.1. Thus, to capture this feedback
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link, we follow the multiscale approach introduced in Trucu et al. (2013) and further

discussed in Peng et al. (2017), which enables us to explore the regions of significant

ECM degradation within εY \ Ωt0 and ultimately to determine a unique direction

of movement ηεY and a displacement magnitude ξεY that indicates the way the

boundary captured by εY , namely εY ∩ ∂Ω(t0) is progressed further in the domain

(please see Trucu et al. (2013); Peng et al. (2017) for full details). This enables us to

capture the choreographic movement of the portion of the boundary εY ∩∂Ω(t0) and

to represented this at macro-scale through the movement of the central boundary

point of εY ∩∂Ω(t0) to a new position in the direction εY ∩∂Ω(t0) by a displacement

magnitude ξεY . Finally, under the incidence of this bottom-up feedback induced by

the tumour invasive edge micro-dynamics over each time interval [t0, t0 + ∆t], the

boundary of the tumour Ω(t0) is eventually progressed into a newly relocated and

eventually expanded shape Ω(t0+∆t) where the full multiscale dynamics is continued

on the subsequent macro-micro stage [t0 + ∆t, t0 + 2∆t], as schematically illustrated

in Figure 3.1.

3.5 Multiscale Numerical Simulation and Results

The computational approach developed in this work extends the multiscale numeri-

cal framework first introduced in Trucu et al. (2013) and later applied in Peng et al.

(2017). The novel computational part of this study is the incorporation of the viral

component into the macroscale part of the multiscale framework presented in Trucu

et al. (2013). This combines a finite difference approach at macro-scale with a finite

element method at micro-scale. While the finite difference approach at macro-scale

involves central differences and midpoint approximations (as detailed in A.1), the

finite element at micro-scale involves bilinear shape functions on a square mesh on

each εY .
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(a) (b)

(c) (d)

Figure 3.2: Initial Conditions: (a) uninfected cancer cells density; (b) ECM density;
(c) OV density (one initial dose) and (d) OV density (five initial doses). The white line
indicates the boundary of the total tumour cells (uninfected & infected densities).

In brief, we consider that the macro-scale dynamics of the progressing tumour

Ω(t) takes place within a maximal tissue domain Y = [0, 8]× [0, 8], which we discre-

tise by uniformly spatial mesh of a size ∆x = ∆y = h = 0.03125. We used a second

order midpoint rule for approximating the diffusion and haptotactic terms (for both

cancer cells) in all macro-dynamics modelling scenarios (3.10),(3.12),(3.14), as well

as for the ECM-OV taxis term in (3.14), and we proceed with a trapezoidal predictor-

corrector for time marching at macro-scale in all cases. The implicit trapezoidal

corrector ensures the stability of the macroscopic discretisation. Further, the inte-

gral terms f
εY

uPA
(τ, y) and f

εY

PAI−1
(τ, y) (appearing within the top-down macro-micro

link) contributing towards the sources and removal terms within the uPA System

micro-dynamics (3.19)-(3.21) are calculated using direct formulas at overlapping

macro-micro spatial nodes and via interpolation involving barycentric coordinates

at all other off-macro grid micro-spatial points y ∈ εY . Finally, in the presence of

these terms induced from the macroscale, the micro-dynamics is solved via finite el-
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(stage 1) (stage 50) (stage 100) (stage 150)

a.

b.

c.

d.

e.

Figure 3.3: Multi-scale simulation results for macro-dynamics scenario (3.10) at four
macro-micro stages (1,50,100, and 150) for the baseline parameter values from Table 3.1,
showing: a. virus density; b. infected cancer cells density; c. uninfected cancer cells
density; (d) total cancer cells density; and e. ECM density.

ement with bilinear shape functions on a square mesh with trapezoidal corrector for

time marching. The direction and displacement magnitude obtained in each bound-

ary micro-domain εY ∈ P(t0) in conjunction with the extent of ECM degradation

determine the movement of the tumour boundary at macro-scale, which is recorded

on the macro-scale uniform grid where the dynamics is then continued for the next

time interval [t0 + ∆t, t0 + 2∆t] with the next macro-micro stage. This numerical

approach was implemented by ourselves, as detailed in Trucu et al. (2013).
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(stage 1) (stage 50) (stage 100) (stage 150)

a.

b.

c.

d.

e.

Figure 3.4: Multi-scale simulation results for macro-dynamics scenario (3.12) at four
macro-micro stages (1,50,100, and 150) for the baseline parameter values from Table 3.1,
showing: a. virus density; b. infected cancer cells density; c. uninfected cancer cells
density; d. total cancer cells density; and e. ECM density.

3.5.1 Macro-dynamics initial conditions.

The multiscale dynamics is started with the following initial conditions on Y for

each of the three macro-scale scenarios, namely:

• uninfected cancer initial conditions:

c(x, 0) =

(
exp(−‖x−(4,4)‖22√

∆x∆y
)− exp(−28.125)

)
θ1(x)

2
,
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(stage 1) (stage 50) (stage 100) (stage 150)

a.

b.

c.

d.

e.

Figure 3.5: Multi-scale simulation results for macro-dynamics scenario (3.14) at four
macro-micro stages (1,50,100, and 150) for the baseline parameter values from Table 3.1,
showing: a. virus density; b. infected cancer cells density; c. uninfected cancer cells
density; d. total cancer cells density; and e. ECM density.

where θ1(x) := χB((4,4),0.5−γ) ∗ ψγ, with the molifiler ψγ enabling a smooth

transition to zero after 0.5 radius, as shown Fig. 3.2(a).

• infected cancer initial conditions:

i(x, 0) = 0.
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v i u i+ u

a. 1.

2.

b. 1.

2.

Figure 3.6: Multi-scale simulation results for macro-dynamics scenario (3.12), showing
two variations of the baseline infected cancer cells death rate δi (namely: a. δi

4 ; and b.
4δi) at macro-micro stages: 1. stage 75; and 2. stage 150.

80



v i u i+ u

a. 1.

2.

b.
1.

2.

Figure 3.7: Multi-scale simulation results for macro-dynamics scenario (3.14), showing
two variations of the baseline infected cancer cells death rate δi (namely: a. δi

4 ; and b.
4δi) at macro-micro stages: 1. stage 75; and 2. stage 150.
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v i u i+ u

a. 1.

2.

b. 1.

2.

Figure 3.8: Multi-scale simulation results for macro-dynamics scenario (3.12), showing
two variations of the baseline viral infection rate ρ (namely: a. ρ

5 ; and b. 5ρ) at macro-
micro stages: 1. stage 75; and 2. stage 150.
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a. 1.

2.

b.
1.

2.

Figure 3.9: Multi-scale simulation results for macro-dynamics scenario (3.14), showing
two variations of the baseline viral infection rate ρ (namely: a. ρ

5 ; and b. 5ρ) at macro-
micro stages: 1. stage 75; and 2. stage 150.
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• extracellular matrix initial conditions:

u(x, 0) =
1 + 0.3sin(4π ‖x‖2) + sin(4π ‖(4, 0)− x‖2)

2

as shown in Fig. 3.2(b);

• oncolytic virus initial conditions:

v(x, 0) =

(
exp(−‖x−(4.5,4.5)‖22√

∆x∆y
)− exp(−28.125)

)
θ2(x)

2

where θ2(x) := χB((4.5,4.5),0.5−γ) ∗ ψγ, as shown in Fig. 3.2(c).

However, to explore the impact of multiple virus doses, for the results in Figure

3.13, we use the initial condition with five doses of oncolytic virus that is shown in

Figure 3.2(d) and is give by

v(x, 0) =∑
i,j∈{−1,1}

0.5
(
exp(−‖x−(4+0.5i,4+0.5j)‖22√

∆x∆y
)−exp(−28.125)

)
θi,j(x)

+0.5
(
exp(−‖x−(4,4)‖22√

∆x∆y
)− exp(−28.125)

)
θ1(x),

where we have that θi,j(x) := χB((4+0.5i,4+0.5j),0.5−γ) ∗ ψγ, ∀i, j ∈{−1, 1}.

Remark: The specific initial conditions for the oncolytic virus were chosen to

simulate the effect of injecting the virus particles inside the tumour or at tumour

boundary. Such approaches are often considered in experimental settings Nagano

et al. (2008); Lu et al. (2004).
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3.5.2 Summary of model parameters

In Table 3.1, we summarise the baseline parameter values for the most complex

macro-dynamics model (3.14) (these parameters appear also in models (3.10) and

(3.12)). The majority of these parameter values are taken from two references, Ca-

mara et al. (2013) and Peng et al. (2017). The parameter estimation in Camara

et al. (2013) is based on the dynamics of glioma cancer cells in the presence of OV

where it is mainly estimated from the available pre-treatment MRIs data (magnetic

resonance images) as given in Harpold et al. (2007), while the modelling approach

in Peng et al. (2017) describes the cancer invasion process in the presence of ECM

degradation enzymes. Hence, our baseline parameter regime is built on the param-

eters validation and limitation as discussed in these two studies.

Parameter Value References
Dc 0.00675 Camara et al. (2013)
Di 0.0054 Camara et al. (2013)
Dv 0.0036 Camara et al. (2013)
ηc 2.85× 10−2 Peng et al. (2017)
ηi 2.85× 10−2 Peng et al. (2017)
ηv 2.85× 10−3 Estimated
µ1 0.25 Peng et al. (2017)
ρ 79× 10−3 Camara et al. (2013)
δi 0.05 Camara et al. (2013)
αc 0.15 Estimated
αi 0.075 αc

2

µ2 0.015 Estimated
b 2 Estimated
δv 0.025 Camara et al. (2013)
β 0.775 Peng et al. (2017)
λc 0.8 Estimated
λi 0.4 Estimated

Table 3.1: Baseline parameters values for the macroscopic models (3.10), (3.12) and
(3.14). The last three parameters, β, λc and λi are involved in the macro-micro connection;
see also equations (3.16) and (3.24).

In Table 3.2, we summarise the values of parameters ρ, δi, αc, αi and b (for
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the macro-dynamics scenarios,(3.12) and (3.14)), that have shown to lead to best

tumour suppression results.

Parameter Value
Dc 0.00675
Di 0.0054
Dv 0.0036
ηc 2.85× 10−2

ηi 2.85× 10−2

ηv 2.85× 10−3

µ1 0.25
ρ 395× 10−3

δi 0.0125
αc 0.3
αi 0.15
µ2 0.015
b 3
δv 0.025
β 0.775
λc 0.8
λi 0.4

Table 3.2: Summary of parameter values that have shown improved tumour suppression
results, as summarised in Figures 3.14 and 3.15.

In Table 3.3, we summarise the parameters values for the micro-dynamics (3.19)-

(3.21).

3.5.3 Multi-scale numerical results for the three macro-scale

scenarios

In this section, we investigate numerically the three macroscale scenarios introduced

previously. We aim to observe the cancer response to oncolytic viral therapy via

tracking the macro-micro model behaviour on the maximal tissue domain Y with

respect to several aspects such as: cancer cells density, cancer boundary expansion,

or cancer suppression.
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Parameter Value
Da 2.5× 10−3

Dp 3.5× 10−3

Dm 4.91× 10−3

ψ11 0.75
ψ12 0.215
ψ13 0.3
ψ21 0.75
ψ22 0.55
ψ23 0.5
ψ31 0.11
ψ32 0.75
ψ33 0.5

Table 3.3: Summary of parameter values for the microscopic modelling component. All
parameters for this system are taken from the reference Peng et al. (2017).

For the numerical investigation of these three macroscale scenarios (3.10), (3.12),

and (3.14), we first choose a list of baseline parameters (mainly based on the pub-

lished studies in Camara et al. (2013); Peng et al. (2017)), and investigate the

outcome of the assumptions incorporated in these three cases. Second, we investi-

gate the effect of changing some of the parameters involved in virus dynamics and

spread: the death rate of infected cancer cells (δi), the viral infection rate (ρ), the

ECM degradation rates by uninfected cancer cells (αc) and infected cancer cells

(αi), the virus replication rate (b), and the initial administered virus dose. Finally,

based on the outcome of these results with different parameter values, we discuss

the conditions that lead to improved tumour suppression.

Baseline Results The following simulation results are obtained with the baseline

parameter values listed in Tables 3.1 (for the macroscopic component) and 3.3 (for

the microscopic component). In all figures shown below, the white curve represents

the boundary of the total tumour (i.e., uninfected and infected cells) within the

maximal tissue domain Y .
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In Figures 3.3, 3.4 and 3.5 we present the multiscale simulations for the coupled

dynamics of uninfected cancer cells (sub-panels c.), OV-infected cancer cells (row

b.), extracellular matrix (ECM) (row e.) and oncolytic viruses (row a.), for the three

macro-dynamics scenarios described by (3.10), (3.12) and (3.14), respectively. We

also show (row d.) the total cancer cell density (i.e., uninfected plus infected cells).

For all simulations, we start with the uninfected cancer cells density as shown in

Figure3.2(a), and the virus density as shown in Figure 3.2(c) (where the virus is

initially located on the tumour edge ∂Ω(t), namely at (x, y) = (4.5, 4.5)). The

columns show the macroscopic evolution of the tumour-ECM-virus system at four

different stages of the macro-micro interactions: stages 1, 50, 100 and 150.

We observe that in the absence of haptotatic migration against ECM gradients

for both infected cells and viruses (as described by macro-dynamics scenario (3.10)),

the virus infects mainly the areas of the tumour with lower cell densities (see stage

150 in Figures 3.3a. and 3.3c.)

If we consider haptotactic migration of virus-infected tumour cells against the

ECM gradients (as described by macro-dynamics scenario (3.12)), we observe a large

reduction in tumour size where the virus is located (see stage 150 in Figures 3.4a.

and 3.4c.).

Finally, if we consider the haptotactic migration of both virus-infected cells and

virus particles towards ECM gradients (as described by macro-dynamics scenario

(3.14)), we observe an even better reduction in tumour size which is the result of

a better virus spread throughout the tumour (see stage 150 in Figures 3.5a. and

3.5c.).

The baseline tumour mass evolution across all macro-micro stages (1–150) for

macro-dynamics scenarios (3.12) and (3.14) are shown in Figure 3.15 with blue dot-

ted lines and compared agains five relevant cases of parameter variation, as detailed
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in the next paragraphs.

In the following, we focus on the last two macro-dynamics scenarios, (3.12) and

(3.14), and investigate the effect of changes in various model parameters related

to virus dynamics and spread (parameters which can be varied experimentally to

impact virus kinetics Maroun et al. (2017)). For conciseness, Figures 3.6-3.13 below

will show the results obtained only at macro-micro stages 75 and 150 of the multiscale

dynamics.

v i u i+ u

I
a.

b.

II
a.

b.

Figure 3.10: Multi-scale simulation results for ECM degradation rates αc = 0.3 and
αi = 0.15 for macro-dynamics scenarios(3.12) (in panel I) and (3.14) (in panel II) at two
macro-micro stages: a. stage 75; and b. stage 150.

Infected Cells’ Death Rate We start our investigation into the effects of dif-

ferent model parameters on treatment outcomes, by focusing first on the rate δi at

which the infected cells are eliminated from the system (by the anti-viral immune

89



v i u i+ u

a. 1.

2.

b. 1.

2.

Figure 3.11: Multi-scale simulation results for macro-dynamics scenario (3.12), showing
two variations of baseline OV replication rate b (namely: a. b = 0; and b. b = 3) at macro-
micro stages: 1. stage 75; and 2. stage 150.
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Figure 3.12: Multi-scale simulation results for macro-dynamics scenario (3.14), showing
two variations of baseline OV replication rate b (namely: a. b = 0; and b. b = 3) at macro-
micro stages: 1. stage 75; and 2. stage 150.
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response Filley and Dey (2017)). As mentioned before, we discuss the impact of this

rate on macro-dynamics scenarios (3.12) and (3.14). In Figures 3.6 and 3.7 we re-

duce δi by a factor of four (i.e., to δi/4), and we observe that the uninfected tumour

cells are reduced dramatically in those areas occupied also by the oncolytic virus.

This result makes sense, since the persistence of infected tumour cells gives rise to

more virus particles replicating inside these cells. On the other hand, increasing δi

by a factor of four (i.e., to 4δi) leads to a poorer elimination of tumour cells, as

observed in panel (b) of Figures 3.6 and 3.7. However, as shown in Figure 3.15(1),

beyond the overall tumour mass being kept under control, δi alone does not bring a

clear influence towards suppressing the tumour, as tumour relapses to levels above

the baseline occur both when we lower and when we increase the cell death rate.

Infection Rate of Tumour Cells In the following, we examine the effect of vi-

ral infection rate (ρ) on tumour dynamics. Experimental studies have shown that

increasing the rate at which the oncolytic virus infects the tumour cells (e.g., by

engineering the virus particles to encode specific proteins that could temporarily

suppress anti-viral immune responses) plays a key role in the development of new

anti-cancer therapies Maroun et al. (2017). To investigate this aspect, we per-

formed various simulation tests for the macroscopic models (3.12) and (3.14), as we

decreased and increased the baseline value ρ = 79 × 10−3 by a factor of five (to ρ
5

and 5ρ, respectively). From panel (a.) of Figures 3.8 and 3.9, we observe that a

five-fold decrease in the infection rate ρ leads to a much faster spread of the tumour

cells (as described by the expanding tumour boundary), compared to the case where

the infection rate is increased five fold - as shown in panel (b.) of Figures 3.8 and

3.9. As shown in Figure 3.15(2)(II) with green dotted line, the five fold increase in ρ

leads to significantly better global tumour suppression with respect to the baseline

or five fold decreased cases within the macro-dynamics scenario (3.14). A similar
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although weaker tumour suppression effect observed for macro-dynamics scenario

(3.12), where a relapse occurs over the final stages of the time interval, as shown by

Figure 3.15(2)(I).

