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Abstract

This thesis is inspired by one of the greatest mysteries surrounding our Sun: the coro-

nal heating problem. Scientists have worked for decades to explain the extraordinary

temperature increase which occurs as we move up through the solar atmosphere into

the corona. Theories abound, including that of heating via reconnection, following the

formation of current layers, which occur as the coronal field is braided by photospheric

footpoint motions. In this work we designed different driving functions to act as braid-

ing motions on a numerical photosphere, and sought to establish how each one affected

overlying coronal fields. We used the concepts of topological entropy and helicity to

categorise the drivers and applied them to a uniform field representing a simple coronal

loop. We found that both complexity of driving and ability to inject helicity are key to

the type of evolution which takes place, with direct consequences due to differences

in these properties. The findings from the uniform field experiments also lend support

to the idea that frequent nanoflares triggered along a loop could provide significant

heating to the plasma. We then considered a field also involving parasitic polarities,

creating a magnetic carpet, and attempted to find whether the same driving motions

induced similar behaviour in a different environment. This research led us to challenge

how we approach numerical work, and how the practical choices made in codes can

drastically affect the success of a simulation. We found that one must consider care-

fully when choosing a numerical scheme to use, and be prepared potentially to change

either elements of the project or the scheme itself.
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Chapter 1

Introduction

1.1 Thesis Overview

This thesis is concerned with the decades old mystery of how the Sun’s corona is heated

to temperatures so much higher than the photosphere below. We look in particular at

photospheric footpoint motions and how they can distort the overlying atmospheric

fields of the Sun due to the typically low plasma beta nature of solar atmospheric

plasma. We investigate the idea that this braiding of fields can lead to a build up

of current sheets in the typically close to ideal conditions, which could be dissipated

through magnetic reconnection, and thus release heat into chromospheric and coronal

plasma. We consider the development of braiding and reconnection theories since their

inception with Parker in 1972 [68] and construct driving functions which will simulate

idealised photospheric motions to induce braiding of various magnetic field configura-

tions. These drivers will themselves have different characteristics which we quantify

in various ways. The evolution of test environments constructed with these features

is modelled using the Lagrangian-Eulerian Remap code, Lare3d [2]. Ultimately we
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are interested in the different types of photospheric motions’ abilities to induce cur-

rent sheet formation and significant reconnection and energy release. We examine the

extent to which our different cases could realistically contribute to the heating of the

solar corona.

In this introduction, we begin by describing the different regions of the Sun, in particu-

lar its atmosphere, and the model of magnetohydrodynamics we will use to understand

it. We will briefly discuss the network of theories being developed to explain coronal

heating and some of the literature providing evidence for and against. The theories of

magnetic reconnection and helicity are discussed. Observations of braiding are also

considered.

1.1.1 The Sun

We will first give a general overview of the structure and pertinent (to our work) pro-

cesses at work on the Sun, to provide context for our area of interest. An excellent

starting point for general information is [83], but we will only touch on a few proper-

ties here.

Internal Structure and Surface

Through the development of helioseismology, we can describe the internal regions of

the Sun. Helioseismology uses observed vibrations of the solar surface to determine

how waves are traveling through the interior, and therefore what the interior structure

must be. This is in analogy to the study of seismology on Earth by using vibrations

caused by earthquakes to learn about the Earth’s interior. For example, patches of the

photosphere are observed to be oscillating vertically over periods averaging 5 minutes
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(known therefore as 5 minute oscillations), due to trapped acoustic waves, produced by

convective motions. The waves must travel through and be reflected between different

depths of plasma with different properties, such as density and temperature, to explain

the vibrations observed. Therefore, studying the nature of the vibrations provides in-

formation on the internal structure, and there are many processes producing millions of

vibrations. For a full review of the development and details of the theory see [51]. The

Sun is revealed to be a highly complex and dynamic structure - in each region there are

different dominant forces, energy transport mechanisms, temperatures and densities.

The core of our Sun is a nuclear fusion reactor with a radius of about 0.25 solar radii.

Temperatures reach 15 MK with densities of 1.6×105 kg m−3. Neutrinos released as a

result of the fusion process pass through the rest of the solar interior and escape easily,

however the gamma rays produced in the core interact significantly with the material

in the radiative zone. This is a slightly cooler region with a depth of around 0.45 solar

radii where energy transport is by radiative diffusion. This region is still very dense -

photons can take millions of years to travel through it due to repeated absorption and

re-emission. Their energy is decreased each time, thereby reducing the wavelength

even to within the visible light spectrum, to be observed by us at the surface.

The transport mechanism in the final interior layer is by convection. This convection

zone has a depth of 0.3 solar radii, with a temperature at its base of about 5× 105 K.

The density is estimated to be around 8× 10−5 kg m−3, a large decrease from that at

the core.

Convective instability is at work in this region, contributing to the dynamism of the

solar surface. A quantity of plasma at high temperatures at the base of the convective

zone becomes buoyant and rises up to the surface, cooling as it does so. At the surface



4

the cooler plasma spreads out, and begins to fall back down into the interior to be re-

heated again. This is what forms convection cells. The tops of these cells are referred

to as granules, separated by intergranular lanes where cooled plasma is descending.

These granules vary in diameter from less than 1 Mm to a few megametres, and in fact

supergranules can measure tens of megametres. This continuous evolution contributes

to the tangling of the overlying field.

The photosphere is the visible surface of the Sun, a highly active and variable layer.

It has a depth of just a few hundred kilometres and temperatures varying from about

4000K to 6000K. This has been shown to be a highly dynamic region, by observations

which have improved in resolution with ever improving telescopes. Ropes of strong

magnetic field breaking through the surface result in the lower-temperature sunspots.

Papers such as [17] discuss how observations from TRACE show that sunspots rotate,

twisting loops associated with them. We have also known since, for example, the work

of Leighton [53], that the granules observed on the surface involve substantial plasma

flows over the photosphere. This flow and the breaking through of magnetic field cre-

ates a complex network on the photosphere called the magnetic carpet. Even in quiet

Sun regions, where more obvious structures such as large coronal loops, prominences

and sunspots are absent, smaller structures are created by the constant emergence, can-

cellation, coalescence and fragmentation of magnetic flux. Small loops and arcades

and vertical field cover the entire solar surface, anchored in the surface, and all of this

activity has been proposed as a source for coronal heating, in work using observations

such as [26]. In addition to rotating sunspots, there is also observational evidence

of other vortical plasma motions on the photosphere which could contribute to the

dynamic field behaviour. For example, the authors in [11] discuss specific vortical

motions which they refer to as whirlpools, where plasma is advected down under the

surface by the rotational flow. Due to the small scale nature of these motions (less

than a megametre in diameter), they observed the behaviour indirectly thanks to the
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influence on nearby bright points, using data from the Swedish Solar Telescope. The

authors in [5] also use bright points to track the action of vortical flows on the solar sur-

face, which would distort the overlying fieldlines. This all leads us to consider placing

a vortical driver function at our numerical photosphere, in order to further investigate

the potential effect of such activity on the twisting on fieldlines and reconnection op-

portunities. We will elaborate on this in Chapter 3, Section 3.1.1.

Chromosphere, Transition Region and Corona

As we leave the surface of the Sun, we move through a layer a few thousand kilometres

thick called the chromosphere. Temperatures in the lower chromosphere are of the or-

der of 103 K, but as we move up this rises to 104 K. Next we arrive in a very thin layer

(around 100 km) called the transition region, with a sharp temperature gradient, rising

to hundreds of thousands of kelvin. Finally we reach the solar corona, a layer which

reaches far out into the solar system. It is incredibly diffuse, however temperatures can

reach millions of kelvin. This was first observed by [41] and [31] who observed from

a solar spectrum that highly ionised iron was present in the corona, something that can

only occur with extremely high temperatures. Naturally this was an unexpected dis-

covery - how can temperatures rise so suddenly and steeply as we move away from the

primary heat source? Extensive research has been conducted ever since to investigate

numerous possible mechanisms which could be responsible, and this is the umbrella

of investigations under which this thesis sits.

Magnetic Field, Atmospheric Structures and Dynamic Processes

The creation of the Sun’s magnetic field is thought to be due to a solar dynamo. The
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flowing, ionised material within the Sun generates electric currents, which in turn gen-

erates a magnetic field. It appears to follow specific, ever repeating cycles. Dynamo

theory tries to explain how the many different types of flows and rotation in and of the

Sun generate and wind up the magnetic field, giving rise to these cycles. Reading on

the solar dynamo cycles can be found in [20] but we shall not discuss it further, other

than the following brief description of its role in sunspot creation, since the plasma

flows around sunspots also contribute to tangling of the overlying field.

Sunspots are regions of strong magnetic field (a few thousand Gauss) where the con-

vective region field has been twisted and distorted until a loop breaks through the sur-

face. These areas consist of a dark central region called the umbra (with a temperature

of about 4000K) surrounded by a slightly hotter and brighter ring called the penum-

bra, and can measure tens of megametres across. The cool temperature of a sunspot

(relative to the surrounding regions) is due to the magnetic field strength there. The in-

teraction of magnetic fields with convective processes, known as magnetoconvection,

is complex and more detail can be found in [88] and references therein. Briefly, the

strong magnetic fields can inhibit the convection process which transports heat to the

photosphere from the convection zone. If hotter plasma from the base of the convection

zone is no longer able to rise to the surface and spread out horizontally as in other re-

gions, then the sunspot is not continuously heated to such temperatures and is therefore

cooler. These sunspots typically occur in pairs of positive and negative magnetic field,

(field emerging into or exiting from above the surface, respectively), with one polarity

‘leading’ in the Northern Hemisphere and the other in the Southern Hemisphere. The

number of sunspots follows a continuous cycle - over 11 years the number of sunspots

will go from a maximum down to a minimum and back up to a maximum again. They

also tend to appear closer and closer to the equator as the cycle progresses. As field

is twisted and folded within the Sun, more loops break through the surface, resulting

in more sunspots. After 11 years it seems that the global field reaches some critical
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point, resets, and the process begins again. Furthermore, every 11 years the magnetic

North and South poles reverse, leading to a switch in which sunspot polarity is leading

in each hemisphere. Therefore the complete sunspot cycle occurs over the course of

22 years.

In addition to sunspots we observe features such as coronal loops, spicules, filaments,

prominences, coronal holes and the solar wind. In this thesis we are predominantly

concerned with coronal loops. These are ropes of hot, glowing plasma flux tubes which

follow the trajectories of field lines (since particles moving in an electromagnetic field

are under the Lorentz force, which causes them to spiral around and along fieldlines),

exiting and re-entering the photosphere at footpoints. Lengths vary from the very small

up to hundreds of megametres. Temperatures can reach millions of kelvin. They have

lifetimes ranging from a few hours to a day or two, moving through different stages

labelled the rise, main and decay stages by the authors of [56]. They are long-lived in

comparison to typical coronal cooling times so are typically hotter than their surround-

ings. Therefore many theories for coronal heating consider the heating mechanisms of

loops to be the subject of much interest. At this point direct observations of the fine

detail of loops and evidence of braiding are limited - see Subsection 1.2.3 for more

on observations. However, evidence that loops consist of many individual strands of

plasma too fine to be resolved currently is given in many papers, such as [97]. In the

absence of any external driving from footpoint motions, a coronal loop would relax to

an equilibirum. Many coronal loops sit at heights above the solar surface where the

plasma beta is small, (at the surface plasma pressure dominates, and also at a certain

height above it as magnetic pressure begins to fall off faster than plasma density, but

many coronal features lie in between theses depths in a region where magnetic pressure

dominates), so this equilibrium is said to be force-free; this means that magnetic forces

dominate over gas pressure and gravity and the forces of magnetic tension and mag-

netic pressure are balanced. Also, since in general magnetic diffusion in the corona
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is negligible (we elaborate on this in Section 1.1.6.1) plasma elements are confined

to fieldlines, so there are no plasma flows between the strands comprising the loop

even though the strands themselves may be being twisted and tangled together by the

photospheric flows in which they are anchored. In this thesis we will be interested

in situations where the equilibrium of loops is compromised by photospheric motions

with varying characteristics and exchange of plasma between strands becomes possi-

ble via reconnection. Further general reading on loops can be found in [94].

Under certain circumstances which we will detail in Section 1.1.6.1, the topology of

coronal loop elements can change, releasing free magnetic energy, into a different con-

figuration of lower energy. This is known as the process of magnetic reconnection.

In some cases these restructuring events are so large and release such large amounts

amounts of energy that we observe a large solar flare, which can trigger a coronal

mass ejection. However flares have also been noted, directly when large enough and

indirectly otherwise, on a range of scales and are predicted to occur on currently un-

observable scales too.

The authors in [42] present a review of flare research and we refer now to some of

the discussions there and in references therein. Large flares, releasing energies up

to 1026 Joules/ 1033 ergs, are seen to occur infrequently, mostly during solar maxi-

mum. Smaller flares called microflares release around 1020 J/1027 ergs. Smaller still

are so called nanoflares, with energies of around 1018 J/1024 ergs. The existence of

these types of flares were theoretically proposed by Parker in [71] who proposed that

heating may also be provided by numerous smaller events. He suggested that the hot

corona we see in X-ray observations is maintained by many of these lower energy, lo-

calised heating events, taking place at the sites of small current sheets constantly being

formed by the continuous tangling of fieldlines by photospheric motions. For example,

[110] looks at changes in X-ray emission as evidence of this and [102] considers rapid
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changes in ‘moss’ regions to be a sign of nanoflares. Further, there is the suggestion of

picoflares - even smaller events releasing around 1014J/1021 ergs, which [89] claims to

have observed in radio data.

Research considering the role of events of different energies has been carried out by

many authors, such as [77], following on from proposals by [47]. The idea is to assume

that the distribution of events follows a curve given by a power law for the heating

power:

∫ Emax

Emin

f EdE =
∫ Emax

Emin

f0E−αEdE

where Emin is the energy of the smallest event, Emax the largest event and f the fre-

quency of events where f0 and α are constants. Calculating the integral gives:

Power =
f0

2−α
[E2−α

max −E2−α

min ]

Assuming that the largest event energy is much bigger than the smallest event energy,

then either;

α < 2, so that Power ≈ f0

2−α
E2−α

max − so large events dominate the heating, or;

α > 2, so that Power ≈ f0

α−2
E2−α

min − so small events dominate the heating.

