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Abstract

In this study, RNA-seq and proteomics, two orthogonal high-throughput technolo-
gies, were used to search the Saccharomyces cerevisiae genome for new genomic
features. RNA-seq data were aligned to the genome with three successively strin-
gent set of parameters for the STAR aligner (Dobin et al., 2013). The varying levels
of stringency elucidated some complexities in the RNA-seq data, such as the pres-
ence of read alignments that mapped to multiple genomic locations. The RNA-seq
alignments indicated the presence of RNA transcripts derived from regions of the
genome without annotations (un-annotated regions) in the Saccharomyces Genome
Database (SGD). To ensure that all of the high-quality curated annotations within
SGD were accounted for appropriately, these datasets were categorised as either
Primary or Secondary Annotations. Annotations of genomic regions where the pri-
mary sequence produced a molecule (e.g. snoRNA or peptide) were designated as
Primary. Annotations of regions where other types of activity were present (e.g.
histone binding sites, double-strand break hotspots) were classified as Secondary.
Only the Primary Annotations were used as boundaries for determining locations
of un-annotated regions. Open reading frames (ORFs) were present in these un-

annotated regions. Therefore, the regions were translated in six frames to build a
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database of all theoretical peptides. Proteomics tandem mass spectra were then
searched against this peptide database to find the presence of any expressed ORFs
within the un-annotated regions. Two preliminary target ORFs have been found to
contain RNA-seq alignments and were detected by the proteomics analysis, evidence
that their transcripts may have been present in the original sample. The next step
would be to verify these two preliminary target regions in the experimental labora-
tory to determine if they are in fact expressed as peptides, and if so, what possible
functions the peptides may have. Throughout this study, the Un-Annotated Re-
gion Pipeline (UAR-Pipeline) software was constructed to facilitate the analysis of
un-annotated regions given a genome sequence, a set of genomic annotations, and
RNA-seq data. In addition, a Quickload Site within the Integrated Genome Browser
(Nicol et al., 2009) was created to store and effectively visualise un-annotated regions
against RNA-seq alignments, annotations, and other tracks of information such as
conservation. The vast majority of annotations contained within the Quickload Site
are also hosted by SGD; therefore, the Site would serve as a new resource for the

research community through anticipated public access.



Chapter 1

Literature Review

1.1 Introduction

This study uses two orthogonal high-throughput technologies, RNA-sequencing and
proteomics, to search for new genomic features in Saccharomyces cerevisiae. RNA-
sequencing provides information regarding the transcriptome of the organism, whereas
proteomics characterises the collection of peptides and proteins present. If an RNA
transcript is seen in the RNA-seq data and its corresponding peptide is found in the
proteomics analysis, there is more yet evidence that the transcript is expressed.

A concurrent objective was characterising nucleic acid and protein sequences of
interest found throughout the course of the study with current bioinformatics tools.
The use of programs such as BLAST (Altschul et al., 1990), phylogenetic trees
(Arthur Lesk, 2008), Hidden Markov Models (Krogh et al., 1994), phastCons (Siepel
et al., 2005), and InterPro (Apweiler et al., 2001) are introduced and described later

in this chapter.
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1.2 Central Dogma

Figure 1.1 illustrates the central dogma in molecular biology (Doerge, 2002). In the
organism, genetic information is stored as deoxyribonucleic acid (DNA). The geno-
type may be determined by sequencing the genome, the collection of all DNA within
the organism. Parts of DNA are transcribed into ribonucleic acid (RNA), and a sub-
set of RNA, the messenger RNA (mRNA) molecules, can be probed by techniques
such as microarray or RNA-sequencing, for instance. These technologies provide
information regarding the transcriptome, or the collection of RNA transcripts with
which proteins will be produced. At the third stage in the central dogma, proteins
translated from RNA transcripts can be detected and identified through, for exam-
ple, mass spectrometry-based proteomic analysis. The proteome, or set of proteins

within an organism, may be characterised in this manner.

1.3 Gene and Genome Annotation

The main objective of a single gene annotation is to describe its function (e.g.
protein-coding) (Mudge et al., 2013). From the function of one sequence, the func-
tions of other sequences that are homologous may be inferred, allowing more directed
and efficient investigations of the latter sequences. In addition, sequence homology
amongst different species (e.g. Saccharomyces cereviae and Homo sapien) enrich
our biological understanding of what is genetically encoded by even distantly re-
lated organisms and when those species diverged in evolutionary history.
Historically, transcript models were developed on libraries created by Sanger-

sequencing of cDNAs or expressed sequence tags (ESTs) (Conesa et al., 2016). More
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Figure 1.1: A schematic diagram of the central dogma and associated recent tech-

nologies for analysis at each stage. Reproduced with permissions from Doerge
(2002).
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recently, RNA-sequencing has been more widely used for transcript annotation. For
protein annotation, protein sequences from the Swiss-Prot database (Boutet et al.,
2016) and ab initio ORF-finding methods were used to infer coding sequences (CDSs)
(Stanke and Waack, 2003; Burge and Karlin, 1997).

A collection of transcript models is considered a ’genebuild’ by GENCODE and
Ensembl (Mudge et al., 2013). While a genebuild manually annotated by teams
of curators is considered the gold standard, most of the new releases are produced
computationally. In silico annotation has three main steps: 1) transcript alignment,
2) annotate by comparing CDSs to genomes of other closely-related species, and 3)
predict annotations based on the likelihood of a sequence to code for a gene feature
with ab initio programs such as AUGUSTUS Stanke and Waack (2003).

Although a genome may be considered well-annotated, missing gene features
should still be detected and further investigated. Recently, new classes of RNA
molecules have been discovered, such as microRNAs which have various regula-
tory functions (Lee et al., 1993; Wightman et al., 1993) and promotor-associated
short RNAs which may elucidate pervasive RNA transcription observed in RNA-
seq experiments (Kapranov et al., 2007). Therefore, not only are new individual
genes discovered that elucidate cellular and molecular pathways and interactions,
but entirely new classes of gene features are able to be characterised, expanding our

understanding of genomics.
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1.4 RNA-sequencing

High-throughput RNA-sequencing is one type of technology that describes and quan-
tifies the transcriptome of an organism in a particular stage of development of phys-
iological condition (Wang et al., 2009). Common goals of transcriptomics include

the following:

e the characterization of all expressed members of a particular type of transcript
(e.g. small RNAs, non-coding RNAs, and mRNAs)

e determine where transcripts start (5’ end) and terminate (3’ end), patterns of
splicing, and where chemical modifications or molecular binding sites occur

e quantify any changes in levels of expression of transcripts under different de-

velopmental or physiological conditions

1.4.1 Previous Technologies

Below are descriptions of major previous technologies that preceded and led to the

development of RNA-seq included hybridisation and sequence-based approaches.

Hybridisation Approaches

Microarrays involves a reverse transcription step from sample RNA to cDNA. Re-
verse transcriptase is used to convert mRNA into ¢cDNA molecules tagged with
fluorescent labels. The cDNA is then incubated with custom-made or high-density
oligo microarrays, comprised of a collection of target DNA sequences that the cD-
NAs can hybridise against, bound to a glass slide. Hybridisation is then detected

by fluorescence intensity (Wang et al., 2009). Some microarrays can be specialised
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to detect isoforms that are spliced by using probes that span exon junctions (Clark
et al., 2002). One advantage of hybridsation techniques is that they are relatively
inexpensive. However, the methods rely on prior knowledge of the genome for de-
signing the complementary sequence probes. In addition, cross-hybridisation causes
a lower signal-to-noise ratio, making it more difficult to determine a true hybridi-
sation event. Microarrays also have relatively small dynamic ranges of detection
due to the cross-hybridisation and signal saturation. Often, complex normalisation
methods are required for quantifying expression level changes, which can be difficult

(Wang et al., 2009).

Sequence-Based Approaches

In contrast to hybridisation techniques, sequence-based approaches directly deter-
mine the sequences of cDNA. Expressed sequence tag (EST) sequencing by Sanger
sequencing is one such approach (Wang et al., 2009). The disadvantages of using
EST sequencing are that it is a relatively expensive technology, not quantitative,
and low throughput.

There are also tag-based methods, including serial analysis of gene expression
(SAGE), cap analysis of gene expression (CAGE), and massively parallel signature
sequencing (MPSS). Although the high-throughput nature and digital output of
transcript levels in tag-based methods are advantages over EST sequencing, these
methods still rely on expensive Sanger sequencing technology. Moreover, a signifi-
cant number of the sequence tags cannot be mapped uniquely to the genome. Only

part of the transcript is analysed; therefore, isoforms are not easily distinguished.
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1.4.2 Short-Read RNA-sequencing Technology

In general, short-read RNA-sequencing provides the relative abundance of the col-
lection of transcribed RNA molecules present at a given moment within a sample.
Briefly, total RNA are extracted from the biological sample and enriched for
mRNA using oligo-dT attached magnetic beads. RNA is then fragmented and
primed for cDNA synthesis. The first strand ¢cDNA is synthesised via reverse tran-
scription and using random primers. The second strand cDNA is generated by
separating the RNA template from the first strand via AMPure XP beads and
synthesising a complementary strand to make ds cDNA. Fragmentation can create
overhangs, so these ends are blunted using 3’ to 5’ exonuclease activity to remove the
overhang. The 5’ overhangs are filled in via polymerase activity. To prevent blunted
3’ ends of fragments from ligating to each other during adaptor ligation, a single
adenine nucleotide is added. In addition, a complementary thymine is added to cre-
ate an overhang for adapter ligation. Indexing adapters are then ligated to ds cDNA
ends in preparation for hybridisation. DNA fragments that containing adapters on
both ends are selectively amplified via PCR. Quantification of the DNA library tem-
plates should be determined and quality control analysis performed. To prepare the
DNA templates for cluster generation, indexed DNA libraries are normalised and

pooled (if applicable).

1.4.3 Advantages of Short-Read RNA-seq

One advantage of RNA-sequencing over previous technologies is that prior knowl-

edge of the reference genome and reference transcriptome is not necessary, which
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makes it potentially useful for non-model organisms that do not have fully sequenced
genomes. Short reads (about 30 bp) can provide information regarding which exons
are spliced together, while longer or paired-end reads can be used to describe how
several exons are connected. These properties of RNA-seq produced data render
the method conducive for studying isoforms and other variations in transcript se-
quences like single-nucleotide polymorphisms (SNPs) (Cloonan et al., 2008; Morin,
Ryan, 2008). There is no upper limit of quantification since the measurement is
just the total number of sequences acquired, whereas quantifying transcripts with
very low or very high abundances is considerably more difficult with microarrays. In
RNA-seq, cloning is not required, and, in some instances, neither is amplification. A
much smaller sample of RNA is needed, reducing the cost of RNA-seq experiments

(Wang et al., 2009).

1.4.4 Challenges and Considerations in Short-Read RNA-
seq

Challenges still persist when invoking RNA-seq and, thus, careful consideration
needs to be given to the design and analysis of RNA-seq experiments to mitigate

these.

Transcript End

Fragmentation of larger RNA molecules (around 200-500 bp) for sequencing can
cause bias due to the reduction in RNA-seq signals for 5 and 3’ ends of tran-
scripts (Mortazavi et al., 2008). In addition, the fragmentation of cDNA molecules

is strongly favorable toward the sequencing of 3’ ends of transcripts (Nagalakshmi
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et al., 2008).

Library Construction

The construction of the library is also a major consideration. Multiple copies of a
single short read may appear in an amplified cDNA library, which could be a true
representation of the abundance of the corresponding RNA molecule or a polymerase
chain reaction (PCR) artefact (Sayols et al., 2016). This may be due to, for example,
overloading of a flow cell that produces optical duplicates. One possible solution is

to examine this behavior across multiple biological replicates.

Strand Specificity

The RNA-seq method may not provide information about which DNA strand the
RNA molecule was derived from, yielding unstranded RNA-seq reads making it
impossible to resolve reads from overlapping genes on opposite strands. Conversely,
the method could give strand information but may require extensive preparation

(Cloonan et al., 2008) or inefficient direct RNA-RNA ligation (Lister et al., 2008).

Read Alignment

Short reads can be mapped directly to the reference genome or assembled into contigs
first before mapping. The Trinity platform assembles transcriptomes de novo in
non-model organisms (Haas et al., 2013). One clear advantage is not needing a
reference genome before analysing the RNA-seq reads. However, limitations include
the creation of erroneous chimeras between isoforms or paralogs, especially if the

RNA-seq reads are relatively short. Additionally, isoform misalignment may create
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artificial polymorphisms.

Mapping reads to complex genomes with extensive alternative splicing can be
more difficult as some reads will span splice junctions. One way to alleviate this
issue is to create a separate library of junction sequences and map junction reads
to this library (Wang et al., 2009). One advantage of using S. cerevisiae as a model
organism in this study is that splicing is rare; therefore, mapping RNA-seq reads to

splice junctions should not prove to be a major issue.

Multi-Mapping Reads

Multi-mapping reads, or reads that map to multiple genomic locations, can further
complicate read alignment in RNA-seq analysis. One way to handle multi-mapping
reads is to observe the number of reads aligned to neighbouring unique sequences,
and then distribute the multi-mapping reads proportionately accordingly (Mortazavi
et al., 2008; Cloonan et al., 2008).

Long repetitive genomic regions and multi-mapping reads with greater than
about 100 copies each can complicate analysis even more. The acquisition of longer
reads may help with these complications since there will be a higher probability
of including a unique non-repetitive region to help locate where in the reference
genome an RNA transcript was transcribed from (Wang et al., 2009). One method

of producing longer reads is paired-end sequencing.
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Sequencing Errors and Polymorphisms

Errors from the sequencing instrument and polymorphisms may be complex issues
to solve with organisms that do not have reference genomes. However, many soft-
ware read alignment programs, such as TopHat2 (Kim et al., 2013) and STAR read
alignment program (Dobin et al., 2013), have options to manage single-base differ-
ences. Higher sequencing coverage and comparison across biological replicates helps

to resolve these complications.

GC Content and Bias

GC-content bias must be considered when processing raw data from sequencers,
since fragments that are GC-rich and GC-poor are underrepresented (Risso et al.,
2011). For a given DNA fragment length, the higher the GC content, the more
thermodynamically stable it is due to favorable effects on base-stacking (Yakovchuk
et al., 2006). Since GC content varies amongst individual DNA fragments within a
DNA library, clonal expansion may not occur evenly for all fragments (Risso et al.,
2011). Thus, GC content variation confounds comparisons of raw counts amongst
genes within a lane on a flow cell in addition to comparisons amongst replicate lanes.
Normalisation methods for both within-lane (e.g. regression, global-scaling, or full-
quantile normalisation methods) and between-lane biases may alleviate the effects

of GC content variation.

1.4.5 Direct RNA-sequencing

As mentioned in the previous section on Short-Read RNA-sequencing, conversion

of RNA to cDNA is required before sequencing. The conversion step requires a
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reverse transcriptase, which are error-prone and may produce low levels of cDNA
(Roberts et al., 1989). Since it is the cDNA that is sequenced, DNA contami-
nation from other sources may also be sequenced and included erroneously in the
library. Reverse transcriptases also have template-switching activity, which creates
artificial antisense transcripts, fuses transcripts, and shuffles exons (Houseley and
Tollervey, 2010). Therefore, to circumvent the challenges involved in converting
RNA to ¢cDNA, direct RNA-sequencing was developed to eliminate the conversion
to cDNA altogether (Ozsolak et al., 2009). The first step uses the Escherichia coli
poly(A) polymerase I to produce a poly(A) tail on 3’ ends of non-polyadenylated
RNA molecules to ensure that no nucleotides would be artifically added to the 3’ end
of the original RNA molecules in subsequent steps. Sequencing is initiated at the 3’
end by adding polymerase and deoxythymidine triphosphate (dTTP) to base-pair
with the adenine nucleotides in the poly(A) tail. Then, a mix of fluorescent Virtual
Terminator nucleotides (C, T, A, and G) are added, and those that were not incorpo-
rated are washed away. Images are taken, and the fluorescent and inhibitor moieties
of the nucleotide that was incorporated are cleaved to allow subsequent cycles. Al-
though there is no conversion to cDNA, direct RNA-sequencing has disadvantages
regarding single base errors, such as deletions, insertions, and substitutions. After
applying direct RNA-sequencing to Saccharomyces cerevisiae, the longest perfect
match aligned read was 50 bp long, so this technology is optimised for relatively

short RNA sequences (Ozsolak et al., 2009).
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PacBio Sequencing

Yet another RNA-sequencing technique was developed by Pacific Biosciences, where
longer RNA-sequencing reads are produced (Rhoads and Au, 2015). Each end of a
target dsDNA molecule is ligated to a hairpin adaptor, creating a SMRTbell (single-
molecule real-time). The SMRTbell is loaded onto a SMRT cell chip, where it can
diffuse into a zero-mode waveguide sequencing unit. A polymerase can bind to one
of the hairpin adaptors to start replication using four fluorescent nucleotides. Nu-
cleotide binding to the polymerase creates a light pulse that reveals its identity. A
series of these light pulses creates a 'movie’ that describes the DNA sequence, pro-
ducing a continuous long read (CLR). Read lengths above 60 kb have been reported.
However, because the replication process is limited by the lifespan of the polymerase,
longer sequences produce fewer CLRs, yielding lower accuracy. Since repeat regions
within a reference genome make alignment of short reads more challenging, a major
advantage of the PacBio sequencing technology is the production of long reads that
have a higher probability of spanning regions also containing non-repeat regions for
easier mapping. Some limitations of PacBio sequencing include failure of a poly-
merase to anchor or loading of multiple DNA molecules onto a zero-mode waveguide
unit. These issues result in only 35,000-70,000 of the 150,000 wells on a SMRT cell
to produce successful reads, a major decrease in efficiency. Moreover, the error rate
of a CLR is about 11-15%, but this can be reduced by increasing the number of
sequencing passes. Greater than 99% accuracy was generated by 15 passes (Rhoads
and Au, 2015).

Comparably, Oxford Nanopore technology also produces read lengths of these
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magnitudes (Madoui et al., 2015).

1.4.6 Software Used in RN A-seq Analysis
STAR Aligner

In this study the decision was made to use the STAR (Spliced Transcripts Align-
ment to a Reference) aligner because of its relative speed and flexibility (Dobin et al.,
2013). STAR is an RNA-seq alignment algorithm for high-throughput long and short
RNA-seq data to a reference genome. In this study, STAR is implemented for map-
ping the nearly half a billion 50-bp RNA-seq reads to the Saccharomyces cerevisiae
reference genome. This allows, for example, downstream analysis of quantifying
read counts per gene. Through this quantification, RNA-seq alignment profiles of
un-annotated regions may be compared to annotated regions.

STAR operates through two phases: seed searching and clustering, stitching,
and scoring (Dobin et al., 2013). In the seed search, the Maximal Mappable Prefix
(MMP) is determined. The MMP (R,i,G) is the longest substring of read sequence R
that matches at least one substring of genome sequence G exactly at read location
i. Part (a) in Figure 1.2 illustrates aligning a read that spans a splice junction
but does not contain any mismatches. Starting from the first base of the read,
the STAR algorithm finds the MMP. Since the read spans a splice junction, the
entire read cannot be contiguously mapped to the location on G. Therefore, the first
portion (MMP1) is mapped to a donor splice site. For only the second portion of
the read, the yet unmapped part, the MMP search is repeated. Because the search

continues only for the unmapped portion, the algorithm is more efficient and quicker
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than its competitors such as Mummer (Delcher et al., 1999, 2002; Kurtz et al., 2004)
and MAUVE (Darling et al., 2004, 2010), which find all potential Maximal Exact
Matches.

MMPs can also serve as anchors that can be extended when the end of a read
cannot be reached due to mismatches (Figure 1.2 (b)). The extensions may allow for
mismatches when parameters are set to permit them. Poor sequencing tails, poly-A
tails, or library adapter sequences may be detected by the STAR algorithm if this
extension step yields a low quality alignment (Figure 1.2 (¢)). The MMP search is
performed also in the reverse direction of the read and initiated at various points
within the read through user-defined settings. This flexibility allows error detection
at read ends and increases mapping sensitivity (Dobin et al., 2013).

In the second phase of clustering, stitching, and scoring, the seeds from the
first phase are grouped and then connected. Proximity to a selected set of anchor
seeds is used to cluster all other seeds (Dobin et al., 2013). Seeds that map within
the genomic windows around anchors are stitched together in a linear fashion. In
stitching each pair of seeds, any number of mismatches is allowed but only one
insertion or deletion is permitted. A local alignment scoring scheme with user-
defined penalties for mismatches and indels guides the stitching process to construct

a quantitative analysis of read alignment qualities.
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Heuristic Nature of Aligners and Sub-Optimal Mappings

Developers of short-read aligners, such as Burrows-Wheeler Alignment (BWA) (Li
and Durbin, 2009) realised the limitations of their programs in terms of ability to
accurately and quickly align longer reads that were produced by more advanced
sequencing technology. BWA maps relatively short nucleotide sequences to long
sequences, such as a reference genome by querying sequences that are shorter than
200 bp to perform gapped alignments. However, because the algorithm’s stringency
requires the entire read to be aligned, reads longer than 200 bp may be interrupted
by structural differences, causing the program to fail. As a result, a newer im-
plementation called Burrows-Wheeler Alignment Smith-Waterman (BWA-SW) was
developed with heuristic capabilities that allow for faster alignment and for gapped
alignment of reads up to 100 kbp (Li and Homer, 2010). A heuristic method does not
guarantee an optimal alignment according to the scoring scheme because the method
cannot determine whether a local optimum is the global optimum, which may not
even exist. Since it is not feasible to check every possible solution due to the nature
of the large amount of data, heuristic methods are invoked to estimate the global op-
timum. Many RNA-seq alignment programs followed a similar approach, including
the more recent STAR aligner, which operates heuristically (Gingeras Group, 2016;
Dobin et al., 2013). The program’s algorithm searches for the maximum mappable
length of a read by a split/search/extend method. Although the alignment program
works for longer reads and take less computational time, STAR does not find all pos-
sible alignments since it does not perform local searches like the Smith-Waterman

algorithm (Smith and Waterman, 1981). Because not all possible alignments are
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found for each read, sub-optimal mappings may result, one disadvantage of using

heuristic algorithms.