ECM Degradation Rates Known to be crucial within the process of cancer

cells’ invasion of the surrounding tissue Hanahan and Weinberg (2000, 2011), the

ECM is expected to play also an important role in viral therapy. Indeed, the ECM

distribution within the growing tumour Ω(t) interfere with the oncolytic virus dy-

namics, having impeding effects upon its spread, restricting the viral duplication,

and lowering the effectiveness of cytolytic. However, the degradation for the ECM

provides opportunities for potentially raising the effectiveness of OV treatments by

facilitating a less demanding virus passage within the tumour tissue, gaining an

easier access to uninfected cancer cells sites (Kim et al., 2014). Thus, the success

or failure of the oncolytic virus distribution will depend on the ECM degradation,

and this is confirmed also by our results obtained by doubling the degradation rate

(with respect to the baseline) and shown in panels Ia.–b. and IIa.–b. of Figure 3.10

for the macro-dynamics (3.12) and (3.14), respectively.

As illustrated in Figure 3.10 an increase in degradation rate causes not only

changes in the morphology of the growing tumour, but also a decay in the tumour

mass, as reflected in Figure 3.15(3). This decay in the total tumour mass for the

macro-dynamics scenario (3.12) is the effect of the following interacting dynamics.

The increased ECM degradation causes both infected cancer and uninfected cancer

cells to bias their migration haptotacticly towards the emerging regions of elevated

ECM levels, enabling this way a local congregation of the two cancer cell subpop-

ulations (infected and uninfected), which mediates in its turn a higher degree of

infection spread among the uninfected cancer cells, resulting this way in a decrease

in tumour mass. However, as by comparing panels Ia.–b. with IIa.–b. in Figure 3.10,
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the total cell population exhibits slightly limited spread with no pronounced finger-

ing in the macro-dynamics scenario (3.14) as opposed to macro-dynamics scenario

(3.12) where the tumour develops large fingering growth. This particular behaviour

within macro-dynamics (3.14) is due to the biased migration of both the infected and

uninfected cancer cells as well as of the oncolytic virus against ECM gradients, this

enabling them to congregate within the same regions, leading this way to increased

levels of local tumour decay.

Viruses Replication Rate Another factor that impacts virus kinetics is its repli-

cation rate (i.e., the number of virus particles release by an infected tumour cell)

Maroun et al. (2017). It is expected that an increase in the virus replication rate will

lead to a decrease in the tumour size. We confirm this through the results shown in

panel (b.) of Figures 3.11 and 3.12 for macro-dynamics scenarios (3.12) and (3.14),

respectively, where we considered a higher virus replication rate (namely b = 3)

than the corresponding baseline value (from Table 3.1) used in Figures 3.4 and 3.5

(namely b = 2). This overall tumour decrease is also confirmed by the tumour mass

estimate, represented in Figure 3.15 (4) through the green dotted line, which shows

that, at all macro-micro stages (1-150), the tumour mass for the increased virus

replication rate b is below the corresponding baseline scenario.

Finally, the absence of viral replication (i.e., b = 0), explored here through our

multiscale approach in panel (a.) of Figures 3.11 and 3.12 for macro-dynamics sce-

narios (3.12) and (3.14), leads to an increase in spatial spread of the tumour, giving

rise to pronounced fingering and elongated tumour infiltrations in the surrounding

tissue. Moreover, Figure 3.15 (4) shows that the tumour mass in the absence of

virus replication (in red dotted line) stays above the baseline results and continues

to increase at all macro-micro stages (1-150).
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Figure 3.13: Multi-scale simulation results for five virus initial doses for macro-dynamics
scenarios (3.12) (in panel I) and (3.14) (in panel II) at two macro-micro stages: a. stage
75; and b. stage 150.

Viruses Doses Acknowledging the therapeutic importance of virus dosage Rom-

melfanger et al. (2011) and accounting in this regard on a series of biological con-

straints reviewed in Vähä-koskela and Hinkkanen (2014), the virus doses should be

balanced in size and, for a more efficient viral therapy, these need to be higher than

the initial tumour size Bajzer et al. (2008). Moreover, the location of the virus doses

is important for the spatio-temporal viral dynamics within the growing tumour Ω(t)

Rioja et al. (2016), as their distribution in the immediate proximity of high density

tumour regions have the potential of a faster viral infection and spread within Ω(t).

These biological observations are explored also by our results in Figure 3.13, where

we investigate the effect of spatial distribution of initial viral dosage by increasing

their number to 5 identical doses that were spatially applied as shown by Figure
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Figure 3.14: Multi-scale simulation results for the improved outline for tumour sup-
pression for macro-dynamics scenarios (3.12) (in panel I) and (3.14) (in panel II) at two
macro-micro stages: a. stage 75; and b. stage 150.

3.2(d). As indicated also in Figure 3.15(5), after an initial rapid decrease over the

first 30 stages (not shown also in Figure 3.13), the tumour distribution recovers and

exhibits a more compact growth. This leaves the virus dosage question open and

raise the challenging problem of designing a more comprehensive strategy where

new virus doses need to be applied in appropriate locations at later stages so that

tumour control and elimination could be achieved.

Improved Viral Therapy Outline for Tumour Suppression Building on the

tumour–OV interraction scenarios and their associated numerical results explored

in Figures 3.4 – 3.13, an improved therapy is obtained by cumulating and using

the parameter values identified there to give better tumour control and suppression
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(1) (2)

(3) (4)

(5) (6)

Figure 3.15: Comparison of total tumour masses evolution over macro-micro stages
1 – 150 between the macro-dynamics scenarios (3.12) (in subfigures (I)) and (3.14) (in
subfigures (II)) for the following cases of parameter variations with respect to their baseline
values given in Table 3.1, namely: (1) (a) δi

4 , (b) baseline value for δi, and (c) 4δi; (2) (a)
ρ
5 , (b) baseline value for ρ, and (c) 5ρ; (3) (a) 2αc,2αi, and (b) baseline values for αc and
αi; (4) (a) no OV replication, b = 0, (b) baseline value for b, and (c) b=3; (5) (a) five
OV initial doses and (b) one OV initial dose; (6) (a) parameter for improved viral therapy
outline for tumour suppression given in Table 3.3, and (b) baseline parameter values given
in Table 3.1.
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response. Summarised in Table 3.2, the changes in the parameters (with respect to

their baseline values) considered in this improved therapy outline include: a four

time decrease of the virus replication rate, a five fold increase in the infection rate of

tumour cells, doubled ECM degradation rate, 50% increase in virus replication rate.

Thus, in the presence of the five initial virus doses given in Figure 3.2(d), the results

obtained via these outlined parameter changes, shown in Figure 3.14, present signif-

icant improvements in the tumour suppression results for macro-dynamics scenarios

(3.12) and (3.14), both in terms of tumour levels and in spatial spread. The level of

uninfected cells drops dramatically and the overall tumour remain fairly compact,

presenting only a limited growth over the spatial domain, throughout the entire ob-

servation period. The tumour mass evolution plotted there with red dotted line in

Figure 3.15(6) shows a complete control of the tumour which, besides a local-in-time

relapse, is brought to residual total mass levels in both macro-dynamics scenarios

(3.12) and (3.14), over the 150 macro-micro stages. Furthermore, by exploring this

improved outline for the tumour – OV interaction on a longer time perspective of

350 macro-micro stages, as shown in Figure 3.16(I) we obtain the a good long term

control of the tumour, this presenting a limited spatial growth (figure not shown

here) and its overall mass being brought to residual levels in both macro-dynamics

scenarios (3.12) and (3.14).

3.6 Conclusions and Discussions

In this paper we proposed a novel multi-scale moving boundary framework to de-

scribe the complex interactions between the tissue-scale (macro-scale) cancer cells

(uninfected and infected) populations, ECM, oncolytic virus, in the presence of the

cell-scale tumour invasive edge uPA microdynamics. The macro-dynamic of tumour–

oncolytic virus interaction give rise to the source for the leading uPA micro-dynamics
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Figure 3.16: A long run (350 macro-micro stages) of the improved outline for tumour
suppression case . (I) A comparison of total tumour masses between macro-dynamics
modelling scenarios: (a) (3.14) and (b) (3.12). (II) A comparison of viruses masses between
macro-dynamics modelling scenarios: (c) (3.14) and (d) (3.12).

via a nonlocal operator, this way establishing a top-down link between tissue- and

cell- scale levels of activity of this naturally multiscale process.

In the presence of the source induced from the macro-scale, the uPA exercises a

cross-interface micro-transport on a cell-scale neighbourhood of the tumour bound-

ary ∂Ω(t) that is given by the union of a bundle of “half-way” overlapping micro-

domains {εY }εY ∈P(t). This bundle of “half-way” overlapping micro-domains enabled

the decoupling of the micro-dynamics in terms of the dynamics on each micro-domain

εY ∈ P(t). On each micro-domain εY , the significant levels of proteolytic transport

in the peritumoural regions enabled us the determine the patterns of significant

degradation of the ECM that the uPA meets and interacts with on εY \ Ω(t). The

spatial distribution of this significant level of proteolytic enzymes enable us to char-

acterise the choreographic direction of movement and displacement magnitude of

the interface ∂Ω(t) ∩ εY and to represented this back at macro-scale in the form

of a macro-scale tumour boundary velocity. This macro-scale tumour boundary ve-

locity determined at micro-scale establishes a bottom-up feedback that is crucial in
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deciphering the morphological evolution of the macro-scale tumour.

At macro-scale we considered a cascade of three scenarios for tumour–OV inter-

action, summarised in (3.10),(3.12) and (3.14), in which taxis towards ECM gradi-

ents is gradually introduced for uninfected cancer cells, infected cancer cells, and

oncolytic virus, respectively.

Indeed, per unit time, the first macro-scale scenario given in (3.10) accounts for

the random motility of the uninfected cells, uninfected cells and virus particle within

the surrounding ECM in the presence of the usual processes of virus infection, virus

replication, ECM degradation, uninfected cell-proliferation and infected cell death,

while considering taxis against ECM gradients (haptotaxis) only for the uninfected

cell population. The modelling context is then extended to the macro-dynamics

scenario (3.12) when haptotaxis is also considered for the infected cell population,

and finally this is completed with macro-scale scenario (3.14) when also the implicit

ECM taxis movement of the virus is accounted for in the form of an ECM-OV taxis

term.

As an initially considered baseline parameter values set (given in Table 3.1) for all

three macro-dynamics scenarios ((3.10), (3.12) and (3.14)) did not ensure an effective

tumour suppression (as seen in Figures 3.3–3.5), we explored further the tumour–OV

interaction conditions for the macro-dynamics scenarios (3.12) and (3.14) by varying

the infected cancer cells death rate, the viral infection speed, the ECM degradation

rates, viral replication rate, as well as the spatial distribution of initial virus doses.

In doing so, we identified not only successful therapeutical cases, but also situations

where the oncolytic viral therapy failed to lead to tumour suppression. As reflected

by Figure 3.15, the failure of viral threatment could be clearly identified in two

cases, namely: (1) slowing down viral infection speed (as shown in panel (a.) of

Figures (3.8) and (3.9) and Figure 3.15(2)); and (2) the absence of viral replication
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induced by infected cancer cells (as shown in panel (a.) of Figures 3.11 and 3.12 and

Figure 3.15(4)). Whether facing a slowdown of the infection rate or being in the

absence of viral replication, the uninfected tumour cells gain momentum and become

the dominant player, proliferating and driving the spatial invasion, enhancing the

overall tumour mass and giving rise to pronounced fingering patterns.

However, improved tumour suppression scenarios were found for the following

parameter changes with respect to their baseline vales, namely for: (a) reducing the

infected cell death rate (shown in Figures 3.6 and 3.7); (b) increased viral infection

rate (shown in Figures 3.8 and (3.9)); (c) increased ECM degradation rate (shown

in Figure 3.10); (d) increased viral replication rate (shown in Figures 3.11 and 3.12).

Alongside these parameter changes, a spatial redistribution of initial virus dosage

in the proximity of tumour was found to have benefic impact upon tumour mass

control and spatial spread.

Finally, a combination of best parameters that we found for tumour suppression

led to an even better control of the tumour mass and tumour spatial spread as shown

in Figures 3.14 and 3.15(6). Here the distribution of uninfected cancer cells is kept

for most time observed at very low levels and the spatial spread is compact and

very limited for both macro-dynamics scenarios considered, (3.12) and (3.14). An

even longer observation of time, showed here in Figure 3.16 revealed that despite

two instances of tumour relapses (captured by the only two peaks in tumour masses

Figure 3.16 ) the tumour growth is suppressed and the tumour itself is kept under

control. Note that Fig. 3.15 and 3.16 show quite similar overall tumour mass

dynamics, which is expected since the difference between scenarios (3.12) and (3.14)

is in the advection of virus and does not affect the total tumour mass (because the

rates at which the virus kills the tumour are the same for the two scenarios). Thus,

while tumour control could be in principle achieved, a complete tumour elimination
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that would not present relapses opens the challenging question of designing a optimal

strategy for iterative delivery of new tumour doses at appropriate spatial locations,

this being the topic of a future work. Furthermore, the baseline estimation of the

parameter values ensures an appropriate fit in a comparison with some biological

and mathematical observations (Bajzer et al., 2008; Vähä-koskela and Hinkkanen,

2014; Maroun et al., 2017; Kim et al., 2014), hence, our numerical results give a

general guidance for increasing the level of parameters validation in terms of getting

better predictions in a comparison with in vitro or in vivo experiments for oncolytic

viral therapy for cancer treatment (see, for instance, the spatial data from Kemler

et al. (2019) on oncolytic virus spread).
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Chapter 4

Multi-scale Moving Boundary

Modelling of Cancer Interactions

with a Fusogenic Oncolytic Virus:

the Impact of Syncytia Dynamics

Oncolytic viral therapies is one of the new promising strategies against cancer, due

to the ability of oncolytic viruses to specifically replicate inside cancer cells and kill

them. There is increasing evidence that a sub-class of viruses that contain fusion

proteins (triggering the formation of syncytia) can lead to better oncolytic results.

Since the details of the tumour dynamics following syncytia formation are not fully

understood, in this study we consider a modelling and computational approach

to describe the effect of a fusogenic oncolytic virus on the multiscale dynamics of

a spreading tumour. We show that for the baseline parameter values considered

here, small syncytia diffusion coefficient leads to tumour reduction. Further tumour

reduction can be obtained when we increase the probability of syncytia formation,
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in the context of different viral burst rates and death rates for individually-infected

tumour cells and syncytia structures. Finally, we show that the type of syncytia

diffusion coefficient (i.e., constant or density dependent) also impacts the outcome

of the oncolytic viral therapy.

4.1 Introduction

Oncolytic viral therapy has become a promising anti-cancer treatment approach due

to the ability of these viruses to preferentially replicate inside cancer cells and elim-

inate them Seymour and Fisher (2016). While there are some clinical successes Zeh

et al. (2015), there are still significant challenges that impede a wider and more

common use of this type of therapy: from challenges associated with the systemic

delivery of the viruses (and their elimination by various immune responses), to

the physical barriers caused by the extracellular matrix (ECM) Vähä-koskela and

Hinkkanen (2014). Regarding the systemic delivery of oncolytic viruses, the intra-

venous administration would be the preferable option, since viruses could thus reach

both the primary tumours and the metastases. However, due to the immune system

and other physiological filters which eliminate these viruses, the current approaches

focus mostly on intra-tumoural injection of the oncolytic viruses Marchini et al.

(2016). Regarding the challenge caused by the physical barriers, namely the high

interstitial fluid pressure and the physical presence of ECM, this can be tackled

with the help of matrix-degrading enzymes that degrade various types of fibrillar

matrix deposits and make space between cells, which might eventually increase the

possibility of oncolytic viral infection Vähä-koskela and Hinkkanen (2014).

While there are many types of oncolytic viruses used in experiments and in

clinical trials Meerani and Yao (2010); Kauman et al. (2015); Krabbe and Altomonte

(2018), some lead to better anti-tumour results than others. For example, there is
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Figure 4.1: Graphical description of a viral-induced syncytium.

increasing evidence suggesting that a sub-class of oncolytic viruses which encode

for fusion proteins (and thus lead to the formation of syncytia structures; see also

Fig. 4.1) might lead to better anti-tumour effects compared to the non-fusogenic

viruses Krabbe and Altomonte (2018); Ebert et al. (2004). During infection with

fusogenic viruses, viral fusion proteins that are used by these viruses to enter the

cells, are transported to the surface of the infected cell where they mediate the fusion

of this cell to the neighbouring uninfected cells Krabbe and Altomonte (2018); Ebert

et al. (2004). The syncytia structures are motile, as they extend large pseudopods

to move (and their average instantaneous velocity could be slightly larger than the

velocity of single cells Sylwester et al. (1993)). This movement, together with the

movement of single cells, was shown to play a role in the recruitment of more cells

in the syncytia Sylwester et al. (1993). While these syncytia seem to contribute

to the faster spread of the oncolytic virus through the uninfected tumour via their

higher viral yield and faster replication kinetics Ebert et al. (2004); Krabbe and

Altomonte (2018); Ayala-Breton et al. (2014), the structures are usually viable for a

short time (usually 2 days Higuchi et al. (2000)) before they undergo immunogenic

cell death. We should also mention here that there are still many unknown aspects

105



surrounding the role of syncytium formation on the spread of an infection, such

as whether this syncytium could also “sink” an infection Compton and Schwartz

(2017). The authers used the term “Fusion sinks” to indicate an infection area at

which syncytia cells lose thier ability of viral replication or spread.

Therefore, to further enhance the therapeutic potential of the fusogenic viruses,

one needs to understand better the interactions between these motile structures and

the multiscale aspects of cancer invasion (e.g., the movement of cancer cells versus

the movement of syncytia, the degradation of ECM by cancer cells and its impact on

the formation and spread of syncytia). Mathematical models can test and propose

new hypotheses regarding these multiscale interactions.

The majority of the mathematical models that focus on fusogenic oncolytic

viruses consider only the implicit (temporal) dynamics of syncytia cancer cells Biesecker

et al. (2009); Bajzer et al. (2008); Laaroussi et al. (2014). There are also a few

mathematical models that consider the explicit dynamics of the syncytia; see for

example Dingli et al. (2009) for a temporal (ODE) model, and Jacobsen and Pi-

lyugin (2015); Berg et al. (2019) for spatio-temporal models. Moreover, the large

majority of these models focus on a single-scale dynamics of viruses spread among

cancer cells. Nevertheless, there are also a very few multiscale models for oncolytic

virus infections Paiva et al. (2009); Alzahrani et al. (2019).