So the value of α , giving the slope of the power law, is crucial in determining whether

more power is supplied to the corona through many smaller events, like nanoflares, or

less frequent but higher energy events, like micro and occasional large flares. Many
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authors have found this sort of power law relation, indicating smaller events happening

with more frequency, but calculated different values for the power law index, so dis-

agreeing on the roles of different flare categories (see references in [42], composites of

estimates by several authors in [3]). There is also the issue of the smallest events being

beyond our limit of resolution. We can only assume the power law extends in the same

way below the limit of our perception. The conclusion of [75] is that whether we look

at the full solar disk or zoom in on smaller regions, the flux in that area follows the

same power law with frequency. Whichever scale you look on, high flux becomes less

frequent at the same rate, (so magnetic feature complexity must driven by the same

mechanism - either a dynamo acting the same way on all scales or surface motions

dominating the structure of magnetic features). It follows that flares also occur accord-

ing to this scale invariant trend. Whatever the size of the feature, smaller events are

happening most frequently.

1.1.2 Magnetic Carpet

Research and observations have shown that the solar atmosphere has an incredibly

complex structure, including the lower atmosphere, near the photosphere. Even in

Quiet Sun regions, there is a highly complicated network of magnetic features from

the surface up through the chromosphere - the magnetic carpet. The constant flows

of plasma up from the convection zone and across the surface of the photosphere,

threaded by the ever changing magnetic field breaking through from the solar interior,

leads to a highly dynamic surface which continuously distorts the overlying structures.

With the SOHO launch in 1995, scientists gained new insight into the magnetic car-

pet, realising how complex it is, and also how quickly emerging flux is distributed and

recycled through the solar corona. The authors in [98] calculated that photospheric

flux is replaced around every 40 hours. Taking flux emergence and cancellation and
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reconnection into account, the authors of [22] also calculate that it takes only 1.4 hours

for the entire coronal field to be reconnected. Clearly, incorporating a magnetic carpet

field with its associated topological features should provide an abundance of heating

opportunities, and applying different drivers may result in interesting current sheet for-

mation.

The work of [26] is among many others which investigate how the magnetic carpet

could be a prime candidate for coronal heating mechanisms, therefore modelling of

the magnetic carpet is a large area of ongoing research.

Magnetograms of the solar surface show that the whole photosphere is covered in

clusters of mixed polarity magnetic flux concentrations. They map out the strength

and direction of the line of sight magnetic field. Black and white represent regions

of strong magnetic field concentrations, where the line of sight field is directed ei-

ther away from or towards us, respectively. The most obvious are features such as

sunspots, but smaller mixed polarity clusters are present all the way down to observ-

able scales and probably beyond. Concentrations of magnetic flux are constantly being

transformed through four main processes: emergence, fragmentation, coalescence and

cancellation. Ephemeral regions are clusters of bipolar pairs of flux, thought to origi-

nate from motions below the surface, which trigger their emergence. These ephemeral

regions are thought to consist 90% of quiet Sun flux (see [85] and references within).

Smaller clusters of magnetic flux are also formed from the remains of other magnetic

structures, such as a decaying active region, forming so called network concentrations.

Even smaller clusters are referred to as intra-network concentrations. All of these con-

centrations are subjected to horizontal plasma flows, sweeping them towards granular

and super granular boundaries, where material is subjected to downflows back under

the surface. As they are advected, these clusters can fragment into smaller groups, and

coalesce with other groups,. Further, a bipolar pair can cancel with another bipolar
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Figure 1.1: HMI magnetogram. Courtesy of NASA/SDO and AIA, HMI, and EVE
science teams. This image is from SDO’s HMI equipment, and is available from the
HMI website, hmi.stanford.edu. It illustrates the varying magnetic field across the
solar surface: in black areas the line of sight field is directed away from over viewpoint;
in white areas it is pointing towards us.

pair. Figure 1.1 is a magnetogram from SDO’s HMI apparatus and shows the variable

polarity and strength of the magnetic flux across the surface. While we can see an ac-

tive region near the centre of the disk, most of the rest of the disk is quiet, but speckled

all over by field concentrations of varying scales. Zooming in conveys how variable

the flux is, down to the smallest scales. We can in fact just make out some edges of

granulation cells, outlined by flux concentrations which have been swept and gathered

there by the plasma flows. Further reading can be found in [73] and references therein.

An illustration of the variable surface flux and how the atmospheric topology depends

on it can be seen in Figure 1.2. The green base represents the magnetic carpet, the black

and white pockets representing flux receding or emerging respectively. Fieldlines have

been plotted using other collected data which trace some of the loops anchored in the

carpet. These loops reach a range of heights, some remaining very low down in the

atmosphere.

hmi.stanford.edu
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Figure 1.2: Figure from magnetic carpet simulations and observations: this is an image
created by tracing fieldlines above the solar photosphere. The black and white patches
are the regions of strong positive and negative line of sight field, and we can see how
the overlying field is anchored at these concentrations. This image was created using
data from SOHO and can be found at umbra.nascom.nasa.gov. Credit: Stanford-
Lockheed Institute for Space Research Palo Alto, and NASA Goddard Space Flight
Centre, Greenbelt, MD.

1.1.3 Magnetic Skeleton

The ‘magnetic skeleton’ consists of those fieldlines which when mapped, illustrate the

topological features which are dictated by the characteristics of the magnetic carpet at

that point in time. The structure of this skeleton and its connection to photospheric

flux patterns are described by the authors of [85] as coronal tectonics. Everything

is anchored in the photosphere and stems from the flux concentrations we see in the

magnetograms. The largest loops can be anchored via multiple flux sources at each

umbra.nascom.nasa.gov
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footpoint, and the smallest loops via single sources. Even the individual strands con-

sisting coronal loops can have their footpoints rooted in different sources. We are

interested in how loops could be affected by the motions taking place on the surface

and so the nature of field topology due to the magnetic carpet is of great interest. We

proceed now to detail the fundamental elements which create this complex network.

Magnetic skeleton features can include various combinations and configurations of null

points, separatrix surfaces and separator fieldlines. A great deal of research has shown

that these features can be reconnection sites. Just two examples are the investigations

of [76], who found reconnection occurring along separators, while [81] considers re-

connection in a structure consisting a null sitting inside a separatrix dome (a concept

we will consider ourselves in Chapter 3, Section 3.3.2.)

Null points are points where the magnetic field is zero, and the field around a null point

has specific properties. The spine fieldline is an individual fieldline leading away or

towards the null, while the surface created by the set of fieldlines running towards or

away from the null together is called the fan. The exact geometry of the field around

the null can vary - for example Figure 1.3 (taken from [87]) shows the fan and spine for

a so called proper and improper radial null. Null points can provide reconnection op-

portunities - [87] propose that under stress from rotational motion, currents can build

along the spin and/or fan, leading to reconnection and heating. Furthermore, [81] and

the references therein discuss how reconnection at nulls can contribute significantly to

dynamic events such as solar flares and CMEs, solar jets and particle acceleration.

Separatrix surfaces are the boundaries between topologically distinct regions. An ex-

ample of a separatrix is the fan plan of a null point - it divides regions of differing

magnetic connectivity. Separator fieldlines are those which lie along the intersection

of separatrix surfaces, connecting null points. Both separatrices and separator curves
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Figure 1.3: The fundamental elements of a magnetic nulls, showing the spine and fan.
This is taken from [87]

are thought to be abundant in the corona, in the small scale, low altitude field and

higher up in large scale structures. A diagram of topologies involving separatrices and

separators is shown in Figure 1.4, taken from [86]. The first image in Figure 1.4 shows

the field above the surface, constituting two dome shaped separatrix surfaces. Their

intersection, the separator, is shown in bold. It connects two null points. The stars

highlight points of opposite flux sitting on the photosphere in the different regions.

The second imagines straightening a loop out so we have photosphere at both ends.

This shows a scenario where an initial field has been stressed and magnetic energy has

built up, such that the separatrices are planar surfaces and the separator takes the form

of a 2D sheet. Figure 1.5 from [85] shows a further example of separatrices, this time
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lying between nested coronal loops of different scales. Separatrices can also form in-

side loops between individual strands. The work of [85] concludes that current sheets

form along separatrices and separators under the influence of photospheric motions

and reconnection can occur. They also found that the nature of the motions dictated

the position of the current sheets formed and their dimensions and strength.

Figure 1.4: Diagram from [86], showing how the magnetic skeleton creates distinct
regions.

Figure 1.5: Again taken from [85], this diagram further illustrates how many separat-
ice surfaces and separators can form many distinct regions in the field, with different
scales, creating the highly variable magnetic carpet.
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1.1.4 Magnetohydrodynamics

Magnetohydrodynamics, or MHD as we will generally refer to it from here on in, is

a model describing a magnetised plasma. It is valid assuming typical plasma veloc-

ities are much less than the speed of light; we do not consider relativistic effects in

the model. The MHD equations are constructed from Maxwell’s equations, the fluid

equations and Ohm’s Law. Under the MHD approximation the displacement current

term of Ampére’s Law:

∇×B = µj+
1
c2

∂E
∂ t︸   ︷︷   ︸

displacement current

,

can be neglected. With this approximation we can manipulate the aforementioned sets

of equations to obtain the governing equations of magnetohydrodynamics:

∇ ·B = 0: solenoidal constraint (1.1)
∂ρ

∂ t
+∇ · (ρv) = 0: conservation of mass (1.2)

ρ

(
Dv
Dt

)
= −∇p+ j×B+ρg+ρν

(
∇

2v+
1
3

∇(∇ ·v)
)

: (1.3)

equation of motion (1.4)

∂B
∂ t

= ∇× (v×B)+η∇
2B: induction equation (1.5)

ργ

γ−1

{
D
Dt

(
p

ργ

)}
= −L: energy equation (1.6)

j =
∇×B

µ
: Ampére’s Law (1.7)

p =
1
µ̃

ρRT : equation of state- ideal gas law (1.8)
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where B is the magnetic field, v is plasma velocity, j current density and g gravitational

acceleration. Scalars p and ρ are plasma pressure and density. The variable η is the

magnetic diffusivity 1/σ µ0, where σ is the the conductivity. The constants are:

ν : coefficient of kinematic viscosity,

µ0 : permeability of free space,

γ : ratio of specific heats, for us =
5
3
,

µ : magnetic permeability,

µ̃ : mean atomic weight,

R = kNA: universal gas constant (Boltzmann’s constant k, Avogadro’s number NA).

The variable L represents various processes, some of which the user may not wish to

consider in a numerical simulation. For example, in many cases an adiabatic (no net

energy loss or gain) environment is considered so this is taken to be 0. We expand

upon it in the next section.

1.1.5 Coronal Heating Problem

Affecting the plasma energies are losses from optically thin radiation, energy transport

via conduction, and contributions from Ohmic and viscous heating. Expanding L then

we have:

−L = ∇ · (κ∇T )︸        ︷︷        ︸
isotropic conduction

− ρ
2Q(T )︸     ︷︷     ︸

optically thin radiative loss

+
j2

σ︸︷︷︸
ohmic heating

+ Hν︸︷︷︸
viscous heating

(1.9)
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To explain coronal heating we must understand the processes which could result in

ohmic and viscous heating, since they must balance radiative losses to result in the

temperatures observed.

Paper [117] estimated that losses in the quiet chromosphere total around 4×106 erg cm−2s−1,

2× 107 erg cm−2s−1 in active chromosphere. In the corona, these losses are 3×

105 erg cm−2s−1 for quiet Sun and 1×107 erg cm−2s−1 for active regions, so a heating

mechanism must provide energy in excess of these requirements. Using observations,

[116] estimated that the total energy input to the open magnetic field corona from

non-radiative sources is 5± 1× 105 ergs cm−2s−1, on a par with the slightly earlier

estimates.

1.1.5.1 Importance of Magnetic Field to Heating

In their paper [106], Vaiana, Krieger and Timothy analysed observations from newly

developed satellites measuring X-ray emission and started to uncover the variation

throughout the corona. Areas such as active regions, coronal loops and coronal holes

and their relation to activity on the photosphere were discovered. It was first recog-

nised that changes in the photospheric magnetic field had huge effect on the structure

of coronal features. This paper helped open up a whole new frontier of research con-

cerning the role of the magnetic field in the solar atmosphere and potential heating

mechanisms. Paper [74] explains how the energy required to heat the solar atmosphere

is sourced from the convection zone, through flux emergence and horizontal movement

of footpoints. Theories for how this energy is then transferred to and dissipated in the

chromosphere and corona generally fall under one of two categories - Alternating Cur-

rent, (AC), or Direct Current, (DC), depending on the current driven by the mechanism

under consideration.
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AC versus DC and Proposed Mechanisms

Consider photospheric motions which cause perturbations in the field that propagate

up through the atmosphere at the Alfvén speed vA = |B|/√µ0ρ in that region. We

class AC heating as that induced by motions which vary over timescales short com-

pared to the Alfvén loop travel time. This is the time taken for a wave generated at a

loop footpoint to travel the length of the loop. So a relatively fast photospheric motion

would send up another wave before the previous wave has reached the other end of the

loop, so the loop has not had time to adjust to an equilibrium within an Alfvén travel

time. Alternating currents are flowing through the loop over one Alfvén time. A coro-

nal field subject to AC motions is said to evolve dynamically. Typically AC theories

involve wave heating.

Waves can be triggered by many different mechanisms - fast photospheric motions,

reconnection, flares and CMEs. Research has explored the potential for waves to

transport energy up through the solar atmosphere and indeed since observations have

improved, more and more evidence of wave activity has been gathered. However only

Alfvén waves are able to easily reach the corona - acoustic and magnetoacoustic waves

may be easily damped or reflected before they reach the upper atmosphere. Consider

that quiet Sun coronal fields may be dominated by vertical field. Alfvén waves propa-

gate along fieldlines up through the atmosphere, while fast and slow waves may travel

at an angle, such that two ends of a wavefront lie at different heights. As we move

up through the chromosphere, the plasma density drops such that the Alfvén speed

increases with height, jumping in particular across the transition region. As the mag-

netoacoustic wave travels, the part of the wavefront at the highest height is moving

faster than the lower part, and the wave starts to turn. This effect is only intensified

as the wave travels higher: the Alfvén speed continues to increase and the wavefront
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tilts further until it has been reflected entirely and travels back down toads the surface,

never reaching the corona in order to have the opportunity to release energy there.

Phase mixing, resonant absorption and viscous effects are examples of mechanisms

which could damp Alfvén waves and release their energy throughout the atmosphere.

See the review of [74] and references therein for more on wave heating.

On the other hand, if currents are being generated by motions on longer timescales,

then the field can react directly within an Alfvén time and we have a quasi-static evo-

lution. The field evolves via a sequence of equilibria. This is referred to as Direct

Current heating. In this case stresses may build up in the overlying field in the form of

current sheets, which may lead to reconnection.