1.4.7 Sources of Variability and Error
Biological Variability

Biological samples under identical experimental treatments will exhibit biological
variability. This manifests as different levels of RNA expression for the same genomic
feature in RNA-seq. For instance, one population of cells may synthesise 10 copies
of the protein Flocculin-1 (Chapter 3) per cell, while a second population may
synthesise 30 copies of Flocculin-1, when only 5 copies are necessary for the same
level of function. Having only 2 populations of cells, as in the aforementioned case,
would create a mean of 20 copies per cell; however, if a higher number of populations
of cells are used to calculate an average, for example, 10, 30, 5, 7, 9, and 4 copies per
cell, then the mean would be about 11 copies per cell, which is a more representative
estimate of the number of copies of Flocculin-1 that are produced by the majority of
cells. Therefore, it is critical there is an appropriate number of biological replicates
is determined for any experiment, taking into consideration the statistical power

required for proper analysis (Conesa et al., 2016; Schurch et al., 2016).

Preparation of Sample

When extracting total RNA from a biological sample, mRNA can be isolated in
two main ways: poly-A enrichment or ribosomal RNA depletion. One instance
where ribosomal RNA depletion may be required is for formalin-fixed and paraffin-

embedded samples, in which RNAs are degraded to smaller fragments that may not
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still contain a poly-A tail for poly-A enrichment (Mullins et al., 2007). The Ribo-
Zero-Seq protocol reduces 5’ to 3’ bias (poly-A capture methods yield more reads
from the 3’ ends of sequences) and has more uniform gene coverage; however, it has
a higher detection rate of pre-mRNAs, resulting in fewer total reads that align to
exon regions. Therefore, for the same transcriptome coverage, it was found that
2-4 times more reads had to be sequenced with the ribosomal RNA depleted library
than its poly-A capture counterpart.

As an internal control, RNA-seq spike-in mixes from External RNA Controls
Consortium (ERCC) can be included in RNA-seq samples to help quantify levels of
expression. In one study comparing a poly(A) enrichment method to the RiboZero
approach, it was found that ERCC-116 was underexpressed by 7.3-fold in the former
(Qing et al., 2013). In a separate study, ERCC-116 was observed at concentrations
that were 10 times higher or lower than expected (Seqc/Maqe-Tii Consortium, 2014).
Consequently, it is imperative that the quality of internal controls such as spike-ins
is carefully monitored and continually assessed throughout the experiment as low
quality sequences may introduce bias in expression levels.

In the laboratory, other sources of DNA may contaminate RNA-seq samples, such
as human skin, bacteria, viruses, other yeasts, and mycoplasma (Olarerin-George
and Hogenesch, 2015). Consequently, some transcripts in the target organism may
artificially appear to have higher levels of expression due to contamination from
other organisms that share some homology. If preparing a cDNA library is required
in the protocol, PCR may be another source of error since duplicate RNA-seq reads
may be a result of clonal copies of a single transcript instead of actually having

multiple RNA transcripts in the sample (Quail et al., 2012).
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Normalisation

If normalisation methods are used in processing raw sequencing data, precautions
should be taken to minimise the introduction of bias. If the lengths of genes are
not considered for normalisation techniques that rely on total read counts, then
normalised read counts may mask shorter genes that have lower total read counts
due to its short length but may actually have higher read counts per base-pair
(Bullard et al., 2010). Global normalisation methods may rely on total lane counts
(commonly referred to as RPKM), per-lane counts (uses internal control genes that
should be expressed consistently across biological conditions), or per-lane upper-
quartile of gene counts (genes must have reads in one or more lanes) (Mortazavi

et al., 2008).

1.4.8 Variability from Various Alignment Tools
Comparisons of Spliced-Alignment Programs

In a study done by Engstrom et al. in 2013, 26 different mapping methods, cre-
ated from the programmes BAGET (MasonLab, 2016), GEM (Marco-Sola et al.,
2012), GSNAP (Wu and Nacu, 2010), GSTRUCT, MapSplice (Wang et al., 2010),
PALMapper (Jean et al., 2010), PASS (Campagna et al., 2009), ReadsMap, SMALT,
STAR (Dobin et al., 2013), TopHat1 (Trapnell et al., 2009), and TopHat2 (Kim et al.,
2013), were compared (Engstrm et al., 2013). The comparisons were based on the

following parameters:

e Alignment yield

e Mismatches
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Basewise accuracy

Indel frequency and accuracy

Positioning of mismatches and gaps in reads

Coverage of annotated genes

Spliced alignment quality

Of all of the methods, GSNAP, GSTRUCT, MapSplice, and STAR were the
highest performing alignment methods; however, these programs still have their dis-
advantages. The outputs of GSNAP, GSTRUCT, and STAR contain many false
exon junctions, so junctions should be filtered on the number of supporting align-
ments. The study also noted that significant improvements were observed for align-
ment methods which used gene annotation, especially in terms of mapping spliced

reads (Engstrm et al., 2013).

Comparison of Aligners with Reference Genomes for Saccharomyces cere-
visiae

In Nookaew et al. 2012, Stampy (Lunter and Goodson, 2011), GSNAP (Wu and
Nacu, 2010), and TopHatl (Trapnell et al., 2009) were compared (Nookaew et al.,
2012). Although Stampy produced the highest mapping accuracy for ORFs that
contained high genetic variation, it took the most computational time. GSNAP
required a shorter amount of time but resulted in the lowest mapping accuracy,
which would be beneficial for analyzing large numbers of reads using genomes with
minimal polymorphisms. In terms of accuracy and speed, TopHat was in between
Stampy and GSNAP; however, the method did align reads on small exons well

(Nookaew et al., 2012).
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Differential Gene Expression

A comparison of baySeq (Hardcastle and Kelly, 2010), Cuffdiff (Trapnell et al.,
2010), DESeq (Anders and Huber, 2010), edgeR (Robinson et al., 2010), and NOISeq
(Tarazona et al., 2011) was also performed for differential gene expression analysis
in S. cerevisiae under 2 conditions: respiro-fermentative (batch) metabolism and
full respiratory (chemostat) metabolism (Nookaew et al., 2012). Each method was
compared against results from the Stampy alignment program. There was overall
agreement amongst all 5 programs since 33% of all differentially-expressed genes
(DEGs) were commonly detected. EdgeR identified an additional 299 DEGs, more

than any of the other individual methods (Nookaew et al., 2012).

Sequencing Quality Control Projects Comprehensive Assessment

Although there have been a number of comparisons done for RNA-seq alignment
methods, including those mentioned previously, an extensive study compared per-
formance and reproducibility amongst different RNA-seq platforms (Illumina HiSeq,
Life Technologies SOLiD, and Roche 454) at multiple laboratories (Seqc/Maqc-lii
Consortium, 2014). With respect to differential expression and junction discov-
ery, results from the 3 different RNA-seq platforms did coincide and agree overall.
About 44,000 genes in human, 79% of those known, and about 310,000 exons, 47%
of known ones, were detected across pairs of replicate sequencing sites. However,
for a large number of genes, there were major deviations in the absolute expression
levels amongst the platforms. For instance, 5,056 genes (9% of the total number of
known genes) were observed with the HiSeq 2000 but not with the SOLiD technol-

ogy. The deviations were noted to be systematic, and, therefore, not due to the lack
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of reproducibility, but perhaps due to the accuracy of measuring absolute levels of
gene expression (Seqc/Maqc-Iii Consortium, 2014). Although the exact cause(s) of
these deviations were not able to be determined in that study, it was observed that
the deviations were reduced in protocols that did not depend on poly-A selection.
Additionally, effects of GC content and unfolding of sequence regions were not sta-
tistically significant contributing factors to deviations in absolute expression levels

of genes.

1.4.9 Efficacy of Short-Read Mapping on Short Genes In
Yeast
Splice Site Prevalence

Less than 5% of protein-coding genes in yeast contain introns (Parenteau et al.,
2008); however, in organisms with large proportions of genes that are spliced, and in
particular where there are many isoforms of each gene, such as Arabidopsis thaliana
or human, having longer RNA-seq reads is a significant advantage as reads would
have higher probabilities of overlapping, and thus providing support for, splice junc-
tions. Since splicing events are relatively rare in S. cerevisiae, longer reads would

provide a smaller benefit.

Exon Length

The mean length of protein-coding genes in the SGD S. cerevisiae annotation is
calculated to be 1,764 bp (2). Mean lengths for promoter, 5 UTR, 3 UTR, and

terminator regions are reported to be 455 bp, 83 bp, 136 bp, and 275 bp, respectively
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(Tuller et al., 2009). Thus, a rough estimate of the mean exon length is about 815
bp. The set of RNA-seq reads are 50-bp and single-ended. To have an entire exon
covered by at least one RNA-seq read and to have consecutive RNA-seq reads overlap
on at least 1 base, fewer than 20 50-bp RNA-seq reads are required for a 815-bp
exon. There were nearly half a billion reads available in this study and about 6,000
protein-coding genes in yeast. Because of the large number of reads available, and
the relatively small number of and short lengths of protein-coding genes, short-read

mapping does not pose a major issue in this study.

1.5 Proteomics

The use of mass spectrometry in proteomics allows for the identification and quan-
tification of peptides and proteins within a sample (Aebersold and Mann, 2003).
Mass spectrometry involves detecting and measuring the number of ionised analytes
in the gas phase. Figure 1.3 illustrates a generic mass spectrometry experiment in

which:

1. proteins are extracted and isolated from the cell, tissue, or organism and sep-

arated by SDS-PAGE

2. proteins are enzymatically digested into peptides by trypsin

3. peptides are separated by high-pressure liquid chromatography and nebulised

into small charged droplets by electrospray ionisation

4. after peptides enter the mass spectrometer, mass spectra are taken at succes-

sive time points
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Figure 1.3: A schematic diagram of a generic mass spectrometry method in pro-
teomics. Reproduced with permission from Aebersold and Mann (2003).
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5. a computer-generated prioritised list determines which peptides to fragment,

and a series of tandem mass spec (MS/MS) experiments proceed

1.5.1 Mass Spectrometry Experiment Components

As shown in Figure 1.3, there are three main components in a proteomics mass
spectrometry experiment: an ion source, a mass analyser, and a detector (Aeber-

sold and Mann, 2003). The sections below describe common methods used in each
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component of an experiment.

Ion Source

Electrospray ionisation (ESI) ionizes solutions to isolate analytes through nebu-
lization(Aebersold and Mann, 2003). Matrix-assisted laser desorption/ionisation
(MALDI), which uses laser pulses to sublimate and ionise analytes from a dry, crys-
talline medium. ESI can isolate constituents of complex mixtures, whereas MALDI

is effective for relatively simple peptide samples (Aebersold and Mann, 2003).

Mass Analyser

The basic types of mass analysers are Fourier transform ion cyclotron (FT-MS), ion
trap, time-of-flight (TOF), and quadrupole (Aebersold and Mann, 2003). Analysers
can be stand-alone or arranged in tandem.

Ion traps capture ions for a certain amount of time and then allow ions to be
analysed by mass spec. This method is relatively inexpensive, sensitive, and robust;
however, ion traps have relatively low mass accuracy. There have been developments
to improve ion traps, including linear or two-dimensional ion traps, which contain
the ions in a much larger volume than the original three-dimensional ion traps.
The increase in volume improves the mass accuracy and resolution in addition to
sensitivity (Hager, 2002; Schwartz et al., 2002).

Fourier transform mass spectrometers also trap, or capture, ions but in a mag-
netic field under vacuum (Aebersold and Mann, 2003). This method has high resolu-
tion, mass accuracy, dynamic range, and sensitivity (Marshall et al., 1998; Valaskovic

et al., 1996; Martin et al., 2000; Lipton et al., 2002). In general, ion traps and
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quadrupole mass analysers are coupled ESI to yield collision-induced (CID) spectra
of fragments of precursor ions. TOF analysers are coupled to MALDI to determine
masses of whole peptides (Aebersold and Goodlett, 2001). When identifying pro-
teins from mass spectra, CID spectra provide not only the peptide mass but also

the peptide sequence.

1.5.2 Data Acquisition and Analysis
Data Acquisition

During protein digestion and separation, some sample can be lost through excessive
separation steps. There may be incomplete digestion by trypsin, leading to a smaller
number of peptides detected (Nesvizhskii, 2010). In tandem MS/MS, the mass
accuracy and resolution of MS analyser (resolution: several-500 ppm) determines the
accuracy of the peptide ions charge state (Nesvizhskii, 2010). To achieve maximum
accuracy, the instrument should be fine-tuned, the room temperature should be
tightly controlled, and both internal and external (computational) calibration should

be performed.

1.5.3 Protein Identification

After obtaining mass spectra, peptides and proteins are then identified from the
spectra. There are three basic ways in utilising the spectra: peptide sequence tag
approach, cross-correlation, and probability based matching (Aebersold and Mann,
2003). After the spectra are examined, a protein hit list is formed based on identi-

fied peptides. In the peptide sequence tag approach, the peptide’s mass is used in
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conjunction with an unambiguous, short sequence of residues from the peak pattern
in the spectra. The origin of the peptide is determined by the short sequence probe
(Mann and Wilm, 1994). In the cross-correlation method, theoretical mass spectra
are built from peptide sequences in the database (Eng et al., 1994). The best match
is then determined by the cross correlation, or overlap, of the actual and predicted
mass spectra. In probability based matching, fragments from peptide sequences in
the database are calculated and compared against observed peaks in mass spectra
(Perkins et al., 1999). A score is then calculated for the match, which indicates the
statistical significance of the match.

This study’s proteomics analysis is performed with Comet, an MS/MS sequence
database search tool that utilises the cross-correlation method of protein identi-
fication (Eng et al., 2013). Initially, protein sequences from the search database
are scanned to find consecutive amino acids combinations that match the mass of
the peptide within a mass tolerance range of usually £0.05% (Eng et al., 1994).
This search can accommodate modifications such as phosphorylation by altering
the amino acid masses used in calculating the peptide mass. After an amino acid
sequence that fits within the mass tolerance range is found, it is scored. A higher

(better) score is achieved for the following conditions:

higher numbers of predicted fragments that match observed ions in the spec-

trum

higher abundance

continuity of an ion series

if an immonium ion for His, Tyr, Trp, Met, and Phe is observed in the spectrum
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with the accompanying amino acid (if the amino acid is not present, the score

is lowered)

Multiple prospective amino acid sequences that may match to a single spectrum
are then ranked highest to lowest according to their scores. The top 500 amino acid
sequences are compared with the experimental spectrum using a cross-correlation
analysis. With this method, an artificial ’spectrum,” which contains predicted mass-
to-charge ratios of fragment ions of given amino acid sequences, is reconstructed.
Collision-induced dissociation creates two types of ions after fragmentation: type-
b ions that have retained its charge on the N-terminus and type-y ions that have
retained its charge on the C-terminus after undergoing H rearrangement. The mag-

nitude of the predicted mass-to-charge ratios are assigned as follows:

e 50.0 for mass-to-charge ratios that match type-b ions and type-y ions
e 25.0 for ratios that are within 1 of the b and y ion values
e 10.0 for type-a ions (neutral loss of ammonia, water, or carbon monoxide)

with +1 mass-to-charge ratios

The reconstructed 'spectrum’ is then compared to the experimental tandem spec-
trum, which needs to be processed first. The precursor ion’s mass-to-charge ratio
is removed from the experimental spectrum so that the major contributor in cal-
culating the cross-correlation function (below) is similarity between fragment ion
patterns, not the precursor ion.

Cross-Correlation Function:

Two analytes with the same atomic arrangement but different stable-isotope com-

position can be distinguished in a mass spectrometer due to the difference in mass
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(Aebersold and Mann, 2003). Therefore, incorporation of stable isotopes in pro-
teins and peptides to be measured by mass spectrometers enhances quantitative
proteomics. Figure 1.4 illustrates three techniques in the stable-isotope labelling of

proteins described in the sections below.

Metabolic Stable-Isotope Labelling

Cells are grown in isotopically enriched (e.g. nitrogen-15 salts or carbon-13-labelled
amino acids) or depleted media (Conrads et al., 2002). Cells then incorporate these
heavy isotopes into proteins when they are synthesized. Differences in peptide
masses vary according to amino acid composition between the light and heavy pep-
tides. The proteomics data used in this study were derived from yeast cells that
were labelled via the stable-isotope labelling by amino acids in cell culture (SILAC)

method, a sub-type of metabolic stable-isotope labelling (Ong et al., 2002).

Isotope Tagging By Chemical Reaction

Proteins can be tagged by undergoing chemical reactions with reagents containing
isotopic labels (Gygi et al., 1999; Zhou et al., 2002). If the reagents contain also
affinity tags, after digestion peptides may be selectively isolated. The mass difference
between peptide pairs is equal to a multiple of the mass difference of the isotopic

label incorporated in the peptide by the reagent.

Stable-Isotope Incorporation Via Enzyme Reaction

During digestion, peptides can be labelled at the carboxy terminal with oxygen-18

from heavy water by an enzymatic reaction (Mirgorodskaya et al., 2000; Yao et al.,
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Figure 1.4: A schematic diagram of three different methods of stable-isotope la-
belling in proteins. Reproduced from (Aebersold and Mann, 2003) with permissions.
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2001). Quantitation is most difficult with this method out of the three since the

mass difference either 4 or 2 Da.

False Discovery Rate

The target-decoy strategy can be used to calculate the false discovery rate (FDR),
where decoys are reversed target sequences. The underlying assumption is that decoy

PSMs and false matches to the target db have the same distribution (Elias and Gygi,
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2007). There are two methods of incorporating the decoy database: searching the
spectra separately against both the target and decoy databases or search against a
combined target and decoy db. The latter is more commonly used. The FDR cut-off

value for filtering PSMs can be estimated by two formulas:

e Ny/N; = FDR (N; = number of target PSMs with scores above cut-off, Ng =
number of decoy PSMs among them estimated from Nj,., where N, = number
of incorrect target PSMs). Assumption: the number of incorrect target PSMs
can be estimated by the number of decoy PSMs because the number of target

sequences is the same as the number of decoy sequences

[ J QNd/(Nt+Nd)

One problem with separate searches is that since spectra that can be correctly
matched to target seqs are allowed to match to decoys, Nd/Nt is a conservative
estimate of FDR because Nd overestimates Ninc (incorrect) — correct by considering
the ratio of incorrect PSMs in the whole dataset (Ka&ll et al., 2008). The combined
search is less sensitive to this problem with separate searches but is disadvantaged
by the peptide competition effect. The peptide competition effect is when decoy
PSMs have a higher score than the score of a true positive, which decreases the

correct number of PSMs. There are two sources of incorrect PSMs:

e Truly random matches, which PSMs to reversed target seqs as decoys reflects
well

e Incorrect PSMs to peptides that are homologous to the true peptides

This is a more severe problem at the level of protein-level identifications since it

produces a bias in error rate estimation (Choi and Nesvizhskii, 2008; Feng et al.,
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2007). There are currently no reliable methods to design decoys that mimic homol-

ogy amongst sequences within a target database.

Data Variability and Error

One study quantified the amount of variability attributable to different aspects of
the experimental process of using LC-MS/MS proteomics to perform a human brain
tissue sample analysis (Piehowski et al., 2013). Variability was measured for differ-
ences in peptide abundance, by dividing the standard deviation of peptide profiles
by the mean to calculate the coefficient of variation. Moreover, the ratio of peptide
abundance to the median peptide abundance across all samples was used to calcu-
lated the global scaling normalisation coefficients. Protein extraction from tissue
samples was by far the largest source of variation, accounting for 72% variation.
Instrumental variance (fluctuation in instrumental response from one run to the
next run in the short-term) contributed the second largest amount of variability
overall at 16%, followed by instrumental stability (drift of the quantitation from the
LC-MS/MS platform across the two weeks of continuous analysis) at 8.4%. The
smallest amount of variability was derived from protein digestion at 3.1%. There
are two primary causes of incorrect peptide identifications: random high-scoring
matches of MS/MS spectra to unrelated sequences and matches to peptides homol-

ogous to true peptides (Nesvizhskii, 2014).
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1.5.4 Proteogenomics: The Role of Proteomics in the Anal-
ysis of Genomes

Computationally, new potential protein-coding genes can be detected via sequence
similarity or ab initio methods, the latter of which rely on properties such as codon
usage, splice site consensus sequences, and GC-content (Ansong et al., 2008). Se-
quence similarity may be found by searching for homology in databases of known
protein-coding genes with algorithms such as BLAST (Altschul et al., 1990) or
searching for orthologs in COG (Tatusov et al., 1997) or PFAM (Bateman et al.,
2004), for instance. However, it was estimated that for some eukaryotic genomes,
only 50% of correct gene structures are predicted from de novo programs (Guigd
et al., 2003). Even after receiving a highly evidence-supported prediction from a
predictor, the potential candidate gene needs to be experimentally verified. One
method is by invoking systematic RT-PCR to validate that the gene is indeed being
transcribed (Wu et al., 2004); however, RT-PCR does not provide evidence that
the transcript is translated. Because of this, the detection of peptides and proteins
through proteomics is a powerful tool in helping to improve the curation of genomes.
In addition, using isotopic labelling would build another layer of confidence if both
unlabelled and labelled versions of the same peptide sequence were detected. An-
other advantage of using shotgun proteomics instead of more targeted sequencing
approaches is that the database of sequences to which the spectra are searched,
is entirely customisable. MS/MS spectra may be searched against any theoreti-
cal peptide sequence, facilitating efficiency and flexibility in investigating numerous

potential protein-coding genes.
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Expanded/Inflated Databases in Proteomics and Issues in Estimating

FDRs

The larger the search database, the lower the sensitivity of peptide identification due
to false positives. There is an increased chance in receiving a high scoring random
match with increased db size (Nesvizhskii, 2014). This observation is an important
consideration when choosing to search proteomics spectra against a database com-
prised of 6-frame translations of all ORF's within an organisms entire genome. The
sequence nature and size of such databases underestimate the confidence scores as-
signed to peptide to spectrum matches (Blakeley et al., 2012). This effect is due the
inflation of the decoy database: for every putative ORF, there are 5 other sequences
that are incorrect with low probability of being protein-coding. Typically, decoy
databases are created by reversing sequences in a target sequence database (e.g.
known protein-coding genes). Therefore, in that instance, each correct sequence has
only one incorrect sequence. Furthermore, false discovery rates and posterior error
probabilities (which estimates the probability of a PSM being incorrect) calculated
from proteomics searches on 6-frame translation databases result in fewer PSMs
being accepted (Blakeley et al., 2012). These issues can be alleviated by selecting
sequences from the database to yield higher-quality decoys, especially when the ratio
of sequences in target and decoy databases are as close to 1:1 as possible. Based on
these findings, although 6-frame translation databases were used for the proteomics
searches presented here, filtering putative ORFs based on length dramatically re-
duced the number of sequences included (Chapter 4). In the most stringent filtering,

the ratio of known protein-coding genes to potential protein-coding ORFs was very
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close to 1:1.