In this study we revisit the novel multi-scale mathematical modelling framework

introduced in Alzahrani et al. (2019) for cancer cells interactions with oncolytic

viruses, and extend it to incorporate also the dynamics of the syncytia generated

by fusogenic viruses. At the macroscopic scale, we investigate the dynamical inter-

actions between three types of cancer cells (uninfected, viral-infected and syncytia-

forming cells) and oncolytic viruses, in parallel with their movement through the

extracellular matrix (ECM). At the microscopic scale, we focus on the proteolytic
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dynamics of the urokinase plasminogen activator system (uPA) that locates at the

invasive edge of the tumour site and is responsible for the degradation of the ECM.

The macro-scale (tissue-scale) dynamics connects with the micro-scale (cell-scale)

dynamics through a double feedback link that will be explained in more detail in

the next section.

Using this new multiscale moving-boundary mathematical model, we investigate

numerically a few hypotheses regarding syncytia movement (Anderson et al., 2000;

Petrie et al., 2009; Huda et al., 2018; Wu et al., 2014; Weiger et al., 2013): via

pure diffusion (faster/slower than the diffusion of single infected cancer cells), or via

diffusion combined with haptotactic movement towards ECM components. We also

investigate the effect of density-dependent diffusion coefficient for the syncytium

structure (since it is unknown whether there is any relationship between the speed

of syncytium and the density of virus particles that created it, and/or the density

of ECM that acts as a barrier for virus/cells movement). Finally, we investigate the

impact of different probabilities of syncytium formation on the outcome of oncolytic

therapy.

4.2 Modelling Hypotheses and Setting

In this study, we focus on the naturally multiscale nature of the cancer-virus inter-

action, and explore key parts of this process (which includes for the first time (to

our knowledge) the formation of virus-induced syncytia) structures through the two-

scale modelling platform introduced in Trucu et al. (2013). Specifically, while the

direct interaction between the cancer cell population and the virus (which can lead to

the formation of syncytia depicted in Figure 4.1) is observed at macroscale, this has

implications within cell-scale matrix-degarding enzymes proteolytic dynamics that

takes place along the invasive edge of the tumour. As this micro-dynamics is linked
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to the macroscale through a non-local double feedback link (see Figure 4.2), this

crucially determines the changes in spatial tumour morphology during its evolution.

Figure 4.2: Schematics of the multiscale moving boundary approach.

4.2.1 Macroscopic model for virus-tumour interactions via

syncytium formation

Starting with the multi-scale moving boundary mathematical framework concepts

introduced in Trucu et al. (2013); Peng et al. (2017) and the syncytium assumptions

introduced in Dingli et al. (2009), we describe a new multi-scale spatio-temporal

mathematical model for the interactions between cancer cells and a fusogenic on-

colytic virus (which leads to the formation of syncytia structures). Maintaining

here the terminology of the multiscale framework introduced in Trucu et al. (2013),

we denote the tissue-scale (macro-scale) growing solid tumour by Ω(t) and we as-

sume that this evolves within a maximal cube of tissue Y ∈ RN , N = 2, 3, and so
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Ω(t) ⊂ Y , ∀t > 0. As illustrated in Figure 4.2, at the macroscopic-scale, we focus

on the dynamic interactions between spatially distributed uninfected cancer cells

c(x, ·), infected cancer cells i(x, ·) and syncytia cancer cells s(x, ·) with the oncolytic

virus (OV) particles v(x, ·), while taking into account the surrounding extracellular

matrix (ECM) density u(x, ·), ∀x ∈ Ω(·). (The dynamics occurring at the micro-

scopic scale and its top-down and bottom-up links to the macroscale will be detailed

in Section 4.2.2).

Before we describe the model equations, let us denote by T the total cancer cells

density, which is composed of uninfected (c), viral-infected (i) and syncytia (s) cells,

i.e. T = c+ i+ s. The total density of viral-infected cells is denoted by itot = i+ s.

Following biological evidence from several experimental studies Petrie et al.

(2009); Weiger et al. (2013); Huda et al. (2018); Wu et al. (2014), we assume that the

uninfected cancer cells exhibit both random and directed movements. The random

movement is represented here via a diffusion process (see Stroock and Varadhan

(1997)). The cell directed movement that we address here is the one towards ECM

gradients, and so adopting a similar approach as in Anderson et al. (2000), this is

explored here via a haptotactic process. At the same time, based on further biologi-

cal evidence Laird (1964, 1965); Tjorve and Tjorve (2017), we assume here that the

cell proliferation process is govern by logistic growth. Finally, the cell population

can decay due to infection caused by oncolytic viruses at a rate ρ and to fusion with

neighbouring infected cancer cells i at a rate κ. Hence, all these considerations lead

to the following governing equation for the cell uninfected population, namely:

∂c

∂t
= Dc∆c− ηc∇ · (c∇u) + µ1c(1− c)− ρcv − κci. (4.1)

where Dc > 0 is a constant diffusion coefficient, ηc > represents a constant hapto-

tactic rate, µ1 is the logistic proliferation rate.
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For the viral-infected cancer cells, drawing upon the same biological considera-

tion as for the uninfected cancer cells Petrie et al. (2009); Weiger et al. (2013); Huda

et al. (2018); Wu et al. (2014), we assume that also this population move randomly

with diffusion coefficient Di and can move in a haptotactic manner towards higher

ECM gradients with rate ηi. The proliferation of viral-infected cancer cells is the

result of infection with the oncolytic virus at a rate ρ, as well as the failure to form

a syncytium structure that leads to individual infected cells. We denote by p0 the

probability that a syncytium structure will fail to form following the interactions

between uninfected and infected cancer cells (p0κci). Thus, (1− p0) will denote the

probability that a syncytium will form (and (1 − p0)κci will describe the forma-

tion of syncytia structures). Finally, the infected cancer cells die at rate δi. These

assumptions are described by the following equation:

∂i

∂t
= Di∆i− ηi∇ · (i∇u) + ρcv + p0κci− δii (4.2)

For syncytia dynamics, we consider three distinct assumptions (Nowak and May,

2000; Dingli et al., 2009; Wodarz et al., 2012; Rioja et al., 2016), namely:

(a) no diffusion (so their dynamics is the result of the formation of syncytia struc-

ture as described above, combined with death at a rate δs) :

∂s

∂t
= (1− p0)κci− δss. (4.3)

(b) diffusion (with coefficient Ds) without haptotactic movement towards the

nearby ECM components:

∂s

∂t
= Ds∆s+ (1− p0)κci− δss. (4.4)
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(c) diffusion (with coefficient Ds) and haptotactic movement (at rate ηs) towards

higher ECM gradients:

∂s

∂t
= Ds∆s− ηs∇ · (s∇u) + (1− p0)κci− δss. (4.5)

For the extracellular matrix (ECM) we assume that it does not migrate nor diffuse,

but can be remodelled. To describe this remodelling process, we assume that ECM

components grow logistically at rate µ2 (while competing for space with the cancer

cells: uninfected, infected and syncytia). In addition, ECM is degraded by all three

type of cancer cells: by uninfected cells at rate αc, by viral-infected cells at rate

αi, and by syncytia at rate αs. Therefore the evolution of the density of ECM

components is described by the following equation:

∂u

∂t
= −u(αcc+ αii+ αss) + µ2u(1− u− c− i− s) (4.6)

Finally, we assume that the oncolytic virus particles proliferate when they are re-

leased by the infected and syncytia cancer cells at rates bi and bs, respectively.

These virus particles have the ability to diffuse at rate Dv, and to move haptotac-

ticaly towards higher ECM gradients at rate ηv. Moreover, the free virus particles

are eliminated (i.e., die) at a rate δv. Their numbers are also reduced when they

infect at a rate ρ (and thus become trapped inside) the uninfected cancer cells. The

previous assumptions are described mathematically by the following equation:

∂v

∂t
= Dv∆v − ηv∇ · (v∇u) + bii+ bss− ρcv − δvv. (4.7)

The above equations describe the non-dimensional macroscopic scale dynamics

in three different cases of gradual increasing complexity, which we summarise below
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as follows:

First case: syncytia cancer structures do not diffuse on the spatial domain, but

they still have interactions with the ECM components whenever they meet on

the micro spatial domain (i.e. they still play a central role on ECM remodelling

and degradation). The full macroscopic model is given by:



∂c
∂t

= Dc∆c− ηc∇ · (c∇u) + µ1c(1− c)− ρcv − κci,

∂i
∂t

= Di∆i− ηi∇ · (i∇u) + ρcv + p0κci− δii,

∂s
∂t

= (1− p0)κci− δss,

∂u
∂t

= −u(αcc+ αii+ αss) + µ2u(1− u− c− i− s),

∂v
∂t

= Dv∆v − ηv∇ · (v∇u) + bii+ bss− ρcv − δvv.

(4.8)

Second case: syncytia cancer structures have diffusion abilities, but they do

not interact haptotactically with the nearby ECM’s components. The full

macroscopic model is therefore given by:



∂c
∂t

= Dc∆c− ηc∇ · (c∇u) + µ1c(1− c)− ρcv − κci,

∂i
∂t

= Di∆i− ηi∇ · (i∇u) + ρcv + p0κci− δii,

∂s
∂t

= Ds∆s+ (1− p0)κci− δss,

∂u
∂t

= −u(αcc+ αii+ αss) + µ2u(1− u− c− i− s),

∂v
∂t

= Dv∆v − ηv∇ · (v∇u) + bii+ bss− ρcv − δvv.

(4.9)

Third case: syncytia cancer structures diffuse randomly in the spatial domain

and also move haptotactically towards higher ECM gradients. Thus the full
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macroscopic model is given by:



∂c
∂t

= Dc∆c− ηc∇ · (c∇u) + µ1c(1− c)− ρcv − κci,

∂i
∂t

= Di∆i− ηi∇ · (i∇u) + ρcv + p0κci− δii,

∂s
∂t

= Ds∆s− ηs∇ · (s∇u) + (1− p0)κci− δss,

∂u
∂t

= −u(αcc+ αii+ αss) + µ2u(1− u− c− i− s),

∂v
∂t

= Dv∆v − ηv∇ · (v∇u) + bii+ bss− ρcv − δvv.

(4.10)

Furthermore, each of these coupled dynamics are accompanied by initial condi-

tions

c(x, 0)=c0(x), i(x, 0)= i0(x), s(x, 0)=s0(x), x∈Ω(0),

u(x, 0)=c0(x), v(x, 0)= i0(x), x∈Y,

which will be specified explicitly with particular forms for numerical simulations in

Section 4.3.

Finally, since we do not assume any transport across the boundary of the activ-

ity domains, each of these coupled dynamics are accompanied by Neumann zero

boundary conditions, namely:

∂c
∂n

∣∣∣∣
∂Ω(t)

= 0; ∂i
∂n

∣∣∣∣
∂Ω(t)

= 0; ∂s
∂n

∣∣∣∣
∂Ω(t)

= 0;

∂u
∂n

∣∣∣∣
∂Y

= 0; ∂v
∂n

∣∣∣∣
∂Y

= 0;

were n represents simply the normal direction across the interface of the correspond-

ing activity domain.
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4.2.2 The microscopic proteolytic dynamics and its double

feedback to link to macro-scale

In this chapter, the microscopic proteolytic dynamics is given by the 3D-reaction-

diffusion-taxis as previously presented in (3.22). However, for convenience, we give

a short discription of the model assumptions in the following text. The uPA enzy-

matic system includes the coupled dynamics of three main molecular species (see

Andreasen et al. (2000, 1997)), namely: (1) the inactive urokinase plasminogen ac-

tivator (uPA); (2) uPA inhibitor (PAI-1); and (3) plasmin. In order to become

active, the inactive uPA needs first to bind to the uPA receptors (uPAR). Once

activated, the active uPA can activate the plasmin molecules (which are freely avail-

able in ECM) turning these into plasmin. However, at the same time, the active

uPA molecules can also become inactive if these are bound by inhibitor molecules

PAI-1, leaving this way the dynamics of the uPA system. Mathematically, we denote

here the spatio-temporal distribution for each of these molecular species in the uPA

system as follows:

• a(y, τ) represents the urokinase plasminogen activator (uPA), without distin-

guishing here between its active and inactive forms;

• p(y, τ) stands for the inhibitor PAI-1; and

• m(y, τ) is the plasmin;

where (y, τ) ∈ B‖·‖∞(∂Ω(t0), ε), with B‖·‖∞(∂Ω(t0), ε) representing a cell-scale neigh-

bourhood of radius ε > 0 for the tumour interface ∂Ω(t0).

To address the multiscale dynamics of the cancer invasion process while account-

ing for the important role of the cell-scale (micro-scale) dynamics of the uPA system

at the invasive edge of the tumour, the authors in Peng et al. (2017) have applied the
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two-scale moving boundary framework initially introduced in Trucu et al. (2013) to

explore the impact the uPA has upon the changes in the tissue-scale (macro-scale)

tumour morphology of the growing cancer. Therefore, since here we build upon

these two previous works and expand these by accounting also for the presence of

an oncolytic virus with syncytia formation at macro-scale, to describe the micro-

dynamics and its non-local feedback links with the tumour macro-dynamics that,

let us briefly revisit in the following the key notations of the framework introduced

and discussed in Trucu et al. (2013); Peng et al. (2017). Thus, to capture the micro-

scale dynamics occurring at the invasive edge of the tumour, following a series of

topological considerations, as described in Trucu et al. (2013), a covering family P

consisting of overlapping cubes P(t) := {εY }εY ∈P(t) is constructed from a section

of half-way shifted small cubes of an appropriately chosen dyadic decomposition of

the maximal tissue macro-cube Y (where the tumour Ω(t) invades) that cover the

tumour interface ∂Ω(t), which, in brief, exhibits and is completely determined by

the following properties:

• each εY , also referred to as a micro-domain, provides a cell-scale neighbour-

hood of εY ∩∂Ω(t) of micro-scale size ε > 0 with the particular properties that

the regions captured inside and outside of the boundary, namely εY ∩Ω(t) and

εY \ Ω(t), have topologically connected interiors;

• the family P(t) := {εY }εY ∈P(t) covers completely the boundary ∂Ω(t).

Thus, at any given time t0 > 0, the covering bundle P(t0) enables the explo-

ration of the uPA system dynamics on the cell-scale neighbourhood B‖·‖∞(∂Ω(t0), ε)

by decomposing this in a bundle of uPA micro-processes on each of the micro-

domains εY . In this context, during any macroscopic time range [t0, t0 + ∆t] that

is correspondingly matched by an equal length micro-scale time span [0,∆t] for the

microdynamics, on any micro-domain εY , a source of uPA arises naturally at any
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micro-scale point y ∈ εY as a collective contribution not only of the uninfected

cancer cells but also of the infected cancer cells and syncytia population that arrive

within a given distance δ > 0 with respect to y, see Figure 4.2. Thus, the microscale

source of uPA is induced non-locally by the macro-dynamics through a top-down

link, and this can be mathematically expressed as

f
εY

uPA
(y, τ) =

∫
B(y,δ)∩Ω(t0

(λcc+ λii+ λss)(σ, t0 + τ)dσ

λ(B(y, δ) ∩ Ω(t0)
(4.11)

where τ ∈ [0,∆t] and λc, λi and λs are the rates at which the uninfected cancer cells,

the infected cancer cells and syncytia population secrete uPA, respectively. At the

same time, the inhibitor PAI-1, which is produced through the activation of plasmin,

is eliminated from the system dynamics after binding to uPA and, notably, through

non-local binding to the surrounding ECM (more specifically, to its constituent vit-

ronectin). This binding of PAI-1 to constituents of the surrounding tissue-scale ECM

density acts therefore as an absorption term for the PAI-1 micro-dynamics, whose

absorption coefficient is again mediated and induced by the macro-dynamics (en-

hancing this way the top-down feedback link) and can be formalised mathematically

through the non-local expression

f
εY

PAI−1
(y, τ) =

∫
B(y,δ)

u(σ, t0+τ)dσ

λ(B(y, δ))
. (4.12)

where (y, τ) ∈ (εY ∩ Ω(t0))× [0,∆t].
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4.3 Multiscale Numerical Simulations for Macro-

Dynamics Cases (4.8)-(4.10)

Starting from the two-scale computational framework that was previously developed

in Alzahrani et al. (2019) for the case that was not considering syncytia structures

formation (which was based on the initial two-scale framework proposed in Trucu

et al. (2013)), we developed that framework further to cope with the new context of

multiscale dynamics of cancer-virus interactions in the presence of syncytia struc-

tures formation. Similar to the initial framework (introduced in Trucu et al. (2013)),

the extended multiscale numerical scheme that we developed and use here combines

predictor-corrector finite differences for the macro-dynamics with quadrilateral finite

element approach for micro-dynamics. Further, as detailed in Trucu et al. (2013),

the internal macro-mesh is extended with additional mesh points when the bound-

ary is relocated (which are activated from a silent background mesh on the maximal

tissue cube Y ). Finally, since the development of this extended numerical scheme

required a discretisation strategy similar to that used in the non-syncytia case (con-

sidered in Alzahrani et al. (2019)), we did not include that here and instead, for

details of the main implementation steps, we refer the reader to Alzahrani et al.

(2019); Trucu et al. (2013).

4.3.1 Initial conditions for the macro-micro model

The initial distribution of the uninfected cancer cells (which form a tumour localised

in the middle a computational domain Y = [0, 8]× [0, 8]) is given by:

c(x, 0) =

(
exp(−‖x−(4,4)‖22√

∆x∆y
)− exp(−28.125)

)
θ1(x)

2
,
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where θ1(x) := χB((4,4),0.5−γ)∗ψγ, with ψγ a Gaussian mollifier that enables a smooth

transition to zero outside a radius of 0.5 of the ball B((4, 4), 0.5), as shown Figure

3.2-(a).