Current sheets can appear on many scales due to braiding, and emergence and can-

cellation of flux as a result of plasma rising through the photosphere. The details of

reconnection will be discussed in Section 1.1.6.1, however, a general feature of mag-

netic reconnection is plasma heating. This is due to the release of free magnetic energy,

which can go into generating electric fields, which in turn accelerates particles and gen-

erates thermal energy by Ohmic heating. In addition some of that free magnetic energy

is also first converted to kinetic energy, which can result in viscous heating via shocks,

and trigger further reconnection events, in an avalanche effect. For more information

on the development of heating theories again see [74] and the references within.

Research suggests that different mechanisms falling under the AC and DC headings

may be more or less influential in different atmospheric regions and also in the quiet

Sun versus active regions. The authors in [27] proposed that Alfvén waves travelling
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through the solar atmosphere could be largely responsible for heating the chromo-

sphere and [59] went further to conclude that they could also provide the necessary

heating to quiet Sun corona. In addition to Alfvén waves propagating up from the

photosphere, [111] found that they could be generated higher up in the atmosphere

too. The authors found that the vortical motions induced on the photosphere from con-

vection are transferred to the overlying layers of plasma, creating ‘tornadoes’. Such

volumes of swirling plasma generate more waves higher up which can dissipate more

energy. Paper [61] concludes after analytically considering a coronal loop model that

DC heating is more important in the active region corona. Paper [84] supports the idea

of active region coronal heating due mostly to turbulence induced by loop footpoint

motions and subsequent reconnection.

Taking all of this into account it seems clear that the question of what heats the corona

probably has many answers. The mechanisms investigated can be seen as coupled and

not just acting in an isolated way. There are also factors such as the drop off in density

from chromosphere to corona and the launching of the solar wind which any potential

full model will also have to contend with. Therefore determining what is most impor-

tant, if any one factor can be deemed so, is a formidable task.

1.1.6 Magnetic Reconnection and Helicity

1.1.6.1 Magnetic Reconnection

Magnetic reconnection is fundamental to our work. It is the process by which the con-

nectivity of fieldlines changes and releases free magnetic energy. This leads to Ohmic

dissipation, release of kinetic energy and acceleration of particles which can launch
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flares. We consider a brief history of the theory, and how it can arise.

Theories of reconnection have been developed over decades. They began with papers

such as [38] and [46] who considered the possibility that currents flowing at X-type

magnetic null points could trigger flares and heating. Paper [24] added to the idea,

concluding that thin current sheets could induce heating. The work of Dungey (see

[28] among many others) was fundamental to the development of the theory - he was

first to describe the breaking apart of fieldlines. Other landmarks include [67], [101]

and [78] by Parker, Sweet and Petschek. In fact it was Parker that finally used the term

reconnection. The Sweet-Parker model was the first MHD reconnection model. It con-

sidered reconnection in 2D due to current sheets at null points, which could trigger

solar flares. However it was shown that in this initial set-up, the rate of reconnection

(the rate at which flux is reconnected in time and space) was not fast enough to launch

solar flares. Petschek’s model on the other hand described a situation that does give

rise to sufficiently fast reconnection. These were all still 2D models however, and the

properties of reconnection were shown to be quite different in 3D. In 2D, reconnec-

tion only occurs at null points and the rate of reconnection depends only on the local

electric field. In 3D, reconnection does not require nulls and the reconnection rate

is obtained through integration of the electric field parallel to the fieldlines involved.

Papers by Schindler and Hesse ([96], [44]) present a formalised model of general mag-

netic reconnection in 3D and can be consulted for more details.

To understand how reconnection may occur, consider the evolution in time of a mag-

netic field as described by the induction equation:

∂B
∂ t

= ∇× (v×B)︸           ︷︷           ︸
advection

+ η∇
2B︸   ︷︷   ︸

diffusion

(1.10)
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The advection term describes the movement of the field by plasma motion and the

diffusion term relates to the smoothing out of any variation in the field. In general on

the Sun the diffusion term is small. We can see this by letting B, l, t and v represent a

typical field strength, length scale, timescale and velocity:

B
t
=

vB
l
+η

B
l2 (1.11)

Let us look at the ratio of advection to diffusion terms, which is known as the magnetic

Reynolds number, Rm:

Rm =
vB
l
/η

B
l2 (1.12)

Rm =
lv
η

Since length scales and velocity scales on the Sun are typically large, and η = 1
σ µ

is typically small, this means Rm is typically much larger than 1. In other words,

advection has much more of an influence on the evolution of the field than diffusion

(while quantities remain sufficiently smooth). On the other hand, in some special cases

Rm can be smaller than one, in which case diffusion is important. Let us look at the

limiting cases.

Advection - the Frozen-In Flux Theorem

Consider the ideal case when diffusion is negligible so that:

∂B
∂ t
≈ ∇× (v×B)
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In this case, fieldlines are ‘dragged around’ with the flow. This is known as frozen in

flux - i.e. the flux through any open surface S, bounded by C, does not change. The

change in time of magnetic flux is given by:

dF
dt

=
d
dt

∫
s
B ·dS

This flux could change in time due to a change in B or from movement of the boundary

C of surface S . An element δ l of C moving at v in an element of time δ t covers an

area of δ tv×δ l. The flux passing through this area is

B · (δ tv×δ l) = (−δ tv×B).δ l

by vector identity. Over the whole boundary then:

dF
dt

=
∫

S

∂B
∂ t
·dS−

∮
C
(v×B ·dl) (1.13)

=
∫

S
(
∂B
∂ t
−∇× (v×B)) ·dS

= 0,

using Stoke’s Theorem and then the induction equation in the ideal limit we assumed

at the start. In other words, magnetic field lines are frozen into the plasma and will not

change their connectivity - the geometry of the field is altered by plasma motion but

the topology is unaltered.

Since we are generally close to ideal on the Sun, we see plasma, following fieldlines,

twisted and contorted in structures such as loops. Plasma elements remain largely with
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the fieldline they start on. As fieldlines are tangled due to the action of photospheric

motions on footpoints, their corresponding threads of plasma also become so. In the

limit of vanishing resistivity, stresses introduced are able to build up. In paper [68]

Parker poses that with sufficient tangling, these stresses can approach singular current

sheets. We will elaborate on this later. In reality of course, we do not have zero

resistivity and diffusion may eventually play a role.

Diffusion Limit

If we were to reach a situation where Rm << 1, we would have:

∂B
∂ t
≈ η∇

2B

which we can see has the form of a diffusion equation. Here any spikes in any quan-

tities would be smoothed out. By the same argument used above we can illustrate that

here the flux through an area would be free to change.

dF
dt

=
∫

S

∂B
∂ t
·dS−

∮
C
(v×B ·dl) (1.14)

=
∫

S
(
∂B
∂ t
−∇× (v×B)) ·dS

=
∫

S
(η∇

2B) ·dS

, 0.

So a particular plasma element would no longer be confined to its original fieldline and

energy can be dissipated.

The solar corona is mostly highly electrically conducting. Diffusivity is always low.
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For diffusion to become non-negligible then, Rm must become smaller. This can hap-

pen, for example, in current sheets - regions of high localised current where the typical

length scale over which the field varies is very small. Then;

∇
2B = ∇(∇ ·B)−∇× (∇×B)

= −∇× j.

So a region of high current within a region of relatively lower current would result in

large gradients across that domain. Ideal conditions break down in that volume (and

only that volume, globally the field may still be close to ideal) and fieldlines can re-

connect in a lower energy state there. Reconnection has consequences beyond this

restructuring of the field. It also converts some of the released magnetic energy into

thermal energy through Ohmic heating, and some of it into kinetic energy via accel-

eration of plasma away from the site. This movement of plasma can generate waves

which in turn can generate heating in other areas beyond the reconnection site.

1.1.6.2 Magnetic Helicity

The concept of magnetic helicity can be used to give a sense of the large scale topology

of a field. We will use it throughout and so here give a brief summary of its properties

and role in our work. Say the magnetic field B can be expressed as;

B = ∇×A
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where A is a vector potential. Where B · n = 0 on the boundary of the volume, we

say the field is magnetically closed. A is non-unique - to see this consider the gauge

transformation

B = ∇× (A+∇Φ)

where Φ is a scalar potential in the class of gauge functions whereby the curl of A+∇Φ

still equals the magnetic field. Then the helicity is given by:

H =
∫

V
(A+∇Φ) ·BdV =

∫
V

A ·BdV +
∫

V
∇Φ ·BdV

=
∫

V
A ·BdV +

∫
∂V

ΦB ·nd∂V

B ·n|∂V = 0 ⇒ H =
∫

V
A ·BdV,

regardless of the choice of gauge function. Helicity is gauge invariant in this situation.

This expression was developed using Gauss’s equation for the linkage between a pair

of closed fieldlines, then summing over all fieldline pairs in a volume - more details

on the development of the concept can be found in [7]. High helicity must mean there

is a high degree of twist and linkage in the field. However, we will be considering a

straightened loop, where the footpoints do not return to their starting point. The field

is not closed and B ·n = Bn , 0 as a general rule. Hence, for us helicity is no longer

gauge invariant, and the physical interpretation is less clear. We turn to the concept of

relative helicity to address this.

Relative Helicity

One way to adapt the idea of helicity for open fields was developed by the authors in

[8]. They proposed, when dealing with open fields, the concept of relative helicity:
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the helicity with respect to some reference field also defined within the volume V. This

reference field, BR, must satisfy BR ·n = B ·n on the boundary. Both the original and

reference field can be ‘closed’ by expanding the volume V to a larger volume, V ∪ Ṽ .

The field B̃ is defined in Ṽ and closes B and BR within the volume V ∪ Ṽ . So, within

Ṽ , B = BR = B̃. Therefore the relative helicity HV (B|BR) becomes

HV (B|BR) = HV∪Ṽ (B, B̃)−HV∪Ṽ (BR, B̃)

=
∫

V
A ·BdV +

∫
Ṽ

Ã · B̃dṼ

−
∫

V
AR ·BRdV −

∫
Ṽ

ÃR · B̃RdṼ

=
∫

V
A ·B−AR ·BRdV

+
∫

Ṽ
Ã · B̃− ÃR · B̃RdṼ (1.15)

Now, on the surface S between the two volumes, B ·n = BR ·n = B̃ ·n, therefore ∇×

A ·n = ∇×AR ·n and so A−AR = ∇φ , where φ is some scalar. Also recall that in Ṽ ,

B = BR = B̃. Then the final integral in 1.15 can be written:

∫
Ṽ
(Ã− ÃR) · B̃dṼ =

∫
Ṽ

∇φ · B̃dṼ

=
∫

S
φB ·ndS

Finally, using Stoke’s Theorem and vector identities it is simple to show that :

∫
S

φB ·ndS =
∫

V
(AR ·B−A ·BR)dV, (1.16)



30

and so the relative helicity of B in V is:

HV (B|BR) =
∫

V
(A+AR) · (B−BR)dV, (1.17)

which is independent of the choice of extension field B̃ and gauge invariant.

We now have established a valid way to discuss helicity even for an open field structure.

In addition, in principle it can be possible to choose AR such that the relative helicity

reduces to H(B). Expanding 1.17 gives;

HV (B|BR) =
∫

A ·BdV −
∫

A ·BRdV +
∫

AR ·BdV −
∫

AR ·BRdV

= H(B)−H(BR)+
∫
(AR ·B−A ·BR)dV

= H(B)−H(BR)+
∫
(A×AR) ·ndS

If AR is chosen such that A×n = AR×n on the surface S and AR ·BR = 0, then the

reference field does not contribute to the relative helicity. In our work we will not

have analytic expressions for B and A at t > 0, so we cannot specify exactly what this

reference field would be, although as we will see in Chapter 3, Section 3.1.2 we will

be able to make an approximation to the helicity. The crux of the matter is however,

that we can still confidently discuss a meaningful helicity for our open field, without

worrying about what the reference field would be.

Role of Boundary Motions in Helicity

It is our aim to characterise the types of systems created by different boundary driving,
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and so here we show how helicity is a quantity which will vary due to the type of

motions applied. Taking the dot product of vector potential A with Faraday’s Law and

manipulating with vector identities yields:

∂

∂ t
(A ·B)−B · ∂A

∂ t
= ∇ · (A×E)− (∇×A) ·E

∂

∂ t
(A ·B)+B · (E+∇ψ) = ∇ · (A×E)−E ·B

∂

∂ t
(A ·B)︸   ︷︷   ︸

helicity density

+∇ · (ψB+E×A)︸              ︷︷              ︸
helicity current

= −2E ·B︸     ︷︷     ︸
helicity source

,

a balance equation for the evolution of the helicity density. Integrating over the whole

volume and applying Gauss’ divergence theorem:

∫
V

∂

∂ t
(A ·B)dV +

∫
S
(ψB+E×A) ·ndS =−

∫
V

2E ·BdV, (1.18)

we see that the evolution of the total helicity depends on the flux through the boundaries

of the volume V , and the source. We can take this further if we re-write the electric

field using Ohm’s Law. Then:

−
∫

V
2E ·BdV = −

∫
V

2(ηj−v×B) ·BdV

= −
∫

V
2ηj ·BdV∫

S
(ψB+E×A) ·ndS =

∫
S
(ψB+ηj×A+(A ·B)v− (A ·v)B) ·ndS

=
∫

S
((ψ− (A ·v))B+ηj×A+(A ·B)v) ·ndS
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by vector identity, where η = 1
σ

is the resistivity. Resistivity is small, so η terms

are less significant, and for sufficiently small η would be negligible, so neglect these

terms for now. We are left with the flux through the boundaries, therefore clearly the

velocity on the boundaries is key to the helicity balance equation. If we set the x and

y boundaries to be periodic (as indeed we will in later simulations), then flux crossing

these boundaries cancels out. Turning now to the upper boundary, where we plan to

have v = 0 and where the normal into the domain is n =−ez, so the flux is:

∫
S
(ψB+E×A) ·ndS =−

∫
S

ψBz dS

Now on the lower boundary, vz = 0 and n = ez, the flux is:

∫
S
(ψB+E×A) ·ndS =

∫
S
(ψ−A ·v)Bz dS

Furthermore, we are free to choose a ψ which is zero on boundaries so the flux through

the top boundary disappears and the flux through the bottom boundary is then given by

one term only:

−
∫

S
(A ·v)Bz dS =−

∫
S
(Axvx +Ayvy)Bz dS (1.19)

Interestingly then, in this case it would seem that the helicity in the domain depends

only on the velocity and normal component of magnetic field on the lower z boundary

(the tangential components of A correspond to Bz also) and not the tangential compo-

nents of B. Bx and By will depend on the evolution in the domain thus far. However,

if Bz = 1 at t = 0 and the boundary driver is incompressible, then it will remain close
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Figure 1.6: Cartoon of a uniform field under the influence of rotating boundary motions
on z = 0.

to 1 for t > 0 regardless of the evolution inside the domain (in fact for ideal MHD

it would be unchanged for all time). Compare this to the Poynting flux for example:

Poynting flux across the boundary depends on both the normal and tangential compo-

nents of B, and so the history of the system does impact the flux. In the specific set of

circumstances discussed however, only the sign of the driving affects whether helicity

is added or removed. Clearly then the specifics of our driver will have the potential to

change the characteristics of the field greatly, as these vortical motions will be placed

on the lower z boundary as pictured in Figure 1.6. In fact when we have specified the

driver functions in Chapter 3 we will be able to calculate the helicity contributed by

each one.
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Figure 1.7: Parker set-up of fieldlines connecting to plates representing the photo-
sphere. The sketch illustrates a few flux tubes and how they can be braided around
each other.