1.5.5 Software Used In Proteomics Analysis

For the analysis presented here, the open-source and freely available Trans-Proteomic
Pipeline (Deutsch et al., 2010) would be used for the proteomics analysis since it
streamlines four major software programs : Comet (Eng et al., 2013), Peptide-
Prophet (Keller et al., 2002), iProphet (Shteynberg et al., 2011), and ProteinProphet

(Nesvizhskii et al., 2003), which are described in this section.

Comet

Comet is an open-source program for searching MS/MS sequence databases (Eng
et al., 2013) which scores peptide sequences against observed spectra via an algo-
rithm called fast cross-correlation. Comet has been developed from SEQUEST (Eng
et al., 1994), its predecessor. With Comet, the creation and storage of theoretical
spectra is not necessary due to an additional spectral pre-processing step, improving
efficiency. The additional spectral pre-processing step, which results in both positive
and negative intensity values, was developed after a mathematical rearrangement
of the original cross-correlation function from SEQUEST (Eng et al., 2008). With
the new fast cross-correlation algorithm, for each calculated fragment ion mass, the
summation of peak intensities from pre-processed spectra is the cross-correlation
score. The cross-correlation score is computed for each peptide in the database.
A histogram of all cross-correlation scores is then log-transformed. A linear least-
squares fit is applied to the underlying distribution of the transformed histogram.

The cross-correlation score of the top-scoring peptide is projected down to intersect
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the linear fit. The inverse log of the y-axis value of this projection is then considered
the expectation value or E-value, which is an estimate of the number of peptides

that are expected to score this well or better by chance.

PeptideProphet

After MS/MS spectra have been processed by Comet, the PeptideProphet (Keller
et al., 2002) program implements an expectation maximisation algorithm to distin-
guish correct and incorrect peptide spectral matches (PSMs). The algorithm assigns
each PSM an initial probability of correctness, based on machine learning from a
training dataset, and a set of global false discovery rates are calculated as a function
of the probability cutoff. Characteristics such as the number of missed cleavages,
number of enzymatic termini, retention time, and mass deviation are considered to
determine the qualities of PSMs. If data are produced from a high accuracy instru-
ment, a high mass accuracy model may be applied, which models the deviation in
the observed mass to the nearest isotopic peak (Keller et al., 2002). A target-decoy
strategy can be employed in PeptideProphet in which models can be refined by
user-defined target sequences (true peptides) and decoy sequences (false peptides).
As final output, PeptideProphet produces a probability for each PSM in a pepXML

file, modelling results, and receiver operating characteristic curves.

iProphet

When used in tandem with PeptideProphet, iProphet can integrate other character-

istics of the entire set of PSMs, including multiple discoveries of the identical peptide
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ion across different spectra, different charge states of the same peptide, or modifica-
tions of peptides to better reflect the nature of shotgun proteomic data (Shteynberg
et al., 2011). Model refinement occurs with additional pieces of evidence.

One of the pieces of information is the number of replicate spectra (NRS), where
the NRS score is positive for a precursor ion commonly identified at probabilities
greater than 0.5, 0 if identified from only one spectrum, and negative if commonly
identified at probabilities less than 0.5. This scoring system preserves the high
probability of precursor ions that are identified only once.

The number of sibling searches (NSS) is a formula that sums all probabilities,
calculated by PeptideProphet, from multiple search engines that agree on the same
peptide sequence for one spectrum. The sum is then divided by the number of other
searches performed on the spectrum. Hence, the NSS formula rewards identifications
that have more consensus amongst search engines while penalising those that do not.

The number of sibling experiments (NSE) is a statistic that models the iden-
tification of one precursor ion across multiple experiments. If the precursor ion is
commonly identified with probabilities above 0.5, the NSE yields a positive value,
and vice versa. Precursor ions identified in only one experiment are assigned an
NSE of 0.

If multiple precursors with different charges help identify a peptide, the peptide
is rewarded in its number of sibling ions (NSI) statistic.

If different mass modifications contribute to the identification of a peptide, the

peptide is rewarded in its number of sibling modifications (NSM) statistic.
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More accurate posterior probabilities and global false discovery rates are calcu-
lated by iProphet after incorporating these aforementioned attributes of the pro-

teomics dataset (Deutsch et al., 2010).

ProteinProphet

After statistical refinement by iProphet on peptide search results against MS/MS
spectra, ProteinProphet is invoked to calculate the probabilities that proteins were
present in a sample (Nesvizhskii et al., 2003). The primary input for ProteinProphet
consists of a list of peptides assigned to MS/MS spectra with respective probabilities
indicating the accuracy of the assignments. By calculating the number of unique
peptides per protein, ProteinProphet increases the probability values of peptide
assignments if there are multiple sibling peptides found and decreases probabilities
of peptides for which no siblings were found. ProteinProphet then creates a list
of proteins by collapsing redundant database entries into a single identification.
Proteins that are indistinguishable based on peptide assignments are grouped. For
each protein in the sequence database, a probability value is calculated to indicate
the chance of its presence in the sample. The final output from ProteinProphet is a
list of proteins with their respective peptide spectra match(es), protein probabilities,

and global false discovery rates for various thresholds (Deutsch et al., 2010).

1.6 Sequence Analysis

Any new DNA, RNA, or peptide sequences found through this type of study can

be classified and characterised according to similarities with other known sequences
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from various databases. There are several current computational methods that
help to search DNA and RNA sequences of interest against known information
throughout databases. BLAST (Altschul et al., 1990) and its variants search the
query sequence of interest against curated databases of nucleic and protein sequences
based on sequence identity in alignments. Phylogenetic trees based on maximum
likelihood describe relationships amongst sequences based on probabilities of base
substitutions (Arthur Lesk, 2008). Conserved elements, or regions, within multiple
sequence alignments can be found by using phylogenetic Hidden Markov Models
(Siepel et al., 2005). InterPro (Apweiler et al., 2001) is an integration of several
databases containing various types of information on proteins, which aims to deter-
mine relationships amongst proteins based on distinguishing signatures, or specific
patterns of characterstics. Many of these software programs were implemented in

conjunction throughout the study and thus described in this section.

1.6.1 Software Used in Sequence Analysis

BLAST and Its Variants

The Basic Local Alignment Search Tool (BLAST) queries a sequence, of amino
acids (aa) for instance, against a database (Altschul et al., 1990). BLAST cuts a
probe sequence into all possible k-mer segments, or words. For example, an amino
acid sequence of interest may be cut into 4-aa long segments. For each of the 4-aa
words, BLAST finds all occurrences of the word in the database, creating an index,
which increases the efficiency of searching. At each occurrence, BLAST attempts

to extend the matched region in the database entry in both directions, according to
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Table 1.1:

List of BLAST program (Altschul et al., 1990) names, functions,

databases queried. Greater details on the databases are provided in Tables 1.2

and 1.3.

Program | Function Database Queried

blastn nucleotide query to search nu- | nucleotide collection (nr/nt)
cleotide databases

blastp protein query to search protein | non-redundant protein sequences
database (nr)

blastx translated nucleotide query to | non-redundant protein sequences
search protein databases (nr)

tblastn protein query to search trans- | nucleotide collection (nr/nt)
lated nucleotide databases with
BLAST

tblastx translated nucleotide query to | nucleotide collection (nr/nt)
search  translated  nucleotide
databases

the probe sequence, without allowing for mismatches or gaps. BLAST then merges
these extended matches by aligning them, allowing mismatches and gaps. Scoring is
based on gaps and the BLOSUMG62 matrix, which gives penalties based on specific
amino acid substitutions for mismatches.

In 1997, BLAST was refined to allow for gaps in extensions of the short word
matches, called gapped BLAST (Altschul et al., 1997). In addition, the short word
matches could be near-matches, instead of only exact matches as previously required.
BLASTZ (Schwartz et al., 2003) is a modified version of gapped BLAST, in which
matched regions must be in the same orientation and order. Additionally, different
gap penalising and scoring methods are used which help prevent a gapped alignment
from being triggered by biased nucleotide content.

Table 1.1 list the main BLAST programs and which databases are queried.
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Table 1.2: The nr collection contains non-redundant protein sequences from the

following databases.

Database

Description

GenPept (not an offi-
cial release by NCBI)

Database of GenBank (Benson et al., 2013) gene prod-
ucts (translations of all coding sequence features). See
Table 1.3 for GenBank description.

SwissProt (Boeck-
mann et al., 2005)

Extensively curated, manually annotated, and reviewed
protein classifications and functions.

PIR (Wu et al., 2003)

Classified and functionally annotated protein sequences
from the Atlas of Protein Sequence and Structure (Mar-
garet O. Dayhoff, 1969).

PDF Source and contents unknown.

NCBI RefSeq | Non-redundant, well-annotated, comprehensive, and in-
(Tatusova et  al., | tegrated database of DNA, transcript, and protein se-
2014) quences.

Table 1.3: The nt collection consists of partially non-redundant nucleotide sequences
from all traditional divisions of the following databases.

Database Description

GenBank (Benson | Collection of all publically available DNA sequences.

et al., 2013)

EMBL (Stoesser | Nucleotide sequences from all available public sources
et al., 2002) are incorporated, organised, and distributed through

this database.

DDBJ (Kosuge et al.,
2014)

The DNA Data Bank of Japan is a collection of all freely
available nucleotide sequence data. The nt database ex-
cludes the following divisions: GSS (genome sequence
reads short single pass), STS (tag sites of sequences
for genome sequencing), TPA (third party annotations),
EST (expressed sequence tags, which are cDNA se-
quence reads short single pass), HTG (high through-
put genomic sequences mainly from genome sequencing
projects), and WGS (fragment sequences during whole
genome shotgun assembling processes).
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MULTIZ

Typical whole genome alignment strategies compare various genomes against a fixed
reference genome (Blanchette et al. 2004). One disadvantage is that regions con-
served in some species of interest but not present in the reference are not detected.
Therefore, the program MULTIZ was built to align multiple sequences first and
then project local alignments, or blocks, against one of the genomes of interest
(Blanchette et al., 2004). Firstly, MULTIZ implements BLASTZ (Schwartz et al.,
2003) to align sequences of interest in a pair-wise manner. Next with the Threaded
Blockset Aligner (TBA) (Practical Guide to using TBA), a multiple sequence align-
ment (MSA) is generated from a given phylogeny tree depicting the relationships
amongst the sequences and the pair-wise alignments. This step produces blocks,
or continuous regions where one or more sequences align. It is possible for only
one sequence to be present in a block if no other sequences contain regions that
match. TBA can then project the whole MSA onto one of the sequences of interest,
or reference. The projection is achieved by ordering all blocks that contain, or are

threaded by, the reference sequence itself (Blanchette et al., 2004).

Phylogenetic Trees and Maximum Likelihood

A phylogenetic tree can be used to show relationships amongst sequences (Arthur
Lesk, 2008). The lengths of branches connecting two sequences in the tree indicates
how distantly related they are. Maximum likelihood is a method of creating a
phylogenetic tree based on probabilities of base substitutions (the replacement of
adenine, cytosine, guanine, or thymine in DNA with another base). For a set of

sequences, all possible trees are considered. For each tree, substitution rates are
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adjusted to produce the highest likelihood of yielding the actual sequences. The

tree that gives the maximum likelihood is the optimal one.

Hidden Markov Models

A multiple sequence alignment (MSA) of a group of homologous sequences has
patterns that define how they are related (Arthur Lesk, 2008). A Hidden Markov
Model (HMM) is a computational structure that produces, or emits, a sequence
based on the MSA’s pattern statistics (Krogh et al., 1994). Figure 1.5 shows the
structure of an example HMM that consists of states (circles) and choices (arrows).

In this particular HMM, there are three types of actions available:

e D = deletion (starts or continues a gap)

e [ = insertion (an amino acid is placed between two adjacent amino acids in
the MSA)

e M = match (an amino acid is present in both the MSA and sequence emitted

- not necessarily identical)

After entering the structure from the START, the choice of the next state is
determined by the distribution of probabilities for the choice of the successor state
(Arthur Lesk, 2008). Each state that emits an amino acid is also governed by another
probability distribution for the 20 amino acids. These probability distributions are
dependent on the particular group of related sequences the HMM describes. The

subsequent state depends only on the current state, not previous states.
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An example of a HMM application trained on a family of sequences is to de-
termine whether a new sequence belongs to the family (Arthur Lesk, 2008). If the
HMM can emit the new sequence with high probability, then the sequence is deemed

as belonging.

phastCons

PhastCons is a program that predicts conserved elements in a multiple sequence
alignment by invoking a phylogenetic Hidden Markov Model (phylo-HMM) (Sie-
pel et al., 2005). The HMM consists of two states (nodes): conserved region and
non-conserved region. Instead of a probability distribution, each state is governed
by a phylogenetic tree built by maximum likelihood. Each branch on the phylo-
genetic tree represents a single or multiple substitutions (mutation events). The
phylogenetic trees for both nodes are the same except that the branch lengths for
the conserved node tree are scaled down to values between 0 and 1, yielding smaller
distances between mutation events and therefore higher conservation. For each base
in a MSA, the phastCons can compute a probability that a base was emitted by the

conserved state in the phylo-HMM and thus conserved.

InterPro

Protein identifying information, or signatures, from several databases are systemat-
ically merged in the The InterPro database (Apweiler et al., 2001). The method of
integrating signatures relies on characterising two hierarchical family relationships.
The sub-string relationship exists amongst motifs that exist within a sequence re-

gion described by a wider pattern (e.g. a PROSITE pattern within a PRINTS
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fingerprint). These signatures have identical InterPro entry accession numbers. On

the other hand, the sub-type relationship describes motifs specific to a subset of se-

quences that are contained within another more general pattern, as in a parent-child

relationship. Contrastingly, these signatures are given different accession numbers.

Databases from which protein signatures were merged are listed in Table 1.4.

Table 1.4: List of InterPro member databases and their

descriptions.

Database Description

Pfam (Finn | Curated database of protein families, each defined by two align-

et al., 2014) ments and a profile Hidden Markov Model . A large sequence
database, mainly constructed from the UniProt Knowledgebase
(UniProtKB) (Consortium, 2012), is searched via the profile HMM
for all member proteins in a family.

PRINTS Consists of protein fingerprints, groups of conserved motifs that

(Attwood et al.,
2012)

characterise a family of proteins. PRINTS iteratively scans
the composite UniProtKB/Swiss-Prot-TrEMBL database (Consor-
tium, 2012).

PROSITE
(Sigrist et al.,
2013)

Collection of patterns and profiles that identify protein families,
domains, and functional sites. ProRule is a set of manually cre-
ated rules to refine the differentiation of PROSITE motifs based
on functionally and/or structurally critical residues. PROSITE,
in conjunction with ProRule, annotates features and domains in
entries of the UniProtKB/Swiss-Prot database.

ProDom
et al., 2005)

(Bru

Database of protein domain families, providing a multiple se-
quence alignment of homologous domains and a consensus se-
quence per entry. The database was automatically built by cluster-
ing homologous segments of non-fragmentary sequences from the
UniProtKB/Swiss-Prot-TrEMBL database.

CATH-Gene3D
(Sillitoe et al.,
2015; Lees et al.,
2012)

CATH is a method of classifying protein structures in the Protein
Data Bank (PDB) (Bernstein et al., 1977), a database of atomic co-
ordinates that describe protein structures from methods such as X-
ray crystallography and NMR spectroscopy. Gene3D assigns CATH
domain families to Ensembl (Flicek et al., 2014) and UniProt pro-
tein sequences that do not have PDB structures.

Pipeline that automatically annotates proteins in UniProtKB us-
ing profiles of and manually created annotation rules for protein
families with well-defined function and high sequence conservation.

HAMAP  (Pe-
druzzi et al.,
2013)
PANTHER

(Thomas et al.,
2003)

Protein classification system according to families/subfamilies, bi-
ological process, and pathways.
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PIRSF  (Nikol- | Method of classifying UniProtKB sequences in non-overlapping

skaya et al., | clusters based on characteristics of proteins as a whole, such as

2007) biochemical and biological functions, to depict evolutionary rela-
tionships.

SMART (Letu- | Identifies and annotates protein domains according to tertiary

nic et al., 2015)

structure, phylogeny, functional class, and functionally critical
amino acids.

SUPERFAMILY
(Wilson et al.,
2009)

Database containing structural and functional annotations for pro-
teins and genomes. SCOP (Andreeva et al., 2007) structural protein
domains are described by a set of Hidden Markov Models. Pro-
tein sequences from over 2,478 completely sequenced genomes are
searched against the HMMs to create SUPERFAMILY annotations.

TIGRFAMs
(Haft et
2013)

al.,

Collection of curated multiple sequence alignments, protein se-
quence classification Hidden Markov Models, and other information
for automatic annotation of prokaryotic proteins.




Chapter 2

RNA-seq and Un-Annotated

Regions

Introduction

The RNA-seq dataset, consists of a high volume of data (~400 million 50-bp reads)
for a relatively small genome (~12 million bp) (Cherry et al., 2012).

In this dataset we observed that some genomic regions that did not have an
existing annotation were nevertheless highly expressed. This observation became
the premise of this study, an attempt to investigate why transcription was active in
un-annotated regions.

The development of the Un-Annotated Region Pipeline facilitated the analysis
of these UARs with respect to the three RNA-seq alignment methods. Briefly,
the UARs were sorted by total read count and conservation. The top UARs were
then categorised based on the profiles of their RNA-seq read depths to find those

with a distinctive, continuous region of high RNA-seq read depth. These regions

49



The Experiment and Dataset 50 RNA-seq and Un-Annotated Regions

may indicate active transcription, and, therefore, the possibility of a new genomic

feature.

2.1 The Experiment and Dataset

Figure 2.1 is a schematic of the methods used to culture the strain BY4741 S.
cerevisiae, extract the RNA, and produce the RNA-seq data. Firstly, wild-type
and Asnf2 mutant strains were grown on yeast extract-peptone-dextrose medium
+ adenine (YPAD) plates. This project was concerned only with the wild-type
samples. For each plate, 48 single colonies were isolated and cultured in individual
flasks and grown at 30 degrees C to a density of one million cells at OD600 of 0.7-0.8.
Total RNA was extracted from each sample (culture) with the Qiagen RNeasy mini
kit. Yeast cells were lysed with Zymolase, and DNA contamination was limited by
DNase treatment. The range of total RNA extracted per sample was 30.3-126.9
micrograms. To ensure that distributions of RNA content were equal amongst the
samples and biological conditions, the Kolmogorov-Smirnov test was performed and
resulted in p=0.16, (Schurch et al., 2016). ERCC spike-in transcripts were then
added to each sample as an internal control (Jiang et al., 2011; Lovn et al., 2012).
The libraries were prepared via the standard Illumina multiplexed TruSeq method.
The RNA samples were then purified by polyadenylation enrichment using poly-
dT beads. After fragmentation, the first and second strand ¢cDNA synthesis of
RNA transcripts occurred, where cDNAs were then barcoded under the balanced
block design to minimize technical artifacts and biases (Kaisers et al., 2014). Un-

barcoded adapters were ligated from the cDNA sequences, and barcode-specific PCR
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primers were used to enrich samples. The quality of libraries were assessed and
passed. Samples were then diluted to 10 nM and underwent fluorescence-based
quantification. The entire pooled library was separated into 7 individual pools,
which were sequenced on an 8-lane flow cell with an Illumina HiSeq 2000, resulting
in each lane containing sequences from each of the 96 total samples. After the flow-
cell ran for 51 cycles single-end, this method produced a total of about half a billion
50-bp single-ended RN A-seq reads for each biological condition (wild-type and Asnf2
mutant). Barcodes for the reads were deconvoluted via the [llumina Cassava pipeline
v1.8 to produce a single FASTQ file of the raw reads were produced for each of the
48 samples for each condition. The program fastQC was used to assess the quality of
the reads, which were then mapped to the Ensembl release 68 genome annotations
(Flicek et al., 2011) with bowtie2 (Langmead and Salzberg, 2012) and TopHat2
(Trapnell et al., 2009). Mapped reads were combined with htseq-count (Anders
et al., 2014) to produce total read counts for each of the 7,126 gene features from
the Ensembl annotations for each of the 7 technical replicates. For each technical
replicate, the read-count-per-gene measurements were summed for each of the 96
biological replicates. Comparisons of these measurements were determined which
replicates did were aberrant and thus removed from further analysis. This process
yielded 42 wild-type and 44 Asnf2 mutant clean biological replicates (Schurch et al.,
2016). Reads from these FASTQ files were then used in RNA-seq alignments with

STAR.
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Figure 2.1: A schematic of the steps in an RNA-seq experiment.
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2.2 UARs and RNA-seq Read Alignments

Regions of the genome that are highly expressed but currently un-annotated suggest
the presence of new biologically relevant features in this extensively studies model
species. Figure 2.2 shows an example of a highly expressed UAR on chromosome
I. For some genomic positions within this region the read pileup reaches a depth of
greater than 300 reads and is comparable to the expression of flanking annotated

regions.
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UARs and RNA-seq Read Alignments
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These potential new genomic features may include various non-coding RNAs
which are functional RNA entities, such as rRNAs, snRNAs, snoRNAs, or miRNAs
(Tisseur et al., 2011). Alternatively, the new features may be coding entities, such
as peptides or proteins, since open reading frames (ORFs) are present in UARs.

Therefore, the aim of this study was to characterise UARs with high RNA-
seq read count in Saccharomyces cerevisiae to determine whether they contain new

genomic features. The objectives by which the study was carried out included

e process and analyse the RNA-seq data
e examine the UARs with respect to the RNA-seq data
e determine whether UARs with high levels of transcription have similar char-

acteristics with known types of molecules

2.3 RNA-seq Data Processing

After each replicate’s set of raw RNA-seq reads passes quality assessments, the
reads were aligned to the reference genome to determine the transcriptional origin
for each read (Wang et al., 2009). Typically, a short-read alignment program maps
the RNA-seq read to the genomic location that matches best in sequence. This
process is complicated by many factors, including the choice of alignment program,
sequence repetition in certain regions of the yeast genome, introns, and potential

sequencing errors as mentioned in Chapter 1.
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2.3.1 The STAR RNA-seq Alignment Program

The RNA-seq data were previously aligned with TopHat2 (Kim et al., 2013), a
splice-aware aligner. However, after several instances of failed runs with errors
that could not be fixed, STAR (Dobin et al., 2013) was exclusively used from that
point onward. In practice, STAR proved to run faster and have more flexibility in
parameter settings. For example, TopHat2 allows for the specification of 75 different
options, yet STAR allows for 108. In addition, the author of STAR was prompt in
providing technical support and help with defining appropriate parameter values for

the yeast genome.

2.3.2 RNA-seq Read Alignment Methodology

The 42 clean wild-type RNA-seq replicates were concatenated into a combined
gzipped FASTQ file, and a STAR genomeDir directory was created to designate
the names and lengths of all chromosomes for the Saccharomyces cerevisiae strain
S288C R64 genome assembly (Mortimer and Johnston, 1986). The precise param-
eters chosen for an alignment can have a non-trivial effect on the final read depth
distribution across the genome. To examine the effects of alignment methodology,
three strategies of increasing stringency were considered. Specific values of each
parameter for the alignments are found in Table 2.1.