Since the oncolytic virus is introduced into the system at the start of the sim-

ulations, it makes sense to assume that at this time (i.e., t = 0) there are no

virus-infected and syncytia cancer cells:

i(x, 0) = 0, and s(x, 0) = 0.

Regarding the virus, we assume that this is injected at tumour site (at the start of

the simulations), via a single or multiple insertion points Bai et al. (2019); Hoffner

et al. (2016); Seery (2017). For the baseline simulations, we choose a single insertion

point, as described in Figure (3.2)(c) and given by the expression

v(x, 0) =

(
exp(−‖x−(4.5,4.5)‖22√

∆x∆y
)− exp(−28.125)

)
θ2(x)

2
,

where θ2(x) := χB((4.5,4.5),0.5−γ)∗ψγ. However, for an improved viral therapy outcome

scenario (given that the initial tumour lesion is quite spread over space – see Figure

(3.2)(a)), we inject five virus doses at different positions inside the tumour, as shown

in Figure (3.2)(d):

v(x, 0) =∑
i,j∈{−1,1}

0.5
(
exp(−‖x−(4+0.5i,4+0.5j)‖22√

∆x∆y
)−exp(−28.125)

)
θi,j(x)

+0.5
(
exp(−‖x−(4,4)‖22√

∆x∆y
)− exp(−28.125)

)
θ1(x),

where θi,j(x) := χB((4+0.5i,4+0.5j),0.5−γ) ∗ ψγ, ∀i, j ∈{−1, 1}.

Finally, since the ECM is naturally heterogeneous, we considered here the fol-

118



lowing ECM initial condition :

u(x, 0) =
1 + 0.3sin(4π ‖x‖2) + sin(4π ‖(4, 0)− x‖2)

2
.

Further insights upon the impact that the choice of the ECM initial conditions has on

the overall tumour evolution are discussed in A.2, where we explore the sensitivity of

the viral treatment of the tumour with respect to the level of heterogeneities within

the ECM.

Parameter Value References
Dc 0.00675 Camara et al. (2013)
Di 0.0054 Camara et al. (2013)
Ds 0.0027 Di

2

Dv 0.0036 Camara et al. (2013)
ηc 2.85× 10−2 Peng et al. (2017)
ηi 2.85× 10−2 Peng et al. (2017)
ηs 2.85× 10−3 Estimated
ηv 2.85× 10−3 Alzahrani et al. (2019)
µ1 0.25 Peng et al. (2017)
ρ 79× 10−3 Camara et al. (2013)
κ 158× 10−3 κ > ρ, Biesecker et al. (2009), Peng et al. (2002)
δi 0.05 Camara et al. (2013)
δs 0.05 (δs = δi) Estimated
δv 0.025 Camara et al. (2013)
αc 0.15 Peng et al. (2017)
αi 0.075 Alzahrani et al. (2019)
αs 0.0375 (αc

4
) Estimated

µ2 0.015 Alzahrani et al. (2019)
bi 2 Alzahrani et al. (2019)
bs 2 (bs = bi) Estimated
p0 0.5 50% Probability
λc 0.8 Alzahrani et al. (2019)
λi 0.4 Alzahrani et al. (2019)
λs 0.4 (λs = λi) Estimated

Table 4.1: Baseline parameters values for the macroscopic models.

Regarding the initial conditions at the microscale: we assume that the enzymes
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are produced only by the cancer cells at macroscale level (and passed nonlocally to

the microscale), and there are no other pre-existing enzymes in the peritumoural

interface. Thus, we always consider zero initial conditions for enzymes at the mi-

croscale.

4.3.2 Parameters

To simplify the presentation of the numerical results, in the following we summarise

the parameter values used in the simulations. In order to measure the performance of

our multi-scale model assumptions, we first estimate the baseline parameter regime

at both scales, namely, macroscopic and microscopic scales (summarised in Ta-

bles 4.1, 4.2), building on a combination of the possible values for the parameters

according to the previous results discussed in Harpold et al. (2007); Camara et al.

(2013); Peng et al. (2017); Biesecker et al. (2009); Alzahrani et al. (2019). Then, we

develop this estimation to include few restrictions and values limitation according to

some mathematical and biological observations in terms of tumour-OV interactions,

for instance, a reasonable increase of the fusion rate κ (in a comparison with the

value of viral infection rate ρ) mostly leads to a controlled cancer invasion scenario

(Biesecker et al., 2009).
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Parameter Value
Da 2.5× 10−3

Dp 3.5× 10−3

Dm 4.91× 10−3

ψ11 0.75
ψ12 0.215
ψ13 0.3
ψ21 0.75
ψ22 0.55
ψ23 0.5
ψ31 0.11
ψ32 0.75
ψ33 0.5

Table 4.2: Summary of parameter values for the microscopic model component. All
parameters for this system are taken from the reference Peng et al. (2017).

4.3.3 Results

To investigate the different scenarios discussed in the previous section (regarding the

tumour-OV interactions in the presence of cells syncytium) we start our numerical

simulations with the baseline parameters summarised in Tables 4.1, 4.2.

We start our numerical investigation of the multiscale moving-boundary model

proposed in this study by focusing on the three cases of syncytia movement/lack-

of-movement. For the first case, described mathematically by the macro-dynamics

(4.8), we assume that syncytia structures do not have any movement ability (i.e.,

neither diffusive nor haptotactic movement), but they can still play a role in the

remodelling and degradation of ECM components on the tumour region Ω(t). The

dynamics of the various macroscale model components is presented in Figure 4.3,

where we show (for three different micro-macro stages, 1, 50 and 100): the virus

density (row a.), the density of uninfected cancer cells (row b.), the density of

infected cancer cells (row c.), the density of syncytia cancer cells (row d.), total

cancer cells density (row e.), and ECM density (row f.). We note that in this case,
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Parameter Value References
Dc 0.00675 Camara et al. (2013)
Di 0.0054 Camara et al. (2013)
Ds 0.000675 Estimated
Dv 0.0036 Camara et al. (2013)
ηc 2.85× 10−2 Peng et al. (2017)
ηi 2.85× 10−2 Peng et al. (2017)
ηs 2.85× 10−3 Estimated
ηv 2.85× 10−3 Alzahrani et al. (2019)
µ1 0.25 Peng et al. (2017)
ρ 395× 10−3 Alzahrani et al. (2019)
κ 2ρ κ > ρ, Biesecker et al. (2009), Peng et al. (2002)
δi 0.0125 Alzahrani et al. (2019)
δs 0.0125 (δs = δi) Estimated
αc 0.3 Alzahrani et al. (2019)
αi 0.15 Alzahrani et al. (2019)
αs 0.075 (αc

4
) Estimated

µ2 0.015 Alzahrani et al. (2019)
bi 3 Alzahrani et al. (2019)
bs 3 (bs = bi) Estimated
p0 0.75 Estimated
δv 0.025 Camara et al. (2013)
λc 0.8 Alzahrani et al. (2019)
λi 0.4 Alzahrani et al. (2019)
λs 0.4 (λs = λi) Estimated

Table 4.3: Parameter values list for the improved tumour suppression results, as sum-
marised in Figure (4.13).

the syncytia structures form mainly in those tumour regions characterised by lower

tumour cell densities, while the single infected cells are mainly in those regions

characterised by higher tumour cell densities.

For the second case, described mathematically by the macro-dynamics (4.9), we

assume that syncytia cells can move randomly inside the macroscopic domain, but

they do not show haptotactic migration towards regions of higher ECM levels. To

investigate the effect of this random motility of syncytia structures, we perform sim-

ulations with different syncytia diffusion coefficients Ds (with respect to Di - the
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(stage 1) (stage 50) (stage 100)

a.

b.

c.

d.

e.

f.

Figure 4.3: Multi-scale simulation results for macro-dynamics syncytia system (4.8)
at three macro-micro stages (1,50 and 100) for the baseline parameter values from Table
4.1, showing: a. virus density; b. uninfected cancer cells density; c. infected cancer cells
density; d. syncytia cancer cells density; e. total cancer cells density and f. ECM density.
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diffusion coefficient of single infected cells). Thus, in Figure 4.4-(I) we investigate

the situation Ds = Di; in Figure 4.4-(II) we investigate the situation Ds = Di/4;

and in Figure 4.4-(III) we investigate the situation Ds = 4Di. We observe here that

lower Ds compared to Di (i.e., Ds = Di/4) leads to syncytia structures localised

also in the non-infected part of the tumour, which causes an overall reduction in

tumour size and tumour spread (as the invasion boundary is shrinking). In con-

trast, increasing Ds compared to Di (i.e., Ds = 4Di) leads to an increase in tumour

size and tumour spread. It is possible that lower syncytia motility leads to more

localised tumour killing and localised release of virus particles, while larger syn-

cytia motility leads to a wider spread of the virus particles, which also increases

their probability of elimination. In Figure 4.5 we summarise all these results by

showing the effect of syncytia random motility on: (a) total tumour mass (i.e., un-

infected+infected+syncytia); (b) tumour invasion area; (c) and the evolution of the

ration between the total tumour mass and the tumour invasion area.

Next, we return to the case bs = bi and δs = δi, and show an example of significant

tumour reduction when we decrease the parameters associated with the proteolytic

enzymes (see Table 4.3), which are expected to lead to smaller enzymatic transport

across the tumour interface, ultimately resulting in peritumoural ECM degradation.

This results in slower tumour invasion, which enables the syncytia and infected

cells to be more effective at cancer cell elimination on tumour domain Ω(t). This

behaviour is depicted in Figure 4.12. In Figure 4.13 we compare – in terms of total

tumour mass and tumour invasion area – this improved therapy scenario versus the

baseline scenario described by the parameter values listed in Table 4.1.

Finally, we investigate the third case, described mathematically by the macro-

dynamics (4.10), where we assume that syncytia cancer cells not only diffuse ran-

domly but also move haptotactically towards higher ECM gradients. As before,
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(stage 1) (stage 50) (stage 100)

I
a.

b.

II
a.

b.

III
a.

b.

Figure 4.4: Multi-scale simulation results for macro-dynamics syncytia system (4.9) in
the case of Ds = Di (in panel I), Ds = Di/4 (in panel II) and Ds = 4Di (in panel III) at
three macro-micro stages (1,50 and 100) for the baseline parameter values from Table 4.1,
showing: a. syncytia cancer cells density and b. total cancer cells density.
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(a) (b)

(c)

Figure 4.5: Comparison of: (a) total tumour masses evolution versus macro-micro
stages 1 – 100 for the macro-dynamics case (4.9) for various random diffusion scenarios
of syncytia cancer cells; (b) tumour invasion area versus macro-micro stages 1 – 100 for
the macro-dynamics case (4.9) for various random diffusion scenarios of syncytia cancer
cells; and (c) the evolution of the ratio of total tumour masses to tumour invasion area
over macro-micro stages 1 – 100 for the macro-dynamics case (4.9) for various random
diffusion scenarios of syncytia cancer cells. (i) Ds = 4Di; (ii) Ds = Di; (iii) Ds = Di/4.

we investigate numerically the effects of various syncytia haptotactic velocities ηs

(as compared with the haptotactic velocities of single infected cancer cells ηi, and

the velocities of virus particles ηv). Figure 4.6 summarises these effects on: (a)

total tumour size; (b) tumour invasion area for the following two sub-cases: (i)

ηs = ηi = 2.85× 10−2 and (ii) ηs = ηv = 2.85× 10−3; and the evolution of the ration

between the total tumour mass and the tumour invasion area. Note that case (ii),
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where ηs = ηv < ηi, leads to a slightly better tumour outcome in terms of both

tumour mass and invasion area.

(a) (b)

(c)

Figure 4.6: (a) Comparison of total tumour masses evolution over macro-micro stages 1
– 100 for the macro-dynamics case (4.10) for various haptotactic rates of syncytia cancer
cells ECM gradients. (b) Comparison of tumour invasion area over macro-micro stages 1
– 100 for the macro-dynamics case (4.10) for various haptotactic rates of syncytia cancer
cells towards ECM gradients. (c) Comparison of the evolution of the ratio of total tumour
masses to tumour invasion area over macro-micro stages 1 – 100 for the macro-dynamics
case (4.10) for various haptotactic rates of syncytia cancer cells ECM gradients. (i) ηs = ηi;
(ii) ηs = ηv.

Having investigated the role of syncytia’s diffusive/haptoctatic speeds on tumour

growth and spread, we next focus on the impact of the fusion failure probability p0

on the overall oncolytic therapy. (Note that higher p0 means higher numbers of

127



individual OV-infected cancer cells i, and lower numbers of syncytia structures s).

In Figures 4.7, 4.8 and 4.9 we investigate the effect of three failure levels of syncytia

fusion probability: p0 = 50%, p0 = 25% and p0 = 75%, respectively. By comparing

the results in these three figures we can conclude that higher p0 values are associated

with lower syncytia densities and lower tumour sizes. The anti-tumour effect of

higher p0 probabilities can be seen more clearly in Figure 4.10, where we show the

evolution of total tumour mass and tumour invasion area as well as the evolution of

the ratio of total tumour masses to tumour invasion area over macro-micro stages 1

– 100.

This unexpected outcome might be caused by the assumption that bs = bi (i.e.,

both individually-infected tumour cells and syncytia structure burst at the same

rates to release new virus particles), and δs = δi (i.e., both individually-infected

tumour cells and syncytia structures die at the same rates). However, it makes sense

to assume that syncytia live longer than the individually-infected cells Herschke et al.

(2007), and that each syncytium has a higher viral yield compared to the yield of

a single infected cell. Thus, in Figure 4.11 we investigate the anti-tumour/pro-

tumour effects of higher syncytia burst rates (bs = 1.5bi) and lower syncytia death

rates (δs = δi
5

), and compare the results with the ones for the above case (i.e., bs = bi,

δs = δi). It is clear that higher probabilities of syncytium formation (i.e., lower p0)

lead to faster tumour death when bs > bi and δs < δi.

4.4 Extension of Macro-Dynamics Case (4.10) to

Include Density-Dependent Syncytia Diffusion

The previously-discussed cases assumed that syncytia diffusion is constant. How-

ever, given the size of this giant multi-nucleated structure, it is likely that its motility
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(stage 1) (stage 50) (stage 100)

a.

b.

c.

Figure 4.7: Multi-scale simulation results for macro-dynamics syncytia system (4.10)
in the case of 50% fusion failure probability (p0 = 0.5) at three macro-micro stages (1,50
and 100) for the baseline parameter values from Table 4.1, showing: a. infected cancer
cells density; b. syncytia cancer cells density and c. total cancer cells density.

is influenced by the density of ECM, as well as the density of fusogenic oncolytic

viruses (as more viruses could lead to larger syncytia, which extend larger pseu-

dopods to move Sylwester et al. (1993)). In the following we generalise the macro-

dynamics described in model (4.10) by assuming that syncytia diffusion coefficient

is density dependent:



∂c
∂t

= Dc∆c− ηc∇ · (c∇u) + µ1c(1− c)− ρcv − κci,

∂i
∂t

= Di∆i− ηi∇ · (i∇u) + ρcv + p0κci− δii,

∂s
∂t

=
(
Ds

v
fs(u,v)

)
∆s− ηs∇ · (s∇u) + (1− p0)κci− δss,

∂u
∂t

= −u(αcc+ αii+ αss) + µ2u(1− u− c− i− s),

∂v
∂t

= Dv∆v − ηv∇ · (v∇u) + bii+ bss− ρcv − δvv.

(4.13)
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(stage 1) (stage 50) (stage 100)

a.

b.

c.

Figure 4.8: Multi-scale simulation results for macro-dynamics syncytia system (4.10)
in the case of 25% fusion failure probability (p0 = 0.25) at three macro-micro stages (1,50
and 100) for the baseline parameter values from Table 4.1, showing: a. infected cancer
cells density; b. syncytia cancer cells density and c. total cancer cells density.
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(stage 1) (stage 50) (stage 100)

a.

b.

c.

Figure 4.9: Multi-scale simulation results for macro-dynamics syncytia system (4.10)
in the case of 75% fusion failure probability (p0 = 0.75) at three macro-micro stages (1,50
and 100) for the baseline parameter values from Table 4.1, showing: a. infected cancer
cells density; b. syncytia cancer cells density and c. total cancer cells density.
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(a) (b)

(c)

Figure 4.10: (a) Comparison of total tumour masses evolution over macro-micro stages
1 – 100 for the macro-dynamics case (4.10) for various fusion failure probabilities p0.
(b) Comparison of tumour invasion area over macro-micro stages 1 – 100 for the macro-
dynamics case (4.10) for various fusion failure probabilities p0. (c) Comparison of the
evolution of the ratio of total tumour masses to tumour invasion area over macro-micro
stages 1 – 100 for the macro-dynamics case (4.10) for various fusion failure probabilities
p0. (i) p0 = 0.25; (ii) p0 = 0.50; (iii) p0 = 0.75.

Note that this model reduces to case (4.10) if we choose fs(u, v) = v. In the following

we consider two examples for fs (both leading to a saturated diffusion coefficient for

the syncytia structures):
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(a) (b)

(c)

Figure 4.11: (a) Comparison of total tumour masses evolution over macro-micro stages
1 – 100 for the macro-dynamics case (4.10) for various fusion probabilities p0. (b) Compar-
ison of tumour invasion area over macro-micro stages 1 – 100 for the macro-dynamics case
(4.10) for various fusion failure probabilities p0 with respect to different values of bs and
δs. (c) Comparison of the evolution of the ratio of total tumour masses to tumour invasion
area over macro-micro stages 1 – 100 for the macro-dynamics case (4.10) for various fusion
probabilities p0. (i) p0 = 0.25, when bs = bi and δs = δi; (ii) p0 = 0.75 when bs = bi and
δs = δi. (iii) p0 = 0.25 when bs = 1.5bi and δs = δi

5 ; (iv) p0 = 0.75 when bs = 1.5bi and

δs = δi
5 .

i. fs(u, v) depends only on OV, and the dependence is linear:

fs(u, v) = v + 1; (4.14)
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(stage 1) (stage 50) (stage 100)

a.

b.

c.