1.2 Braiding

We now move on to focus on the development of braiding theory and topological dis-

sipation.

1.2.1 Parker and the Braiding Theory

The landmark paper by Parker in 1972 (see [68]) was first to pose the idea of braiding

and topological dissipation as a mechanism for coronal heating.

The scenario we now describe is illustrated in Figure 1.7. Parker considers an ideal,

uniform field anchored between two perfectly conducting parallel plates, representing

the photosphere, as if a loop has been stretched out. Now imagine arbitrary slow mo-

tions on one of the plates, moving the footpoints of that surface. At the other plate no
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motions are applied so fieldlines remain anchored in their initial positions here. The

movement of footpoints at one end will braid the field to some extent and some stress

will build in the structure in the form of regions of higher current. Since the motions are

slow, the field will try to respond to this by relaxing ideally to a new, smooth, force-free

equilibrium with the same original topology. If the motions are applied again, the field

responds accordingly again. The coronal field evolves by continuously responding to

the photospheric motions with a sequence of force-free equilibria; this is referred to as

quasi-static evolution. However, Parker posits that after arbitrary footpoint motions, in

most cases the resulting field will be unable to relax ideally to a smooth equilibirum,

because the space of continuous solutions to such activity is very limited. Parker pro-

poses that there exists a smooth equilibirum only when the fieldline twist introduced by

footpoint motions is very simple and uniform along the field - and braiding does not

meet these criteria. Parker’s magnetostatic theroem, developed throughout his work

and described in [72], says that in general only equilibria containing tangential discon-

tinuities in the form of current sheets exist. In an environment where η = 0, localised

increases in current will not be smoothed out and tangential discontinuities will form -

currents could become infinite within an infinitesimally thin sheet along the magnetic

field. This could then trigger magnetic reconnection and release of magnetic energy.

This is known as topological dissipation. This proposal has been a contentious one and

is yet to be completely proved or disproved. In the following sections we will elabo-

rate on some of the experiments which have attempted to do so. However note that in a

system with finite resistivity such as ours, of course diffusion becomes non-negligible

when currents layers are sufficiently thin. We may not require true discontinuities to

form at all for the topology to be able to change through magnetic reconnection and

release free magnetic energy.

Current Sheets

Current sheets are magnetic surfaces over which an electric current flows. Imagine
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two magnetic flux tubes extending between two plates as before, where the tubes have

been twisted around each other. The surface consisting the area where the flux tubes

meet will have some current flowing along it. In an ideal case, where the degree of

twist of the flux tubes reaches some critical point, (i.e the curl of the magnetic field

is such that the lengthscale over which the field varies goes to zero), then we have

a true discontinuity where an infinite current is flowing along the infinitesimally thin

magnetic surface between the flux tubes. Physically, this is unrealistic, and however

close to perfectly conducting the solar plasma often is, the current will not have the

chance to become so concentrated before diffusion becomes non-negligible. Therefore

in our work we will consider thin, but finite, current layers, which are not singular but

can trigger reconnection regardless.

1.2.2 Numerical Braiding Experiments

Parker’s idea triggered a new area of research which sought to understand the effect

braiding as a result of photospheric motions can have on coronal structures, whether

discontinuities can form, and what the consequences for heating could be. Parker

himself published further papers (for example [71], [72]) on the theory. It remains a

much debated topic. As we will discuss, observational evidence of braided structures is

limited, but is improving and looks promising- see Section 1.2.3 for more on this. Fur-

thermore, different authors considering different scenarios have found evidence both

for and against the formation of current sheets as posed by Parker. Here we will review

the key findings of some of the many numerical experiments conducted concerning

braided fields. We will see that the type of photospheric motions can greatly affect the

outcomes. There is also a broad area of research exploring this idea analytically: see

for example [120], analytic parts of [25] (which find smooth equilibria in their cases)

and [69]/ [70] (which find evidence for discontinuities).
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The common starting point for most of these types of simulation is to consider a

stretched out loop, so that both upper and lower z boundaries represent the photosphere.

Simulations vary from using uniform initial fields to more complicated set-ups, setting

different resistivities, and of course driving motions.

There have been few experiments thus far which fully concur with the hypothesis as

first described. Of course, only in ideal conditions where resistivity is set to zero can

true tangential discontinuities form, as otherwise diffusion will act and prevent currents

building to the point of singularity. In [54], the authors took a uniform field under ideal

conditions. Various shear motions were applied to both ‘photospheric boundaries’.

They found that as the strength of the shear was increased, the thinner the layers of

current became. It was indeed possible to find smooth equilibria under a certain shear

strength, but above a threshold the current appeared to become singular - at least at the

grid resolution available at the time of the work. New simulations with a more efficient

code, outlined in [18], have since concluded that in fact these apparent sheets were of

finite thickness. The studies of [25] applied drivers to a uniform field and failed to find

any evidence of current sheets in all but one experiment. The majority of runs settled

to smooth equilibria free from discontinuities, and the one run that did form current

sheets was the only one where the non-photospheric numerical boundaries were altered

as a result of the driving.

The work of [107], [108] and [60] all took an ideal, uniform field and applied a se-

quence of motions to tangle the field. Velocity at footpoints was introduced and then

the field was allowed to relax before the next application. The authors observed an

increasingly filamentary nature to the field structure and current profiles, with narrow

enough current layers to induce some dissipation due to resistivity had this not been
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an ideal experiment. They refer to a cascade effect, where each successive iteration

results in a decrease in current length scales at an exponential rate. It would therefore

take infinite time to produce infinitesimal current sheets. They do not find evidence

to support the spontaneous formation of true current sheets Parker proposed, even in

this ideal environment. On the other hand though, if true current sheets are not neces-

sary to trigger reconnection, we can consider an adjusted Parker’s theory based on the

formation of ‘thin enough’ current layers in a resistive case due to footpoint motions.

The authors in [55] ran simulations on an initially uniform, resistive field under the

influence of continuous, slow photospheric motions and found that small regions of

higher current were present in the statistically steady states reached. It was concluded

in [49] that current sheets were ‘inevitable’ even in untwisted fields. Further support-

ing evidence was provided by [57], using continuous footpoint motions as part of a

magnetostatic model and failing to find any smooth equilibria. One key paper which

gives us a glimpse into the highly complex nature of field behaviour and the conse-

quences footpoint motions can have is [35]. The authors again took a uniform field

representing a straightened loop and subjected it to a variety of continuous shearing

motions on both photospheric boundaries. The driving motions had random properties

and the effects of driving speed, duration of driving, grid resolution and loop aspect

ratio were shown to alter the resulting heating rate. Different resistivity values were

also used. The authors found that even one driving cycle was sufficient to induce ex-

ponential growth in currents. Quantities reached statistically steady states after just

a few periods and reconnection took place. Thin current layers were formed easily.

No discontinuities in the true mathematical sense would have formed even with zero

resistivity, but for all practical purposes we can count these runs as encouraging for

the topological dissipation theory. In addition, the reconnection events set off waves

of supersonic and super-Alfvénic speeds, which themselves gave rise to more current

layers on even smaller scales. The current structure becomes filamentary and there is



39

plenty of opportunity for heating.

Other authors have modelled simplified versions of convection cells by applying ro-

tational motions to uniform fields and found results offering further support to the

possibility of current layer formation and subsequent heating. The authors of [43],

[40], [64] and all see current layer formation under various different types of simu-

lation, all applying continuous, rotational motions but under different MHD models,

grid resolutions, aspect ratios and resistivities. Further, the work of [92], [93],[90],[91]

all analyse the effect of footpoint motions on magnetic fields and find current layers

leading to energy dissipation, instabilities and turbulence under reduced MHD. Re-

duced MHD is a simplified model which can be used for some simulations as it saves

on computational expense, allowing large experiments to run faster. When studying a

magnetic field which is said to be almost uniform and uni-directional, one can assume

fairly homogeneous behaviour along the direction of the dominant field component

and the equations of MHD simplify to a set of 6 with 6 unknowns. Often the field

under consideration will be taken to be almost uniform in the z direction, such that it

can be written;

B = B⊥+Bzez

where
B⊥
Bz

∼ ε << 1

Using this and assuming that:

• there is equipartition of energy in the x,y directions, so that perpendicular ki-

netic, internal and magnetic energy densities are approximately of the same size,

and;
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• variations are limited along the dominant direction, so ∂/∂ z∼ ε and vz = 0,

then each variable can be considered as some power of ε and only the most significant

terms kept. The variables B⊥ and v⊥ can also be written in terms of scalar functions

ψ and φ respectively. Putting all of this together leads to the reduced MHD equations:

∂ψ

∂ t
+v⊥ ·∇ψ = η∇

2
ψ−Bz

∂φ

∂ z

ρ0

(
∂ωz

∂ t
+v⊥ ·∇ωz

)
= B ·∇ jz

ωz = ∇
2
⊥φ

µ0 jz = ∇
2
ψ

v⊥ = ez×∇φ

The detailed derivation can be found in [9]. We outline the key points since RMHD is

a common approach which has been used in research similar to ours, but we will see

from our results later that it may not always be sufficient for accurately describing a

system’s evolution.

Braided Field Experiments

An extensive series of numerical experiments using initially braided fields have been

carried out by the assortment of authors in [112], [113], [114], [82], [115]. In [112]

the authors point out that many investigations have looked only at current layer thick-

ness as the main indicator of how effective braiding could be at upsetting equilibrium

and triggering reconnection. In fact as mentioned before, it is the integrated parallel

electric field which determines the rate of reconnection in three dimensions. The au-

thors consider an initially braided field with no net twist and allow it to relax ideally,
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and find that the field reaches a force-free state with no small scale currents. How-

ever they also consider the integrated parallel electric current (as it is related clearly to

the electric field) and find that the length scales over which this quantity varies actu-

ally decrease with increased braiding, and its maximum increases. Clearly equilibrium

would eventually be lost as a field was continuously braided, without small scale cur-

rents necessarily occurring. This work was taken further in [114] and [82], using the

final equilibrium state as their initial condition and evolving it under a resistive numer-

ical simulation. The authors saw thinner and thinner current layers developing, which

they refer to as a cascade to smaller scales. There was a global restructuring of the field

during this phase, eventually bringing it to a smooth equilibrium with two oppositely

twisted flux tubes spanning the length of the domain. The braided nature of the initial

state appears to have triggered the evolution of small scale currents and subsequent

field relaxation to a smooth state. In addition, the authors of [79] carried out ideal

relaxation experiments on initial braided fields of varying complexities. These initial

conditions were based on the same field as in [112], and the authors found finite cur-

rent layers in the final states whose thickness depended on the complexity of the initial

state. This is particularly interesting to us as it suggests that the degree of braiding can

have an impact on heating opportunities.

Some of the latest work has focused on making the coronal loop model more realistic

by including more solar effects, such as in [109] where the authors include stratifica-

tion of the atmosphere. They find that taking variations in the lower atmosphere into

account alters the way a coronal loop evolves, in that it changes from being via the

DC heating an un-stratified model induces, to being via AC heating. Furthermore, re-

searchers are looking now at more complex and realistic fields. Rather than just taking

a coronal loop, later in this thesis we will attempt to apply driving motions to a struc-

ture with more similarities to the real magnetic carpet of the solar atmosphere. See also
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[18], which applies photospheric motions under ideal conditions to more topologically

complex initial fields. The various cases result in the formation of different features,

from finite current layers to singular currents at null point locations. Clearly there re-

mains great deal to consider.

Conclusion

The question of whether true tangential discontinuities can form in simple fields where

η = 0 is somewhat academic - while not everyone is agreed on it, on the Sun we never

have exactly zero resistivity anyway. Some dissipation will occur, particularly when

currents build in narrow regions. A current layer need not be infinitesimally thin to

trigger reconnection, and even without thin current layers the integrated parallel elec-

tric current can build. The take-away point is that finite but thin (i.e. small enough

length-scales for resistivity to be important) current layers are generally found in nu-

merical simulations where braiding is applied, with the potential to induce heating.

We have also seen how the type of motion driving the braiding of the field can affect

current build-up. We wish to take this subject further by quantifying types of motion

in order to pinpoint the nature of heating arising.

1.2.3 Observations

Great strides have been made over the years with instruments and satellites designed

to observe the Sun. Different instruments can look at different wavelengths and tem-

peratures of structures from the photosphere up through the corona. Table 1.1 gives a

brief overview of solar missions past and present which have contributed to our under-

standing. More details can be found at https://www.nasa.gov/missions.

https://www.nasa.gov/missions
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Mission Period Instruments Focus
Skylab 1973-74 8 different cameras, First of its kind,

telescopes etc. initial look at
in various wavelengths solar surface/structures.

SOHO 1995 - 12 different instruments Interior, heliosphere,
solar wind

TRACE 1998-2010 Multi-wavelength Magnetic structures/
telescope temperatures

Rhessi 2002 - High energy Particle acceleration/
spectroscopy equipment flares

STEREO 2006 - SECCHI CMEs/solar wind
IMPACT
PLASTIC
SWAVES

Hinode 2006 - SOT Field structure
XRT
EIS

SDO 2010 - AIA Field generation/
EVE energy storage,
HMI release

Hi-C 2012 & 2016 UV imager High resolution
(separate short flights) coronal images

Table 1.1: Overview of solar observation missions.
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With each mission we have been able to see finer and finer resolution in all wave-

lengths, although we are still far from indisputable observational evidence of braid-

ing. The most exciting data for us comes from the Hi-C spacecraft. In just a five

minute flight, this instrument resolved high temperature structures in the corona to a

scale never before seen. Paper [21] details the specifics and shows the best evidence

so far that coronal structures can be braided. In the images we see fine structure at

lengthscales of around 0.2 arcseconds (150 km) and temperatures of around 1.5 million

kelvin. Previously our best images in terms of spatial and temporal resolution came

from the Solar Dynamics Observatory (SDO) instrument, the Atmospheric Imaging

Assembly (AIA). This apparatus takes images with spatial resolution of 1 arcsecond

in 10 different wavelengths around every 10 seconds. The resulting images are im-

pressive in their own right and show huge tangled loops on a larger scale, as shown in

Figure 1.8 (both images can be found at https://sdo.gsfc.nasa.gov).