However, there are twelve parameter values that were common to all three align-

ments:

e —-runThreadN = 8 : This parameter sets the number of threads each alignment

can run oI1.
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e —-genomeload = LoadAndRemove : This parameter allows the loading of the
genome into the shared memory, but then removes it after the alignment is
finished.

o ——outSAMmode = Full : This parameter is used to set what SAM output will
include. For the Full option, all SAM fields will be in the output. Choosing
None would give no SAM output, and choosing NoQS would provide SAM
output without quality scores.

e —readFilesCommand = zcat : This parameter indicates which type of decom-
pression program should be used.

e —outFilterType = BySJout : This parameter has two possible values: Normal
and BySJout. Normal would allow for standard output filtering using only
the current alignment. BySJout keeps only the reads that passed filtering and
contain junctions in the SJ.out.tab file, separating reads that align to junc-
tions from other read alignments, reducing the number of spurious junctions
detected.

e ——outSJfilterIntronMaxVsReadN = 500 1000 2000 2500 : Any number of inte-
gers greater than zero may be set for this parameter. The first integer listed
allows for a gap of maximum length 500 bp to be supported by only 1 read.
The second integer allows for a gap of maximum length of 1,000 bp to be sup-
ported by only 2 reads, and so on. If lower values were chosen, then smaller
junctions with low read counts would be allowed, and vice versa.

e --alignIntronMin = 10 : This parameter sets the minimum length of any intron
- in this case, it would be 10 bp.

e --alignIntronMax = 3000 : This parameter sets the maximum length of any
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intron, and in this case it would be 3000 bp.

Near-Default

Firstly, the Near-Default mapping provided a baseline of RNA-seq alignment results
was prepared from a typical set of parameters appropriate for the RNA-seq dataset

and the yeast genome. The following parameters were modified:

e —outFilterMismatchNoverLmax = 0.04 : This parameter is the proportion
of the bp length of the read that is allowed to mismatch with the reference.
For a 50-bp read this corresponds to 2-bp. If the value 0.04 were increased,
more mismatches per read would be allowed, increasing the flexibility of read
mapping, most likely increasing the number of read alignments in the results.
If the value of 0.04 were decreased, then fewer mismatches would be allowed
per read alignment, most likely decreasing the number of resulting alignments.

o —outFilterMultimapNmax = 2 : This parameter allows a maximum of 2 loci
the read can align to. If there are multiple locations that a read can map to,
all of these read alignments will be in the output. Therefore, if there were a
single read mapping to two locations, that read would essentially be duplicated
in the final alignment output. Increasing this value, for example, to 3 would
allow a maximum of 3 loci any single RNA-seq read can map to, would could
potentially triple the number of times a read could appear in the alignment.
Reducing the value to 1 would mean that each read could map to a maximum

of 1 location, and therefore, appear only once in the alignment.
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Unique

If a read can map to, for example, two different locations equally well, then it is
difficult to identify which which of the two regions the original RNA transcript was
derived from. To eliminate this level of ambiguity, reads that could map to more
than one location equally well would be excluded in the Unique alignment by setting

the following parameter:

e —outFilterMultimapNmax = 1 : Instead of 2, this parameter is set to 1, now

allowing for only a maximum of 1 location that each read can map to.

Stringent

Because the allowed maximum of two mismatches for each 50-bp read still allowed
imperfect alignments of reads, a third set of alignment parameters was invoked
to allow only reads with all bases mapping to the genome to map by setting the

following parameters:

e —outFilterMismatchNoverLmax = 0 : In the Near-Default and Unique map-
pings, this parameter was set to 0.04, allowing a maximum of 2 mismatches
per 50-bp read. However, since only a perfect match is allowed, this value
must be set to 0, allowing no mismatches for any read mapping.

e —outFilterMultimapNmax = 1 : See Unique mapping.

e —outFilterMatchNmin = 51 : In addition to setting the number of mismatches
allowed to 0, gaps were disallowed by setting this parameter to 51. This
parameter stipulates that if and only if the number of bases matching is equal

or greater than the value, the read alignment will be in the output. Therefore,
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since we have 50-bp reads (which the program reads as having a length of 51
bp), each bp in the read must match in order for the alignment to be passed
to the output. Setting a lower number would allow reads that have fewer
matching bp to be allowed to map. Setting a number higher than 51 would
allow none of the 50-bp reads to be aligned since there are a maximum of 50

bp to match.
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Table 2.2: Results from STAR RNA-seq Near-Default, Unique, and Stringent Align-
ments for the 42 clean wild-type replicates. Percentages of the 431,650,168 total
input RNA-seq reads are listed under each category. For the Stringent Alignment,
261,246,485 reads remained after further filtering for the “561M” CIGAR string. For
clarification, the “Unmapped: Too Short” category refers to reads that did not reach
the set minimum number of aligned bases.

Alignment Near-Default | Unique | Stringent
Uniquely Mapped 84.72% 84.70% 61.17%
Mapped to Multiple Loci 10.48% 0.00% 0.00%
Mapped to Too Many Loci 2.32% 12.82% 9.17%
Unmapped: Too Short 2.44% 2.44% 29.63%
Unmapped: Other 0.04% 0.04% 0.04%

2.4 Un-Annotated Regions

In order to determine the locations of UARs, it was necessary to consider all currently
known annotations for the yeast genome. Details of how the un-annotated regions
were defined and the use of the Un-Annotated Region Pipeline to integrate RNA-seq
analysis with the current annotations are provided in this section. In addition, some
general characteristics of UARs and developed methods for sorting and categorising

UARs are described.

2.4.1 Determination of the Locations of Un-Annotated Re-
gions

The Saccharomyces Genome Database (SGD) houses a comprehensive set of high-
quality annotations curated from the literature under Published Datasets in the
Downloads section (Cherry et al., 2012). For each publication, .gff3 files were col-
lected where available. All annotations from SGD were categorised under either

Primary Annotation or Secondary Annotation.
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Primary Annotation

Primary Annotations are regions of the yeast genome that are known to produce
a molecular product, such as a protein or RNA molecule, or un-translated parts
of transcripts (UTRs). Included under this category are also previously detected
protein-coding ORF's. Table A in Appendix A provides the extensive list of Primary

Annotations.

Secondary Annotation

Secondary Annotations contain information regarding potential interactions that
occur at specific locations in the genome. These annotations are not characterised as
previously detected transcripts or known to produce molecular entities. Interactions
include meiotic recombination or crossover events and gene conversions. Binding
sites of histones, transcription factors, and other proteins are also considered. Also
included are modification and tagging sites, for example, polyadenylation sites and
serial analysis of gene expression tagging sites, respectively. In addition, double
strand break hotspots and other sequence features, such as autonomously replicating
sequences and transcription start sites are included. All Secondary Annotations are
listed in Table A.2 in Appendix A.

Conceivably, there could be new genomic features within regions with Secondary
Annotations (e.g. a new protein-coding gene in a region with a DNA damage
hotspot). Thus, the exclusion of regions with Secondary Annotations in consid-
eration would eliminate some potential regions of interest. Therefore, Primary An-
notations were used as demarcations for locations of un-annotated regions, and

Secondary Annotations were treated as supplementary information.
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2.5 UAR-Pipeline

To find where all UARs were located and what their characteristics were, such as
length and read counts for all three alignments, the Un-Annotated Region Pipeline
(UAR-Pipeline) program was written in the Python programming language to fa-
cilitate the processing and integration of multiple sources and types of data. The

following Python packages were invoked in the Pipeline:

e from the Python Standard Library:

— cPickle (serialisation of objects)
— csv (read and write comma-delimited text files)

— os (list files in directories)

e numpy (van der Walt et al., 2011) (numerical array operations)

e pysam (Li et al., 2009) (wrapper for samtools to read .sam and .bam files)

Workflow

Figure 2.3 shows the Pipeline’s general work-flow. As input, a .gff3-, .gtf-, or .tab-
formatted file with the coordinates (chromosome, start, and stop) genome annota-
tions should be provided. The get-uar-gff3 module then creates a new .gff3 file with
the locations of all un-annotated regions.

The Pipeline can also work in conjunction with RNA-seq data after the raw reads
have been mapped to the reference genome in a .bam alignment file. The module
sam-profile-uars uses genome annotations along with the RNA-seq alignment to
create a Python dictionary containing read counts per base for each un-annotated

region. For better performance, the dictionary was serialised in a .pkl file with
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the Python cPickle package. In Figure 2.3, this step was performed twice (once
for alignment A and once for alignment B), which resulted in two separate Python
dictionaries. Executing the uar-plotly-table module on Python dictionaries from
both alignments A and B creates a tab-delimited table of all UARs. For each UAR,
the table contains the chromosome, start, end, length, and total read counts over
the entire region for alignments A and B.

Conversely, UAR-Pipeline can also provide read counts for specified annotated
features (not described in Figure 2.3). After the Pipeline was developed, any set of

annotations with any RNA-seq alignment was processed quickly and easily.
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2.5.1 Pipeline Modularization and Command-Line Usage

Several Python functions were written in a main script called process_annotation.py.
Lower-level functions were written first, for example, to parse genome annotations
and determine locations of UARs in the genome. By writing the lower-level functions
separately, they were easily used in many larger functions, for instance, to count
reads in RNA-seq alignment files for the UARs.

Furthermore, a wrapper script called uar_pipeline.py was written to turn pro-
cess_annotation.py into a command-line application, the UAR-Pipeline itself, for use
in the Linux/Unix environment. The underlying structure of the process_annotation.py
script facilitated the modularisation of the Pipeline. In other words, the Pipeline
contains 16 different programs (or modules) that execute the larger functions within
the main script (Table B.1 in Appendix B). Throughout the study, new modules,
often variations of previously existing ones, were written in process_annotation.py
and subsequently added to the uar_pipeline.py wrapper without difficulty.

The Python packages called in the wrapper are sys (from the Python Stan-
dard Library) to append directories to the current working directory and the stan-
dard_parser and standard_logger modules written by Dr. Nick Schurch. The latter
two modules were written to streamline the usage of the argparse, warnings, temp-
file, and logging Python Standard Libraries together.

Moreover, a few programs were written in another script, graphical_analysis.py,
to create plots of the data, for example, the war-lengths-hist program. This script
also called the Python math Standard Library and the matplotlib package (Hunter,

2007). Data visualisation was also undertaken by producing output to a .csv or .tab
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file and then plotting with the ggplot2 package (Wickham, 2009) in R.

2.5.2 Unit Testing

In order to ensure functions in the process_annotation.py script were yielding correct
output, twelve unit tests were written in the script test_process_annotation.py with
the unittest Python Standard Library. Artificial inputs were created for many of
the tests, and assert statements were employed to test whether the actual outputs
from the functions matched the expected outputs. For example, a simplified .gff3
annotation file was created and treated as input for functions that find UARs. The
function’s output UAR coordinates were then compared to the known un-annotated
regions.

These unit tests were crucial throughout the study when pre-existing functions
were modified for better performance or technical issues, such as the need to use
a more updated version of Python, which necessitated the upgrade of the version
of pysam. The newer version of pysam left some previous functions used in UAR-
Pipeline scripts defunct, requiring a modification of how .gff3 and .gtf files were
parsed.

Successful unit testing would also allow for future users to add to and modify

the current scripts without changing the correct output.
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2.6 SGD Features and UARs

2.6.1 Characteristics of SGD Features

The term SGD Features refer to SGD protein-coding genes, rRNA, snoRNA, and
snRNA. In this section, characteristics of each SGD Feature type are examined and

compared against those of Un-Annotated Regions.

SGD Protein-Coding Genes

On a chromosome level, the lengths of SGD genes are represented as boxplots in
Figure 2.4. Chromosome X has the shortest minimum length, whereas the mito-
chondrial chromosome has the longest. Chromosome XII had the longest SGD gene,
whereas chromosome I had the shortest maximum length. Strikingly, the mitochon-
drial chromosome has the highest mean length at 2573 bp. The overall minimum,
maximum, mean, and median lengths of all SGD genes across all chromosomes are
51 bp, 14,733 bp, 1,764 bp, and 1,071 bp, respectively. The number of SGD genes
per 100 kbp on each chromosome is shown in Figure 2.5. Almost all chromosomes
had between 50-60 SGD genes per 100 kbp, except the mitochondrial chromosome

at about 30.
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SGD rRNA

As rRNAs occur only on chromosomes XII and M (mitochondrial), boxplots to
illustrate the distributions of the lengths of rRNAs for these two chromosomes are
shown in Figure 2.6. The median length of ribosomal RNAs on chromosome M are
longer; however, the longest TRNAs overall occur on chromosome XII. There are

between 2-2.5 rRNAs per 100 kbp on chromosomes XII and M.

SGD snoRNA

Boxplots for the lengths of snoRNAs across each chromosome are plotted in Figure
2.7. Median lengths for each chromosome occur between 100-200 bp. The longest
snoRNA occurs on chromosome XIII at 1,004 bp. There is a more variable density
of snoRNAs across chromosomes 2.8, with chromosomes II, IV, and IX having the

lowest densities and chromosome chromosome XIII with the highest density.
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Figure 2.6:

Distributions of the lengths of SGD rRNA.
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SGD snRNA

The snRNAs occur only on chromosomes II, V, VII, XII, and XIV, with each chro-
mosome having only one snRNA, except chromosome VII, which has two. Of these
chromosomes, chromosome II has the longest snRNA molecule at 1,175 bp, whereas
chr XII has the shortest at 112 bp 2.9. As there are only 6 snRNAs across the entire
genome, it is expected that the densities of snRNAs for each chromosome would be

very low, as seen in 2.10.
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Figure 2.9: Distributions of the lengths of SGD snNAs.
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2.6.2 Un-Annotated Regions

On a per-chromosome basis, the lengths of all UARs were plotted in Figure 2.11.
Chromosomes [ and M have much larger spreads of lengths than do the other chro-
mosomes, with chromosome XV having the longest UARs at 2,160 bp. Interestingly,
chromosome M has the highest density of about 60 UARs per 100 kbp (Figure 2.12),

whereas all other chromosomes have around 20-30.
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2.6.3 Comparisons of SGD Features and Un-Annotated Re-
gions

Figure 2.13 allows the comparisons of the distributions of lengths of SGD Features
and UARs, and UAR ORFs (open reading frames derived from UARs). Over-
all, UAR ORFs have distributions centered on the shortest lengths, followed by
snoRNA /snRNA /UARs, rRNAs, and lastly by SGD genes which have the highest
concentration of the longest lengths. For a clearer comparison, all RNA SGD Fea-
tures were removed to show the distributions of SGD protein-coding genes, UARSs,
and UAR ORFs in finer detail in Figure 2.14. On all chromosomes, UAR ORFs
have the shortest lengths, followed by UARs, and then SGD genes, as mentioned

previously.
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2.6.4 Comparison of the Three Methods of RNA-seq Map-
ping
The distributions of read counts for SGD protein-coding genes for the Near-Default,
Unique, and Stringent mapping methods per chromosome were analysed (data not
shown). For almost all chromosomes except the mitochondrial chromosome, there is
great overlap amongst the distributions for the three mappings. In chromosome M,
the Stringent distribution is shifted to the left (lower read counts) as compared to the
Near-Default and Unique distributions. Distributions for rRNAs on chromosomes
XIT and M are plotted in Figure 2.15, where there are also shifts toward lower
read counts for Unique and Stringent mappings in reference to the Near-Default
distributions. These trends are expected since the Unique and Stringent mappings
have stricter criteria for read mapping, so successively fewer reads will remain in

these alignments.
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Similar trends are evident for snoRNAs (Figure 2.16), with chromosome XVI
having the lowest read counts and chromosome XII having the snoRNAs with the
highest read counts overall. For completeness, these distributions were plotted for

snRNAs as well in Figure 2.17.
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Further comparisons of SGD Features and Un-Annotated Regions can be made
with Figure 2.18, in which scatter plots of Near-Default Read Counts vs. Length
are shown. The primary trends illustrated in this panel are that SGD Features
generally are at least 100 bp in length with over 100 read counts. However, for
UARs, there is a wider spread of lengths and read counts, with the majority of
the distribution concentrated at lower values for both axes. Similarly, a panel of
graphs for the Unique mapping shows that rRNAs shifted downward toward lower
read counts (Figure 2.19). This may occur since there is a lot of sequence homology
within and amongst TRNA genes; thus, a single 50-bp read may map to multiple
regions equally well. These reads would be excluded in the Unique mapping, causing
a decrease in the overall read count per rRNA. Comparing the scatter plots for the
Stringent mapping (Figure 2.20) to the Unique mapping, there do not seem to be

large differences.
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2.7 Analysis of Un-Annotated Regions

There are a plethora of classical methods and tools for determining properties of
protein sequences, including InterPro and BLAST (Jones et al., 2014) and (Altschul
et al., 1990). InterPro classifies protein sequences in families for functional analysis
and predicts domains and important sites by integrating information from a multi-
tude of databases (Section 1.6.1). BLAST invokes sequence alignment to find other
sequences in databases of interest that closely match with the query sequence (Sec-
tion 1.6.1). Tools such as these are heavily applied in many genomic studies including
those with the aim of predicting new un-annotated genes in yeast (OhEigeartaigh et
al., 2011). In some instances, if newly predicted genes are not functionally verified,
they become labelled as predicted, putative, uncharacterised, or unknown in current
sets of annotation from SGD.

Therefore, searching UARs against current databases may yield many of these
types of annotations, providing very little useful information about the query se-
quence. Moreover, if, for instance, one UAR is searched against InterPro and yields
no result, it may be that the UAR would be the first of its type of signature to be de-
tected and would not have any previous related information. A sorting method was
developed to prioritise UARs with the best evidence of having a new genomic feature.
This method included other sources of information, such as MULTIZ (Blanchette
et al., 2004) and phastCons (Siepel et al., 2005), which do not rely on these tools.
MULTTIZ is a program that creates local alignments in a pair-wise fashion for multi-
ple sequences (Section 1.6.1). In this case, S. paradozus, S. mikatae, S. kudriavzevii,

S. bayanus, S. castelli, and S. kluyver: were aligned to S. cerevisiae individually. The
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MULTTIZ score is the number of these Saccharomyces species that aligned at each
base in the S. cerevisiae genome. The phastCons score is a conservation score per
base based on MULTIZ7way alignments (Section 1.6.1). The conservation scores are
predicted from fitting a phylogenetic hidden Markov model to the data by maximum
likelihood (Section 1.6.1). Therefore, a higher score means a higher probability that
the base is conserved across the 7 Saccharomyces species.

All 2,636 UARs were sorted successively by the following characteristics (Table

2.3):

e expression (RNA-seq read counts in the Stringent alignment)

maximum MULTIZ score

phastCons sum

length of the UAR

The logic behind the specific order of sorting is that RNA-seq expression, an in-
dication of transcription, would be the primary driving factor behind the potential
existence of a new genomic feature. Secondly, the higher the number of other yeasts
that could align at some point within the UAR, the higher the chances are that the
UAR is conserved. Conservation would give further evidence toward a viable ge-
nomic feature, and make it more probable that the feature would also be functional.
Thirdly, the sum of phastCons scores across all the bases within an UAR gives an-
other indication of the probability of conservation. Also, the longer the UAR, the
more likely it is to contain a new feature. Successive sorting has an effect on the
order of UARs only if multiple regions contain the same number of RNA-seq read

counts.
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2.8 1IGB QuickLoad Site

In this study, the volume of RNA-seq data and the number and variety of genomic
annotations necessitated a way to access and visualise the data quickly and easily.
Viewing all the annotation data, the genomic sequence, and the high depth RNA-seq
data in the context of the genome is a challenging problem. We use the open-source
stand-along genome browser Integrated Genome Browser (IGB) for this purpose
(Nicol et al., 2009). A particularly useful feature of this software is the ability to
construct your own IGB QuickLoad server site for data collections that can then
be accessed simply (and privately if necessary) from within IGB. A QuickLoad site
was constructed to contain all RNA-seq alignments and genomic annotations, as
well as other pieces of information such as the MULTIZ (Blanchette et al., 2004)
phastCons (Siepel et al., 2005) scores. The QuickLoad site can become a resource
for the research community:.

The structure of this section reflects first level of organisation in the QuickLoad

site.

2.8.1 Primary Annotations

Primary Annotations described in Section 2.4.1 are included in this folder. There
is a combined .gff3.gz file that contains all of the Primary Annotations for a more

comprehensive view.
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Individual Tracks

Within the Primary Annotations folder is a subfolder containing each individual
annotation track as listed in Appendix Table A. Individual tracks are convenient to
use in IGB if only snoRNAs, for example, were studied at a particular instance. In

addition, different features may be coloured differently for emphasis.

2.8.2 Secondary Annotations

Secondary Annotations, as described in Section 2.4.1, are contained within this
folder. As there were a total of 58 individual annotation tracks, listed in Appendix
Table A.2 and labelled with superscripts, they were sub-divided into seven categories
to decrease search time for specific types of annotations. The seven categories are
listed as and described in the following subsections. Within each category, there is
also a combined .gff3.gz file, named after the category, that contains all annotations

within that specific category.

DNA Damage

The DNA Damage category mainly includes annotations related to double-strand

break hotspots.

DNA-DNA Interactions

DNA-DNA Interactions contains annotation tracks indicating locations of meiotic

recombination hotspots, gene conversions, and meiotic crossovers.
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Histone Binding Sites

Histone binding sites can be inferred from nucleosome positions and mapped mononu-
cleosomal fragments, which are included in this category.

Modification or Tagging Sites

Polyadenylation sites and serial analysis of gene expression tagging sites are indi-
cated in the tracks within this category.

Other Binding Sites

This category contains binding sites of proteins, other than histones, that were found
by methods such as ChIP.

Other Sequence Features

This category includes the locations of autonomously replicating sequences and their
consensus sequences, TATA elements, and transcription start sites.

Transcription Regulation

Transcription factor binding sites determined by ChIP-chip from the Mayer et al.

(2010) study are listed here.

2.8.3 RNA-seq Alignments

Under the sub-folders GRNAseq and WT are the three RNA-seq alignments de-

scribed in Section 2.3.2.
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2.8.4 Protein Coding ORFs

Tracks containing all possible open reading frames in all six frames of translation
obtained from the EMBOSS Transeq program (Rice et al., 2000; Goujon et al.,
2010) are in this category. There are two tracks: one is labelled “relaxed,” in which
ambiguous codons (appearing as “X” in the Transeq output) were considered coding
amino acids instead of stop codons, whereas in the other, ambiguous codons were
treated as stop codons.