Figure 4.12: Multi-scale simulation results for macro-dynamics syncytia system (4.10)
at three macro-micro stages (1,50 and 100) for the improved treatment scenario corre-
sponding to the parameter values listed in Table 4.3, showing: a. infected cancer cells
density; b. syncytia cancer cells density and c. total cancer cells density.

ii. fs(u, v) depends on both OV and ECM, and the dependence is linear:

fs(u, v) = u+ v + 1. (4.15)

In Figure 4.15 we show the evolution of the total tumour mass (for the baseline

parameters listed in Table (4.1)) over 100 micro-macro stages. We compare the

baseline dynamics generated by model (4.10) (case (a) described by the red curve)

with the dynamics generated by model (4.13)+(4.14) (case (b) described by the blue

curve), and by model (4.13)+(4.15) (case (c) described by the green curve). Overall,

the model with the density-dependent syncytia diffusion shows less tumour growth

and smaller tumour invasion area during the later stages of tumour dynamics com-

pared with the baseline model (with constant diffusion). This tumour reduction can
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(a) (b)

(c)

Figure 4.13: (a) Comparison of total tumour masses evolution over macro-micro stages
1 – 100 for the macro-dynamics case (4.10). (b) Comparison of tumour invasion area over
macro-micro stages 1 – 100 for the macro-dynamics case (4.10). (c) Comparison of the
evolution of the ratio of total tumour masses to tumour invasion area over macro-micro
stages 1 – 100 for the macro-dynamics case (4.10). (i) baseline parameter values as listed
in Table 4.1; (ii) parameter values for improved anti-tumour therapy as listed in Table 4.3.

be explained by the fact that syncytia diffusion (which depends on OV and ECM

spatial distribution) leads to the accumulation of syncytia structures in areas with

uninfected and infected tumour cells (the infected tumour cells releasing more OV),

which ultimately causes more tumour destruction. We also note that there is no sig-

nificant difference between the model dynamics with fs described by either equations
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(stage 1) (stage 50) (stage 100)

a.

b.

c.

Figure 4.14: Multi-scale simulation results for macro-dynamics systems (4.10) (panels
(a)), (4.13)+(4.14) (panels (b)), and (4.13)+(4.15) (panels (c)), for the baseline parameter
values from Table 4.1. All figures show the total tumour distribution at three macro-micro
stages: 1, 50 and 100.

(4.14) or (4.15). For a visual description of the effect of density-dependent syncytia

diffusion on the spatial distribution of total tumour (uninfected+infected+syncytia

cells) at different micro-macro simulation stages please see Figure 4.14.

4.5 Summary and Discussions

In this study, we extended a multi-scale moving boundary model for oncolytic cancer

virotherapy introduced in Alzahrani et al. (2019), by considering a fusogenic virus

that can form syncytia structures (which have been shown experimentally to improve

tumour reduction and control Krabbe and Altomonte (2018); Ebert et al. (2004)).

The presence of syncytia not only changes the macro-dynamics with respect to

the cases studied in Alzahrani et al. (2019), but given the link across the scales
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(a) (b)

(c)

Figure 4.15: Comparison between the dynamics of the baseline model (4.10) (red curve
labeled (i)) and the generalised model (4.13) (blue curve labeled (ii) for sub-case (4.14),
and green curve labeled (iii) for sub-case (4.15)). (a) The evolution of total tumour mass
(uninfected+infected+syncytia cells) over macro-micro stages 1 – 100. (b) The evolution
of tumour invasion area over macro-micro stages 1 – 100. (c) The evolution of the ratio
of total tumour masses to tumour invasion area over macro-micro stages 1 – 100 for
the macro-dynamics case (4.13). All simulations have been performed using the baseline
parameter values from Table 4.1.

(from macro to micro) detailed in Section 4.2.2 that involves this time also the

syncytia cells, this also influences the micro-dynamics of the proteolytic activity

that takes place along the tumour invasive edge. In turn, this altered proteolitic

micro-dynamics has direct impact upon the progression of the tumour as well as
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upon the changes of its morphology, leading to a different tumour behaviour than

the one observed in Alzahrani et al. (2019). Further, we used this new multiscale

model to investigate various hypotheses regarding the movement of these syncytia

and their interactions with the tumour microenvironment across different scales.

The macroscale interactions focused on the dynamics of (infected and uninfected)

cancer cells, syncytia structures, virus particles and the surrounding extracellular

matrix (ECM), while the microscale interactions focused on the degradation of ECM

by enzymes produced by the tumour cells (see Figure 4.2).

Using a computational approach, we investigated different assumptions regarding

the macroscale dynamics of syncytia structures: from the anti-tumour/pro-tumour

effects of various diffusive and advective abilities of syncytia (see Figures 4.3-4.6),

to the anti-tumour/pro-tumour effects of different probabilities of syncytia forming

(see Figures 4.7-4.10). The results suggested that lower syncytia motility compared

to single infected cells (i.e., Ds < Di, and ηs < ηi) could lead to better anti-tumour

outcomes. Moreover, higher probabilities (p0) of fusogenic viruses failing to form

syncytia seemed to lead to better anti-tumour outcomes. These results were likely

caused by the specific baseline parameter values listed in Table 4.1, which were

chosen to match the parameter values from Alzahrani et al. (2019).

To explain these unexpected results, we also investigated the combined effect

of syncytia-forming probability and different death rates for the infected cells and

syncytia (δi, δs), as well as different virus burst rates for the infected cells and

syncytia (bi, bs); see Figure 4.11. The results suggested that more realistic parameter

values (i.e., bs > bi, δs < δi, and p0 = 0.25 ⇒ (1 − p0) = 0.75) lead to better anti-

tumour outcomes compared to the baseline case. We also investigated the effect of

decreasing the values of some parameters associated with the proteolytic enzymes

(i.e., lower enzymatic transport across tumour interface), and observed that this lead
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to a slower tumour invasion and faster tumour elimination by the infected cells and

syncytia; see Figures 4.12 - 4.13. We can conclude from our previous results that

the outcome of the oncolytic therapy does not depend only on various macroscopic

cell and virus particle dynamics, but also on the microscopic dynamics of enzymes

involved in ECM degradation.

Panels (a) of Figures 4.5, 4.6, 4.10, 4.11 and 4.13 suggest that between the macro-

micro stages 40 and 50 the tumour mass becomes very small. This would suggest

that there is the possibility of tumour extinction by oscillations (see, although in

another context, Caravagna et al. (2010); Donofrio (2010)). However, our model

is deterministic, and as such it cannot capture: i) stochastic behaviours when the

tumour mass is very small; ii) extrinsic stochastic fluctuations. Some extrinsic

sources such as cell-to-cell fluctuations of transcription factors are a delicate matter

in tumour modelling, (see (Donofrio, 2008, 2013)), due to that those variations in

cells factor lead to fluctuations of the transcription and translation rates in the

model parameters.

Finally, given that the syncytia structures are very large, their movement might

be impacted by the density of ECM and/or the density of fusogenic virus particles.

Thus, we investigated numerically the possibility that the random motility of these

syncytia is not constant but depends on these densities (see equations (4.13)-(4.15)).

The results in Figures 4.14 - 4.15 suggested that the assumption of density-dependent

syncytia diffusion (versus constant diffusion) can impact the outcome of the oncolytic

therapy. For the baseline parameter values shown in Table 4.1 the density-dependent

diffusion lead to lower long-term tumour sizes and smaller tumour invasion areas,

since the ECM density stopped the fast spread of syncytia, thus allowing the viruses

to be more successful at killing the tumour cells.

A global multiscale analysis for this multiscale moving-boundary framework in its
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entirety remains an open problem. However, questions regarding the local existence

and uniqueness of the macro- and micro-dynamics, while exploring the top-down

link in between, are currently in preparation and form the subject of a separate

work. Finally, on the numerical side, while discussions and early tests concerning

of the robustness have been successfully carried out in Trucu et al. (2013) where

this multiscale moving boundary framework has been initially introduced, further

investigations are still needed to establish an overall multiscale numerical consistency

concept for this multiscale computational platform in its entirety.

We conclude this discussion by emphasising that while cell-fusion events are very

important in cell biology (in both health and disease), their roles on the spread of

viral infections are not always fully understood Compton and Schwartz (2017). In

this study we formulated and tested computationally some hypotheses regarding

the importance of various syncytium-related parameters on the spread of oncolytic

viral infection and tumour reduction/elimination. One major limitation is the lack

of experimental data to validate the modelling. It is however our hope that the

hypotheses formulated in this paper will stimulate suitable biological experimental

work that would challenge to validate our computational findings. Thus, the next

step would be to combine this multiscale moving-boundary mathematical framework

with in vitro or in vivo experiments for oncolytic viral therapies for cancer (see, for

example, the spatial data from Kemler et al. (2019) on oncolytic virus spread), to

try to approximate some parameter ranges and thus to make better predictions on

possible treatment outcomes.
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Chapter 5

Local Existence and Uniqueness of

Solutions for Selected

Macro-Micro Modelling of Cancer

Response to Oncolytic Viral

Therapy

5.1 Introduction

The main contribution of this chapter is to study the local existence and uniqueness

of solutions for both macroscopic and microscopic models previously introduced in

Chapter 3. In order to achieve that, we mainly adopt the approach and terminol-

ogy introduced in Rodrigo (2008); Szymanska et al. (2009); Chaplain et al. (2011);

Bitsouni et al. (2017) for similar mathematical models. However, the proof of local

existence given in each work differs from each other in terms of proof methodology
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and setting assumptions. For instance, the mechanism of the given proof in Rodrigo

(2008) adopts a classical settings to show the local existence by Schauder’s fixed

point theorem, while in Szymanska et al. (2009) the theory of semigroups has been

adopted to prove the existence of solutions locally in time by using Banach fixed

point theorem. Furthermore, the presented mathematical models in Chaplain et al.

(2011); Bitsouni et al. (2017) are based on systems of integro-differential equations

(nonlocal integral) with appropriate kernels describing the spatial ranges for certain

proposed cases, hence, their assumed spacial properties would differ from each other

as well. However, generally they follow the same proof strategy to show that there

is a local solution uniquely existed within a certain proposed space and a fixed time.

In order to show the existence of solutions for our model, we apply similar steps

as in Rodrigo (2008); Szymanska et al. (2009); Chaplain et al. (2011); Bitsouni et al.

(2017), which will ultimately enable us to use the Banach contraction theorem. In

brief, we aim to show that inside a carefully chosen ball within an appropriately

constructed function space naturally induced by our problems, we ensure that the

solution of the PDE system exists and is unique. This will be achieved via a Ba-

nach Contraction Mapping argument. Indeed, in order to obtain that, we first

rewrite the system in a general functional form that respects the assumptions and

initial and boundary conditions of our problem. Then we will apply the classical

semigroup framework (Henry, 1981) including space embeddings for Holder space

of continuous functions. Finally, based on some essential mathematical concepts

(including the sectorial operator, the lipschitzianity properties of our system, the

triangle inequality, the continuity of the norm, the approximation of the Lebesgue

and Bochner Integrals by sequences of step functions (Yosida, 1995)), we show that

there exists a unique solution locally-in time within a certain proposed space for our

model. Furthermore, we use similar technique to show the existence of solutions for
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two macro-dynamics scenarios previously presented in section 3.3, namely, scenario

(1) and scenario (3), in addition to the microscopic dynamics previously derived in

section 3.4.

5.2 Local Existence and Uniqueness of Macro-

scopic Model 1.

In this section, we aim to study the existence and uniqueness locally-in-time of

solution for the macroscopic model previously introduced in Alzahrani et al. (2019)

and already explained in section 3.3. However, recall the macroscopic model as

following: 

∂c
∂t

= Dc∆c− ηc∇ · (c∇u) + µ1c(1− c)− ρcv,

∂i
∂t

= Di∆i+ ρcv − δii,

∂u
∂t

= −u(αcc+ αii) + µ2u(1− u− c− i),

∂v
∂t

= Dv∆v + bi− ρcv − δvv.

(5.1)

Here and before setting up the local existence theorem, we start with some basic as-

sumptions. To that end, since we deal with biological spatio-temporally distributed

entities, the rates for random motility, logistic growth, death, and viral replication

are naturally assumed to be positive i.e. Dc, Di, Dv, µ1, µ2, δi, δv, b ≥ 0. In addition

to that, for simplicity, as proposed previously in Szymanska et al. (2009); Chaplain

et al. (2011); Bitsouni et al. (2017), we define new general functions in terms of

rewriting our model in a general form, namely:

f1,1(c, u) to describe non-local directionality corresponding to biased movement

against ECM gradients (acquired due to ECM degradation), i.e. f1,1(c, u) ≥ 0;

f1,2(c) to be a general positive function describing the cancer cells proliferation
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rate;

f1,3(c, v) to be a general positive function representing the rate of infection;

f3,1(c, i) and f3,2(c, i, u) concern the remodelling process of ECM, with the

first function f3,1(c, i) describing a general form of ECM degradation, while

f3,2(c, i, u) is representing a general ECM growth law with respect to c, i, u.

Thus, a generalised form of the macroscopic dynamics 5.1 on a bounded domain

Ω ⊂ Rn over the time interval (0,∆T ) is therefore obtained as:



∂c
∂t

= Dc∆c−∇ · (cf1,1(c, u)) + cf1,2(c)− f1,3(c, v),

∂i
∂t

= Di∆i+ f1,3(c, v)− δii,

∂u
∂t

= −uf3,1(c, i) + uf3,2(c, i, u),

∂v
∂t

= Dv∆v + bi− f1,3(c, v)− δvv.

(5.2)

with the following initial conditions:

c(0, x) = c0(x) ≥ 0, i(0, x) = i0(x) ≥ 0,

u(0, x) = u0(x) ≥ 0, v(0, x) = v0(x) ≥ 0, in Ω.
(5.3)

We assume that there is no-flux passing through the smooth boundary ∂Ω for all

cancer cells type (c, i) and ECM (u) as well as virus particles (v) i.e.

〈∇c, ν〉 = 〈∇i, ν〉 = 〈∇v, ν〉 = 0 on (0,∞)× ∂Ω, (5.4)

where ν is the normal outward unit for vector field to ∂Ω enhanced with the following

condition regarding haptotactic motility:

〈∇f1,1(c, u), ν〉 = 0 on (0,∞)× ∂Ω. (5.5)
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Now, we propose a non-local mapping on the function f1,1(c, v) such that:

f1,1 : C(Ω : R)× C(Ω : R) 7→ C1,β(Ω : Rn), β ∈ (0, 1], (5.6)

where C represents the space of continuous functions and

f1,1(c, u)(x) =

∫
Ω

f ∗1,1(x, y, c(y), u(y))dy, for (c, u) ∈ C(Ω : R)× C(Ω : R), (5.7)

where f ∗1,1 is a continuous function over the following map:

f ∗1,1 : Ω2 × R2 7→ Rn, (5.8)

satisfying the following properties:

f ∗1,1(x, y, 0, 0) = 0 for (x, y) ∈ Ω,

f ∗1,1(·, y, γ, γ∗) ∈ C1,γ(Ω : Rn) for y ∈ Ω and (γ, γ∗) ∈ R2.
(5.9)

Furthermore, f ∗1,1 is assumed to satisfy the following assumption:

we have that there exists a constant Lf1,1 such that, for any (γ1, γ
∗
1), (γ2, γ

∗
2) ∈ R2,

the following inequality holds

|f ∗1,1(x, y, γ1, γ
∗
1)− f ∗1,1(x, y, γ2, γ

∗
2)|+ |∂xf ∗1,1(x, y, γ1, γ

∗
1)− ∂xf ∗1,1(x, y, γ2, γ

∗
2)|

≤ Lf1,1(|γ1 − γ2|+ |γ∗1 − γ∗2 |).
(5.10)

uniformly with respect to (x, y) ∈ Ω2. Now, for the remaining general functions;

f1,2, f1,3, f3,1 and f3,2, we have the following assumptions based on what has been

already shown in Chaplain et al. (2011) with additional consideration all of them
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are locally Lipschitz functions, namely:

f1,2(c) : R 7→ R,

f1,3(c, v) : R× R 7→ R,

f3,1(c, i) : R× R 7→ R,

f3,2(c, i, u) : R× R× R 7→ R.

(5.11)

Moreover; since c and v are continuous, then their image of Ω through these functions

are compact and so the product of the images will be a compact set in R2, hence

the given Lipschitz condition on f1,3, we can always identify two positive constants

A and B such that:

f1,3(c, v) ≤ A−Bc. (5.12)

5.2.1 Preliminary setup and notations

For convenience, we would like to rewrite the system 5.2 in the following order:

∂c

∂t
−Dc∆c = −∇c · f1,1(c, u)− c(∇ · f1,1(c, u)) + c(1 + f1,2(c))− f1,3(c, v) (5.13)

∂i

∂t
−Di∆i+ δii = f1,3(c, v), (5.14)

∂u

∂t
= −uf3,1(c, i) + uf3,2(c, i, u), (5.15)

∂v

∂t
−Dv∆v + δvv = bi− f1,3(c, v). (5.16)

146



Here, we consider the following operators:

S1 = −Dc∆c+ 0I,

S2 = −Di∆i+ δiI,

S3 = −Dv∆v + δvI,

(5.17)

where I is the identity operator. In Lebesgue space X = Lp(Ω), we have a common

domain of the operators Sj where the real part of the spectrum of Sj is positive,

i.e., Re(σ(Sj)) > 0, where j = 1, 2, 3. The domain of each Sj is denoted by D(Sj)

and is given by

D(Sj) := {z ∈ W 2,p : ∂νz|∂Ω = 0}, (5.18)

where W 2,p represents Sobolev space of all pth integrable functions belonging to Lp

whose weak derivatives up to order ≤ 2.