Figure 1.8: AIA active region loops. Courtesy of NASA/SDO and the AIA, EVE and
HMI science teams.

The authors in [21] made comparisons of AIA and Hi-C images. The Hi-C images

show groups of twisted, braided loops, reconnecting and releasing free magnetic en-

ergy, which cannot be seen in the lower resolution AIA images. However, comparing

https://sdo.gsfc.nasa.gov
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AIA data at the same wavelengths shows even more. In one observation, a small flare

and acceleration of plasma is seen in AIA shortly after Hi-C had stopped taking im-

ages, at the very location where strands of plasma had just been seen to interact in

Hi-C. Furthermore, Hinode data allowed the authors to calculate that the maximum

temperature of this loop hits 7 million kelvin. Now obviously this 5 minute run is

not enough to definitively prove topological dissipation as a significant coronal heat-

ing mechanism and more research is still required, but it is very encouraging that our

theories here may have huge potential.

Other authors have also examined the braided structures of Hi-C data, for example

[105]. They found by looking at the data in conjunction with AIA and HMI data, that

a small flare, or subflare, was triggered in the coronal braided structure by a separate

reconnection event, involving loops underneath in the transition region. The authors

found evidence that reconnection events sent a one small loop downwards and another

larger one upwards, with this interaction with the overlying braided field triggering the

flare event.

While this is all encouraging for the theory of braiding as a heating mechanism, one

should also be cautious in interpreting such observations too. Intuitively we can under-

stand that while two strands may appear to cross over in one image, they may in fact be

quite separate as seen from a different angle. This is one of several conclusions drawn

by the authors in [80], who ran relaxation simulations on braided field setups and com-

pared their synthetic emission profiles to their magnetic field structure, to clarify what

we can safely conclude from observations such as those studied in [21]. In addition

to noting the potential for the viewing angle to be misleading, the research poses that

the structure suggested by bright strands in observations does not necessarily match

exactly with field structure, and that a bright crossing does not guarantee reconnection

there. The findings do also state however that the lack of a braided appearance in ob-

servations does not mean that the underlying field is not highly tangled - a bright but



46

smooth patch in observed emission may still have a braided field topology.

Observations have also been used to determine how much Poynting flux (energy being

directed up from the photosphere) is created by photospheric motions and whether it is

sufficient, in theory, to heat the corona. For example, the ideal MHD treatment in [118]

used data from Hinode to calculate upper and lower bounds for the Poynting flux by

deriving photospheric motions from magnetograms. The authors were then also able to

calculate an estimate of the real Poynting flux for one particular observation and found

it fell between the calculated bounds. While this is only one experiment, it is encour-

aging to see observations supporting the idea that there is enough energy pumped into

the solar atmosphere by photospheric motions to account for the temperatures we see,

even if we cannot yet be sure of the dissipation mechanisms.



Chapter 2

Topological Entropy and Calculation

Methods

2.1 Topological Entropy

2.1.1 Motivation

A key part of this work is to investigate how the complexity of photospheric motions

affects the braiding of field lines in coronal loops, and subsequent heating of the plasma

via magnetic reconnection. The quantity chosen to measure the complexity is the topo-

logical entropy. The concept of topological entropy was first developed by the authors

in [1] in 1965 concerning continuous mappings, and has since been applied to situa-

tions such as quantifying the efficiency of mixing in [14] and later to flows where the

stirring is created by point vortices in [13]. The mathematical definition of topolog-

ical entropy makes it difficult to calculate directly. Instead, one can estimate it from

the rate of stretching of a material line subject to the mapping. This concept has been

47
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considered by many authors, including those in [63], and numerical algorithms de-

veloped, such as those described in [103]. The method considers a material line in a

two-dimensional fluid flow, where particle motions on the surface mix the fluid, acting

as stirrers. When referring to particles, this can mean physical particles in a fluid, fluid

elements, or whatever is pertinent to the work. As the fluid is mixed, the original mate-

rial line is stretched and folded repeatedly. The entropy is a measure of the maximum

rate of stretching of the line, so the extent to which the fluid has been mixed, with the

application of the mapping which describes the mixing motion. For certain maps, such

as the ‘horseshoe map’ of chaos theory where a material is stretched then folded over

and over, the stretching can be calculated analytically. The trajectories of particles can

be plotted in a space-time diagram, with time increasing along the z-axis. This gives

a ‘spaghetti plot’ where the trajectories are lifted up in time producing a braid. The

greater the entanglement of the strands of the braid, the more thorough the mixing and

the greater a material line on the surface is distorted. So the higher the entropy, the

higher the complexity induced by the flow. This relationship between braids and topo-

logical entropy can be exploited to provide a way of calculating entropy, as described

in [103] and here in Sections 2.1.6 and 2.1.7. We will expand on the mathematical

theory behind topological entropy in Section 2.1.3.

2.1.2 Photospheric driver and entropy

In our work the mixing will be carried out by the driver consisting of vortical motions

which will be described in more detail later. For the moment we will give a only brief

explanation to see the context for entropy. We consider a coronal loop, represented by

a uniform field, stretched out so that one set of footpoints is anchored in the lower z

boundary and the other in the upper z boundary. We now apply our vortical motions



49

at the lower boundary while keeping the upper boundary fixed. The basic profile of

the driver was chosen to produce braiding of field lines similar to that in the work

of [112], [114] and [82]. Our vortices are a pair of ‘blinking vortices’, so one twists

on, stirring the fluid, then switches off and the second takes over, stops and the whole

process repeats for as many periods as one wishes. The aim is to alter properties of

this driver and then measure the topological entropy given by each scenario. We can

then determine if there is a correspondence between the entropy and the amount of

heating taking place as field lines reconnect in attempt to restore an equilibrium to a

field strained by braiding.

2.1.3 Growth Measurements

There are two main ways to measure the growth rate of a material line - the metric

growth or the topological growth. We will define these as in [12]. The function φt

is the fluid displacement due to the movement of stirrers, which in our case will be

particle trajectories. Take a material line γ to be a smooth arc or a simple closed curve.

If l0(γ) is the initial length of γ and lt(φt ◦γ) is its length after a time t under the stirring,

then the metric growth by time t is given by;

Lmet
t (γ) =

lt(φt ◦ γ)

l0(γ)
. (2.1)

The topological growth is more complicated. If an arc or simple closed curve is

wrapped in some way around particle/rod stirrers, we can think of tightening it around

the stirrers, without letting it pass through them, contracting the loop to its shortest

possible length. To measure topological entropy a 2D flow will be considered over

some area, so we can think of this flow being defined within boundaries. Now, two

curves are homotopic if one can be continuously deformed into the other. We call an
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arc essential if both of its endpoints are on a flow boundary, and essential arcs are ho-

motopic if the homotopy between them keeps their end points on the same boundary.

A simple closed curve is essential if there is no homotopy which deforms it to a single

point or the boundary itself. If we defined the set of essential curves homotopic to γ

as its homotopy class [γ], then we take from this set the curve with the shortest length,

i.e. the one wrapped most tightly around string particles, giving a topological length

for γ of;

Ltop(γ) = min(l(σ) : σ ∈ [γ]). (2.2)

The topological growth rate can then be defined as;

Ltop
t (γ) =

Ltop(φt ◦ γ)

Ltop(γ)
(2.3)

Seeing as the topological growth rate uses the shortest possible length, it follows that

Lmet
t (γ)≥ Ltop

t (γ). (2.4)

Now, if we consider all possible essential curves under the influence of a flow φt ,

the topological entropy is defined as the supremum of the metric growth rates of all of

these possible curves in the limit of t approaching infinity. We note that the topological

entropy uses the metric growth rate, not the topological growth rate. It is referred to as

a topological quantity due to a variational principle link with the metric entropy: the

topological entropy maximises the metric growth rate. Further details of these concepts

are beyond the scope of this work, but can be found in [6]. The complex derivation of

the formula for topological entropy is also unnecessary for our purposes, so we simply
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present the formulae given in [12];

htop(φt) = sup
(

limsup
t→∞

log(Lmet
t (γ))

t
: γ is a smooth arc

)
(2.5)

The topological growth rate can however tell us about the nature of the topological

entropy, a fact that is exploited by the Thurston-Nielsen Theorem.

Thurston-Nielsen Theorem

The Thurston-Nielsen theorem or trichotomy gives us a link between the topological

growth rate and the topological entropy resulting from different fluid motion.

If for every essential curve there exist real constants C1,C2 > 0 and λ > 1 with C1λ t ≤

Ltop
t (γ) ≤ C2λ t then we can say the topological growth rate is exponential, and by

Equation 2.3, that the metric growth rate is also exponential, and therefore:

htop(φt) ≥ limsup
t→∞

log(Cλ t)

t

= limsup
t→∞

log(C)+ t log(λ )
t

= limsup
t→∞

log(C)

t
+ log(λ )

htop(φt) ≥ log(λ )> 0

This is known as the pseudoAnosov (or pA) case, where the mixing is highly complex.

If however Ltop
t < Kt,K > 0, we say the fluid motion is finite order, or fo, and mixing

is not as complex. Here we cannot deduce if the metric growth rate is always linear or

exponential, only that any essential curve γ can be deformed into a curve in the same

homotopy class with linear topological growth. Also, although a pA motion means

exponential growth and positive entropy, positive entropy does not necessarily mean
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universal exponential growth and a pA motion. There could be exponential metric

growth rate locally somewhere, resulting in a positive entropy, and still the underlying

topological growth rate could be linear. If the topological entropy approaches zero

in time then we can say the metric growth rate must be linear and therefore so is the

topological growth rate and so we are finite order. If neither a finite order or pA regime

hold, then the case is reducible, and the surface of motion must be able to be split into

fo or pA subsurfaces.

2.1.4 Comparison to Lyapunov exponent

To further understand the concept of topological entropy we can compare it to the Lya-

punov exponent, another quantity which indicates complexity and chaos in systems.

This is a measure of how quickly trajectories, which are initially close together, move

away from each other over successive iterations or time. Consider a discrete, one di-

mensional mapping whereby:

f (xi) = xi+1,

so an orbit starting at x1 is mapped to x2, then x3 and so on, such that the trajectory is

given by the set of points (x1,x2,x3, ...,xn). Letting f ′(xi) represent the derivative at xi,

the Lyapunov exponent of the trajectory beginning at x1 is given by:

λ (x1) = lim
n→∞

[
1
n
(ln| f ′(x1)|+ · · ·+ ln| f ′(xn)|)

]
. (2.6)

A positive value for this would indicate chaos, with the difference between successive

points in the trajectory increasing at an exponential rate. One can study many system

trajectories and if the largest Lyapunov exponent is positive then the system is chaotic.



53

The concept is generalised to analyse multidimensional and continuous mappings also.

Further information can be found in [119] and references therein. As mentioned how-

ever, this is a quantity which considers trajectories starting close together and describes

their rate of divergence, often over a small scale. We want to quantify the degree of

entanglement of trajectories on a global scale, from particles covering a whole plane,

which is what the topological entropy provides. The topological entropy estimation

method presented in [103] needs only particle trajectories in order to supply us with a

sense of the degree of mixing on the surface from any set of chosen starting points.

2.1.5 Braids of Trajectories and Braided Fieldlines

As mentioned before, a finite set of particle trajectories can be plotted in time to give

a space-time diagram, which can also be described as a braid. Firstly, however, we

should make a distinction between the braid describing the particle trajectories in

space-time and the physical braid of field lines resulting from the action of particle

motions which we have previously discussed.

Since the field is constructed of fieldlines anchored in the photosphere, each footpoint

can be thought of as representing a seed particle. We are considering a coronal loop,

where the fieldlines are of finite length and close at the surface. In this close to ideal

environment, the overlying field will be imprinted in some way by photospheric mo-

tions. In this case the 2D footpoint motion mapping will translate to a 3D tangling of

the associated fieldlines.

Assuming ideal conditions, the stirring motions on the photosphere would result in

field lines being braided as per the braid of trajectories, giving the same topological

picture to the space-time diagrams. In our simulations we will have resistivity therefore

the picture will not be so similar - we expect reconnection to be taking place which

obviously would lead to a different picture of crossings in the physical field line braid
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than in the braid of trajectories.

Our approach is to apply vortices to carry out the mixing, in analogy to the stirrers

in [13]. A question to consider is: where should we place our vortices? Intuitively

we can see that there will be some configurations which induce either a maximum or

minimum entanglement. Let us consider the limiting cases.

Initially consider placing a pair of vortices of opposing circulation on top of each other.

The first vortex would twist strands and stretch a material line on the surface. The

second vortex would then twist the other way, undoing the previous action: net mixing

is zero and tangling is cancelled out. One vortex injects positive helicity and the other

injects the same amount of negative helicity. If we start to move one vortex away, less

mixing is undone and the field remains more braided: the driver has higher entropy.

If the vortex centres are placed far enough apart, the action of each vortex may have

very little effect on that of the other (each vortex will have an exponential profile so

their influence falls away exponentially with radial distance); the field tangling is less

complicated again; the driver has lower entropy. So there will be some point in between

the extremes where we see a maximum tangling and highest topological entropy. If we

think of the same argument for vortices twisting in the same sense, we can predict that

we will have a similar optimum distance for highest entropy. In this case however, the

action is more coherent - one vortex on top of the other does not undo, but continues

to twist the field tighter, into a helical structure rather than one with strands crossing

over each other. Instead, helicity into the system is always positive, always increasing,

but we would expect generally lower entropies with fieldlines weaving in out less.

The helix will become looser as the vortices are moved further apart, until once again

we have vortical motions whose effects are not felt by the other. Varying the vortex

placements in our entropy tests will give us an idea of how to achieve the greatest

entanglement of trajectories. Once again we should keep in mind that this optimum
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would be for an ideal environment where any crossing of trajectories is preserved and

is therefore an estimate for our resistive framework.

2.1.6 Flow and Braid Entropy

So how can braids (now in the sense of entangled particle trajectories) be used in the

determination of the topological entropy of a flow, which will subsequently be applied

to a three dimensional magnetic field?

Mathematically, the topological entropy of a flow, h f low, is calculated considering the

growth rates of all possible material lines in the flow and taking the supremum. Clearly

this is difficult in practice. Therefore we estimate the entropy of the flow using braids.