The purpose of these tracks is to allow the user to visualise genomic locations
where potential peptides and proteins may be coded from alongside the RNA-seq
data and other annotations that may indicate the presence of a transcript, such as

a polyadenylation site at the 3’ end of an ORF.

2.8.5 Conservation

There are two .bigwig tracks in this category related to conservation. The first gives
the total number of Saccharomyces species in the 7-way MULTIZ alignments per
base, described in Section 2.7. In addition, the phastCons scores per base are also

given in a separate track.

2.9 QuickLoad Site Usage

When the QuickLoad Site has been loaded into the Integrated Genome Browser, it
will have the file structure shown in Figure 2.21.

Figure 2.22 highlights the advantages in how the QuickLoad Site is structured
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Figure 2.21: General file structure of the QuickLoad Site.
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and the ability to access and arrange a high volume of information. The Primary An-
notations indicate where the UAR is located in addition to which known annotations
flank the UAR. The RNA-seq read alignments show where reads mapped to in the
three stringency levels that can be compared directly. The presence of polyadenyla-
tion (polyA) sites gives evidence of the presence of a transcript(s) and where the ends
of transcripts may be. All open reading frames are delineated, which indicate where
potential peptides and proteins may be encoded. Lastly, the MULTIZ and phast-
Cons tracks provide visual representations of numerical data regarding conservation
at each base in the entire yeast genome. Specifically in Figure 2.22, one hypothesis
maybe that the small continuous region of RNA-seq reads at around 564,700-565,400
indicates the presence of a previously undetected transcript. Given that there are
polyA sites on the reverse strand, it is plausible that the new reverse strand tran-
script is polyadenylated at about 564,700. Interestingly, in addition to the group of
polyA sites at 564,700, there is another cluster around 565,500, which most likely
corresponds to the 3’ ends of XUT _5R-247, chrV_565736_566562_antisense, and other
annotations shown. However, as there are no other annotations downstream of these
transcripts, it is also plausible that these transcripts may be incorrectly annotated
and that their 3’ ends may in fact be further downstream, toward the set of polyA
sites around 564,700. These scenarios illustrate the power of the QuickLoad Site in
genomic and RNA-seq analysis because of the vast amount of information it contains

coupled with the flexibility in visualising data in the Integrated Genome Browser.
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Figure 2.22: This IGB screenshot illustrates one way of arranging and displaying
annotations, RNA-seq alignments, and conservation information to more effectively
analyse the UAR chrV: 564463-565493. Starting from the Coordinates line, Primary
Annotations are placed directly above (forward strand) and below (reverse strand).
Immediately adjacent to the annotations are polyadenylation sites (Ozsolak et al.,
2010), then all potential open reading frames in all six frames from the relaxed track.
Since the RNA-seq data were unstranded, all three alignments were stacked on the
forward strand. Lastly, the track giving the number of Saccharomyces species in
multiple genome alignments with the MULTIZ program (Blanchette et al., 2004)
and the phastCons (Siepel et al., 2005) scores are shown.
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Chapter 3

Preliminary Targets

3.1 Introduction

This chapter illustrates analytical methods for finding and characterising interesting
un-annotated regions using three prime examples. All three were found from a
previous version of the Primary Annotations that was based on the EF4.70 Ensembl
annotations (Flicek et al., 2014), un-translated regions (Nagalakshmi et al., 2008;
Yassour et al., 2009), transposons (Cherry et al., 2012), and long-terminal repeats
(Cherry et al., 2012). Also, the RNA-seq mappings were performed with TopHat2,
prior to the switch to STAR. However, throughout the chapter, the target UARs
were also characterised in the context of the current Primary Annotations and STAR
alignments where necessary.

The first target UAR was found through analysing statistics (mean, median,
standard deviation, and standard error) across the 42 clean WT biological replicates.
The UAR chrXII: 489,949-490,404 bore similarity to sequences of rRNAs through

a nucleotide BLAST search. The second UAR at chrl: 12,427-13,361 had homology

104
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Table 3.1: The sets of annotations referred to in this section and their contents.

Annotation Set Name Contents

EF470_UTRs.gtf Ensembl version EF4.70 annotations; un-
translated regions
EF470_UTRs_transposons_LTRs.gtfEnsembl version EF4.70 annotations; un-
translated regions; transposons; long termi-
nal repeats

Primary Annotations (current) (see Appendix Table A for the full list)

with flocculins, a group of proteins involved in the formation of clusters of yeast cells
(Vidgren and Londesborough, 2011). However, the UAR did not have the necessary
protein domains and repeats to be a functional flocculin. The third UAR studied in
this chapter, chrV: 288,525-290,125, had very high homology to cell division control
protein 4 (Cdc4); however, because of a stop codon within the frame of translation,
any translated product would most likely be non-functional. Various methods were
invoked throughout the examination of all three target UARs, including sorting by
RNA-seq read depth and ORF length, BLAST searching (Altschul et al., 1990), and

InterPro (Jones et al., 2014).

3.2 chrXII: 489,949-490,404

As reference, multiple versions of annotations are referred to throughout this section
as this region was detected very early in the study, before further developments on
gathering annotation. Table 3.1 lists the different sets of annotations and each of
their contents.

Chromosome XII at 489,949-490,404 was the first interesting UAR found by
exploring statistical figures of read depths. Means, medians, standard deviations,

and standard errors of read depths per base were calculated over the 42 clean WT
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Figure 3.1: A genomic region is shown in IGB against the EF470_UTRs set of
annotations. Shown above the annoations are the read depths from the RNA-seq
alignment (WT _clean_all_unstranded.chrl.wig) and then the values for all four statis-
tics on read counts (from bottom to top: median, mean, stdev (standard deviation),
and stderr (standard error)).
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replicates. All four statistical values correlated with each other, as shown in Figure
3.1. Therefore, as the number of reads increased, so did the values for the four
statistics. One region with highest number of reads stood out as a clear outlier:
chrXII: 489,949-490,404.

Viewing the UAR in IGB showed protein-coding genes upstream and down-
stream of the region (Figure 3.2). As reference, the protein-coding region upstream
of the UAR on the forward strand is YLR162W, annotated as a “putative protein

of unknown function; overexpression confers resistance to the antimicrobial peptide
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MiAMP1 and causes growth arrest, apoptosis, and increased sensitivity to cobalt
chloride” (Kumar et al., 2011; Stephens et al., 2005) in SGD. YLR162W-A is down-
stream of the UAR, described as a “putative protein of unknown function identified
by fungal homology comparisons and RT-PCR; identified in a screen for mutants
with decreased levels of rDNA transcription” (Hontz et al., 2009; Kessler et al.,

2003).
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To characterise this striking outlier UAR, multiple BLAST searches were per-
formed. A BLASTN query against S. cerevisiae (taxid: 4932) resulted in three
100% matching regions (the third is the UAR itself) on chrXII. Table 3.2 lists all
annotated features within all regions matched from BLASTN results. All features
within these regions are rRNAs, strongly suggesting that the UAR may contain or
be a rRNA itself, though experimental validation through differential and sucrose
centrifugation, followed by ribosomal sequencing, would be necessary for certainty
(Rivera et al., 2015). The top hits from BLASTN were yielded also by a TBLASTX
search; however, “no significant similarity was found” by BLASTX.

With the final set of Primary Annotations, the UAR actually overlapped with a
few annotations from data added later on in the study, eliminating it from the final
pool of UARs (Figure 3.3). In a previous study that used high-resolution oligonu-
cleotide tiling arrays, a meiotic unannotated transcript (MUT) was found at chrXII:
490,175-490,352, indicating that this region is active during the meiotic phase of the
yeast reproductive cycle (Lardenois et al., 2011). However, the RNA-seq reads that
mapped to the region previously with TopHat2 no longer appeared at this same
region on chrXII, even with the most lenient, Near-Default, mapping. In terms of
conservation, sequences of 6 other Saccharomyces species (paradoxus, mikatae, ku-
driavzevii, bayanus, castelli, and kluyveri) along with cerevisiae were aligned with
the MULTIZ program (Blanchette et al., 2004). The multiple alignments were down-
loaded from the UCSC Genome Browser (Kent et al., 2002), which also provided
calculated phastCons conservation scores for the multiple alignment (Siepel et al.,
2005). For this partciular UAR, although the phastCons scores showed a maxi-

mum score of 1.0 across the entire previous UAR, there were actually no MULTIZ



chrXII: 489,949-490,404 110 Preliminary Targets

Table 3.2: Three regions on chrXII were found by searching for the UAR sequence
at chrXII: 489,949-490,404: itself and two others. The other two regions contained
rRNA genes, described in this table.

Region on chrXII | Annotated feature within re- | BLAST

(genomic  coordi- | gion E-value
nates)
451,981-452,436 RDN37-1 (location: 451,575 | 0.0

458,432; product type: rRNA;
description: 35S rRNA, pro-
cessed into the 25S, 18S, and 5.8S
rRNAs)

451,981-452,436 RDN25-1 (location:  451,786— | 0.0
455,181; product type: TRNA; de-
scription: 25S rRNA, a compo-
nent of the 60S subunit)
461,118-461,573 RDN25-2  (location:  460,923— | 0.0
464,318; product type: rRNA; de-
scription: 255 rRNA, a compo-
nent of the 60S subunit)
489,949-490,404 N/A

alignments amongst the 7 yeast species evident in this region.

After considering all final and updated Primary and Secondary Annotations,
chrXII: 489,949-490,404 still has not been officially annotated as a rRNA, so there
is scope for experimental validation. A study in 2004 detected that a small fraction
of 25S-related rRNAs are polyadenylated in S. cerevisiae, making it plausible that
this previous UAR may encode rRNAs that were detected by polyA-enriched RNA-

seq (Kuai et al., 2004).
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Table 3.3: The EF4.70 annotations with UTRs, transposons, and long-terminal
repeats, a previous version of the Primary Annotations, and the TopHat 2 RNA-
seq alignment yielded 4,534 UARs containin reads. These UARs were sorted by the
total read depth, and the top 200 UARs were then subsequently sorted by the length
of the longest ORF. The final top 10 UARs are listed by the length of the longest
ORF.

Length of Longest ORF (bp) | Un-Annotated Region
426 chrXII: 218,908-220,666
389 chrlV: 804,518-806,444
249 chrl: 12,427 13,361
248 chrVIII: 542,263-543,006
248 chrl: 221,661-222,404
176 chrXIII: 282,856-284,036
167 chrVI: 255,428-258,853
166 chrlV: 1,164,764-1,166,960
166 chrl: 196,351-201,465
153 chrVIII: 1,898-2,669

3.3 chrl: 12,427-13,361

With the previous version of Primary Annotations, EF4.70 with UTRs, transposons,
and long-terminal repeats, there were 4,534 un-annotated regions containing any
mapped RNA-seq reads (55 UARs contained no reads). All of the 4,534 UARs
were sorted by the total read depth (cumulative sum of read depth per base across
the UAR, which differs from a total read count, the number of continuous 50-bp
reads that overlap a particular region). The top 200 UARs of the sorted list were
then sorted by the length of the longest ORF within the UAR (Table 3.3). Through
BLASTX searches, the first two UARs unfortunately matched transposons and Gag-
Pol fusion proteins, which are composed of Gag, the major virus coat protein, and
Pol, an RNA-independent RNA polymerase (Ribas and Wickner, 1998). The third
one, chrl: 12/427-13,361, matched flocculin proteins (Table C.1 in Appendix C).

Flocculins are proteins in brewer’s yeast involved in “flocculation,” a process
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during which thousands of yeast cells aggregate (Vidgren and Londesborough, 2011).

Y

The aggregates are called “flocs,” which settle rapidly to the bottom or rise to the
surface in fermentation. Lectin-mediated adhesion is the most common process
of flocculation (lectins are sugar-binding proteins). In this process, flocculin on the
surface of a yeast cell binds to a mannose molecule in the cell wall of an adjacent cell.
At least nine flocculin genes are known: FLO1, FLO5, FLO9, FLO10, FLO11, and
four pseudogenes (Vidgren and Londesborough, 2011). The first four FLO proteins
have a strong Flo1l phenotype with respect to the ability to bind sugar and inhibition
by mannose. Flol1 is different since it is not directly involved with flocculation
but, rather, flor formation in wines, filamentous growth, and solid surface adhesion.
Moreover, Flo8 regulates the expression of the other FLO genes as a transcription
factor (Vidgren and Londesborough, 2011).

Flocculins are unstable genes due to their long lengths (maximum of 4.6 kbp) and
contain 10-20 tandem repeats of about 100 nucleotides (Vidgren and Londesborough,
2011). The tandem repeats are dynamic and change rapidly, and relocations of the
repeats occur within and between flocculin genes. The repeats give flocculins the
ability to participate in flocculation; the more repeats a flocculin possesses, the
stronger its Flol phenotype. Genes with tandem repeats are difficult to map short
reads to. Interestingly, all but FLO11 are located near telomeres. As a result,
flocculin genes are susceptible to duplications, translocations, and deletions. In

addition, telomeric silencing can repress transcription of these genes (Vidgren and

Londesborough, 2011).
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A closer examination of this UAR in IGB shows that it is surrounded by two
nearby protein-coding regions, YALO65C and YAL064C-A (Figure 3.4). YAL065C
is a putative protein of unknown function, has homology to FLO1, and is a possible
pseudogene (Cherry et al., 2012). YAL064C-A is a putative protein of unknown
function, its null mutant is sensitive to expression of the topl-T722A allele, and it
is not an essential gene (Cherry et al., 2012). The topl-T722A allele stabilizes the
Topl cleavage complex, which consists of covalently attached Topoisomerase 1 and
cleaved DNA (Andersen et al., 2015).

Within the UAR, the longest ORF was 249 amino acids. The longest ORF of all
6 reading frames that overlaps with this UAR was 535 amino acids long, extending
from 11,569-13,174, which completely overlaps with the entire UAR region. An
InterProScan search matched the region to only Flocculin type 3 repeats (Figure
C.1 in Appendix C). The UAR was matched to Flol, Flo5, and Flo9 by BLASTX
(Table C.1), so the InterPro entry for each functional Flo protein was compared to
that of the UAR. Flol does not have Flocculin type 3 repeats but possesses the
PA14 (IPR011658) domain which forms an insert in yeast adhesins, amongst other
proteins (Rigden et al., 2004), and the Flocculin repeats (IPR001389) (Figure C.2
in Appendix C). Interestingly, Flo5 and Flo9 did have the Flocculin type 3 repeats
in addition to the PA14 domain and Flocculin repeats, showing that the UAR is
most related to these two flocculin genes (Figures C.3 and C.4 in Appendix C).

The UAR possesses only the Flocculin type 3 repeats and not the critical PA14
domain or the Flocculin repeats that the functional FLO1, FLO5, and FLO9 have.
Therefore, if there were a transcript derived from this UAR and it were then trans-

lated into a peptide, the peptide would most likely not be functional. It is plausible
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that this UAR is a pseudogene, given the homology to other functional flocculin

genes.

3.4 chrV: 288,525-290,125

The top 200 identified UARs were further refined with BLASTX searches against S.
cerevisiae. Specifically, we used the BLASTX search results to identify UARS with

the following characteristics:

e many high-quality hits with high similarity percentages and relatively low e-
values

e many hits to other related yeasts, which may hint at conservation

e many hits to other eukaryotes outwith yeasts, alluding to wider conservation

e many hits to “unknown,” “hypothetical,” or “putative” entries for scope to

further characterise these potential proteins

This resulted in four candidate UARs:

chrVIII: 542,263-543,006

chrl: 221,661-222,404

chrV: 288,525-290,125

chrl: 175,331-176,824

The first couple of UARs were very similar in sequence and returned almost iden-
tical BLASTX results. Furthermore, BLASTN search against S. cerevisiae returned
sequences from other parts of the genome.

The third promising candidate, chrV: 288,525-290,125, yielded high similarity to

cell division control protein 4 (Cde4) in BLASTX results (Figure C.5 in Appendix
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C). The alignment of Cdcd against the continuous region shows homology and
indicates also where the stop codon is located against the functional protein (Figure
C.7 in Appendix C). Cdc4 assists target cell cycle regulators in ubiquitin-mediated
proteasomal degradation (Goh and Surana, 1999). All BLASTX hits aligned to the
3’ end of the UAR, even past the region’s longest ORF of 126 aa at 289,528-289,905.
The UAR was extended at the 3’ end to encompass a 296-aa ORF adjacent to the
first ORF at 289,908-290,799. The extended UAR at 288,525-291,000, 200 bp past
the second ORF, was searched via BLASTX (Figure C.6 in Appendix C). Most of
the hits matched the continuous region consisting of both ORFs. Consequently, if
the region spanning both ORFs were transcribed and translated, it would produce
a truncated, perhaps non-functional, version of Cdc4. Therefore, this UAR is most
likely part of a pseudogene, similar to the previous preliminary UAR target with
homology to flocculins.

The three preliminary target UARs described here were flagged as interesting
regions primarily through RNA-seq and manual searching with BLAST and Interpro.
However, there was a need for more automated and comprehensive approaches.
In the following stages of the study, techniques such as snoRNA prediction and
proteomics were integrated with the RNA-seq methods to investigate whether there
were possibilities of other ncRNAs, peptides, or proteins being expressed. The
next section describes some of the aforementioned methods in further detail, while
the next chapter describes several additional tools that were developed to facilitate

analysis of the UARs.
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3.4.1 RNA-sequencing

The following sections outline the main steps in an RNA-seq experiment according
to the High Sample Protocol from the Illumina TruSeq RNA Sample Preparation

v2 Guide (Illumina, 2014).

Purification and Fragmentation of mRNA

Total RNA is extracted from the organism and then diluted. RNA purification beads
are mixed with the total RNA. The mixture is heated and incubated. The super-
natant is then discarded. The remainder is washed with bead washing buffer and
resuspended in elution buffer. Messenger RNA is eluted from the beads, and bead
binding buffer is added to the mixture, which is incubated for rebinding. The mix-
ture is washed with bead washing buffer and the Elute, Prime, Fragment mix, which
contains random hexamers for priming, is added. The mixture is then aliquoted to

wells on an RNA fragmentation plate, which is heated to elute, fragment, and prime

the RNA.

First Strand cDNA Synthesis

The RNA fragmentation plate is placed on a magnetic stand to ensure the beads
are bound to the sides of the well, and from each well, the supernatant (containing
fragmented and primed mRNA) is transferred to a well on a Hardshell plate. The
First Strand Master Mix and reverse transcriptase are mixed in to each well on the
Hardshell plate, which is now considered the cDNA plate. The cDNA plate is then

placed and run in a pre-programmed thermal cycler to create the first strand cDNA.



chrV: 288,525-290,125 119 Preliminary Targets

Second Strand cDNA Synthesis

To each well of the cDNA plate, Second Strand Master Mix is added and mixed in.
AMPure XP Beads are added to each well of a new MIDI plate, now considered
the cDNA clean up plate (CCP). All content from each well of the cDNA plate are
transferred to a corresponding well of the CCP. The CCP is placed on the magnetic
stand, and the supernatant from each well is discarded. Ethanol is added to each
well, and the supernatant is discarded again (repeat once). The CCP is left to dry,
and Resuspension Buffer is mixed into each well. The cDNA plate is placed on a
magnetic plate, and the supernatant (ds cDNA) is transferred to a new MIDI plate,

that is now considered the insert modification plate (IMP).

End Repair

To each well in the IMP containing ds cDNA, End Repair Mix is added and mixed
in. The plate is then shaken, centrifuged, heated, and incubated. The IMP plate is
placed on a magnetic stand, and the supernatant of each well is discarded. Each well
is washed twice with ethanol, and then the plate is left to dry. The dry pellet in each
well is mixed with Resuspension Buffer. The plate is placed again on the magnetic
stand, and the supernatant from each well is transferred to a corresponding well of

a new MIDI plate, now considered the adapter ligation plate (ALP).

Adenylation of 3’ Ends

To each well of the ALP, A-Tailing Mix is mixed in. The ALP is heated and

incubated in two cycles.
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Ligation of Adapters

Ligation Mix is mixed in to each well of the ALP. The ALP is heated and incubated.
To inactivate the Ligation Mix, the Stop Ligation Buffer is added to each well.
AMPure XP Beads are added to each well, and the plate is placed on a magnetic
stand. Supernatant from each well is discarded, each well is washed twice with
ethanol, and the plate is left to dry. To each well, Resuspension Buffer is mixed in,
and the plate is placed on the magnetic stand again. Supernatant from each well is
transferred to a corresponding well of a new MIDI plate, now considered the clean
up ALP plate (CAP).

To each well of the CAP, AMPure XP Beads are mixed in. The CAP is placed
on a magnetic stand, and the supernatant of each well is discarded. Each well is
washed twice with ethanol, and the plate is left to dry. To each well, Resuspension
Buffer is mixed in. The CAP is placed on a magnetic stand, and the supernatant
from each well is transferred to a corresponding well of a new Hardshell plate, now

considered the PCR plate.

DNA Fragment Enrichment

To each well of the PCR plate, PCR Primer Cocktail and PCR Master Mix are
added. The PCR plate is run on a pre-programmed thermal cycler for 15 cycles.
AMPure XP Beads are added to each well of a new MIDI plate, now considered
the clean up PCR plate (CPP). Contents of each well from the PCR plate are
transferred to the CPP and mixed. The CPP is placed on a magnetic stand, and
the supernatant of each well is discarded. Each well is washed twice with ethanol

and left to dry. Dried pellets are mixed with Resuspension Buffer, and the plate is
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placed on a magnetic stand. The supernatant of each well is transferred to a new

Hardshell plate, now considered the Target Sample Plate 1 (TSP1).

Library Validation

Quantitation of DNA library templates is determined by qPCR. Libraries are pre-
pared from nucleic acid sequences that are amplified to yield clonal clusters, which
are sequenced in parallel. The quality of data and total data output depend on the
density of clonal clusters. Therefore, optimum cluster densities across every lane of
the flow cell should be determined using quantitation from qPCR.

Quality control regarding the size and purity of the sample may be performed,
for example, by applying the sample onto a DNA-specific chip (Agilent DNA 1000).

A band at about 260 bp should appear for single-read libraries.

Normalisation and Pooling of Libraries

Sample library from each well of the TSP1 is transferred to a corresponding well of
a new MIDI plate, now considered a diluted cluster template. The concentration of
sample library in each well of the DCT is normalised using a solution of Tris-HCI
10 mM, pH 8.5 with 0.1% Tween 20. For non-pooled libraries, this is the final step
before cluster generation.