Now, for each Sj (the sectorial operator), then −Sj is the infinitesimal generator

of the analytic semigroup {e−tSj}t≥0 (Henry, 1981). Thus, the Banach space of

fractional powers is denoted by:

Xζ := D(Sζj ), (5.19)

where j = 1, 2, 3, the exponent ζ ∈ (0, 1), and D(Sζj ) represents the domain of Sζj ,

with its graph norm being defined as in Henry (1981), namely: for any x∗ ∈ Xζ , we

have

||x∗||Xζ := ||Sζj x∗||X . (5.20)

Following Henry (1981) again, we obtain that for any ζ ∈ (0, 1) we have

D(Sj) ⊂ Xζ ⊂ X (5.21)
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Further, we define the space

Y = X ×X ×W 1,p(Ω)×X, (5.22)

which is equipped with the maximum norm

||y||
Y

:= max(||y1||X , ||y2||X , ||y3||W1,p(Ω)
, ||y4||X )

for y = (y1, y2, y3, y4) ∈ Y.
(5.23)

Furthermore, Y ζ denotes the space

Y ζ := Xζ ×Xζ ×W 1,p(Ω)×Xζ .

and via (5.21) we observe that this is included in Y , i.e.,

Y ζ ⊂ Y,

and so this is naturally equipped with the induced maximum norm

|| · ||Y ζ := || · ||
Y
/

Y ζ

i.e.,

||y||Y ζ := ||y||
Y

= max(||y1||X , ||y2||X , ||y3||W 1,p(Ω), ||y4||X )

for y = (y1, y2, y3, y4) ∈ Y ζ .

(5.24)

Finally, for an arbitrary time T > 0, we denote by

Y ζ
T = C([0, T ] : Y ζ), (5.25)
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endowed with the usual uniform norm

||y||
Y
ζ
T

:= sup
s∈[0,T ]

||y(s)||
Y ζ
, (5.26)

Moreover, within the classical semigroup frameworks, Theorem 1.4.3 in Henry

(1981) (page 26) shows that there exists a positive constant Cζ > 0 such that the

following inequality holds:

||Sζj e−Sjtz||X ≤ Cζt
−ζe−ζ

∗
j t||z||X , for z ∈ X (5.27)

where 0 < −ζ∗j < Re(σ(Sj)), in parallel with,

||Sζj e−Sjtz||X ≤ kζ ||z||Xζ , for z ∈ Xζ . (5.28)

where kζ is a positive constant.

In addition to 5.27 and 5.28, we have that also the following embedding holds true,

namely:

Xζ ⊂ W 1,p(Ω) for ζ >
1

2
, (5.29)

Xξ ⊂ C0,q(Ω) for
q

2
+

n

2p
< ζ <

1

2
+

n

2p
, q ∈ (0, 1), (5.30)

where C0,q(Ω) represents the space of all Holder continuous functions with q as an

exponent value. Moreover,

for any ζ ∈ (
1

2
,
1

2
+

1

2p
), when p > n, (5.31)

the given embeddings (5.29) and (5.30) are achieved.

Theorem 5.2.1 (Local Existence) Assume that the initial conditions c0, i0 and
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v0 ∈ Xζ and u0 ∈ W 1,p(Ω) are satisfied with all previous assumptions, then for any

T > 0, the macroscopic model 5.13-5.16 has a unique local-in-time solution such

that :

c, i, v ∈ C([0, T ) : Xζ) and u ∈ C([0, T ) : W 1,p(Ω)).

In addition, for t > 0, c, i and v are classical solutions and

sup(||c||∞ + ||i||∞ + ||u||∞ + ||v||∞) <∞.

Proof: In this proof, we follow similar steps as in Szymanska et al. (2009); Chap-

lain et al. (2011); Bitsouni et al. (2017), which will ultimately enable us to use

the Banach contraction theorem to show the local existence of the solution for the

macro-scale model 5.13-5.16.

Further, we recall that, from our previous assumptions, we already know that

c, i, v ∈ W 1,p(Ω) as shown in the embedding 5.29 as well as each function of the gen-

eral functions f1,2, f1,3, f3,1, f3,2 is a locally Lipschitz function, then by superposition

property, we obtain f1,2, f1,3, f3,1, f3,2 ∈ W 1,p(Ω). Thus, in the case when p > n,

exploring the algebra structure with point-wise multiplication of W 1,p(Ω), the right

hand side of 5.15 can be re-expressed in the form of the mapping

F ∗ : Y ζ 7−→ W 1,p(Ω),

given by

F ∗(c, i, u, v) := −uf3,1(c, i) + uf3,2(c, i, u),

(5.32)

which is a locally Lipschitz mapping, as both f3,1, f3,2 and u are locally Lipschitz

functions.
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Furthermore, denoting now

r :=


c

i

u

v


, and S :=


S1 0 0 0

0 S2 0 0

0 0 0 0

0 0 0 S3


, (5.33)

and rewriting also the right-hand side of 5.13 - 5.14 and 5.16 as the mappings

F1, F2, F3 : Y ζ 7−→ X

given by

F1(c, i, u, v) := −∇c · f1,1(c, u)− c(∇ · f1,1(c, u)) + c(1 + f1,2(c))− f1,3(c, v),

F2(c, i, u, v) := f1,3(c, v),

F3(c, i, u, v) := bi− f1,3(c, v).

(5.34)

we can then rewrite the entire system as

dr
dt

= Sr + (F1(r), F2(r), F ∗(r), F3(r))T , in ΩT ,

r(0) := (c0, i0, u0, v0)T , in ΩT .
(5.35)

In this context, to complete the proof, we consider the map P := (P1, P2, P3, P4),

namely

P : Y ζ
T 7→ Y ζ

T
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given by



P1((c, i, u, v)(t)) := e−S1tc0 +
∫ t

0
e−S1(t−s)F1(c(s), i(s), u(s), v(s))ds,

P2((c, i, u, v)(t)) := e−S2ti0 +
∫ t

0
e−S2(t−s)F2(c(s), i(s), u(s), v(s))ds,

P3((c, i, u, v)(t)) := u0 +
∫ t

0
F ∗(c(s), i(s), u(s), v(s))ds,

P4((c, i, u, v)(t)) := e−S3tv0 +
∫ t

0
e−S3(t−s)F3(c(s), i(s), u(s), v(s))ds,

(5.36)

for which we will show in the following that for an appropriately small T , there

exists a fixed point.

In order to achieve this, we proceed as follows. First, for an arbitrary T > 0, we

consider the ball B
Y
ζ
T

(0, R) ⊂ Y ζ
T

B
Y
ζ
T

(0, R) = {y ∈ Y ζ
T : ||y||Y ζT ≤ R}, (5.37)

with the radius R > 0 being chosen such that

max(||c0||Xζ + ||i0||Xζ + ||v0||Xζ) < R
2kζ
,

max(||u0||W 1,p(Ω)) <
R
2
,

(5.38)

where (c0, i0, u0, v0) ∈ Y ζ and kζ satisfy the property 5.28. Using the Lipschitzianity

property of each of the functions F1, F2, F3, F
∗, we obtain there exists a constant

that depends only on the radius R, namely MR > 0, such that

sup
y∈B

Y
ζ
T

(0,R)

sup
s∈[0,T ]

||(F1(y(s)), F2(y(s)), F ∗(y(s)), F3(y(s)))||
Y
< MR. (5.39)

which is completely proved in Lemma 5.2.2.

We aim now to show that for a small enough time T > 0 (which will be appro-

priately chosen below) the mapping P := (P1, P2, P3, P4) will be a contraction on
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B
Y
ζ
T

(0, R). For that purpose, let T > 0 and let (c, i, u, v) ∈ B
Y
ζ
T

(0, R) be arbitrarily

considered. For the first operator P1, from 5.36, we have that

||P1(c, i, u, v)(t)||
Xζ

= ||e−S1tc0 +
∫ t

0
e−S1(t−s)F1(c(s), i(s), u(s), v(s))ds||

Xζ
,

(5.40)

then using the triangle inequality we obtain:

||P1(c, i, u, v)(t)||
Xζ
≤ ||e−S1tc0||

Xζ
+ ||

∫ t
0
e−S1(t−s)F1(c(s), i(s), u(s), v(s))ds||

Xζ
,

(5.41)

Furthermore, using (5.20) the norm ||e−S1tc0||
Xζ

can be re-expressed as

||e−S1tc0||
Xζ

= ||Sζ1x∗||X (5.42)

and so using the inequality 5.28, we get:

||e−S1tc0||
Xζ

= ||Sζ1x∗||X
≤ kζ ||c0||

Xζ

(5.43)

which finally leads us to

||P1(c, i, u, v)(t)||
Xζ
≤ kζ ||c0||

Xζ
+ ||

t∫
0

e−S1(t−s)F1(c(s), i(s), u(s), v(s))ds||
Xζ
.

(5.44)

For the second norm on the right hand side of inequality (5.44) using the triangle

inequality property and the continuity of the norm combined with the property of

the Lebesgue integral as being the limit of a sequence of integrals (in the sense of
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operator Bochner Integral (Yosida, 1995)) of simple (step) functions

ψn :=
kn∑
j=1

anj χAn
j
↗ e−S1(t−s)F1(c(s), i(s), u(s), v(s)),

for appropriate operator coefficients {anj }j=1...kn

and {Anj }j=1...kn Borel σ− algebra of [0, T ], for all n ∈ N,

we obtain that

||
t∫

0

e−S1(t−s)F1(c(s),i(s),u(s),v(s))ds||
Xζ
≤ ||lim

n→∞

kn∑
j=1

anj χAn
j
||
Xζ

= lim
n→∞

||
kn∑
i=1

anj χAn
j
||
Xζ

≤ lim
n→∞

kn∑
i=1

||anj χAn
j
||
Xζ

≤ lim
n→∞

kn∑
i=1

||anj ||XζχAnj

=
t∫

0

||e−S1(t−s)F1(c(s),i(s),u(s),v(s))||
Xζ
ds

(5.45)

Therefore, using now inequalities (5.27) and (5.38), from (5.45) we obtained that

||
t∫

0

e−S1(t−s)F1(c(s),i(s),u(s),v(s))ds||
Xζ
≤

t∫
0

||e−S1(t−s)F1(c(s),i(s),u(s),v(s))||
Xζ
ds

≤MR

∫ T
0
Cζ(t− s)−ζe−ζ

∗
1 (t−s)ds

(5.46)

Hence we get the following estimate for the norm of P1, namely:

||P1(c, i, u, v)(t)||Xζ ≤ kζ ||c0||Xζ +MR

∫ T
0
Cζ(t− s)−ζe−ζ

∗
1 (t−s)ds

≤ R
2

+MR
CζT

1−ζ

1−ζ .
(5.47)

Proceeding now in a similar manner also for the operators P2 and P4 (by following an

identical sequence of steps as those described in equations (5.40)-(5.47)), we obtain
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for these the following estimates, namely:

||P2(c, i, u, v)(t)||Xζ ≤ R
2

+MR
CζT

1−ζ

1−ζ . (5.48)

and

||P4(c, i, u, v)(t)||Xζ ≤ R
2

+MR
CζT

1−ζ

1−ζ . (5.49)

On the other hand, for the remaining operator P3, based on (5.38) and (5.39), we

obtain:

||P3(c, i, u, v)(t)||
W1,p(Ω)

= ||u0 +
t∫

0

F ∗(c(s), i(s), u(s), v(s))ds||
W1,p(Ω)

≤ ||u0||W1,p(Ω)
+ ||

t∫
0

F ∗(c(s), i(s), u(s), v(s))ds||
W1,p(Ω)

≤ R
2

+
t∫

0

||F ∗(c(s), i(s), u(s), v(s))||
W1,p(Ω)

ds

≤ R
2

+
t∫

0

sup
y∈B

Y
ζ
T

(0,R)

||(F1(y), F2(y), F ∗(y), F3(y))||
Y ζ

ds

≤ R
2

+
t∫

0

MRds

≤ R
2

+MRT

(5.50)

Thus, by choosing now a small enough T > 0 such that

{MR
CζT

1−ζ

1−ζ ,MRT} ≤ R
2
. (5.51)

we obtain that indeed

||(P1((c, i, u, v)(t)), P2((c, i, u, v)(t)), P3((c, i, u, v)(t)), P4((c, i, u, v))(t))||
Y ζ
≤ R

∀t ∈ [0, T ]
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hence

||(P1(c, i, u, v), P2(c, i, u, v), P3(c, i, u, v), P4(c, i, u, v))||
Y
ζ
T

≤ R

which implies that

(P1(c, i, u, v), P2(c, i, u, v), P3(c, i, u, v), P4(c, i, u, v)) ∈ B
Y
ζ
T

(0, R)

and finally leads to

(P1, P2, P3, P4)(B
Y
ζ
T

(0, R)) ⊂ B
Y
ζ
T

(0, R).

Finally, to show now that the mapping (P1, P2, P3, P4) is a contraction onB
Y
ζ
T

(0, R),

let y1, y2 ∈ B
Y
ζ
T

(0, R) and an arbitrary t ∈ [0, T ] (with T > 0 as chosen in (5.51)).

Using (5.20) - (5.27), (5.26) and (5.45) combined with the Lipschitzianity of F1, we

obtain that

||P1(y1)(t)− P1(y2)(t)||Xζ ≤
t∫

0

||e−S1(t−s)(F1(y1(s))− F1(y2(s)))||Xζds

≤
T∫
0

||e−S1(t−s)χt−s>0(s)(F1(y1(s))− F1(y2(s)))||Xζds

=
T∫
0

||Sζ1e−S1(t−s)χt−s>0(s)(F1(y1(s))− F1(y2(s)))||Xds

≤
T∫
0

Cζ(t− s)−ζeζ
∗
j (t−s)χt−s>0(s)||F1(y1(s))− F1(y2(s)))||Xds

≤
T∫
0

Cζ(t− s)−ζeζ
∗
j (t−s)χt−s>0(s)k1||y1(s)− y2(s)||

Y ζ
ds

≤
T∫
0

Cζ(t− s)−ζeζ
∗
j (t−s)χt−s>0(s)k1||y1 − y2||

Y
ζ
T

ds.

≤ Cζk1

(
T∫
0

(t− s)−ζeζ∗j (t−s)χt−s>0(s)ds

)
||y1 − y2||

Y
ζ
T

.

(5.52)

Moreover, estimates of the same type as obtained in (5.52) are obtained in a similar

fashion for the remaining operators P2, P3 and P4. Thus, choosing an appropriately
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small T > 0 that makes the right hand side integrals smaller than

1
2Cζ max{k1,k2,k3,k∗}

(with k1, k2, k3, k
∗ being the Lipschitz constants for F1, F2, F

∗, F3),
(5.53)

for any y1, y2 ∈ B
Y
ζ
T

(0, R), we obtain that

||(P1, P2, P3, P4)(y1)(t)− (P1, P2, P3, P4)(y2)(t)||
Y
ζ
T

≤ 1
2
||y1 − y2||

Y
ζ
T

. (5.54)

Therefore, (P1, P2, P3, P4) is a contraction that has also the property that

(P1, P2, P3, P4)(B
Y
ζ
T

(0, R)) ⊂ B
Y
ζ
T

(0, R).

Hence, the restriction

(P1, P2, P3, P4) : B
Y
ζ
T

(0, R)→ B
Y
ζ
T

(0, R)

is a contraction, and as B
Y
ζ
T

(0, R) is a complete metric space, via Banach Con-

traction Theorem (Yosida, 1995), we obtain that indeed there exist a unique point

(c∗, i∗, u∗, v∗) ∈ B
Y
ζ
T

(0, R), which is in fact the unique local solution for our system.

�

Lemma 5.2.2 If F ∗ and F1, F2, F3 defined in (5.32) and (5.34) are Lipschitz

functions, then inequality (5.39) holds true.

Proof: Let us suppose Fj, (j = 1, 2, 3) are Lipschitz functions, then using the

definition of the Lipschitzianity we have that there exists kj > 0 such that, for any
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y ∈ B
Y
ζ
T

(0, R) and any s ∈ [0, T ], we have that

||Fj(y(s))− Fj(0)||
X
≤ kj||y(s)− 0||

Y ζ
≤ kj||y − 0||

Y
ζ
T

≤ kjR.

Therefore, we obtain that kjR is an upper bound for the set

{||Fj(y(s))− Fj(0)||
X
| s ∈ [0, T ]},

and so using simply the definition of supremum, we obtain that

sup
s∈[0,T ]

||Fj(y(s))− Fj(0)||
X
≤ kjR. (5.55)

However, we note that for any y ∈ B
Y
ζ
T

(0, R) we can rewrite the norm of ||Fj(y)|| as

||Fj(y(s))||
X

= ||Fj(0) + (Fj(y(s))− Fj(0))||
X
, ∀s ∈ [0, T ]

and so we have that

||Fj(y(s))||
X
≤ ||Fj(0)||

X
+ ||(Fj(y(s))− Fj(0)||

X
, ∀s ∈ [0, T ],

therefore, using (5.55) we obtain that

||Fj(y(s))||
X
≤ ||Fj(0)||

X
+ sup

s∈[0,T ]

||Fj(y(s))− Fj(0)||
X

≤ ||Fj(0)||
X

+ kjR, ∀s ∈ [0, T ].

Therefore, we have that ||Fj(0)||
X

+ kjR is an upper bound for the set

{||Fj(y(s))||
X
| s ∈ [0, T ]},
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and so using again the definition of the supremum, we obtain that

sup
s∈[0,T ]

||Fj(y(s))||
X
≤ ||Fj(0)||

X
+Rkj

≤ max
i=1,2,3

||Fj(0)||
X

+R max
i=1,2,3

kj.
(5.56)

for any y ∈ B
Y
ζ
T

(0, R).