We choose to follow certain particles and their trajectories become the strands of the

braid, and calculating the topological entropy of the braid gives a lower bound estimate

of that of the whole flow. Clearly then the more trajectories we consider, the closer we

are to a continuous flow, and the closer to the true entropy value. If we follow n

particles then;

h f low ≥ h(n)braid (2.7)

As n increases the better our estimate to the entropy of the flow becomes (see [33]).

There are various ways of calculating h(n)braid but a simple method is first described

in [62]. A numerical code for the entropy calculation developed from this idea is

presented in [103]. This is the algorithm that we will implement. We first give an

explanation of some theory behind the method before considering specifics of the code.
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2.1.7 The method

The approach is to calculate the trajectories of particles seeded at random points and

advected by a flow, giving our braid. We can split the braid into units, where each unit

corresponds to one crossing between a pair of strands (strands being the two dimen-

sional trajectories plotted in time). Each unit is called a ‘generator’, given by:

1: σi for a clockwise twist between strands i and i+1 (from the 2D viewpoint shown

in diagrams this looks like strand i passing underneath strand i+1), or;

2: σ
−1
i for strands i and i+1 twisting around each other in an anti-clockwise sense (in

this case the 2D visualisation shows strand i passing over strand i+1).

This is illustrated in Figure 2.1. The braid can be encoded by the set of generators

which describe each unit of the braid, ordered in time.

Figure 2.1: Generators σ representing crossings between strands. Taken from [103].

In practice, when considering a 2D flow, we project the trajectories on to the horizontal

axis (or some other preferred projection line) and then calculate our string of generators

according to how trajectories move on this line. If we have n particles, we will have
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n− 1 possible crossings, so n− 1 generators. How do we now use these to calculate

the effect on a material line?

We insert an arbitrary, non-self intersecting closed loop wrapped around the seed par-

ticles (again note the difference between referring to a loop in this context, and our

discussions of coronal loops) whose braid of trajectories is now encoded by braid gen-

erators. We can then encode this loop by counting the crossings of the loop around

the particles. Figure 2.2 is taken from [103] and illustrates the general set of ‘crossing

numbers’ used to do this. The topology of a material loop being stretched in a flow

is determined by some set of i particles moving according to the flow. The loop will

be wrapped around and between these points in some pattern. The particles can be

positioned along an axis, such that loop topology is unaffected, and numbered from

left to right, from 1 to n. We then count crossings of the loop relative to the particles’

positions. Breaking up the picture of the particles such as with the vertical lines in

Figure 2.2, anytime the loop crosses a vertical line we count a loop crossing. There are

two types of crossing:

1. Those labelled νi, i = 1...n− 1, represent the number of times that the loop

crosses the vertical line between particles i and i+1;

2. For particles i = 2..n− 1, µ2i−3 is the number of crossings of the loop with the

vertical line through that particle’s position above that particle. The values of

µ2i−2 are the number of crossings under particle i.

To further illustrate, see Figure 2.3, where we elaborate on the example given in [103].

A simple closed loop is shown in red, wrapped around 5 particles. In the top diagram

we point out with arrows where crossings occur between particles, across the purple

vertical lines. We can see that between particles 1 and 2, the red loop crosses the purple
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Figure 2.2: Crossing numbers. Figure taken from [103]. µi indicates a crossing of loop
with the vertical line above or below a particle, while the νis is a crossing between
particles.

line twice. Therefore ν1 = 2. In the second plot we point out the crossings above and

below particles, across the orange vertical lines. For example, above particle 2 the loop

crosses the orange line twice, so µ1 = 2, but it does not cross the orange line below

the particle, so µ2 = 0. The set of numbers (ν1,ν2,ν3,ν4,µ1,µ2,µ3,µ4,µ5,µ6) then

represent this loop.

Once we have obtained the crossing numbers we can use them to find the the minimal

set describing the loop, known as the Dynnikov coordinates (see [30]), by the formulae:

ai =
1
2
(µ2i−µ2i−1) (2.8)

bi =
1
2
(νi−νi+1) (2.9)

u = (a1, ...an−2,b1, ...bn−2) (2.10)

The vector u gives us the algebraic representation of a material line lying in a flow.

We can use this to quantify how stretched it becomes in the flow by calculating the
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Figure 2.3: Illustrated crossings for a loop, with loop topology taken from the example
in [103]. Arrows indicate the crossings that contribute to the value of each ν and µ .
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number of intersections of the loop with the real axis (represented in Figure 2.3 by the

horizontal line through the particles). The more crossings the more tangled the loop

must be becoming. There is literature on the derivation of a formula for this (see [62])

but these specifics are not our main concern. The crux of the matter is that a formula for

the minimum number of intersections of the loop around the particles can be obtained

from u, as quoted in [103] is;

L(u) = |a1|+ |an−2|+
n−3

∑
i=1
|ai+1−ai|+

n−1

∑
i=0
|bi| (2.11)

b0 =− max
1≤i≤n−2

|ai|+b+i +
i−1

∑
j=1

b j

 , bn−1 =−b0−
n−2

∑
j=1

bi

b+i = max((bi,0)

So now we have a way to encode the action of a flow by using particle trajectories

to obtain our braid, a way to describe a material line lying in the flow, and a way to

quantify how this loop is being stretched by the flow. In other words, we have all the

ingredients we need to calculate the entropy of the braid. We can apply the action of

the braid to an encoded material line, update the crossing numbers of the line (using

the update rules presented in [103]), and then calculate the number of intersections

now occurring. The rate of increase in intersections with many iterations gives us an

estimate to the entropy.

2.2 MATLAB code and braidlab

We will briefly describe the numerical procedure used for estimating topological en-

tropy, which uses MATLAB functions and the package braidlab. The braidlab software
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and user guide (see [104]) is available through www.math.wisc.edu/˜jeanluc/

software.php.

We first generate a set of random seed particles in the domain of interest. Using the

expression for the motion velocity (for us our blinking vortices) we can solve for each

particle’s position at regular time intervals up to a time tmax. With these trajectories, we

use the braidlab function ‘braid’ to find the generators describing the braid created by

them. These can then be passed to another braidlab function, ‘entropy’, which applies

the braid to a random initial loop for a user-defined number of iterations, and counts

the intersections of the loop with the real axis, using the techniques discussed previ-

ously. The estimate for the entropy is updated at each iteration: after an application

of the braid, the estimate is set to the logarithm of the number of intersections minus

the logarithm of the number of intersections after the previous application. Then the

new estimate is compared to the previous estimate, and if the absolute value of the

difference between them is less than some user-defined tolerance, the code stops and

the latest estimate is taken to be the entropy. Once we reach a point where each it-

eration adds the same number of intersections (to within the requested tolerance) we

can quantify how complex the flow is. The larger the number of intersections the flow

is able to induce, the higher the degree of stretching of the loop, and the higher the

entropy of the flow.

2.2.1 Issues to be Aware of

While the procedures described give good estimates of the topological entropy for

many cases, it is possible to run into problems, such as those we found.

www.math.wisc.edu/~jeanluc/software.php
www.math.wisc.edu/~jeanluc/software.php
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1) Initially, we calculated the braid created by particle trajectories over only one driving

period. We found that our simplest, least tangling case was producing higher entropy

values than what should have been the more complex cases, which intuitively can be

determined to be incorrect. This was found to be due to the error introduced due to

the fact that we do not have a true braid, in that the starting points do not match the

finishing points. Running the driving for more periods and calculating a longer braid

to apply repeatedly to the material line renders the error of closing the braid negligible,

and we obtain an entropy per period. There is a balance to be found - how many peri-

ods gives a satisfactory accuracy without being too computationally expensive? This is

something we will discuss further when we come to detail the calculations in Section

3.1.3 .

2) The above solution caused its own problems - running the driving for enough periods

to obtain accurate estimates sometimes resulted in such long braids that we exceeded

the computational limit. At this time the best option was to use the braidlab function

‘complexity’. The entropy function applies the braid action to material line multiple

times, iterating until the number of intersections with the real axis converges, which

can lead to very large numbers. On the other hand, the complexity function only ap-

plies the braid once, thereby avoiding this problem.

2.2.2 Complexity

For the results used in the following chapter, we calculated the complexity of the driv-

ing action, where the complexity is as defined in [29]. In this description when we

say complexity and entropy we are referring specifically to the complexity and entropy

functions of the braidlab package. Take the braid generators representing the action of



63

Figure 2.4: Curve diagram for the set E (blue lines) sectioning off the red seed parti-
cles.

the flow to be β . This braid will act on the set of curves E, illustrated for an example

with 5 seed particles in Figure 2.4. For a system with n particles, E will have n− 1

curves.

The five seed particles are the red circles along the horizontal axis. The set E consists

of the blue lines and sections off each seed particle from the others, with each arc an-

chored on the boundary - these are essential arcs, rather than the random loop as in

the entropy process. Each curve is referred to as being tight with respect to the real

axis (the horizontal line through the seed particles), i.e intersects at right angles. Now,

rather than applying braid generators repeatedly to one material line wrapped in some

way around our initial seed particles as discussed for the entropy method, the complex-

ity method applies β to E once, and counts the intersections of the transformed curves

with the real axis. Since the number of intersections can increase exponentially even
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with one application, the logarithm of this is taken. The logarithm of the number of

intersections of E before braid action is deducted, leaving us with the intersections due

specifically to the braiding. This is described mathematically in [29] by the formula:

c(β ) = log2‖β ·E‖− log2‖E‖ (2.12)

where the norm represents the number of intersections. There is of course also the

option of using entropy and applying just one iteration, to keep numbers down, but

we would lose accuracy. We can instead apply the braid representing many periods

of our driving flow to E and see how the number of intersections increases this way.

Studied over many periods, both the complexity and entropy functions will describe

the increase in the length of a loop in the long term, and become comparable, with

the complexity function having the advantage in terms of efficiency. It is not pertinent

to us to consider further details of the complexity concept - we simply need a way to

quantify the relative degrees of braiding induced by different driving motions and we

have one - but more information can be found in [29].

Illustration To further justify our use of the complexity, Table 2.1 shows the gradual

convergence of the complexity and entropy to similar values for one of the braiding

cases we will investigate in full in later sections. Running this particular driving profile

on one set of seed points for many periods and examining the entropy and complexity

after each period reveals that both eventually converge, and to values of the same order

of magnitude. Note that the complexity estimate is larger particularly in the beginning;

this is due to the fact that this function applies the motions to E, rather than to one

loop only, so there are likely to be more intersections straight away. They will never

give exactly the same values due to differences in the algorithms, but entropy calcula-

tions using braids are estimates anyway. Number of periods, number of seed particles,
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Quantity After 1 period After 20 periods After 80 periods
Complexity 5.598 0.576 0.321

Entropy 3.248 0.365 0.216

Table 2.1: Entropy versus complexity.

area driven, tolerance to convergence, number of points solved for along particle tra-

jectories etc, can all affect the result. Furthermore, as long as we consistently use the

complexity function for all drivers, then it is still valid to compare and contrast the

numbers, even if those numbers do not match those which would be produced by the

entropy function. The results will be consistent with each other. We will later detail the

pragmatic parameter choices made in order to achieve reliable but practically attain-

able results. These numbers also further illustrate the earlier point of how applying a

braid one period long does not provide an accurate result when the braid is not closed.

It is only as we apply a braid of more and more periods that the quantities converge

towards their true estimates.



Chapter 3

Photospheric Driver, Magnetic

Environment and LARE3D

3.1 Photospheric Driver

3.1.1 Concept

The convective motions on and below the solar surface are understood to cause vortical

plasma flows, as material which has emerged from the convection zone cools and falls

back below the surface (see [65] for a full review of surface convection.) Plasma may

swirl, like water down a drain, around downdrafts at intergranular lanes. Observations

have also found evidence of this. Vortices on the scale of 5 Mm in diameter were ob-

served and studied in [16] as granules were seen to swirl around each other for at least

a duration of 1.5 hours. Vortical motions on a smaller scale have also been observed

more as telescopes have become more and powerful. The authors of [11] discuss ob-

serving vortical motions on a smaller scale indirectly using their effects on magnetic

bright points. By examining the trajectories of the bright points as they were dictated

66
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by the ‘whirlpools’, the authors estimated a lower bound of 0.9× 10−2 such vortices

per square megametre, each one affecting the surface plasma over an area of around

half a megametre squared, with lifetimes of around 5 minutes. The review [66] refers

to a series of papers which highlight observations of the action of vortical flows, again

flagged up by the motions of bright points which were influenced by the presence of

the vortices, for example in [5], which considers motions lasting about 20 minutes.

In fact, vortical flows have even been seen to occur spontaneously in the modelling

of solar convection, such as in the experiments in [100]. Clearly then these types of

motions are frequent and occur on a range of scales. This evidence, coupled with the

intention to continue in the style of previous braided field simulations, led us to design

the following driving functions.

The driver that will induce the braiding consists of ‘blinking vortices’, with incom-

pressible velocity profiles. By ‘blinking’ we mean that each vortex spins alternately,

each one blinking on and off: one vortex begins to spin, reaching a maximum speed,

then slowing to a stop, at which point the second vortex follows this same pattern,

after which one period of the driving is completed. This periodic action will be ap-

plied repeatedly throughout the simulations. On the Sun, photospheric motions are

constantly distorting the atmospheric fields so we will also apply our mixing for the

duration of our experiments.The vortices are positioned in the x− y plane, which for

us represents the photosphere. They were initially chosen to behave in this blinking

fashion, with opposing directions of twist, in order to create a braid similar to those

studied in [112]. In these papers the so-called pigtail braid was the initial condition for

simulations. Here we wish to take further the ideas of this work, and create the braid-

ing by boundary motions as part of the experiment to assess the impact of the braiding

action. In an ideal case, imposing three full periods of this type of driving on a uniform

ez field would create a braid with six pockets of twist as in the E3 braid used in [112].
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Note that in this work, since we are concerned with identifying the impact of particular

types of driving motions, we are constructing a driver which can be adapted to create

different quantifiable categories- not the most physically realistic driver based on ob-

servations. At this stage, we wish to be able to say if one category of motion seems

to give rise to a certain type or level of heating. This is intended to be a somewhat

idealised set-up. Nevertheless, we can point back to the observations of [11] where the

authors concluded that vortices with clockwise and anti-clockwise twists occur with

roughly the same frequency - this would correspond to our oppositely twisting case.

Furthermore, the freedom to choose normalisation constants for simulation results (as

we will elaborate on in Section 3.3) means that in theory, the vortices designed could

represent flows of the sizes studied in the aforementioned observational papers.

Taking this idea further we also consider blinking vortices with equal circulation. Let

us explore in detail the characteristics of systems under the influence of such types of

motion. Recall the limiting cases we discussed in 2.1.5, i.e. the two extremes where

we could have the vortices centred at the same point, or at an infinite distance from

each other. Here we elaborate on these ideas.