For pooled libraries, before cluster generation an aliquot of each normalized
sample library is transferred from the DCT plate to a single well of a new Hardshell

plate, now considered the pooled DCT plate.
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Cluster Amplification

The DNA library is loaded onto a flow cell, which is coated with 2 oligonucleotides
called 'p5’ and 'p7’ (Illumina, 2016). As DNA fragments flow across the oligo lawn,
their adapter ends hybridise with and bind to complimentary oligos. The oppo-
site end of a DNA fragment that has ligated bends over and connects to another
complementary oligo on the flow cell, forming a bridge. Clustering consists of re-
peated cycles of denaturation and extension yields local amplification of single DNA

fragments into clonal clusters across the flow cell.

Sequencing

Fluorescent nucleotides are added to the flow cell for the first base to bind (Illumina,
2016). Animage is taken of the flow cell, and each cluster’s emission is recorded. The
four different bases fluoresce at different wavelengths, the method of identification.

These steps are repeated 'n’ times for a read that has an 'n’ length of bases.

Modifications for Stranded Sequencing

The above protocol produces unstranded RNA-seq reads. For strand information,
the Illumina TruSeq Stranded mRNA Sample Preparation Guide specifies the use of
the Second Strand Marking Master Mix (Illumina, 2013). The Mix contains dUTP
instead of dTTP, which marks the second strand for degradation with uracil-DNA

glycosylase (Zhang et al., 2012).
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Modifications for Paired-End Sequencing

The aforementioned protocol can be modified such that adapters for 5” and 3’ ends
of each DNA fragment are distinct sequences (Illumina, 2011). Reads are generated
from both the 5’ and 3’ ends, and the distance between each paired read is known.

Therefore, reads can be aligned to repetitive regions more accurately (Illumina,

2016).



Chapter 4

Proteomics

4.1 Introduction

This chapter describes how un-annotated regions in Saccharomyces cerevisiae were
characterised by integrating two orthogonal high-throughput methods: RNA-seq
and proteomics. The RNA-seq data provide a snapshot of the expression of the
yeast genome, while a high-quality SILAC-based proteomics experiment gives a
deep sampling of peptides and proteins present in the organism. The objective was
to find open reading frames within un-annotated regions containing RNA-seq read
alignments with corresponding peptides that were detected in the proteomics data.
The raw proteomics data were searched against the hypothetical peptides coded by
these open reading frames, resulting in the detection of two UAR ORFs that were
found to be expressed at both the RNA transcript and peptide levels. The effects
of the size of the proteomics sequence database on the peptide identification results

were also explored.

124



Heat Stress Proteomics Dataset 125 Proteomics

4.2 Heat Stress Proteomics Dataset

4.2.1 Experimental Protocols for Data Production

The following sections describe the experiment performed by collaborators in the

Pedrioli Laboratory at the University of Dundee.

Culture and SILAC Labelling

Strains of BY4741 were grown in yeast extract peptone dextrose to mid-log phase
for at least four doublings (Tyagi and Pedrioli, 2015). Cultures were exposed to
37 degrees C for at least four doublings under the heat-stress treatment. Strains
to be SILAC labelled were grown in synthetic complete media without lysine or
arginine, supplemented by proline, 13C6,15N4-arginine, and 13C6,15N2-lysine. Un-
labelled cultures were grown in synthetic complete media, supplemented by proline,
unlabelled arginine, and unlabelled lysine. SILAC labelled (heavy) and unlabelled
(light) cultures were grown for at least four doublings. Equal OD600 of labelled and
unlabelled cultures were mixed for further processing after harvesting (Tyagi and

Pedrioli, 2015).

Extraction, Digestion, and Fractionation

Harvested yeast cells were treated with 1.85 M NaOH and 7.6% (v/v) -mercaptoethanol
for 10 min on ice and 50% (w/v) trichloroacetic acid at equal volume for 20 min
on ice (Tyagi and Pedrioli, 2015). Proteins were precipitated, pelleted, and washed

with acetone. The FASP method was used for tryptic digestion. C18 MacroSpin



Heat Stress Proteomics Dataset 126 Proteomics

columns were used to purify the digested peptides (Tyagi and Pedrioli, 2015). Isol-
electric focusing was used to purify peptides into 12, 17, or 13 fractions, yielding

three sets or replicates with an OffGel Fractionator (Tyagi and Pedrioli, 2015).

LC-MS/MS

Peptides were re-suspended in CF3COOH (Tyagi and Pedrioli, 2015). Online reverse
phase liquid chromatography was used on the Ultimate3000 uHPLC system. Coated-
tip fused silica columns were packed with C18 silica beads for a length of 50 cm.
Peptides were resolved with a 250 nL/min gradient of buffer B (0.1% (v/v) HCOOH,
90% (v/v) CH3CN, 3% (v/v) DMSO) in buffer A (0.1% (v/v) HCOOH, 2% (v/v)
CH3CN, 3% (v/v) DMSO) ranging from 2% to 35% over 240 min for fractionated
samples at 45 degrees C. An LTQ-Orbitrap Velos Pro mass spectrometer was directly
coupled to the chromatography apparatus. The method of top-15 data dependent
acquisition by collision-induced fragmentation was used. At the FT-MS resolution
of 60,000, MS1 scans were taken in profile mode. IonTrap Rapid Scan Rate took

MS/MS scans in centroid mode. The following configurations were used:

e precursor ion intensity threshold for triggering fragmentation = 500 arbitrary
units

e dynamic exclusion = enabled

e repeat count = 1
e repeat duration = 30 s
e exclusion list size = 500

e exclusion duration = 90 s
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Table 4.1: The proteomics experiment was performed three times under the following
conditions (Tyagi and Pedrioli, 2015).

Replicate Name | Condition Number of Fractions
repl 30 degrees C heavy, 37 degrees C light | 12
rep2 30 degrees C light, 37 degrees C heavy | 17
rep3 30 degrees C heavy, 37 degrees C light | 13

e preview mode for FT-MS master scans = enabled
e monoisotopic precursor selection = enabled

e charge state screening with 41 rejection = enabled

4.2.2 Evaluation of Proteomics Data

Tyagi and Pedrioli (2015) states that there were 4,663 proteins detected from the
proteomics dataset by ProteinProphet (Nesvizhskii et al., 2003) at 1% FDR. Of
these, 4,612 proteins were identified by at least one peptide above the 1% FDR
threshold from PeptideProphet (Keller et al., 2002), covering 68% of the predicted
S. cerevisiae proteome.

The quality and performance of the proteomics data were assessed in Tyagi
and Pedrioli (2015) also by comparing the number of proteins detected against all

sequences present in:

e the Saccharomyces Genome Database, the central repository of all annotations
available for yeast

e another proteomics experiment in which all annotated ORF's were attached to
high-affinity epitope tags for immunodetection (Ghaemmaghami et al., 2003)

e the PeptideAtlas repository, which hosts a collection of peptides detected in
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Table 4.2: The number of proteins detected in the proteomics dataset against the
number of proteins in Saccharomyces Genome Database, a tag-based proteomics
method, and PeptideAtlas to illustrate performance. Reproduced from Tyagi and

Pedrioli (2015) with permissions.

Category SGD Heat Stress | Tag-based PeptideAtlas
Proteomics proteomics (King et al.,
Dataset (% of | from Ghaem- | 2006)
SGD) maghami
et al. (2003)
Verified 4,939 4,198 (85) 4,048 4,197
Uncharacterised | 853 401 (47.01) 409 402
Dubious 810 4 (0.49) 41 11
Transposable el- | 89 4 (4.49) 3 55
ement
Pseudogene 26 5 (19.23) 3 3
Total 6,717 4,612 (68.66) 4,504 4,668

tandem mass spectrometry experiments across multiple species (King et al.,

2006)

The numbers of proteins detected in the aforementioned experiments and repos-
itories are listed in Table 4.2. There were 108 more proteins detected in the heat
stress experiment than in the tag-based approach. In addition, the total number of
proteins identified in this single heat stress experiment was only 56 (1.2%) proteins
smaller than the entire collection of proteins detected over all yeast experiments
contained in PeptideAtlas. This difference demonstrates that as an individual ex-
periment, the heat stress proteomics study provided extensive coverage over the
yeast proteome, rendering it a comprehensive dataset to search the un-annotated

regions against.
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4.3 Sequence Database Construction

Proteomics data are searched against a FASTA-formatted database of peptide and /or
protein sequences of interest. The database is entirely customisable and can include
hypothetical amino acid sequences, which was advantageous in the analysis of un-
annotated regions. Figure 4.1 shows the process by which the database was built.
Firstly, the full-length DNA sequences of all chromosomes in yeast were acquired
from the Saccharomyces Genome Database. The sequences were 6-frame translated
with the Transeq (Rice et al., 2000) program to identify all possible open read-
ing frames over the entire genome. The translated chromosomes were contained in
separate .fasta files, one per chromosome, but were concatenated into a single file
for convenience. The translated chromosomes, along with coordinates of all 2,636
un-annotated regions and DNA coordinates of all ORFs, were inputs for the ex-
tract_orfs_for_fasta_list.py script. The script processes all inputs by chromosome.
For each UAR, the .tab file for all ORFs is searched for the ORFs that completely
overlap with the specific UAR. Then, after converting the DNA coordinates into
peptide coordinates for each ORF, the peptide sequence for that particular ORF
is extracted from the single .fasta file of translated chromosomes. After all of the
sequences were collected, an entry per UAR ORF was written to a .fasta file that
included the chromosome, start, end, translation frame, and peptide sequence. Since
the smallest translated ORF reported in literature across all species is 6 amino acids
(Andrews and Rothnagel, 2014), the entire pool of hypothetical peptides were fil-
tered for those at least 6-aa in length, contributing 22,852 sequences to the database.

One way to assess the coverage and quality of a proteomics dataset is to search
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Figure 4.1: Schematic diagram of how the sequence database for the proteomics
analysis was constructed. Software programs are in bold and scripts are in italics.
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Table 4.3: Contents of the FASTA-formatted peptide/protein sequence database.

Category Number of Sequences
SGD known genes 6,603
Reversed SGD known genes 6,603
UAR ORFs at least 6-aa long 22,852
Reversed UAR ORFs at least 6-aa long 22,852

the mass spectra against known peptide and protein sequences to ensure that these
sequences were detected with high probabilities. Therefore, the 6,603 known SGD
genes were added to the database. False discovery rate (FDR) are determined thresh-
olds used to derive a set of Peptide-Spectrum Matches (PSMs) in proteomics (Choi
and Nesvizhskii, 2008). The estimation of FDRs relies on measuring the detection
of decoys, or false peptide/protein sequences. False peptide/protein sequences can
be created by reversing the 6,603 known SGD genes and inserting these into the se-
quence database. As a summary, Table 4.3 lists the entire contents of the sequence
database. Reversed sequences of SGD known genes and UAR ORFs were included
in the database mainly to allow the software to estimate the false positives in a
set of peptide spectrum matches at a given score threshold. Therefore, any decoy

identifications are discarded.

4.3.1 Unit Testing

Python unit tests in the extract_orfs_for_fasta_list.py script ensured that all ORFs
within an UAR, and only the ORFs that entirely overlapped, would be detected.
Unit tests were written to verify that the conversion of DNA sequence coordinates
to peptide sequence coordinates, which was crucial for determining the exact corre-

sponding peptide for an ORF.
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4.4 Proteomics Analysis Procedure

The proteomics analysis work flow per replicate is shown in Figure 4.2. The third-
party software programs and scripts invoked are described in Tables 4.5 and 4.4,
respectively. For reference, the file structure adopted for the proteomics analysis is
illustrated in Figure 4.3 to aid in the understanding of inputs and outputs in the
work flow. Automating the proteomics analysis process would facilitate the use of

this pipeline.
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Figure 4.2: Work-flow diagram of the proteomics data analysis. Scripts are italicised,
and software programs are embolden, details of which in Table 4.4, and Table 4.5,
respectively.

converted raw peptide/protein
proteomics data sequence database
(.mzXML) (fasta)

runComet.sh

mass spectra search check_pep axmls_ exist.sh
results per fraction check_qsublogs_e_ files.sh
(-pep.xml) check_qsublogs o _ files.sh

make_ InteractParser _array job cmds.sh

run_ InteractParser _array_job cmds.txt

combined search

results per fraction check _raw pep xmls exist.sh
(_raw.pep.xml)

softlink_raw_pep xmls_to_combi.sh

(xinteract, PeptideProphet)

peptide-level results

per replicate
(combi.pep.xml)

(InterProphetParser, iProphet)

refined peptide-level

results per replicate
(iProphet-output.pep.xml)

calctppstat.pl (ProteinProphet)

PepXML|Viewer

run_ XInteract_ ProteinProphet and_ calctppstat combi.sh

|
.. converted format of protein-level results
summary statistics 1 li
(iProphet-output.pep.summary.txt) results per rep icate
(iProphet-output.pep.xls) (iProphet-output.prot.xml)

ProtXML |[Viewer

converted format of

results
(iProphet-output.prot.xls)




Proteomics

134

Proteomics Analysis Procedure

[d yeysddyoren

pue ‘“joydorgurejorg ‘resreioydorJIojul ‘joeIojuIxX suni | JJJI, ‘Ioyine | ys-1quiod)nisddiono-pun-1oydosJulaiosJ 1oDL9UL Y UNL
£10309011p-(nis 1qUIOD 81} 0} sy [wix dod mer syur[jos Iotine 1S 1QUL00~09~S)uLr~dad-mos~yufos
o[y ux-dod mer s3I pur UOIJORIJ DR JO SUIRL 9} SISI| Ioyjne 1Ys°5129~S)uT~dod-mnL 291D
wrer1s01d I9sIeJ10RIIU] ) SUNI
pery qol Aeire qnsb suruy prir) ung e I0J SPURIUOD JO ISI] © Ioyjne 1) SPULD~QOLIDLAD ™A SAD JJIDAIPUT UL
"IOSIRJIORIONU] UILI 0} SPURTITIOD JO o[
IX) B S9ONpoId “(1x3 spud-qo[-Aeire” 1esIeJ)oRIS)UT UNT
'89) oewreu o[y Jndmo ory pue ‘gred X} YDILSS 0}
o)  ‘AIojooIrp  jewo)) 9y} :pormbor  sjuewNIIY Joyne YS SPUWI~QOL DAL ™A SUD JJODLIPUL™IYDUL
uni ojerduwoour ue
99eOIPUL URD [DIYM ‘SUOIJRIIO(R AUR JO UOIIQIOP I0] SOZIS o[
1oy pue sofy (,0,,) jndino 1o (9,) 10110 So[qnsb o) (e s)s1] Ioye ys-saqf-o~sbojqnsbyoa1yo /ys-sapif-a~sbojqnsb 2910
so[g [ux dod $)1 pue UOIJORIJ (DR JO dWIRU S} SISI| Ioyjne Y$ 1519~ SPuLr~dod "29Yyd
oseqejep
oouonbos e jsurege vijods ssewl WopurR) JO SOYDIRIS 1OUWIO))
suriojrod pue so[y o[diynu ojul o[ TNXZUW' oD SOPIAID | jowo)) ‘dd.L S JOUL0 ) UN.L
uorjouny /uorjdriosaq 90IN0g o1 q/1drng

's9dLI0s 9so1[) AQ Po[[eD

surersoid uo s[rejop Ioy)Inj SUIRIUOD G o[qR], ‘g'F Ul umoys oulfodid sisATeue soroojoxd oty ur uni s3dLos Jo suonouny 'y o[qe],



Proteomics

135

Proteomics Analysis Procedure

soniqeqoxd jeydorg

(1esregreydoigieguy 90s) | -oprpded JO JuamOUYEl [edr)sije)s suriojrod joydorgt
[ux-dod-yndino-joydorJt oy 03 syndino
pue [wx-dad 1quroo ut symsa1 jeydorgoprydoJ
[wx-ded-gndino-jeydor gt ux-ded iquuod | oy} uo jaydoiJt suni jer} jdrmos roddeim e | 1esieJ1oydorJrojuf
([epow ssewr 9jeINOOR
9} Ul suojR(] Jo peojsur uol[iur tod syred osn = NJJ-
‘UOTINLIISIP DAIYRSOU 9} PN 0 ST A0DOP AL, 9Sh
= TAQIP- ‘pauLIRY[ [opOouW O} U0 poseq Ajiqeqord pejnd
-woo © UM sHy Looop jrodor = p ‘opowr orrjourered o[y [wx dod 1quroo
-uou = J ‘suruuiq ssewr 9jeInooe = y ‘jeydoigepryded | ofduls e ur ndino oy qux-ded mer ur Surpus
10 suorydo oIe 9se1[) JeY) JORISIULY 0} SeIRIIPUL = () | SO[Y [[® I0J SUOIJedYIIUSpl 10§ serIfiqreqold
[ux-dod-mer, (ux dod 1quooN- NJJ- ~A9Ip- pPdVO- | sopraoxd pue soypress [oao[-opridod surrofrod joydoigepnydog
swreis
joydorquiejord pue ‘yeydoidr ‘jeydorgoprydeq oos | -oxd JdJ.J, [RI0A8s 10} Ioddeim SUI-PURTTHOD JORIDIUTX
o[y Tuux dod mer
[ux-dod- -, Tux-dod-mer | o[duts e ojur so[y [wx'dod  [re sourquod ToSIRJ10RIDIU]
(eururdre I0j Jnq JPOU d[qRLIRA
998) € (0 ¥ 8LL8SETR00°0T = gpour afqerrea ‘(oprpdad rod
SUOI}ROYIPOW ¢ JO WNWIXRUW = ¢ ‘PISATRUR oIR SoNPISOl
peyIpowun pue payipour jo suoljejnuiiod [[e = () ‘OUISA]
‘sfoqe] 9d0J0ST WOIJ 9dULIBPIP ssew) ¢ () M Z6861F710°S
= [poura[qeLreA ‘(¢§ o[qR],) B} UM eR 9~ ¢ (JPosIuiop aseqelep oouonbes v jsurese
-uey, = OWRU oSB(RIRD Py sweredjowoo  ur | sopryded jo eijoeds ssewr wopur) SOYDIRIS JouI0))
suoryd( /sisjourereg uorjoung wersord

“Yoes M

posn s1ojotrered JURAS[OI O} PUR SISATRUR $O10930.1d 10]
sweidord orem)jos Ajred-piryy jo suonounyg :GF ORI,




Proteomics

136

Proteomics Analysis Procedure

((xnutp) 8TZCTSOVTOZ PIME ‘0 491 (AFQ)
MNNYL 004 dd.L) Yeutiof six* 03 Suryrodxo

V/N | pue soy [ux-j01d SUIMOIA 10] 9ORJIONUI om IOMITA TINX201d
((xnuy) 8ZTZSTSOPTOE PIME ‘0 401 (AHQ)
MNNYL 0008 dd.1) Yeuriof s[x: 03 Surprodxo

V/N | pue so[g [ux-dod SUIMOIA 10J 90RJIDIUI (oM TomarA TINXded
(Sutns 10§ SOT1Y

Aooop) ~ae1 p- (g ndur) [ux-ded-jndino-joydoidr 1-

-STJe1S PUR SIMNSOI o) JO ATRWIWNS € SOIRIID

1d-gm3sddio)o

(proyseayy oy gsurese soprydod
Surqis Jo mdqumu oYy dsirenLion) NHTLOUYJINYON
(proyseayy oyj jsurese dnoir) uLjoIJ oY) Ul ‘JySlom
[enjoe or) Jo peajsur ‘JuSem [ejol sepnrded ootp)

SIMINOYD (Wudorgr woxy st jndur) [HHIOUI
[wx-joxd-gndino-joydor gt [ux-dod-ndino-jeydorJt

o[y Tux j01d Indino-jeydorr
9} Ul SUOIYeIYTIUOPI I0] sariqeqord soonp
-oxd pue oy [ux-dad: o1y ur synsar jeydorJt
10 toydorgeprydeq wogy surejord SoyIjUOPI

joydorqurojorq




Proteomics Analysis Procedure 137 Proteomics

In the first instance, the raw proteomics data, converted to .mzXML format, were
searched against the sequence database described in Section 4.3 with the Comet (Eng
et al., 2013) search engine. Results from the mass spectra searches were produced
in multiple .pep.xml files per fraction. To confirm that searches for all fractions
were performed successfully, the check_pep_xmls_exist.sh, check_qsublogs_e_files.sh,
and check_qsublogs_o_files.sh scripts were written for the user to detect any aberra-
tions in the existence of files or the file sizes of error and output log files. For each
fraction, all .pep.xml files were then combined into a single raw.pep.xml file with
the InteractParser (Deutsch et al., 2010) program, which was run by the commands
in run_InteractParser_array_job_cmds.tzt. Afterwards, all raw.pep.xml files for each
fraction were then symbolically linked in the combi directory.

The next script,run_XInteract_ProteinProphet_and_calctppstat_combi.sh, runs mul-
tiple third-party programs in succession. To begin with, the wrapper program xin-
teract (Deutsch et al., 2010) runs PeptideProphet (Keller et al., 2002) to compute the
probabilities of peptide assignments to mass spectra from the Comet searches in or-
der to delineate between correct and incorrect assignments. These results were popu-
lated in a single combi.pep.xml file. Next, InterProphetParser (Deutsch et al., 2010)
was executed to run iProphet (Shteynberg et al., 2011), which performed a statistical
refinement of PeptideProphet probabilities, written in the iProphet-output.pep.xml
file. ProteinProphet (Nesvizhskii et al., 2003), which computes probabilities for
protein identifications, was run on the iProphet results, and the output was then
stored in the iProphet-output.prot.xml file. As a final step, the script calctppstat.pl

(Deutsch et al., 2010) was run to report a statistical summary of the peptide and
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Figure 4.3: Structure of directory where the proteomics analysis files are stored.
Directories (folders) are italicised, hash symbols represent numbering, and ellipses
indicate the presence of more items with similar content as the item directly above.
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protein identifications, including 1% false-discovery rate thresholds for the proba-
bilities. The summary was written in the iProphet-output.pep.summary.txt.

The peptide-level and protein-level identifications were displayed in the PepXML
and ProtXML Viewers (Deutsch et al., 2010), respectively. The Viewers are also
capable of exporting the .xml result files into .xls (comma-separated) for a more

accessible format to perform downstream analysis.