Finally, since F ∗ is also Lipschitz, following identical steps as above, we also

obtain that there exists k∗ > 0 such that for any y ∈ B
Y
ζ
T

(0, R) we have:

sup
s∈[0,T ]

||F ∗(y(s))||
W1,p ≤ ||F ∗(0)||

W1,p + k∗R. (5.57)

Hence, denoting

MR := max( max
i=1,2,3

||Fj(0)||
X

+R max
i=1,2,3

kj , ||F ∗(0)||
W1,p + k∗R), (5.58)

from (5.56) and (5.57), we obtain, for any y ∈ B
Y
ζ
T

(0, R), we have that the following

inequality holds

||(F1(y(s)), F2(y(s)), F ∗(y(s)), F3(y(s)))||
Y
≤MR ∀s ∈ [0, T ], (5.59)

which implies that MR is an upper bound for the set

{||(F1(y(s)), F2(y(s)), F ∗(y(s)), F3(y(s)))||
Y
| s ∈ [0, T ]}

Therefore, using again the definition of supremum we obtain that

sup
s∈[0,T ]

||(F1(y(s)), F2(y(s)), F ∗(y(s)), F3(y(s)))||
Y
< MR, ∀y ∈ B

Y
ζ
T

(5.60)
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which implies that MR is also an upper bound for the set

{ sup
s∈[0,T ]

||(F1(y(s)), F2(y(s)), F ∗(y(s)), F3(y(s)))||
Y
| y ∈ B

Y
ζ
T

},

and so using one last time the definition of the supremum, we finally obtain that

sup
y∈B

Y
ζ
T

(0,R)

sup
s∈[0,T ]

||(F1(y(s)), F2(y(s)), F ∗(y(s)), F3(y(s)))||
Y
< MR. (5.61)

�

5.3 Local Existence and Uniqueness of Macro-

scopic Model - 2.

In section 5.2, we proved theorem 5.2.1 via using Banach Contraction Theorem which

states the following, there is a unique local solution of the macroscopic system (5.2)

such that,

c, i, v ∈ C([0, T ) : Xζ) and u ∈ C([0, T ) : W 1,p(Ω)).
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Based on a such result, we study the existence of the unique local solution for the

third macroscopic system (scenario) as introduced in Alzahrani et al. (2019), namely:



∂c
∂t

= Dc∆c− ηc∇ · (c∇u) + µ1c(1− c)− ρcv,

∂i
∂t

= Di∆i− ηi∇ · (i∇u) + ρcv − δii,

∂u
∂t

= −u(αcc+ αii) + µ2u(1− u− c− i),

∂v
∂t

= Dv∆v − ηv∇ · (v∇u) + bi− ρcv − δvv.

(5.62)

Indeed, this macroscopic scenario (5.62) differes from the baseline macroscpoic sys-

tem (5.2) in terms of the motility behaviour for two macroscopic components,

namely: infected cancer cell and virus particles for which a haptotaxis movement

role was considered.

Following similar steps as in section 5.2, we first define new general functions,

namely:

f2,2(i) to be a general positive function representing the removal rate of infected

cells;

f4,1(v, u) to describe non-local directionality corresponding to biased move-

ment against ECM gradients (acquired due to ECM degradation), i.e. f4,1(v, u) ≥

0;

f4,2(i) to be a general positive function representing the virus replication rate;

f4,3(v) to be a general positive function representing the removal rate of virus

particles.
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Hence, we generalise the macroscopic dynamics (5.62) to be written in the following

form: 

∂c
∂t

= Dc∆c−∇ · (cf1,1(c, u)) + cf1,2(c)− f1,3(c, v),

∂i
∂t

= Di∆i−∇ · (if2,1(i, u)) + f1,3(c, v)− f2,2(i),

∂u
∂t

= −uf3,1(c, i) + uf3,2(c, i, u),

∂v
∂t

= Dv∆v −∇ · (vf4,1(v, u)) + f4,2(i)− f1,3(c, v)− f4,3(v),

(5.63)

with taking into account that all notations in this section are written with respect

to the previous section (5.2), thus we would not re-define any repeated notations.

However, we use the same proposed initial conditions (5.3) with taking into con-

sideration that there is no-flux passing through the tumour boundary ∂Ω for all

components as presented in (5.4) with the following conditions regarding haptotac-

tic motility for all cancer cells type (c, i) and the virus particles (v), namely:

〈∇f1,1(c, u), ν〉 = 0 on (0,∞)× ∂Ω,

〈∇f2,1(i, u), ν〉 = 0 on (0,∞)× ∂Ω,

〈∇f4,1(v, u), ν〉 = 0 on (0,∞)× ∂Ω.

(5.64)

Moreover, in a similar fashion of assuming a non-local mapping (5.6) on the function

f1,1(c, v), we propose new non-local mappings for f2,1(i, u) and f4,1(v, u) respectively,

f2,1 : C(Ω : R)× C(Ω : R) 7→ C1,β(Ω : Rn), β ∈ (0, 1],

f4,1 : C(Ω : R)× C(Ω : R) 7→ C1,β(Ω : Rn), β ∈ (0, 1].
(5.65)
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for which we can define

f2,1(i, u)(x) =
∫

Ω
f ∗2,1(x, y, i(y), u(y))dy, for (i, u) ∈ C(Ω : R)× C(Ω : R),

f4,1(v, u)(x) =
∫

Ω
f ∗4,1(x, y, v(y), u(y))dy, for (v, u) ∈ C(Ω : R)× C(Ω : R),

(5.66)

where f ∗2,1 and f ∗4,1 are continuous functions over the following maps:

f ∗2,1 : Ω2 × R2 7→ Rn,

f ∗4,1 : Ω2 × R2 7→ Rn,
(5.67)

satisfying the same properties as previously presented in (5.9) and (5.10) for the

function f1,1, in such way we obtain similar properties for both functions f ∗2,1 and

f ∗4,1 as well.

Furthermore, the functions f1,2, f1,3, f3,1 and f3,2 are already assumed to be locally

Lipschitz functions as presented in (5.11), hence in a similar manner, we suppose the

functions f2,2, f4,2 and f4,3 are locally Lipschitz as well with the following mappings:

f2,2(i) : R 7→ R,

f4,2(i) : R 7→ R,

f4,3(v) : R 7→ R.

(5.68)

Based on a such definitions the following theorem holds true.

Theorem 5.3.1 (Local Existence) Assume that the initial conditions c0, i0 and

v0 ∈ Xζ and u0 ∈ W 1,p(Ω) are satisfied with all previous assumptions (5.17-5.31),

then for any T > 0, the macroscopic model 5.63 has a unique local-in-time solution

such that :

c, i, v ∈ C([0, T ) : Xζ) and u ∈ C([0, T ) : W 1,p(Ω)).
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In addition, for t > 0, c, i and v are classical solutions and

sup(||c||∞ + ||i||∞ + ||u||∞ + ||v||∞) <∞.

In order to prove Theorem (5.3.1), we follow an identical sequence of steps as those

described in Theorem (5.2.1) combined with the preliminary setting up relations

from (5.17) to (5.31) to confirm that there exists a unique solution (c∗, i∗, u∗, v∗) ∈

B
Y
ζ
T

(0, R), which is in fact the unique local solution for system (5.63).

5.4 Local Existence and Uniqueness of Microscopic

Model.

In this section, we aim to show the existence of the unique local solution of the

microscopic system introduced in Trucu et al. (2016) and then used in Peng et al.

(2017); Alzahrani et al. (2019), namely:



∂a
∂τ

=Da∆a− ψ11ap+ (ψ12 − ψ13a)f
εY

uPA
(y, τ),

∂p
∂τ

=Dp∆p− ψ21ap− ψ22p f
εY

PAI−1
(y, τ) + ψ23m,

∂m
∂τ

=Dm∆m+ ψ31af
εY

uPA
(y,τ) + ψ32pf

εY

PAI−1
(y,τ)− ψ33m.

(5.69)

To that end, we first define new general functions in order to write our microscopic

model into a generlised form, namely:

g1,1(a, p) to be a general positive function representing the inhibition of uPA

caused by PAI-1;

g1,2(f
εY

uPA
) to be a general positive function describing uPA production caused

by the source function f
εY

uPA
;
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g1,3(a, f
εY

uPA
) to be a general positive function representing the decay in the

uPA density caused by cancer cells’ uPA receptors (uPAR);

g2,1(a, p) to be a general positive function describing the removal rate of PAI-1

through binding to uPA;

g2,2(p, f
εY

PAI−1
) to be a general positive function describing the removal rate of

PAI-1 through binding to surrounding ECM f
εY

PAI−1
;

g2,3(m) to be a general positive function representing the production of PAI-1

through plasmin activation;

g3,1(a, f
εY

uPA
) to be a general positive function representing the production of

plasmin due to direct plasminogen activation (through uPA binding to uPAR);

g3,2(p, f
εY

PAI−1
) to be a general positive function representing the production of

plasmin due to direct plasminogen activation (through binding of PAI-1 to

neighbouring ECM);

g3,3(m) to be a general positive function describing the removal rate of plasmin.

Thus, the general form of the microscopic system is written as follows:



∂a
∂τ

=Da∆a− g1,1(a, p) + g1,2(f
εY

uPA
)− g1,3(a, f

εY

uPA
),

∂p
∂τ

=Dp∆p− g2,1(a, p)− g2,2(p, f
εY

PAI−1
) + g2,3(m),

∂m
∂τ

=Dm∆m+ g3,1(a, f
εY

uPA
) + g3,2(p, f

εY

PAI−1
)− g3,3(m).

(5.70)

with the following initial conditions:

a(0, x) = a0(x) ≥ 0, p(0, x) = p0(x) ≥ 0,

m(0, x) = m0(x) ≥ 0, in Ω.
(5.71)
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Moreover, we suppose that there is no-flux passing through the smooth boundary

∂Ω for all micro components i.e.

〈∇a, ν〉 = 〈∇p, ν〉 = 〈∇m, ν〉 = 0 on (0,∞)× ∂Ω, (5.72)

where ν is the normal outward unit for vector field to ∂Ω. Furthermore, the func-

tions g1,1(a, p), g1,2(f
εY

uPA
), g1,3(a, f

εY

uPA
), g2,1(a, p), g2,2(p, f

εY

PAI−1
), g2,3(m), g3,1(a, f

εY

uPA
),

g3,2(p, f
εY

PAI−1
) and g3,3(m) are assumed to be locally Lipschitz functions as exactly

assumed previously in (5.11), hence in a similar manner, we suppose these functions

defined within the following mappings:

g1,1(a, p) : R× R 7→ R,

g1,2(f
εY

uPA
) : R 7→ R,

g1,3(a, f
εY

uPA
) : R× R 7→ R

g2,1(a, p) : R× R 7→ R,

g2,2(p, f
εY

PAI−1
) : R× R 7→ R,

g2,3(m) : R 7→ R,

g3,1(a, f
εY

uPA
) : R× R 7→ R,

g3,2(p, f
εY

PAI−1
) : R× R 7→ R,

g3,3(m) : R 7→ R.

(5.73)

Theorem 5.4.1 (Local Existence) Assume that the initial conditions a0, p0 and

m0 ∈ Xζ are satisfied with all previous assumptions (5.17-5.31), then for any T > 0,

the microscopic model 5.70 has a unique local-in-time solution such that :

a, p,m ∈ C([0, T ) : Xζ).
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In addition, for t > 0, a, p and m are classical solutions and

sup(||a||∞ + ||p||∞ + ||m||∞) <∞.

In order to prove Theorem 5.4.1, we use the preliminary setting up relations from

(5.17) to (5.31) and we follow similar sequence of steps as those described in Theorem

(5.2.1) to show that there exists a unique solution (a∗, p∗,m∗) ∈ B
Y
ζ
T

(0, R), which is

in fact the unique local solution for system (5.69).

167



Chapter 6

Conclusion and Discussions

The main contribution of this work is to propose a novel multi-scale moving bound-

ary framework to describe the complex interactions between tumour and oncolytic

viruses (OV). The mathematical perspective was based on coupled systems of partial

differential equations both at macro-scale (tissue-scale) and at micro-scale (cell-

scale) which are linked through a double feedback loop. On one hand, at the

tissue-scale (macro-scale), we have studied multiple scenarios upon some biologi-

cal observations starting with accounting for the coupled dynamics of cancer cells

(uninfected and infected), the surrounding extracellular matrix (ECM), and on-

colytic viruses (OV). Then, we have extended this basic macroscopic scenario to

include an investigation of more biological observed cases such as (diffusion ability

for cancer cells concentration in the spacial domain and the haptotactic migration

rule for the directed motility behaviour of cancer cells densities and OV particles

towards higher ECM gradients). On other hand, at the micro-scale (cellular scale)

we adopted the proteolytic enzymatic system presented in Trucu et al. (2016); Peng

et al. (2017), namely, urokinase plasminogen activator (uPA), to include our new

approach of tumour-OV interactions. Indeed, those coupled systems of partial dif-
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ferential equations both at macro-scale (tissue-scale) and at micro-scale (cell-scale)

are connected through a double feedback link (crucial cross-talk). Furthermore,

we have carried out a functional analysis investigation to show that the solutions

of both the macroscopic model and the microscopic model have a locally-in-time

unique solution within an appropriately considered space of function. However, in

the following, we will discuss the key modelling and computational points regarding

the viral therapy and the analytical findings that have been obtained in this work.

In Chapter 3 we have studied tumour-OV dynamics with the multiscale mov-

ing boundary context, bringing together the activity of this interraction at two

scales, namely, macroscopic (tissue scale) and microscopic (cell scale) with taking

into considerations these two-scales have been computed within our maximal ref-

erence domain Y . At the tissue scale, we first explore the coupled dynamics of

this interaction within Ω(t) ⊂ Y that includes four players, namely, cancer cells

densities (uninfected cells and viral-infected cells), surrounding ECM distribution

and OV particles. Furthermore, building on some biological observations (Laird,

1964; Nowak and May, 2000; Guiot et al., 2003; Chaplain and Lolas, 2005; Camara

et al., 2013; Vähä-koskela and Hinkkanen, 2014), we have assumed multiple scenar-

ios for their dynamical interaction, namely: macro-dynamics scenario (1) equation

(3.10); macro-dynamics scenario (2) equation (3.12); and macro-dynamics scenario

(3) equation (3.14). At the same time, at the cell-scale we account for the proteolytic

dynamics of uPA system within the outer proliferating rim of the tumour boundary

∂Ω(t) (section 3.4). Indeed, the connection between both scales occurs through a

double feedback loop released via top-down link and bottom-up link. As we pre-

viously mentioned in Chapters 2, 3 and 4, the top-down link between macro-scale

and micro-scale indicates the procedure of how the source of uPA is induced from

the macro-scale either through secretion by the cancer cells or simply by activation
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from the surrounding ECM within the tumour proliferating rim were mathematically

expressed by the formulae in (3.16) and (3.18). The bottom-up link between micro-

scale and macro-scale refers to the induced informations from the micro-dynamics

activity that is up-taken at the macro-scale and determines the tumour boundary

relocation.

We have extended the computational approach of the multiscale numerical frame-

work previously introduced in Trucu et al. (2013). This numerical framework com-

bines a finite difference method to solve the macroscopic system with a finite element

method to solve the microscopic system. Building on that our developed numerical

framework includes all required changes for our new modelling assumptions involv-

ing the finite difference schemes, approximating the diffusion and haptotactic terms,

modifying the initial conditions for the macro-dynamics and the boundary condi-

tions for micro-dynamics. Besides that, we added new strategies to improve the

numerical outcome including tumour boundary unification, controlling ECM het-

erogeneity out of the tumour boundary ∂Ω(t) region. In the following context we

first give a summary of the overall results of our numerical investigations in Chapter

3, then we discuss the key factors impacting the viral therapy outcomes.

In order to track the macro-micro dynamics behaviour on the maximal tissue

domain (Y = [0, 8] × [0, 8]) and what conditions that lead to improved tumour

suppression, we first have chosen a list of baseline parameters as listed in Tables 3.1

and 3.3 which is based on the published studies Camara et al. (2013); Peng et al.

(2017). Then, we numerically investigate the findings of our modelling for three

macroscale scenarios (3.10), (3.12), and (3.14) in terms of validating the impact of

changing some of most essential parameters involved in virus dynamics and spread,

namely, the viral infection rate (ρ), the natural death rate of infected cancer cells

(δi), ECM degradation rates by uninfected cancer cells (αc) and infected cancer cells
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(αi), the virus replication rate (b), and the amount of the initial administered virus

doses.

Based on the baseline parameters list 3.1, for all scenarios of the macroscopic

models as presented in (3.10), (3.12) and (3.14), the tumour boundary ∂Ω(t) is ex-

panding within Y in related to haptotatic migration rule against ECM gradients.

Although, a better tumour reduction occurs in the case of considering the hapto-

tactic migration of both virus-infected cells and virus particles towards higher ECM

gradients. However, one of the most essential factors impacting tumour mass and

invasion area is the viral infection rate (ρ). Experimental studies have shown that

increasing or decreasing the viral infection rate (ρ) leads to an important variation

in tumour size (Maroun et al., 2017), therefore we have done a numerical investi-

gation for the effect of the infection rate on the total tumour dynamics (uninfected

+ infected) concluding that increasing the rate at which the oncolytic virus infects

the cancer cells plays a central role in the development of the viral therapy i.e.

any increase in (ρ) (with respect to the baseline value) definitely leads to more tu-

mour suppression. Additionally, in order to observe the viral therapy outcomes from

another perspective, we examined tumour invasion in the terms of the effect of the

death rate of infected cells δi. Decreasing δi (with respect to baseline values) leads to

a dramatically reduction in the uninfected cancer cells within the viral-interactions

areas in Ω(t), while increasing δi prevents tumour suppression improvement. How-

ever, δi alone does not make a clear difference in the overall tumour mass, although

its variation still play a key role in the density of uninfected cancer cells within

virus accumulation areas. This gave rise to examine different parameters, namely,

ECM degradation rates αc and αi. Indeed, the process of tumour invasion of the

surrounding tissue and the viral spread depends on the partial degradation of ECM.

Therefore, the variation of ECM degradation rates are expected to be crucial within
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viral therapy. In order to investigate this impact, we chose doubling both degrada-

tion rates (with respect to the baseline) where that showed the dependancy of the

success or failure of the oncolytic virus distribution within tumour site, i.e. when-

ever ECM is degraded, OV has more chances to spread within the tumour tissue

and pass to the accumulated areas of uninfected cancer cells. Actually in case of

increasing ECM degradation rates, the haptotactic migration of both infected and

uninfected cancer cells is oriented towards regions of higher ECM levels. This en-

ables cancer cells (infected and uninfected) to be accumulated within certain areas

causing higher degree of infection which leads in its turn to a clear decrease in the

total tumour mass.