Consider an ideal case with no diffusion. Intuitively we predicted that the case of

oppositely twisting vortices will provide opportunity for more heterogeneous, complex

mixing. With both vortices placed at the origin, the twisting of the second vortex will

undo, in an ideal case, the action of the first vortex and any braiding will be undone.

In addition, helicity injected by one vortex will be removed by the alternate twisting of

the other. At an infinite distance from each other, the tangling induced by one vortex

will be unaffected by the other, so the degree of complex tangling will be low. The

overall helicity in the whole volume will be zero again since the total twist will cancel

out. At some point between these two extremes we will see a maximum of complex
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tangling, when vortices are at a distance apart where twisting of some fieldlines and

counter twisting of others will induce maximum criss-crossing, creating a braid with

the most intricate tangling. Still however, in an ideal scenario the total helicity in the

domain will be zero. In a real life resistive case, diffusion and reconnection can occur,

so a twist of one sense will not necessarily be followed by a twist of the opposite sense

such that helicity is exactly cancelled out, but in general here we will have a very low

helicity environment.

A further thought experiment can be considered for a scenario where both vortices

twist with equal circulation. If both vortex centres are the same, the twisting of the

second vortex will only add to the twist of the first. Each action will continue to twist

the overlying field into a tighter spiral. Fieldlines will not criss-cross in different di-

rections, but wind round together in a tight, coherent, helical structure. Therefore the

tangling is less complex. Similarly for vortices placed at a distance of infinity - but this

time we will see two helical structures formed in twice the time. In both cases, only

twist in one sense will occur. In fact in a purely ideal scenario where all other bound-

aries are magnetically closed, the total helicity in the volume will increase indefinitely

at the same rate for both cases. Even at points in between these two extremes we

would still see the twist increase consistently. This scenario will always add helicity.

The complexity of the braids created however may vary as we place the vortices at a

distance in between the two extremes, and the tightness of the spiral will vary. Twisting

will still be of the same sense, with fieldlines winding around in a consistent fashion,

but not symmetrically around one axis, so there will still be some point of maximum

complexity.

Summarising this then, we have formed Table 3.1. Taking the above arguments into

account, we can say that the oppositely twisting case will have lower helicity and

higher complexity than the equally twisting case.
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Case Circulation Complexity Helicity
1 Opposite Complex Low
2 Equal Coherent High

Table 3.1: Driver Properties. Circulation refers to the relative directions in which the
blinking vortices will spin.

3.1.2 Driver Design

Now that we have explored the type of simulations we wish to create with a blinking

vortex photospheric driver, we move on to the specifics of the driving profile.

We want to create a system whereby we can easily adjust the distance between vortex

centres and the direction of twisting. In addition, we want to be able to control the rate

of ramping up and down, the amplitude of driving and speed of driving. Let us choose

now to centre one vortex, v1, at (0,0), and the second, v2, at (x0,0). Also, set v2 always

to rotate clockwise, while v1 will spin anticlockwise for Case 1 and clockwise for Case

2. Then the velocity components are given by:

vx(x,y, t) = A1(t)kyexp

(
−x2− y2

a

)
+ A2(t)yexp

(
−(x− x0)

2− y2

a

)
,

vy(x,y, t) =−A1(t)kxexp

(
−x2− y2

a

)
︸                             ︷︷                             ︸

from v1

− A2(t)(x− x0)exp

(
−(x− x0)

2− y2

a

)
,︸                                               ︷︷                                               ︸

from v2

where A1 is the time dependent factor for vortex 1, and A2 the time dependence of

vortex 2. We will choose a = 2, thereby making the circle of influence of the vortices

comparable to the region of twist in [112]. The constant k will determine which way

v1 is spinning: k = −1 will set it anticlockwise for Case 1, while k = 1 will set it

clockwise for Case 2. Now consider the time-dependent terms. Over the first period
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t = [0 : 2L], we wish to have only v1 spin over the first half period L and only v2 over

the second half period L. We set:

A1(t) =



a 0 < t < π

m

2b π

m < t < nπ

m

c nπ

m < t < L

0 L < t < 2L,

A2(t) =



0 0 < t < L

a L < t < L+ π

m

2b L+ π

m < t < L+ nπ

m

c L+ nπ

m < t < 2L,

where:

2b : amplitude of maximum driving

a = bcos(mt−π)+b : ramping up,

c = −bcos(mt)+b : ramping down,

L = (n+1)π/m : half period.

The constants m and b affect the slope of the ramp up and down, n the duration of

maximum driving and therefore the period, and additionally b also dictates the ampli-

tude of the driving. Incorporating this all together then we have an expression for one

period of driving.

The constants m,n and b were chosen using trial and error in order to meet loose crite-

ria. We wish the maximum driving speed never to exceed ∼ 10% of the initial Alfvén

speed, maintaining relatively slow motions. The twists in the E3 braid of works such

as [112] twist the field by a maximum of ±π , and we are taking inspiration from this

research. The driver does not twist by a uniform amount as we move radially away

from vortex centres, so particles starting at different points will be mapped by different
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angles. We chose constants such that the maximum twist induced by each vortex will

be about |π|, also. This was judged simply by eye using plots of trajectories of seed

particles - it is not exact. The maximum velocity occurs at radius of about 1 from the

vortex centre and for a particle starting at (1,0), the action of vortex 1 in Case 1 brings

it to sit at about (−1,0). In Case 2 a particle seeded at (−1,0) will be moved to (1,0)

by the first vortex. Only particles starting on the circle of radius one centred at a vortex

will be moved by |π| by the action of that vortex. The resulting function has a total

period of 24π time units. That is, the first vortex will ramp up in π time units, drive

at its maximum for 10π , and ramp back down to a stop by 12π units, after which the

second vortex does the same in the same time. The values giving these properties and

those used in subsequent experiments are: m = 1, n = 11, b = 0.075.

Recall in Chapter 1 the discussions of relative helicity. We deduced that the helicity

current can be calculated by:

−
∫

S
(A ·v)BzdS. (3.1)

We can calculate the helicity each driver induces using the presented formulae and

setting Bz = 1. If we set:

Ax =−
y
2
, Ay =

x
2
,

then plugging these into Equation 3.1 and following through the indefinite integrals

gives;
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Flux from Vortex 1 :−2πkA1(t)

Flux from Vortex 2 :−2πA2(t).

Note that this does not depend on x0, so we know the helicity wherever we choose

to place the vortices. Over the course of one period then for the oppositely twisting

vortices, k =−1, and:

H1 = Hv1 +Hv2 (3.2)

= −

(∫ 12π

0
+2πA1(t)dt−

∫ 24π

12π

2πA2(t)dt

)
(3.3)

= −32.57+32.57 = 0. (3.4)

For the equally twisting case, k = 1, and:

H2 = Hv1 +Hv2 (3.5)

= −

(
−
∫ 12π

0
2πA1(t)dt−

∫ 24π

12π

2πA2(t)dt

)
(3.6)

= 32.57+32.57 = 65.14. (3.7)

These are in the same non-dimensional units used in the simulations we will carry out

later. We now know exactly the helicity each driver is able to inject over 1 period.

All of the Case 1 drivers, regardless of x0, will overall inject no net helicity. All Case

2 drivers, again regardless of x0, can inject 65.14 units of helicity each period. The
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last step is to extend this to an infinitely periodic function which can be applied at the

lower z boundary for as long as we choose, by setting time t to be the time modulo

2L in the above expressions when programming this boundary condition in Lare3d, so

this driving is repeated for the simulation duration.

3.1.3 Calculating Complexity

We return to the concept of topological entropy: our method of measuring the different

drivers’ abilities to create complex fields. It is pertinent to assess the impact of different

types of motions on potential heating. Remember our work is concerned with the

argument about whether reconnection of braided fields can contribute to a background

level of heating in the solar atmosphere. Fields can be braided in different ways by

different types of photospheric motion, so carrying out this analysis will allow us to

describe how different categories of motion could lead to heating.

We have discussed how the complexity of the tangling induced by driving will depend

on where the second vortex centre x0 lies along the spectrum of x = 0→ ∞. Therefore

in our calculations we wish to examine each driving function for different values of x0.

In this work we ran many tests to help decide the best course of action with regards to

this and also due to the issues discussed in Section 2.2.1. Let us recap a little before

we continue.

The code provides an estimate to the true entropy of a flow by estimating the entropy

of a braid of trajectories, where the trajectories are the paths of seed particles in the

flow across a two dimensional plane lifted up in time. Therefore, the more particles we

follow, the closer our estimate to the true value. Further, the braid of trajectories from

our flows are not true braids in the sense that they are not closed: at the end of a driving
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period the particles have not returned to their starting point. Therefore there is an error

which can lead to non-zero entropies where there should be zero entropy. We get

around this by calculating the entropy of a braid constructed from more periods of the

flow velocity to find an entropy per period, which reduces the error and gives a more

accurate answer. We also talked previously about the fact that the entropy programme

in the braidlab package we use iterates many applications of a braid, and in some cases

repeatedly applying a long braid can lead to attainment of the computational limit and a

failure of the code. We moved instead to using braidlab’s complexity function, which

also gives a sense of the degree of tangling induced with values comparable to the

entropy function over many periods, without leading to overflow since it only applies

braid action once.

With all of this in mind, we summarise the tests carried out to determine the parameters

to use.

We constructed tables of data, whereby we calculated the complexity of a braid con-

structed by n particles over m periods. Time and computational power must be taken

into account - we could run for more periods or for more particles but the increased

accuracy may not be great enough to justify the extra calculations. Tests were carried

out where both values ran from 10 upwards by 10, such that m = n = 10 gave the

least accurate answer. From previous tests using the entropy function we judged that

the value x0 = 2 for oppositely twisting vortices would be around the point where we

would have the most complex braids. Therefore, if we could carry out analysis for this

point with our chosen m and n, we would hopefully not run into difficulties for other,

simpler braids. For x0 = 2, Case 1, then, we judged the payoff between accuracy and

computational expense to be around n = m = 110.

Now, the seed particles are randomly generated by the code from an area which changes

with x0. We want to fairly capture braiding created by each set-up, and as x0 increases,
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the influence of the driving will be felt over a larger area. Vortex 1 will remain at (0,0),

and the influence of each vortex has tailed off beyond a radius from the centre of 2.5.

Therefore the x co-ordinate of a seed particle will be x∈ [−2.5,x0+2.5]. In y we select

random particles between y ∈ [−2.5,2.5].

Clearly, because we are dealing with randomly selected seed particles, we can run the

same experiment twice and get a slightly different answer. To account for this, and

since the accuracy of an experiment is always improved by repeating and averaging,

for each x0 we run the code for the same five sets of randomly selected particles and av-

erage the results over the five realisations. This also allows us to calculate a confidence

interval to show the variation depending on the initial set of seed particles.

Once our seed particles are chosen, their trajectories under the influence of each type of

driver described previously are calculated, and the complexity of the braid determined.

Finally, we can present our results. Varying x0 between 0 and 4 at intervals of 0.25, we

end up with Figure 3.1.

The two main features of Figure 3.1 are:

1) In general, Case 1, with oppositely twisting vortices and zero net helicity injection,

gives rise to larger complexity (with the exception of x0 < 0.5, which we will discuss

shortly). This is as we predicted - the crossing over of fieldlines induced by Case 1

leads to complex tangling, whereas Case 2 leads to more coherent twisting and there-

fore simpler braids.

2) For both cases, the entropy reaches a peak at some value x0p > 0 before declining

towards zero for x0 > x0p . Once again, this is as expected from thought experiments

about the interaction between vortical motions at various distances.
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Figure 3.1: Entropy comparison for varying x0 for the high and low helicity cases.
Points are plotted at the mean value calculated for each run from multiple tests. The
solid line corresponds to oppositely twisting case where helicity injection is zero, while
the dashed line represents the equally twisting vortex case, which injects helicity con-
sistently.

We address the behaviour for x0 = 0. When both vortices lie on x0 = 0, the entropy

should mathematically be zero. In Case 1, a material line in flow will be stretched one

way and then stretched by the same amount again in the opposite direction. Repeating

this stretching does increase the length of a line, but the growth rate is linear. For Case

2, each twist stretches by the same amount in the same direction, so the growth rate

again is linear. A linear growth rate puts both cases in the finite order category of the

Thurston-Nielsen theorem discussed in Section 2.1.3, therefore the topological entropy

is zero. It is only as the vortices are placed further apart and the distortion of a material

line is less predictable and uniform that the opportunities arise for exponential growth

rates.
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Number of 1 10 100 150 200
Periods
Case 1 0.412 0.198 0.044 0.029 0.023

entropy
Case 2 5.927 0.923 0.124 0.087 0.068

entropy

Table 3.2: Convergence of entropy values when x0 = 0 towards zero when calculations
are made over more periods.

Clearly our calculations have a positive value for both scenarios which should have

zero entropy. However we can see that as we run the code for more periods, the value

does converge towards zero, and the values we have plotted here are due to the choice

of when to stop. We can check this by running calculations for these two scenarios for

even longer, as in Table 3.2. Notice that for Case 2 the estimate starts off much larger

and converges more slowly, explaining why we have a larger value for this coherent

case plotted in 3.1. After the first period of driving, the oppositely twisting case has

undone tangling - the net growth of a material line is small, and the error is mostly in

closing the braid as discussed in section 2.2.1. In the equally twisting case, twisting

is not undone by the second vortex, but added to, and the length of a material line

increases, with the addition of the error in closing the braid. It is only with repeated

application over many periods that it becomes clear that the growth rate of a material

line in the flow is linear, for both cases, as shown by the estimates’ direction of travel .

Taking all of this into account, we now select and categorise specific set-ups to run

full Lare3d simulations on. Since the coherent twisting of the high helicity case leads

to simpler braiding, we can refer to Case 1 as the complex, zero helicity case, and

Case 2 as the coherent, zero helicity case. Using Figure 3.1 as a guide, we choose

values of 0.5, 1 and 2 for x0 and run a Case 1 and 2 simulation for each. In total we

will have 6 runs to examine. This is all summarised in Table 3.3, where we quote the
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Run Circulation Helicity x0 Entropy (95% C.I) Category
1A Opposite 0 0.5 0.161±0.004 Complex
1B Opposite 0 1 0.786±0.017 Complex
1C Opposite 0 2 1.321±0.028 Complex
2A Equal 65.14 0.5 0.265±0.104 Coherent
2B Equal 65.14 1 0.444±0.046 Coherent
2C Equal 65.14 2 0.888±0.039 Coherent

Table 3.3: Entropy calculations with 95% confidence intervals for each driver and their
characteristics.

entropy values as the mean result of the multiple runs for each scenario with errors

corresponding to a 95% confidence interval.