4.4.1 Proteomics Data Processing Parameters

The Trans-Proteomic Pipeline was used to process data (Pedrioli, 2010), with which
raw data files were converted to mzXML format (Pedrioli et al., 2004). Comet was
used to search mzXML files were searched against the databases described later in

the text. Configurations for the search were as follows:

e Static modification:
— carboxyamidomethylation of Cys (57.022 Da)
e Variable modification:

— 13C6, 15N2-Lys (8.01419892 Da)
— 13C6, 15N4-Arg (10.008252778 Da)

— oxidation of Met (15.99491463 Da)

o Maximum of missed cleavages by tryptic digestion = 2
e MS error mass tolerance= 25 ppm

e MS/MS error mass tolerance = 0.4
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PeptideProphet was used to analyse and evaluate peptide identification proba-
bilities (Nesvizhskii et al., 2003), while ProteinProphet was used for protein identi-
fications (Keller et al., 2002). iProphet was then applied to improve peptide identi-
fication rates and error estimation (Shteynberg et al., 2011). One consideration of
the configurations listed is that the settings would not allow for peptides in which
there were 3 or more missed cleavages. It would be beneficial to to able to measure
the efficiency of the trypsin digestion to determine whether that step should be im-
proved and how much sample was excluded; however 85% of verified SGD proteins
were reported by Tyagi and Pedrioli (2015), which is higher than the other two stud-
ies compared against (Ghaemmaghami et al., 2003; King et al., 2006). Therefore,
the maximum of 2 missed cleavages yields results of commensurate quality to other

studies with high rates of protein detection.

4.5 Proteomics Search Methods

Five total search methods were invoked in this project. Three searches were per-
formed on databases for which un-annotated regions open-reading frames were fil-
tered by a minimum length. As expected, increasing the minimum length decreased
the total number of ORFs in each database the proteomics data were searched
against. The objective for the other two searches were to curate a database contain-
ing a set of known SGD protein-coding genes to serve as a set of likely candidates

to be detected by proteomics searching, resembling a group of true positives.
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4.5.1 Characterisation of Un-Annotated Region Open Read-
ing Frames

Boxplots of the lengths of all un-annotated region open reading frames per chro-
mosome are shown in Figure 4.4. Across all 16 non-mitochondrial and 1 mitochon-
drial chromosomes, the median lengths ORFs are under 50 bp in length, with the
mitochondrial chromosome having the shortest median. It should be noted that
these lengths are indicated in bp, but since ORF's are translated to their theoretical
peptide sequences, the numbers given can be divided by 3 to depict the length of
hypothetical peptides or proteins. Although the UAR ORFs are typically short,
there is a significant tail that extends out to lengths that approach the lengths of
protein-coding ORF in yeast (median prot ORF =1071bp). Therefore, it is feasible
that a new peptide or protein may be detected by proteomics within this set of

translated ORFs.
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The distribution of UAR ORFs amongst all chromosomes is shown in Figure
4.5. Tt is striking that the mitochondrial chromosome has the highest density of
UAR ORFs compared to all of the other chromosomes; however, this may be ex-
plained by the low number of genes on the chromosome. In the proteomics search
databases, there are only 28 protein-coding genes on the mitochondrial chromosome
even though it is 85,779 bp long. Therefore, there are long un-annotated regions

which produce many ORFs.



Proteomics

144

Proteomics Search Methods

QWOSOWOIYD
IO TAXIUD AXIUO ATXIUO TIIXAUO IIXAUO  IXIYO XAy XHYO  JIIAIYO [IAIUO  JAIUO AU AMYO  IIHY  JHY  [Y0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

I
=l
N

2
dqy 001 1od junoo

I
=l
O

owosowroayd 1ad pajemores ‘dqy 01 1od seurrey Surpear uedo UOISHI PajeIOUUR-UN JO IOQUINN :G'§ 9INSL



Proteomics Search Methods 145 Proteomics

The distribution of read counts amongst the UAR ORFs per chromosome are
depicted in 4.6 for the three RNA-seq mapping methods. Across all but the mito-
chondrial chromosome, the majority of the distributions of read counts lie within
10-100 read counts. The asymetry in the distributions highlights that most UAR
ORFs are only expressed at low levels. Distributions for the Near-Default, Unique,
and Stringent mapping methods are relatively similar and overlap relatively well,
with chromosome I having the largest difference between the Near-Default compared

with Unique and Stringent mappings.
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4.5.2 Searching for Un-Annotated Region Open Reading
Frames

UAR ORF Minimum Length of 6 Amino Acids

The proteomics database that was searched against contained:

e 5887 translated SGD gene sequences
e 5887 reversed SGD gene sequences
e 10,794 translated UAR ORF sequences

e 10,794 reversed UAR ORF sequences

The 5,887 translated SGD gene sequences refer to the set of translations of all
systematically named ORFs from SGD, except dubious ORFs and pseudogenes.
The 1% FDRs are listed in Table 4.8.

The 1% FDR thresholds for protein-level searches for the 6-amino acid database
are listed in Table 4.6. Across the 3 replicates, about 67-69% of the 5,887 protein-
coding SGD genes were identified above the FDR threshold, and less than 1% of
reversed SGD sequences were identified above the threshold (Table 4.7). Since only
69% of the 6,717 SGD sequences (including those that are verified, uncharacterised,
dubious, transposable elements, and pseudogenes) were detected with the proteomics
data in the original study (Tyagi and Pedrioli, 2015), this study’s rate of identifi-
cation of protein-coding SGD genes may be artificially low. There is a set of SGD
protein-coding sequences that is inherently undetectable by this set of proteomics
data. In replicate 3, UAR ORF 6534 was identified above the 1% FDR threshold
and had a probability value of 0.975. Although UAR ORF 6534 is seen in neither

replicates 1 nor 2, it has a very high probability value from replicate 3, warranting
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Table 4.6: The 1% false-discovery rate thresholds for protein-level searches for
databases for proteomics searches.

Proteomics Search Database | repl rep2 rep3
6aa 0.4633 | 0.5376 | 0.6204
12aa 0.4643 | 0.5435 | 0.621
23aa 0.4648 | 0.4659 | 0.621
Top627 0.7088 | 0.6611 | 0.674

Table 4.7: Proteins identified in protein-level proteomics searches for un-annotated
region open reading frames at least 6 amino acids long. Multiple sequences = pro-
teins with peptide spectrum matches to any combination of SGD sequences, reversed
SGD sequences, UAR ORF sequences, and reversed UAR ORF sequences from the
database.

Category repl rep2 rep3

SGD sequences 4071 (69.2%) - % of 5,887 | 4068 (69.1%) | 3960 (67.3%)
Reversed SGD sequences 4 (0.068%) 4 (0.068%) 3 (0.051%)
UAR ORF sequences 0 0 1

Reversed UAR ORF sequences | 0 0 0

Multiple sequences A7 46 38

Total sequences 4122 4118 4002

further investigation.

For replicate 1 (repl), a total of 215,242 peptide spectum matches were to at
least one sequence in the proteomics search database. Of those, 89.1% matched
just one SGD sequence above the 1% FDR threshold, and 18 peptide spectrum
matches were to just one reversed SGD sequence in Figure 4.9. For rep2 and rep3,
there were similar rates of peptide spectum matches to SGD sequences and reversed

SGD sequences. In replicate 3, a peptide spectrum match to UAR ORF 5644 was

Table 4.8: The 1% false-discovery rates thresholds for protein-level searches for
databases for proteomics searches.

Proteomics Search Database | repl rep2 rep3
6aa 0.74 0.7606 | 0.7823
12aa 0.7397 | 0.7609 | 0.7821
23aa 0.7402 | 0.74 0.7822
Top627 0.809 | 0.7931 | 0.8283
Rep964_1178bp 0.7833 | 0.8043 | 0.802
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identified above the 1% FDR, with a probability value of 0.814. In the RNA-
seq mappings, the ORF had 5 reads for Near-Default and Unique, and 4 reads for
Stringent mapped to the region. Since reads remained even in the Stringent mapping
that required a 100% match, without another location in the genome the reads
could match at equal quality, these pieces of evidence require further exploration.
In replicate 3, there was one peptide spectrum match to UAR ORF 6534 at a
probability value of 0.865. In the RNA-seq data, for all 3 mappings methods, there
were 4 50-bp reads that mapped to this region. Most importantly, these 4 RNA-
seq reads remained even in the Stringent mapping that required a perfect mapping,

providing evidence toward transcription of the region.
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Table 4.10: Peptide spectrum matches from the proteomics search for un-annotated
region open reading frames at least 12 amino acids long. Multiple sequences =
peptide spectrum matches for any combination of SGD sequences, reversed SGD
sequences, UAR ORF sequences, and reversed UAR ORF sequences from the
database.

Category repl rep2 rep3

SGD sequences 191790 (89.1%) | 219056 (89.7%) | 150514 (89.5%)
Reversed SGD sequences 17 (0.0079%) 29 (0.012%) 12 (0.0071%)
UAR ORF sequences 0 1 1

Reversed UAR ORF sequences | 1 1 0

Multiple sequences 23434 25214 17616

UAR ORF Minimum Length of 12 Amino Acids

The proteomics database that was searched against contained:

5,887 translated SGD gene sequences

5,887 reversed SGD gene sequences

6,643 translated UAR ORF sequences

6,643 reversed UAR ORF sequences

Total numbers of peptide spectrum matches above the 1% FDR thresholds are
listed in Table 4.10. About 89% of all peptide spectrum matches were to only one
SGD sequence, and less than 1% of all peptide spectrum matches were to reversed
SGD sequences for each of the 3 replicates above their respective 1% FDR thresholds.
Similarly, a peptide spectrum match in replicate 2 was to UAR ORF 5644, and a
peptide spectrum match in replicate 3 was to UAR ORF 6534 above their respective
1% FDRs.

For protein-level searches, about 67-71% of the 5,887 SGD sequences from the
databases were identified above the 1% FDR thresholds in Table 4.11. Less than 1%
of the 5,887 reversed SGD sequences were identified. Much like the 6-Amino Acid

database search, UAR ORFF 6534 was once again identified and had a probability
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Table 4.11: Proteins identified in protein-level proteomics searches for un-annotated
region open reading frames at least 12 amino acids long. Multiple sequences =
proteins with peptide spectrum matches to any combination of SGD sequences,
reversed SGD sequences, UAR ORF sequences, and reversed UAR ORF sequences
from the database.

Category repl rep2 rep3

SGD sequences 4070 (69.1%) | 4191 (71.2%) | 3960 (67.3%)
Reversed SGD sequences 4 (0.068%) 13 (0.22%) 3 (0.051%)
UAR ORF sequences 0 0 1

Reversed UAR ORF sequences | 0 0 0

Multiple sequences 47 43 38

Total sequences 4121 4247 4002

value of 0.975 in replicate 3.

UAR ORF Minimum Length of 23 Amino Acids

The proteomics database that was searched against contained:

e 5 887 translated SGD gene sequences
e 5,887 reversed SGD gene sequences
e 2898 translated UAR ORF sequences

e 2898 reversed UAR ORF sequences

Regarding peptide-level searches, all 3 replicates had around 89% of the 5,887
known SGD sequences identified above the 1% FDR in Table 4.12. Again, less than
1% of the reversed SGD sequences were found above the 1% FDR. In replicate 3,
there was a peptide spectrum match to UAR ORF 6534 above the 1% FDR; however,
there were no peptide spectrum matches in replicate 2 to any UAR ORFs, unlike
for 6-Amino Acid and 12-Amino Acid databases. In replicate 2, there was a peptide
spectrum match to UAR ORF 5644, but the probability value was 0.0017631, well

below the 1% FDR.
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Table 4.12: Peptide spectrum matches from the proteomics search for un-annotated
region open reading frames at least 23 amino acids long. Multiple sequences =
peptide spectrum matches for any combination of SGD sequences, reversed SGD
sequences, UAR ORF sequences, and reversed UAR ORF sequences from the
database.

Category repl rep2 rep3

SGD sequences 191895 (89.1%) | 191888 (89.1%) | 150602 (89.5%)
Reversed SGD sequences 18 (0.0084%) 18 (0.0084%) 13 (0.0077%)
UAR ORF sequences 0 0 1

Reversed UAR ORF sequences | 1 1 0

Multiple sequences 23443 23447 17625

Total peptide spectrum matches | 215357 215354 168241

Table 4.13: Proteins identified in protein-level proteomics searches for un-annotated
region open reading frames at least 23 amino acids long. Multiple sequences =
proteins with peptide spectrum matches to any combination of SGD sequences,
reversed SGD sequences, UAR ORF sequences, and reversed UAR ORF sequences
from the database.

Category repl rep2 rep3

SGD sequences 4071 (69.2%) | 4068 (69.1%) | 3964 (67.3%)
Reversed SGD sequences 4 (0.068%) 4 (0.068%) 3 (0.051%)
UAR ORF sequences 0 0 1

Reversed UAR ORF sequences | 0 0 0

Multiple sequences 48 46 38

Total sequences 4123 4118 4006

For protein-level proteomics searches, 67-69% of all SGD sequences were identi-
fied and less than 1% of reversed SGD sequences were detected at probability values
above the 1% FDR thresholds for all 3 replicates 4.13. Like the 6-Amino Acid and
12-Amino Acid database searches, UAR ORF 5634 was mapped at a probability of

0.860262.

4.5.3 Comparison of the 6-, 12-, and 23-Amino Acid Databases

Although there were slight variations in the actual values denoting the 1% FDR
thresholds for peptide-level proteomics searches for the 3 different databases, there

were no solid trends. For example, for replicate 1, the 6-Amino Acid database had
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a value of 0.7400, which was the value decreased for the 12-Amino Acid one, then
increased for the 23-Amino Acid database. For replicate 2, the value increased then
decreased. For replicate 3, the FDR threshold decreased then slightly increased.
Similar behavior is evident in p-values for the 1% FDRs for protein-level searches.
Therefore, changing the size of databases (adding from 10,794 UAR ORF sequences
for the 6-Amino Acid database, 6,643 for 12-Amino Acid, or 2,898 for 23-Amino
Acids) did not appear to have a profound effect on the 1% FDR thresholds or the
percentage of SGD sequences identified on the protein level.

For peptide-level searches Figure 4.7 shows the distributions of iProbability val-
ues for all sequence types across the 3 databases for each replicate. Overall, there

is great overlap amongst the histograms for all 3 databases.
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For protein-level searches, Figure 4.8 gives distributions of Protein Probability
values for the SGD genes and UAR ORF sequences for the 3 databases for each of
the replicates. Again, overall, there is significant overlap in the distributions across

the 6-, 12-, and 23-Amino Acid databases.
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4.6 Curation of a Database of Protein-Coding (Genes

with High mRNA Expression

Exploiting the fact that the Saccharomyces cerevisiae genome is one of the best
curated eukaryotic genomes, the set of known RNA transcripts/genes can serve as
a set of candidates that are likely to be detected by proteomics. Other peptide se-
quences may serve as a set of the least likely candidates to be detected by proteomics.
Treating these two groups almost as if they were true positives and true negatives,
respectively, values that may resemble sensitivity and specificity can be calculated
to further characterise these methods (RNA-Seq and proteomics -- proteogenomics)
in terms of database size, types of sequences, different sets of gene models given to
pipelines, etc. This new knowledge will inform and direct future studies aimed at
discovering new peptides or protein-coding genes in less well-curated organisms in
using typical proteogenomics approaches.

Two databases of comparable size, in terms of total number of SGD protein-
coding sequences, were constructed to simulate a set of true positives to search the
proteomics data against. One was constructed based solely on the number of Near-
Default RNA-sequencing reads that mapped to each sequence; whereas the other was

constructed based on the median length of 1,071 protein-coding SGD sequences.

4.6.1 Top 627 SGD Sequences with Highest Number of Reads

The proteomics database (Top627) that was searched against contained:

e 627 SGD gene sequences

e (627 reversed SGD gene sequences
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All 6,603 total SGD gene sequences were sorted in descending order according to the
number of RNA-seq reads in the Near-Default mapping. The top 10% consisted of
660 SGD sequences, which were then mapped to the 5,887 translated systematically
named ORF's from SGD, leaving 627 SGD gene sequences that were included in that
set.

The distribution of lengths for the 627 select SGD sequences was very different
from that of the entire set of 5,887 translated SGD sequences (Figure 4.9). The
median length of the 5,887 sequences was 1,071 bp, whereas that that for the 627

top sequences was 413,000 bp.
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Table 4.14: Peptides identified during the proteomics search for the Top 627 SGD
protein-coding sequences. Multiple sequences = proteins with peptide spectrum
matches to any combination of SGD sequences and reversed SGD sequences from
the database.

Category repl rep2 rep3

SGD sequences 98665 (82.7%) | 113439 (82.8%) | 80392 (82.8%)
Reversed SGD sequences | 75 (0.063%) 94 (0.069%) 40 (0.41%)
Multiple sequences 20595 23423 16603

Total peptides 119335 136956 97035

Table 4.15: Proteins identified in protein-level proteomics searches for the Top 627
SGD protein-coding sequences. Multiple sequences = proteins with peptide spec-
trum matches to any combination of SGD sequences and reversed SGD sequences
from the database.

Category repl rep2 rep3

SGD sequences 509 (81.2% of whole db) | 512 (81.7%) | 511 (81.5%)
Reversed SGD sequences | 31 (4.9%) 31 (4.9%) 26 (4.1%)
Multiple sequences 36 33 32

Total sequences 276 576 569

In the peptide-level searches, about 82% of all peptides were assigned to SGD
sequences at values above the 1% FDR thresholds for all 3 replicates (Table 4.14).
Less than 1% of reversed SGD sequences were detected above the 1% FDR thresholds
for each replicate.

For the protein-level searches, about 81% of the 627 SGD sequences were identi-
fied above the 1% FDR threshold for each replicate (Table 4.15). However, almost
5% of the reversed SGD sequences were detected at probabilities above the 1% FDR

thresholds, higher than any of the previous databases mentioned already.

4.6.2 Representative SGD Sequences at 964-1178 bp in Length

The proteomics database (Rep964_1178bp) that was searched against contained:

e 626 SGD gene sequences

e (626 reversed SGD gene sequences
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The median length of all 6,603 SGD gene sequences was found to be 1,071 bp. To
have a fair comparison of this database with Top627, the two databases should be
of the same size. Adding and subtracting 10% of 1,071 bp gave a range of 964 bp
to 1,178 bp. All 6,603 SGD genes with lengths in this range were selected for the
Rep964_1178bp, which was comprised of 626 select SGD genes.

Unlike Top627, the lengths of the sequences in Rep964_1178bp reflected the
probability distribution of the entire set of SGD genes much better in (Figure 4.10).
In this case, for most chromosomes, the majorities of both probability distributions
overlapped. In addition, the RNA-seq read count distribution for Rep964_1178bp
sequences also reflected patterns seen for the entire set of SGD genes (Figure 4.11).
There is a large spread of low numbers of sequences with low read counts, a large
peak, and a sharp tapering to low numbers of sequences with very high read counts.
Again, the distributions for the most of chromosome overlap, especially where the
majority of the distributions lie. As the Top627 sequences were chosen by taking the
highest read counts, it would be expected that probability distributions for that set
would be skewed to the right, not reflecting distributions of the entire set of SGD

genes in Figure 4.9.
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Table 4.16: Peptide spectrum matches from the proteomics search for the Represen-
tative SGD protein-coding sequences between 964 and 1178 bp. Multiple sequences
= peptide spectrum matches for any combination of SGD sequences and reversed
SGD sequences from the database.

Category repl rep2 rep3

SGD sequences 28493 (87.1%) | 33029 (87.3%) | 23526 (87.1%)
Reversed SGD sequences 6 (0.018%) 9 (0.024%) 2 (0.0074%)
Multiple sequences 4226 4811 3478

Total peptide spectrum matches | 32725 37849 27006

For peptide-level searches, over 87% of all peptide spectrum matches were to one
SGD sequence, and less than 1% of all peptide spectrum matches were to a reversed
SGD sequence for all replicates (Table 4.16).

For protein-level searches, 70-73% of sequences within the Rep964_1178bp were
detected at probabilities above the 1% FDR thresholds for each of the 3 replicates
(Table 4.17). Less than 1% of reversed SGD sequences were mapped above the 1%

FDRs for all replicates.

4.6.3 Comparison of Top627 and Rep964_1178bp Databases

On the peptide-level, many more peptide spectrum matches were produced with
the Top627 database than the Rep964_1178bp. This may be due to the proteins
being highly expressed and thus more likely to be present in the sample and readily
detected (Figure 4.12). Although there were many more peptides in Rep964_1178bp,
the distributions followed the same behavior for both databases. Interestingly, about
5% more of the total peptide spectrum matches from Rep964_1178bp were to only
one SGD sequence compared with the Top627 database (about 87% compared with
about 82%). Regarding the 1% FDR thresholds for peptide-level searches, the values

in Table 4.8 slightly varied within replicates. The differences between values for
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Table 4.17: Proteins identified in protein-level proteomics searches for the Represen-
tative SGD protein-coding sequences between 964 and 1178 bp. Multiple sequences
= proteins with peptide spectrum atches to any combination of SGD sequences and
reversed SGD sequences from the database.

Category repl rep2 rep3

SGD sequences 457 (73.1%) | 461 (73.8%) | 443 (70.9%)
Reversed SGD sequences | 4 (0.64%) 2 (0.32%) 1 (0.16%)
Multiple sequences 4 3 5

Total sequences 465 466 449

Top627 and Rep964_1178bp were smaller than differences amongst the thresholds of

6-, 12-, or 23-Amino Acid databases.
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For protein-level searches, about 81% of SGD sequences were mapped for Top627,
whereas 70-73% were for Rep964_1178bp above 1% FDR thresholds. However, the
rates of false positives (mapped reversed SGD sequences) for Top627 were higher
at around 5%, and in fact, are the highest of all the databases searched in this
project. Comparing these two databases with the 6-, 12-, and 23-Amino Acid series
of databases, the Rep964_1178bp search results are more similar. The 6-, 12-, and
23-Amino Acid databases yielded about 67-71% of SGD sequences mapped, closest
to the 70-73% for Rep964_1178bp. The false positive rates of less than 1% were also
common between the length-filtered databases and Rep964_1178bp, whereas Top627
had about 5% of reversed SGD sequences detected. Additionally, the distributions

of Protein Probability values are relatively similar between the two databases 4.13.
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Overall, the Rep964_1178bp and Top627 databases can be used to compare
against proteomics search results with new or unknown target sequences (e.g. con-
taining UAR ORFs). The Rep964_1178bp database has the advantage of better
representation of sequence length, while the Top627 database has the advantage of
including highly-expressed genes. Both methods would be applicable in searching

the genomes of less well-annotated organisms.

4.7 RNA-seq and Proteomics Analysis

4.7.1 Work Flow

After generating the results from the proteomics analysis, the question of which UAR
ORFs with RNA-seq read counts also had a high probability of being expressed on
the peptide level remained. To investigate, it was necessary to bring together out-
put from the UAR-Pipeline (Section 2.5) with output from the proteomics analysis
described in earlier sections of this chapter. A schematic diagram in Figure 4.14

illustrates how the task was achieved.
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With the UAR-Pipeline, RNA-seq read counts from the Near-Default alignment
were found for the 22,852 UAR ORF's of interest by the module sam-profile-uar-orf-
regions-text-outout. Read counts were also found for the 6,603 known SGD genes in
a similar fashion, but with the module sam-profile-regions-text-output. These steps
produced one .tab file of all UAR ORFs with their respective read counts, and one
.tab file for the SGD genes also with read counts.