Further, one of crucial features for oncolytic viruses is its ability to replicate

within the tumour site when connecting to surrounding cancer cells. Hence, the

number of virus particles release by an infected cancer cell (b) is an expected crucial

factor on the overall therapy process Maroun et al. (2017). Indeed, what we have

found from increasing the replication rate of virus particles (with respect to baseline

value) is exactly matching what we have expected, i.e., when increasing (b), the total

tumour mass is always below the baseline scenario. Otherwise, in the absence of the

replicating feature, the morphology of the growing tumour is increased in the spatial

tissue domain which in turn leads to a clear increase in the tumour size and mass.

Moreover, A special attention was paid to the importance of virus dosage on the

viral therapy as this also presented interest for experimental works by Rommelfanger

et al. (2011); Vähä-koskela and Hinkkanen (2014). Alongside the dosage size, the

amount and the location in regards to the initial tumour size also play a central

role as well Bajzer et al. (2008); Rioja et al. (2016). However, we numerically

investigated all these factors to conclude the following. Increasing the initial viral

dosage leads to a clear rapid decrease in tumour mass and size over the first 30
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stages. Then the tumour distribution came back to a normal growth in comparison

with baseline growth. However, the virus dosage is still an open question where

new virus doses need to be applied in proper sites at later stages so that we could

reach to better tumour suppression scenario. Finally, based on the previous findings

in this chapter, we proposed an alternative Table 3.2 (with respect to the baseline

values) to obtain more improved and controlled tumour suppression scenario. In this

new context, we tried to combine the following assumptions, decreasing (the natural

death rate of infected cancer cells) and increasing (the infection rate of cancer cells,

ECM degradation rate and the virus replication rate), in parallel to having five

initial virus doses on five various locations within tumour site Ω(t) and boundary

∂Ω(t). Building on such assumptions, we obtained a complete control of the tumour

mass which in turn leads to a faster viral therapy. Furthermore, the distribution of

uninfected cancer is preserved at very low levels for all macro-micro stages. Even

though we examined both macro-dynamics scenarios for longer observation of time,

we still had the same control over the the total tumour mass.

In Chapter 4 we have extended our previous chapter (published already in

Alzahrani et al. (2019)) to include the impact of a fusogenic oncolytic virus that

can form syncytia structures to explore the outcome of the newly emerging on-

colytic viral therapy. Experimental studies in most clinical trials agreed on the

variation of OV impact on the viral therapy due to many factors such as virus type,

size, etc. Hence, some subclass of OV leads to formation of syncytia structures re-

sulting better anti-tumour scenario (Meerani and Yao, 2010; Kauman et al., 2015;

Krabbe and Altomonte, 2018; Ebert et al., 2004). Thus, based on our extended

multiscale framework, at the macro-scale we take into account new modelling hy-

potheses to describe the dynamical behaviour for tumour-OV interactions involving

five macroscopic components, namely, uninfected cancer cells (c), infected cancer
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cells (i), syncytia cancer cells (s), ECM (u) and OV (v). At the micro-scale, we take

into consideration the proteolytic ezymatic system (uPA) to be computed within the

tumour boundary ∂Ω(t). Again, we have used the same connection methodology

(cross-talk) to pass the solutions between macro-scale and micro-scale, in addition to

passing the obtained informations at the current macro-micro stage to the next stage.

We also added a series of requirements into the computational approach of the mul-

tiscale numerical framework to involve our new modelling assumptions as detailed

in Chapter 4. To get further understanding of how our new modelling approach,

focus must be placed on our previous findings. To validate this, we have considered

multiple cases regarding the tumour-OV interactions in the presence of cells syn-

cytium, namely, Macro-dynamics case (1) equation (4.8), Macro-dynamics case (2)

equation (4.9), Macro-dynamics case (3) equation (4.10) and Macro-dynamics case

(4) equation (4.13), where, in brief, all macroscopic cases are centred on assumptions

regarding either the absence or the presence of syncytia cancer cells diffusion within

the spatial domain with and without haptotactically directional movement towards

higher ECM gradients.

Based on the previous results (presented in Chapter 3), we began our numerical

investigation by using the baseline parameters summarised in Tables 4.1 and 4.2

to examine three cases of syncytia motility/lack-of-motility. In the first case, we

assumed syncytia structures has the lack of movement within the domain, but syn-

cytia cells still has its own impact upon the process of remodelling and degradation

ECM components. Based on this scenario, we observed an increased accumulation of

syncytia structures formation in those regions characterised by lower mass of cancer

cell. However, in the second macro-dynamic case (4.9), we take into consideration

the random motility of syncytia structures within the domain although we still ig-

nored the haptotactic rule of its directional movement to ECM. Herein we explored
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the effect of various values of the diffusion coefficient of syncytia cancer cells Ds on

the overall dynamics of our multiscale moving boundary modelling. Further, this

variation in Ds values was taken with respect to the values of the diffusion coefficient

of single infected cells Di. During the numerical investigations, we concluded that

increasing the random motility rate of syncytia cancer cells leads to an undesirable

situation of viral therapy, while decreasing that rate causes to a considerably re-

duction in the overall tumour mass and in the invasion area spread. This could be

explained as follows, slower syncytia diffusion within the domain leads to a localised

release of the virus particles and that in turn lead to increase the process of the

tumour suppression.

For the third case of the macro-dynamics cases, we proposed the directional

movement rule of syncytia cancer cells towards higher ECM gradients to be hap-

totactics and this hypothesis was described mathematically by the macro-dynamics

(4.10). In order to observe the effect of various syncytia haptotactic velocities ηs

on the overall dynamics and viral therapy progress, we chose various values of ηs

with respect to the baseline values of the haptotactic velocities for both the single

infected cancer cells ηi and virus particles ηv. Our investigation showed that the

best choice of haptotactic velocity of syncytia ηs is to be chosen equal or almost

equal to ηv but it should be less than ηi in order to obtain a better viral therapy

results in a comparison with the baseline outcome.

One other important factor on the overall viral therapy is the fusion failure prob-

ability p0. Although this crucial factor plays a key role in determining the density of

syncytia cancer cells within the invasion process on the domain Y , its choice should

be built on reasonable estimated values for the replication and death rates bs, δs of

syncytia cancer cells with respect to the estimated values of single infected cancer

cells. Therefore, we chose a higher syncytia replication rate, i.e., (bs > bi) and a
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lower syncytia natural death rates, i.e., (δs < δi). Based on that, we examined the

variation of the fusion failure probability p0 to conclude that higher probabilities

of syncytium formation (i.e., lower p0) leads to better and faster viral therapy over

all macro-micro stages. However, we still have another example showing the most

powerful control of tumour invasion scenario obtained by Table 4.3 associated with

Table 4.2. This example has been obtained by combining best parameters choices

depending on the previous findings (Chapter 3) and current results (Chapter 4).

Finally, we have studied the case when the random motility rate of syncytia

cancer cells is not a constant. Indeed, this assumption is more closed to reality

scenarios due to that the diffusion of syncytia is influenced by the surrounding

densities, namely, ECM and OV. Hence, we chose to incorporate this hypothesis

into our third macro-dynamics case, namely, (4.10). We generalised the mathe-

matical modelling of this macro-dynamics case to include two sub-cases in terms

of syncytia density dependent, namely, macro-dynamics sub-case (4.13)-(4.14) and

macro-dynamics sub-case (4.13)-(4.15). In the first sub-case (4.14) we investigated

the syncytia diffusion linear dependancy only on OV dynamics, while in for the con-

sidered sub-case (4.15) we studied the syncytia diffusion linear dependancy on both

dynamics OV and ECM. The general findings apparently showed that both assumed

scenarios of the macroscopic model with the density-dependent syncytia diffusion

gave more tumour suppression which means getting a better viral therapy case over

all macro-micro stages. However, we did not find any clear difference between both

sub-cases in terms of the tumour reduction. In fact, the main cause of this tumour

suppression is based on the accumulation of syncytia formation in areas with unin-

fected and infected tumour cells, which in turn leads to releasing more OV within a

certain area on the tumour site Ω(t), hence, a better and a faster tumour reduction

occurs within this area.
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In Chapter 5 we developed further mathematical analysis to support our numer-

ical investigations those have been done in the previous chapters. We have studied

the local existence solutions and their uniqueness within proposed spatio-temporal

domains for three mathematical modelling, namely, two scenarios of the macroscopic

models, (3.10) (rewritten in a general form in (5.2)) and (3.14) (rewritten in a gen-

eral form in (5.63)), in addition to the microscopic model previously introduced in

3.4 (rewritten in a general form in (5.70)). For analysis we followed similar method-

ology previously explored also in Rodrigo (2008); Szymanska et al. (2009); Chaplain

et al. (2011); Bitsouni et al. (2017) while taking into consideration the differences

in modelling assumption. In this chapter, we first began to prove the existence of

the unique solution for the baseline macroscopic scenario (5.2). The proof has been

obtained via fixed point argument involving Banach Contraction Theorem (Yosida,

1995). To achieve this, we took advantage of essential mathematical concepts in-

volving the classical semigroup frameworks presented in Henry (1981), such as: the

sectorial operator, the lipschitzianity properties, space embeddings for Holder con-

tinuous functions, the triangle inequality, the continuity of the norm, the property

of the Lebesgue Integral and Bochner Integral (Yosida, 1995). Based on these, we

have concluded that there exist a unique local-in-time solution for the macroscopic

scenario (5.2). Furthermore, in a similar manner we applied the same analytical

sequence of steps as those described in Theorem (5.2.1) to show the existence and

uniqueness locally-in-time of solutions for both models, the macroscopic scenario

(5.63) (for more details see Theorem (5.70)) and the microscopic model (for more

details see Theorem (5.4.1)).

In order to validate the estimation of the parameters regime that has been used

during this work, in this thesis we have already examined the model performance

against some biological observations. The initial estimation of model parameters
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was mainly based on the taken values from the following references, Camara et al.

(2013), Peng et al. (2017), Biesecker et al. (2009) and Alzahrani et al. (2019). Since

our baseline estimation of the parameter values ensures an appropriate fit in a com-

parison with some biological observations, we have either minimised or maximised

some of the parameters in order to examine the modelling performance against cer-

tain biological observations such as examining the effect of viral infection speed

within tumour dynamics. However, there are still challenges and open questions

in terms of the validation and limitation of the model parameters. One of these

challenges is how to determine the amount of the viral dosage and at which stage

of cancer invasion should it be given during treatment process. However, in the

future we aim to focus more in the impact of the spatial distribution of viral dosage

and ECM sensitivity upon the viral therapy outcome. Furthermore, we still have

the chance to develop our current work in relation to improving the theoretical and

the computational two-scale framework to involve three scales, namely, intracellular

scale, cellular scale and tissue scale, in addition to developing the analysis part to

include the existence of solutions globally-in-time for the two-scale model within two

dimensional space. Finally, there are still many interesting research points in the

field of multi-scale modelling of cancer - oncolytic virus interaction which require

further development and future work.
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Appendix A

A.1 Description of Multi-scale Numerical Frame-

work

For completeness, in this section, we present the numerical framework first inter-

duced in (Trucu et al., 2013) and then later extended and applied in the following

studies (Trucu et al., 2016; Peng et al., 2017; Alzahrani et al., 2019). The compu-

tational framework stands for computing two dimensional multiscale modelling in

which based on two numerical methods, namely: Finite Difference Method (FDM)

and Finite Element Method (FEM). At the macro-scale, the macro-dynamics is

computed by the finite difference approach involving central differences and mid-

point approximations. While at the micro-scale, the finite element approach is used

to compute the micro-dynamics on the micro-domain namely, P∗ε (t). However, in

the following, we first describe the discretisation, give a short description for the

macro-dynamics computation process, and explore the interpolation used to express

the top-down link (that enables the source for the micro-dynamics induced by the

macro-scale).
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A.1.1 The big picture: spatial domain discretisation at both

macro and micro - scales

We assume that the tumour Ω(t) grows within a maximal reference spacial domain

Y , which is taken in our numerical experiments to be the rectangular region Y :=

[0, 8]× [0, 8]. Details of the macro-solver are given in the next appendix subsection.

We discretise Y uniformly in both spatial directions with a equal mesh size ∆x =

∆y = 0.03125.

In addition, the time interval [t0, t0 + ∆t] is discretised by uniformly time step

with a size δτ = δ̂t
k

.

Finally, for the micro-domains and micro-dynamics, the discretisation steps can

be summarised as follows:

1. For any time instance t0 ≥ 0, any boundary micro-domain εY ∈ P(t0) is

centred a boundary point x ∈ ∂Ω(t0) ∩ εY , having its size ε = 2∆x = 0.0625.

2. The top-down nonlocal source terms is done in brief as follows. We use directly

the non-local formula at the overlapping macro-micro mesh points and use

micro-scale barycentric coordinates to interpolate at all other micro-points

y ∈ εY \ {(i∆x, j∆x) | i, j = 1...q}. This is explored in full details in Section

2.4.1.

3. On each εY we then solve the micro-dynamics via finite element by involving

bilinear shape function on a square micro-mesh placed on εY .
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A.1.2 Macro-solver

• (Temporal discretisation) The solver uses the Method of Lines in which the

time marching for the macro-system has been approximated by predictor cor-

rector method (predicting with Euler and correcting with Trapezoidal method).

• The predictor is given by

ĉn+1
i,j = cni,j + δ̂t(F (cni,j, v

n
i,j))

• The corrector is given by

cn+1
i,j = cni,j +

1

2
δ̂t(F (cni,j, v

n
i,j) + F (cn+1

i,j , vn+1
i,j ))

• (Spatial discretisation) At any discrete spatial point (i∆x, j∆x), ∀i, j = 1, ..., q,

and any given time node tn := t0 + nδ̂t, ∀n = 0, ..., N , the spatial operator of

the right hand side is represented by the following approximations, namely:

the diffusion is approximated by a midpoint approximations scheme as follows:

(∆c)ni.j ≈
(cx)

n
i+ 1

2
,j
− (cx)

n
i− 1

2
,j

∆x
+

(cy)
n
i,j+ 1

2

− (cy)
n
i,j− 1

2

∆y

and the haptotaxis term is approximated by:

∇ · (c∇u)ni,j ≈
(c)n

i+ 1
2
,j

(ux)
n
i+ 1

2
,j
− (c)n

i− 1
2
,j

(ux)
n
i− 1

2
,j

∆x
+

(c)n
i,j+ 1

2

(uy)
n
i,j+ 1

2
,
− (c)n

i,j− 1
2

(uy)
n
i,j− 1

2

∆y
,
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where

(cx)
n
i+ 1

2
,j

=
(c)ni+1,j−(c)ni,j

∆x
& (ux)

n
i+ 1

2
,j

=
(u)ni+1,j−(u)ni,j

∆x

(cx)
n
i− 1

2
,j

=
(c)ni,j−(c)ni−1,j

∆x
& (ux)

n
i− 1

2
,j

=
(u)ni,j−(u)ni−1,j

∆x

(cy)
n
i,j+ 1

2

=
(c)ni,j+1−(c)ni,j

∆x
& (uy)

n
i,j+ 1

2

=
(u)ni,j+1−(u)ni,j

∆x

(cy)
n
i,j− 1

2

=
(c)ni,j−(c)ni,j−1

∆x
& (uy)

n
i,j− 1

2

=
(u)ni,j−(u)ni,j−1

∆x
.

and (c)n
i+ 1

2
,j
, (c)n

i− 1
2
,j
, (c)n

i,j+ 1
2

, (c)n
i,j− 1

2

are given here via the following midpoint

rules: 

cn
i+ 1

2
,j

:=
cni,j+c

n
i+1,j

2
,

cn
i− 1

2
,j

:=
cni,j+c

n
i−1,j

2
,

cn
i,j+ 1

2

:=
cni,j+c

n
i,j+1

2
,

cn
i,j− 1

2

:=
cni,j+c

n
i,j−1

2
.

A.1.3 Micro-solver

• Define Neumann boundary conditions on every micro domain εY .

• Assume the following initial conditions, a(x, t) = p(x, t) = m(x, t) = 0.

• Using midpoint rule for integral sources and a trapezoidal predictor-corrector

for time integration.

• Use finite element method to solve the micro-system on each boundary micro-

domain εY .
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A.1.4 Bottom-up Link

• Intialize for Next Macro-Micro Stage.

• If the invasion probability is applied, compute new direction and magnitude

of the movement.

• Replace the initial conditions with the solution at the final time of the previous

macro-micro stage.

• Repeat the macro-micro solver on the new expanded domain Ω(t0 + ∆t).

A.2 Sensitivity Analysis for ECM Initial Condi-

tions

In Figure A.1, we explore the sensitivity of heterogeneity within the ECM initial

conditions on the overall viral therapy. We consider three cases for the ECM initial

condition, which range from completely homogeneous ECM to certain level of spatial

inhomogeneities in the ECM. These are given mathematically through

u(x, 0) =
1

2
+ γ

(0.3sin(4π ‖x‖2) + sin(4π ‖(4, 0)− x‖2))

2
.

where the parameter γ controls the heterogeneity level. Finally, in this numerical

experiment we use the baseline parameters set 4.1 alongside the one-dose virus initial

condition presented in 3.2(c). Figure A.1 shows the outcome of this sensitivity

exploration, and we observe there that as ECM heterogeneity increases the tumour

evolution moves away from the compact growth exhibited in the homogeneous case,

leading to a more complicated tumour morphology.
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(ECM initial condition) (tumour stage 50) (tumour stage 100)

a.

b.

c.

Figure A.1: Multi-scale simulation involving macro-dynamics (4.10) and three cases of
ECM initial conditions, that correspond to the following three levels of the heterogeneity
parameter γ, namely: a. γ = 0; b. γ = 0.0625; c. γ = 0.125. Left column shows the initial
ECM distribution, while middle and right columns show the total tumour distribution at
stages (50 and 100).
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