It was observed that on the peptide-level results, some individual identifications
would be mapped to multiple sequences from the sequence database. For exam-
ple, one identification mapped to both a known SGD gene sequence and an UAR
ORF. To reduce the ambiguity of which sequences peptide spectrum matches were
matching to, only those that were mapped to a single sequence were considered in
subsequent analysis. To extract peptides that uniquely matched single sequences,
the script parse_pep XM Lviewer_exported_xls.py was written. The script returned
three sets of results - one set for peptide spectrum matches for SGD genes, for
reversed SGD genes, and for UAR ORFs.

Similarly, some protein-level results contained identifications to multiple se-
quences as well. Likewise, only protein identifications mapped to a single sequence
were considered. Here, the parser_protXML_tab.py script was written to find protein
identifications uniquely mapping UAR ORFs, SGD genes, or reversed SGD genes.
Much like the parsing of peptide spectrum match results, this script returned three
sets of results, one for each of the three categories of sequences. Moreover, to eval-
uate the quality of the protein-level identifications, for each sequence category, the
non-redundant total number of sequences detected across all three replicates was

determined. The number of SGD genes detected, 4,833 in total, was comparable to
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that found in Tyagi and Pedrioli (2015), confirming the quality of the proteomics
searches performed in this study.
After determining which peptide spectrum matches and protein identifications
uniquely mapped to a single database sequence, RNA-seq read counts from the Near-
Default mapping were found for sequences matched in these identifications. For pep-
tide spectrum matches, this task was accomplished with the compare_pep XLS_and_SAM _profile.py
script, which used the sequence IDs to cross-match peptide spectrum match iden-
tifications with read counts. The comparison resulted in a .tab file containing read
counts for peptide spectrum match identifications for UAR ORFs and another .tab
file for SGD genes. Similarly, this was done for protein identifications with the script

compare_uniquely_matching_prot_entries_with_SA M _profile.py.

4.8 Jackknife Testing

To test the sensitivity and specificity of the Un-Annotated Region (UAR) and Pro-
teomics Pipeline, known genes were removed from the original genome annotations
in an attempt to be discovered by the naive Pipeline. The set of 6,600 known genes
from the Saccharomyces Genome Database (SGD) were randomized and divided into
20 groups of 330 genes each. The jackknife set-up is such that there are 20 pipeline
runs, and in each run only 19 groups of 330 genes are included in the known SGD
genes database, leaving a different group of 330 genes to be discovered.’

For each group, annotations for the 330 genes were removed from the .gft3 file.
The UAR Pipeline was run on the modified .gff3 file to determine the set of UARs

and the open reading frames (ORFs) within the UARs. A FASTA database was



Jackknife Testing 174 Proteomics

then constructed using the following:

e sequences of the remaining 6,270 SGD genes
e reversed sequences of the remaining 6,270 SGD genes
e sequences of the UAR ORFs at least 17 amino acids in length

e reversed sequences of the UAR ORF's at least 17 amino acids in length

The Proteomics Pipeline was then run to search the proteomics data against the
FASTA database. Across all 20 groups, a total of 111 non-redundant UAR ORFs
belonging to 110 non-redundant masked SGD genes were detected by the Pipeline
(Table 4.18). In Group 12, there were 2 different UAR ORFs belonging to the
masked gene YIL156W, which accounts for the discrepancy in numbers. The 110
non-redundant masked SGD genes were searched against SGD’s YeastMine database
(Balakrishnan et al., 2012) for a summary of each gene (Appendix D). Although
UAR ORF's mapping to Masked SGD genes are listed in Table 4.18, only 1.7% of
the 6,600 total Masked SGD genes were detected.

To assess the performance of the Proteomics Pipeline in discovering 'new’ pro-
teins, the quality of the raw proteomics data must be accounted for. In the original
study Tyagi and Pedrioli (2015), only proteins with at least two high-confidence pep-
tides detected across label-switched samples were used to calculate relative protein
abundances. From the filtering, a total of 3,614 SGD proteins remained.

Of the 3,614 SGD proteins, 3,613 were included in the entire 6,600 set of SGD
proteins considered in the jackknife testing and thus used to assess performance.
For each jackknife group, the values below were determined to calculate sensitivity

and specificity.
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Table 4.18: For each Jackknife Group, the number of non-redundant Un-Annotated
Region Open Reading Frames and number of non-redundant Masked SGD genes
with a score over the 1% FDR threshold are listed.

Group Number of UAR_ORFs with | Number of Masked SGD
a score over the 1% FDR | genes with a score over the
threshold 1% FDR threshold

1 7 7

2 6 6

3 9 9

4 3 3

5 3 3

6 7 7

7 6 6

8 4 4

9 6 6

10 5 5

11 2 2

12 7 6

13 10 10

14 6 6

15 4 4

16 4 4

17 4 4

18 6 6

19 7 7

20 5 5

total 111 110
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e F'SSP (Filtered Selected SGD Proteins) = number of proteins in common
between the 3,613 filtered proteins and the 330 selected SGD proteins to test
per group

e TP (True Positives) = FSSP that were detected below the 1% FDR (per rep)

e [P (False Positives) = reversed sequences of FSSP that were detected below
the 1% FDR (per rep)

e I'N (False Negatives) = FSSP that were not detected below the 1% FDR (per
rep)

e TN (True Negatives) = reversed sequences of FSSP that were not detected

below the 1% FDR (per rep)

Values for all groups and all 3 biological replicates for each group are listed in
Appendix E. Values for Group 1 and Rep 1 are calculated below as an example.
Across all reps and groups, the average sensitivity and specificity for discovering
'new’ proteins were 1.6% and 98.6%, respectively. The low sensitivity may be at-
tributed to the fact that only completely un-annotated regions were included down-
stream analysis. The following example illustrates expected challenges created by
this requirement. GeneA (100 bp) and GeneB (200 bp) each consists of a single
ORF. Ten percent of GeneA’s sequence does not overlap with any other annotation,
but the remaining 90% overlaps with GeneB. Only GeneA is selected to be in the
group of 330 masked SGD genes. From the revised annotation file in which the 330
masked SGD genes have been excluded, the UAR Pipeline will detect only the 10%

of GeneA’s sequence that does not overlap with any other annotation. If GeneA
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consists of only a single ORF, then the probability of being detected in the pro-
teomics searches also depends on how highly expressed the mRNA is and whether
the 10% portion of the sequence will not be enzymatically cleaved during the sample
preparation. A potential improvement of the UAR Pipeline may invoke a method by
which un-annotated regions are detected in the current manner while incorporating
a method that searches both upstream and downstream of the UAR to determine if
the ORF continues and/or whether other adjacent ORFs may be a continuation of
the potential novel peptide/protein. Single or multiple gene modelers may further
refine which sequences are more likely to be potential peptides/proteins by compar-
ing the original UAR, the extended UAR that includes the entirety of the ORF, and

combinations of the original UAR with any adjacent ORFs.

e FSSP = 176
e TP =2
e F'P =1

e FN =176-2 = 174
e TN =176-1 =174
e sensitivity = TP/(TP + FN) = 2/(2+174)*100% = 1.1%

e specificity = TN/(FP + TN) = 174/(14+174) = 99.4%

The same calculations were also performed for Filtered Unselected SGD Proteins
(FUSP; number of proteins in common between the 3,613 filtered proteins and the
6,270 remaining unselected SGD proteins per group). Across all reps and groups,
the average sensitivity and specificity for detecting FUSP were 97.0% and 99.8%,

respectively.



Chapter 5

Discussion and Future Work

5.1 Introduction

In this chapter, results of the entire study are discussed in a larger context. The
effectiveness of methods used in this study, such as the three stringency levels of
RNA-seq read alignment, the categorising of genome annotations into two distinct
groups, and the creation of an IGB Quickload Site, is explained. Future work to
improve upon the progress made through this study is also suggested in this chapter,
especially in terms of making these new resources publically available to the research
community and experimentally verifying the two preliminary un-annotated region
open reading frame targets that were found through both RNA-seq and proteomics

analyses.

178
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5.2 Discussion

5.2.1 RNA-seq Alignments

The three different alignment methods, Near-Default, Unique, and Stringent, were
instrumental in examining the RNA-seq read mappings. Genomic regions where
multi-mapping reads were present were denoted by a decrease in the number of
reads in the Unique alignment when compared to the Near-Default. Yet another de-
crease in the number of reads in a specific genomic region in the Stringent mapping
as compared to the Unique is an indication of mismatches, insertions, or deletions
present in the reads that were absent in the Stringent mapping. By having these
successive layers of restrictions on read alignment, multi-mapping reads and reads
that do not match exactly to the genome could be detected. In addition, the succes-
sive stringencies provided a corresponding successive increase in confidence in the
actual genomic locations where reads were originally transcribed from. With the
Stringent Mapping, unless there were instrumental sequencing errors, the locations
where reads aligned possess the greatest accuracy since there were no other genomic
locations the reads could map to better (no multi-mapping reads), and the genomic

locations matched the read 100% (no mismatches, insertions, or deletions).

5.2.2 Primary and Secondary Annotations

By categorising the genome annotations into two pools, Primary and Secondary
Annotations, genes, such as snoRNAs and proteins, and genetic interactions, such as
DNA double-strand break hotspots and histone binding sites, could be distinguished.

In order to determine whether new genomic features existed throughout the study,
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it was imperative to clearly define the locations of the currently known genomic
features. However, genetic interactions, such as protein binding sites, should not be
considered a Primary Annotation since the primary sequence at that location could
also code for an undiscovered peptide, for instance. Therefore, by using only Primary
Annotations to determine where the intergenic regions are located, genomic regions
that have annotation regarding interactions but not whether any genes are coded by
the primary sequence are not excluded in the search for new genomic features. By
considering also Secondary Annotations, other possible indications of expression,
such as transcription factor binding sites, can be analysed against potential new

genomic features.

5.2.3 1IGB Quickload Site

An Integrated Genome Browser Quickload Site was constructed throughout this
study and can be made publically available through the Internet after publication.
All of the RNA-seq data, genome annotations, and other information tracks, such
as conservation, will be available for download and use. As the vast majority of
the information contained within the Site has been derived from the Saccharomyces
Genome Database, users of SGD would be able to view all of the published datasets
hosted by SGD in the IGB Quickload Site against the RNA-seq dataset analysed in

this study or any other RNA-seq dataset.

5.2.4 Preliminary Targets

The first preliminary targets at genomic region at chrXII: 489,949-490,404 had a

high sequence identity with a known rRNA in the yeast genome. The region was
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initially detected with TopHat2 RNA-seq alignments; however, after alignment of
the same dataset with STAR, the vast majority of reads aligning to the region were
absent. As STAR was used exclusively for the three alignment methods further
investigations into how TopHat2 differs from STAR were not pursued.

The second preliminary target, chrl: 12,427-13,361, has sequence homology to
flocculin proteins. However, due to the lack of the functional PA14 flocculin domain
and the small number of Flocculin type 3 repeats in the sequence, any protein coded
by this region would most likely be able to function as a flocculin. Therefore, the
region is most likely a pseudogene.

The third preliminary target, chrV: 288,525-290,125 shared some sequence simi-
larity with Cdc4 (cell division control protein 4). However, due to a premature stop
codon, any protein produced from this region would be truncated and most likely
non-functional. This target region is probably another pseudogene.

The potential pseudogenes could be submitted to the Saccharomyces Genome

Database to help refine current annotations for the yeast genome.

5.2.5 6-, 12-, and 23-Amino Acid Proteomics Databases

The size of the proteomics databases searched against containing 6-, 12- or 23-amino
acid UAR ORFs could have been reduced to include only sequences which have RNA-
seq read aligned associated with them. A smaller database would not only decrease
computing time but also increase sensitivity, as demonstrated in Blakeley et al.
(2012)). The Blakeley et al. (2012) study recommends several methods to increase
sensitivity by removing redundancy in nucleotide sequence databases, which could

be evoked in future work:
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e before calculating the FDR, select the most likely frame for each nucleotide

sequence based on the number of peptide spectrum matches

e search nucleotide sequences against protein bases using BLASTX to select the

most likely frame based on homology

e if no homologues are available for the nucleotide sequence, use amino acid

composition or codon usage to select the most likely frame

Although the aforementioned strategies may reduce the size of the UAR ORF
databases, one disadvantage may be excluding potential new peptide or protein
sequences detectable by the proteomics data. For a single nucleotide sequence,
if there were 2 or more frames that were likely to produce peptides but only the
most likely was selected, then only one peptide, instead of multiple peptides,

would be detected.

Perhaps one way to determine our set of true negatives is all of the potential
ORFs that did not match in our proteomics searches. Due to the limit of
detection and sensitivity of proteomics technologies, our simulated sets of true
negatives may include false negatives (ORFs that actually are translated but
not detected in proteomics, and thus may not reflect the actual biology of the
organism). This is a limitation of our study, but improvements can be made
in the future by searching our set of true negatives against other publically
available high-coverage proteomics datasets, especially from PeptideAtlas and

PRIDE.

Perhaps one advantage in translating all of our potential ORFs from all 6

frames of translation, given accurate DNA sequences for each chromosome, is
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that all of the possible peptide sequences are considered, except for potential
ORFs produced by splicing. The disadvantage is a large database size, but
yeast has a relatively small genome size, this may not pose an issue. However,
for organisms that have small draft genomes, such as newly discovered bacterial
species, our method may be feasible and applicable. Another advantage is
that every possible peptide sequence is considered since the method is not
dependent on databases, such as RefSeq (Tatusova et al., 2014), that may not

cover all sequences.

One disadvantage of using yeast is that it has very few splicing events, so it is
not a comparable representation of human gene expression. Therefore, this is
another limit of our method and study. But for other organisms where splicing
occurs frequently, perhaps it would be worth running a splice site predictor to

help inform where potential new exon-exon sequences might be found.

5.2.6 Jackknife Testing of the UAR and Proteomics

Pipeline

One of the most limiting factors is the quality of the proteomics data, evi-
denced by the large increase in the average sensitivity (across all biological
replicates in all 20 groups) in detection of protein-coding SGD genes to 97.0%
after eliminating 2,987 SGD genes that were not detected in the original pro-
teomics study by Tyagi and Pedrioli (2015). After this correction, the average
sensitivity and specificity for detecting SGD proteins that were previously re-

ported to be detectable were 97.0% and 99.8%, demonstrating that the pipeline
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produced in this study yields results at a comparable level of quality to the

original proteomics study.

Although the pipeline performed well in detection of known, previously de-
tected, protein-coding SGD genes, only 110 of the 6,600 masked SGD genes
were ’discovered’ by the pipeline across all biological replicates for all 20
groups, yielding an average sensitivity rate of 1.6%. This discrepancy in sensi-
tivity may be due to UAR ORF sequences not being accurate representations
of actual peptides and proteins coded for. Therefore, searching against a
database consisting of unrealistic sequences may not be as fruitful. Using gene
model prediction to determine which UAR ORFs (or multiple adjacent UAR
ORFs, for instance) are most likely to produce peptides and proteins may have

produced a higher sensitivity in this case.

However, despite the areas of major improvement that exist within this study,
the pipeline nonetheless does ’discover’ 110 of the 6,600 masked SGD genes,
which serves the objective of 'discovering’ new peptides and proteins. In ad-
dition to the aforementioned refinements, UAR ORFs can be further filtered
by using RNA-seq reads to help increase the number of discovered peptides
and proteins. Even though the sensitivity is very low, the specificity is quite
high at 98.6%, signifying that the sequences that are detected have a very
high probability of being a real peptide or protein. For experiments in which
suspected potential peptides or proteins are required to be detected in vivo,
the high specificity will be advantageous in providing a small, high-quality set

of sequences that require further testing.
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5.2.7 Application of Proteogenomics Methods on Genome

Annotation of Less Well-Annotated Species

In less well-annotated species with sequenced chromosomes, it would be fea-
sible to 6-frame translate all chromosomes to find all possible open reading
frames and therefore potential peptides and proteins and search these se-
quences against shotgun proteomics data. However, it might be difficult to
delineate between false positive and true positive proteomics search results.
In this study, we created two different sequence databases of Saccharomyces
Genome Database known protein-coding genes: the Top 627 genes with the
highest number of RNA-seq reads and the Representative sequences between
964 and 1178 bp, based on the median length of protein-coding genes. These
databases contain a curated set of true positives - sequences that have am-
ple evidence of being translated into proteins and are either well expressed
on the RNA-seq level or are a representative sample of the lengths of the
vast majority of yeast protein-coding genes. The search results of Top627
and Representative964_1178bp databases can be compared against those of
the databases comprised of un-annotated region open reading frames (poten-
tial protein-coding sequences). The comparison can help inform search results
against novel or potentially expressed sequences in less well-annotated species,
to determine whether detected potential protein-coding sequences have char-

acteristics resembling true positives or not, for example.

Within the main context of RNA-sequencing, the pipeline constructed in this

study, along with previously mentioned refinements, may be applied to poorly
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annotated genomes of less studied or newly discovered organisms in conjunc-
tion with software and methods from current literature. For example, DNA
sequencing and RNA sequencing may be performed in a new organism. The
transcriptome may then be assembled de novo from RNA-sequencing results
by software, such as Cufflinks (Trapnell et al., 2010) or Trinity (Haas et al.,
2013). Six-frame translation can be performed on results from both the DNA
sequencing and de novo transcriptome assembly and compared to create a
comprehensive set of un-annotated region open-reading frames (UAR ORFs).
The entire set of UAR ORF's can be filtered by the results of gene model pre-
dictors, with the remaining sequences contained within a FASTA database.
Proteomics can also be performed on the new organism, and the raw pro-
teomics results can be searched against the aforementioned FASTA database.
Proteomics searches may be refined by strategies recommended in Blakeley
et al. (2012). In summary, the methods and pipeline created in this study
should be used alongside existing bioinformatics tools to capitalise on their

strengths and reduce the impact of their limitations.

5.3 Future Work

5.3.1 UAR-Pipeline

Currently, the UAR-Pipeline can process unstranded RNA-seq reads. How-
ever, to make the program more general and comprehensive, further work could

be done to modify or add a module to the program to analyse strand-specific
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reads as well. This new capability would allow the use of stranded data, which
could help determine where RNA-seq reads from the unstranded dataset were

transcribed from.

5.3.2 IGB Quickload Sites

Creating the Integrated Genome Browser Quickload Sites to include RNA-
seq data, genome annotations, and conservation information can be applied
to species in addition to Saccharomyces cerevisiae. The method of separat-
ing genome annotations into primary and secondary annotations may also be

applicable to other species.

5.3.3 Proteomics Datasets

The set of UAR ORFs could have been searched against more than just one
proteomics dataset. There are publically available repositories for raw pro-
teomics datasets, such as PRIDE (Vizcaino et al., 2013) and PeptideAtlas
(Desiere et al., 2006). Although many of the datasets may not have lower
percentages of coverage, other peptides and proteins may have been detected

that were not detected in the one dataset used in this study.

5.3.4 Proteomics Analysis

Tandem mass spectra searches against the peptide/protein sequence database
led to peptides that matching multiple spectra and multiple proteins that were

grouped together that were indistinguishable.
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For better and more efficient proteomics searches, spectral processing before
performing the sequence database spectral library searching may yield more
accurate results. For example, low quality spectra may be discarded (Nesvizh-
skii et al., 2006; Gentzel et al., 2003). Moreover, redundant spectra can be
clustered for higher efficiency (Beer et al., 2004; Tabb et al., 2005). Deter-
mination of charge state (Na et al., 2008; Sadygov et al., 2008) and peptide
mass (Mayampurath et al., 2008; Shinkawa et al., 2009) may also be improved.
In addition, de novo sequencing for unmatched MS/MS spectra can be per-
formed (Nesvizhskii et al., 2006). Unrestrictive (blind) searches is another pos-
sible method in which all possible chemical or post-translational modifications
are allowed or performing error-tolerant searches where mismatches between
the peptide sequence producing the spectrum and the database sequence the

spectrum was matched to (Dasari et al., 2010).

5.3.5 Experimental Validation of UAR ORF Targets

Both UAR ORF targets 17,069 and 24,011 have RNA-seq reads aligned to
their genomic regions in the Stringent Alignment, strongly indicating that
transcription is active at those locations. Proteomics analysis provided further
evidence of expression through matching the targets’ respective corresponding
peptides with MS/MS spectra. These two critical pieces of evidence strongly
suggest that there may be transcriptional activity at the genomic locations
and translational activity for the corresponding mRNA molecules. Therefore,

experimental validation in the laboratory would be an appropriate and logical
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next step in order to determine whether these genomic regions are actually
being expressed. If these regions are expressed, experimental analysis may also
provide further information regarding what kind of peptides or small proteins

are synthesised.

5.4 Summary of Conclusions

The main objective in this study was to use RNA-sequencing and proteomics
to discover new genomic features in un-annotated regions in Saccharomyces
cerevisiae. In this study, RNA-sequencing data were aligned at three different
stringency levels to elucidate the complexities within the dataset, accounting
for duplicate read alignments and those that mapped to multiple genomic loca-
tions. Moreover, Saccharomyces Genome Database annotations were divided
into Primary and Secondary Annotations to use the former in defining the lo-
cations of un-annotated regions. These un-annotated regions were translated
in six frames, the sequences of which were converted into a FASTA database
of hypothetical peptide sequences. Proteomics data from Tyagi and Pedrioli
(2015) were then searched against the FASTA database to detect hypothetical
peptides. In a jackknife fashion, 6,600 SGD protein-coding genes were divided
into 20 groups, each comprised of 6,270 unmasked genes with 330 masked genes
to be discovered. Out of the 6,600 genes, 3,613 were detected in the original
Tyagi and Pedrioli (2015) study. Across all groups, the average sensitivity and
specificity for detecting the 3,613 unmasked SGD proteins genes were 97.0%

and 99.8%, respectively. The average sensitivity and specificity for discovering
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masked SGD genes across all 20 groups were 1.6% and 98.6%, respectively.
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Figure C.5: Graphical summary of BLASTX results for the UAR chrV: 288,525—
291,000, showing that the majority of hits align toward the 3’ end of the region and
have high alignment scores.
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Figure C.6: Graphical summary of BLASTX results for the UAR chrV: 288,525—
290,125, showing that the majority of hits span both ORF's at 289,528-289,905 and
289,908-290,799.
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Figure C.7: This is an alignment showing an alignment of Cdc4 against the matched
segment within the region chrV: 288,525-291,000. The red arrows indicates the stop
codon between the two adjacent ORFs.
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