Recall that this work aims to build on the findings of [112] which studied the ‘E3’ braid.

Our choice of set-ups does in fact include one which is analogous to the topology of

the E3 braid unit. For ease of explanation, consider tracing 3 fieldlines of E3 as Figure

2a of [112]. The braid is constructed of 3 units, each unit containing one positive twist

and one negative twist. This could be described by the braid generators σ1σ
−1
2 . The

three fieldines are rooted at x =−2,0,2. The regions of twist are centred at x =−1 or

x = 1, i.e a distance of 2 units apart along the x-axis. The photospheric velocity which

will be applied in Run 1C has oppositely twisting vortices, centred at (0,0) and (2,0),

making this the analogous case. Here the braid of trajectories of seed particles placed

initially at x =−1,1,3 (echoing the anchor positions of the E3 sample fieldlines) after

1 period of the flow can also be described as σ1σ
−1
2 . We plot these trajectories, with

time along the y-axis, of these seed particles over the course of one driving period in

Figure 3.2. The only difference between this braid and the first unit of the E3 fieldines

in [112] (apart from a shift along the x axis) is that due to the order of twisting (vortex

1 followed by vortex 2 as opposed to vortex 2 followed by vortex 1), the order of

interaction between fieldlines is altered.
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Figure 3.2: E3 braid unit illustration. Three illustrative fieldlines are plotted, showing
the one anti-clockwise and one clockwise twist which make up each fundamental unit.
E3 consists three of these units.

3.2 LARE3D

3.2.1 Code Features

This work uses the Lagrangian Remap code Lare3d. The code was developed by Ar-

ber, Longbottom, Gerrard and Milne, [2] and is available from http://ccpforge.

cse.rl.ac.uk/gf/. Having previously presented the MHD equations in a compre-

hensive, non-normalised form in Chapter 1, Section 1.1.4, we now consider the Lare3d

specific equations, including only the processes we are interested in for this work. The

code uses normalised MHD equations where quantities can be specified in terms of a

length-scale L0, magnetic field strength B0 and plasma density ρ0. The normalised 3D

resistive equations solved are;

http://ccpforge.cse.rl.ac.uk/gf/
http://ccpforge.cse.rl.ac.uk/gf/
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Dρ

Dt
= −ρ∇ ·v, (3.8)

Dv
Dt

=
1
ρ
(∇×B)×B− 1

ρ
∇P, (3.9)

DB
Dt

= (B ·∇)v−B(∇ ·v)−∇× (η∇×B), (3.10)

Dε

Dt
= −P

ρ
∇ ·v+ η

ρ
j2, (3.11)

j = ∇×B, (3.12)

where B is the magnetic field, v is the plasma velocity, j is the current density, ρ is the

plasma density, and j2 is the current density squared. The variable P is the pressure

which takes the form P = ρε(γ−1), where γ is the ratio of specific heats, and ε is the

internal energy density. We will return to the value for η in the next section.

To deal with potential shocks or gradient build ups, Lare3d uses artificial, or shock

viscosity. The formula for this is not included in the quoted equations since in a 3D,

resistive scenario in particular it is far from trivial, and involves many details that we do

not need to be concerned with for this work. The technique consists of adding a tensor

shock viscosity term into the momentum equation and energy equation, which is only

non-negligible where gradients become large enough. More details can be found in [2]

and the references therein.

The code allows the user to choose to include effects such as conduction, radiation and

gravity. At this point in our work we will neglect all of these: the coronal pressure scale

height is much larger than typical length scales so gravitational effects are negligible;

and we can assess the relative heating inputs of the different driving scenarios without

involving radiation and conduction, which would be a non-trivial task.
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It is possible to have uniform grid spacing, or to stretch the grid in any or all direc-

tions. In this work we keep the grid spacing uniform. The user can deploy pre-coded

boundary conditions of periodic, open and line-tied boundaries, or alternatively write

their own. Also user defined are the initial conditions, normalisation constants, resis-

tivity, resolution and physical grid - we will elaborate on our choices for these in the

following sections.

The code will output energy data along with the velocity and magnetic field compo-

nents, density, pressure and the numerical grid values.

Like many numerical codes, Lare3d uses finite differencing to solve the MHD equa-

tions. An important feature of Lare3d to be aware of is the fact that variables are set

up on a staggered Eulerian grid. This is most clearly illustrated in Figure 3.3, which is

taken from [2]. The magnetic field components are specified in the centre of cell faces

- Bx is defined at the centre of each cell face lying in the y− z plane, By at the centre of

cell faces along x− z and Bz in the middle of cell faces in the x−y plane. This allowed

the code writers to use existing numerical methods for maintaining the initial value of

∇ ·B. More straightforwardly, each of the velocity components are prescribed at cell

vertices, while all other quantities are prescribed at cell centres; further details can be

found in [2], but the reason for this is to avoid ‘checkerboard’ instabilities .

Lare3d follows a predictor-corrector Lagrangian procedure, where each timestep is

split into two. Updated variables are then mapped back onto the original Eulerian grid

at the end of the full time step. The advantage this method has over other MHD codes

is that it does not use equations in their conservative form which can lead to inaccurate

temperature calculations (further details on this can be found again in [2], but for now

more explanation is not pertinent to our work). Lare3d can deal with shocks in ideal

and resistive environments. The code is second order accurate in time and space.



83

Figure 3.3: Illustration of the staggered grid used in Lare3d. This taken from [2]. For
a three dimensional grid, all scalar variables are defined at the centre and all velocity
components at the cell vertex. Each magnetic field component is defined in the middle
of the cell face perpendicular to its direction.

3.3 Magnetic Environment

3.3.1 Simple Uniform Field

Our first set of experiments will each take a uniform field, ez, as the initial condition.

We will apply our six drivers to the lower z boundary and investigate the outcomes

of each after long duration driving. Figure 3.4 shows some fieldlines plotted over the

domain of our initial condition.

We will keep the upper z boundary fixed, as in Parker’s topological dissipation set-ups.

The x and y boundaries will be periodic, so that any flux lost across one boundary will

be replaced across the opposite boundary.

Unlike in entropy calculations where we varied the area of driving with x0 to take in a

proportionately fair amount of tangling, here we will keep the same physical domain
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Figure 3.4: Some field lines traced showing the initial condition for this set of runs.
We have a simple uniform field, ez.
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for each run, but ensure the x−y plane is large enough for all cases to include fieldines

under significant influence of the driving. Therefore, x ∈ [−5,7] and y ∈ [−5,5]. The z

axis ranges from 0 to 50 - this is somewhat arbitrary and gives an aspect ratio smaller

than is physically realistic, but computational expense and grid resolution must be

taken into account.

The normalisation process of the MHD equations is such that all normalisation con-

stants drop out and theequations are effectively unchanged. We can choose what to set

normalisation constants B0, L0, and ρ0 (and in turn all other normalisation constants

which are defined in terms of these) to later, as it makes no difference to the numbers

produced by the simulations and we may wish to interpret the simulation quantities for

different solar scenarios.

The length of the domain in simulations units is 50. The simulation Alfvén speed

(where hat variables are non-dimensional simulation variables) is as follows:

v̂A =
vA

v0
=

B0B̂√
µ0ρ0ρ̂

/
B0√
µ0ρ0

=
B̂√

ρ̂
.

So the time it takes for an Alfvén wave to travel from the lower z boundary to the top

of the domain is:

tA = 50

/
B̂√

ρ̂
.

Initially, we have a uniform field ez, so setting ρ = 1 gives us an Alfvén speed of 1 and

an Alfvén time of 50. Therefore our driving speed never exceeds 10% of the initial
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Property Value/Nature
x, y boundaries periodic

Upper z boundary line-tied, fixed
Lower z boundary line-tied, driven

Initial B ez
Initial v 0

Resolution 2563

Domain [−5,7]× [−5,5]× [0,50]
η 0.0005, uniform

Initial ρ ,ε 1.0,0.01
viscosity shock capturing form
Duration 45000 time units

596 driver periods

Table 3.4: Simulation details for the uniform field experiment.

Alfvén speed since we designed it to have a maximum speed of 0.1. We wish to run

for many Alfvén times, and so set the simulations to run for 45000 time units, which

is 900 initial Alfvén times and 596 full driver periods.

Now we come to the resistivity. Due to the normalisation process, the η specified in

the code is not the resistivity 1/σ , but the inverse Lundquist number. Therefore we do

not actually set a value for resistivity. The Lundquist number S = L0vA/η (where here

η is the magnetic diffusivity) is a particular case of the magnetic Reynolds number

Rm, where v is the Alfén speed. This means that the larger we set η = 1/S, the more

dissipation will take place. The experiments of [114] tested dissipation constants of

0.01,0.005 and 0.0002. We chose to take η = 0.0005 for our tests.

Lastly, the only viscosity we will include is shock viscosity, and the specific internal

energy density is initialised to 0.01. Table 3.4 summarises and sets out other properties

of this field.
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3.3.2 Magnetic Carpet Field

In our second set of simulations, we will again apply our drivers on the photosphere,

but we will use a magnetic carpet initial condition. We wish to include null points, and

one particular simple null topology observed frequently on the Sun is referred to as a

‘parasitic polarity’. This is the basic unit which we will include in our field. It has been

investigated before, for example in [81], who considered the nature of reconnection at

these points. In this configuration, the null point sits just underneath the top of a dome

structure which is created by its fan. These separatrix fieldlines will form a cage around

the null, anchored back down in the photosphere, so that the null is isolated in a region

of one polarity, outside of which the local field has opposite polarity. The strength of

the field enclosed in the fan is smaller than that of the external field. We will include

several of these parasitic polarities, sitting in an otherwise uniform ez field, and apply

our drivers at the photosphere again.

The structure is designed by first creating a vector potential A, to ensure that the re-

sulting field satisfies ∇ ·B = 0 exactly. This will consist of the sum of the expressions

for each point source which will create a parasitic polarity region;

A=
n

∑
i=1

εi

(
(y− yi)

((x− xi)2 +(y− yi)2 +(z− zi)2)3/2 ,
(x− xi)

((x− xi)2 +(y− yi)2 +(z− zi)2)3/2 ,0

)
,

where n is the number of sources, (xi,yi,zi) is the position of a point source and εi

dictates the sign and strength. In our field we place three point sources beneath z = 0

in order to create three parasitic polarities above the surface. We choose the set of

points x1 = (−2,0,−0.85), x2 = (0,0,−0.85) and x3 = (2,0,−0.85) and each ε equal

to −2.0. Taking the curl of this gives us an expression for B. Lastly, we add the



88

uniform background field ez so that:

B = ∇×A+ ez.

This particular field is also a potential one, so our initial condition should have no

current. This basic unit is illustrated in Figures 3.5 and 3.6, both taken from [19].

Figure 3.5 shows the magnetic skeleton of the basic unit, consisting the three nulls and

their separatrix domes and spines. The red spheres mark the positions of the nulls,

while the green tubes depict the spine fieldlines and the blue mesh the fan separatrices.

Figure 3.6 plots some fieldlines, with the nulls again denoted by red spheres. In the

region under the nulls, some field lines descend back down under the photosphere.

Outside of these positions fieldlines trace up the box and become part of the dominant

ez field.

Figure 3.5: Magnetic carpet initial condition, taken from [19]. This figure illustrates
the magnetic skeleton of the basic unit field. The nulls are the red spheres, enclosed in
their blue separatrix cages, with the green spines reaching down below the photosphere
and up into the uniform field region.
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Figure 3.6: Some fieldlines of the magnetic carpet initial condition, taken again from
[19]. We can see how some fieldlines curl under the separatrix domes, while others
flow over the top of these fan surfaces. Null points are again denoted by the red spheres.

The x and y components of the magnetic field on the photosphere are plotted in the

vector field in Figure 3.7. The arrow size is proportionate to field strength. On z = 0,

Bx and By are small outwith the non-uniform region - the field is dominated by ez away

from the parasitic polarities. We can see that on the photosphere, underneath where

the domes would sit, the horizontal magnetic field is oriented towards the centre of the

circle which would be created by the separatrices’ intersections with the photosphere.

This is where we could see fieldlines receding under the surface in 3.6. In this region,

vertical flux is negative.

This basic unit can easily be replicated over a larger area. Mirroring the point sources

first in x, then in y, and then in x and y leads to copies of the configuration positioned

around the original. In addition to the previous three point sources at (xi,yi,zi) we

position eight new groups of three surrounding them, at points;

(xi±8,yi,zi), (xi,yi±8,zi)

(xi +8,yi−8,zi), (xi−8,yi +8,zi)
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Figure 3.7: Vector representation of the horizontal magnetic field on the photosphere.
This component is relatively weak beyond the region lying under the dome structures.
It is concentrated inside the circles formed by the intersection of the fan meshes with
z = 0.

(xi±8,yi±8,zi).

Adding these in gives us a field with the parallel component on the photosphere as

shown in Figure 3.8.

Figure 3.8: Mirrored horizontal vector field at z = 0. The original three structures
centred at the origin are now surrounded by replicas.
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Over the domain we used in previous simulations, we shall take in a fourth parasitic

polarity along y = 0. This can be seen in Figure 3.9 where we plot the vector rep-

resentations firstly of the horizontal field on z = 0, and secondly the vertical field at

y = 0. The first is simply the same view as before but taking in only our domain of

[−5,7]× [−5,5]. In the second we can see the difference in topology underneath where

the separatrix surfaces sit compared to above. Being a parasitic polarity setup, the field

strength around the nulls is weaker than the rest of the field, to the point that plotting the

vector field with proportionate arrow size produces a field where the detail around the

null is not visible. Therefore, in this one plot the arrow size is fixed. Figure 3.10 shows

the vertical magnetic field component on the lower z boundary over our domain. This

is similar to a magnetogram - the black area shows negative vertical magnetic field,

while the white area is positive. The negative patches sit under the separatrix domes,

illustrating again the distinct regions present in the domain.

Figure 3.9: Vector plots for horizontal field on z = 0 and vertical field at y = 0. We
observe the original three dome configurations and one extra from one of the copies in
this size of domain.
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Figure 3.10: Bz on z = 0. The four black circles sit under the domes, where Bz is
negative. The rest of this area is dominated by positive, uniform vertical field



Chapter 4

Uniform Field Simulations

4.1 Results

We now turn to the results of the numerical simulations set up with differing drivers

acting on an initially uniform field. This section contains results also discussed in the

paper [95].

4.1.1 Simple Uniform Field

4.1.1.1 Case 1

First we shall discuss the properties of the zero helicity, high complexity, oppositely

spinning vortices runs 1A, 1B and 1C, whose entropies and properties we summarised

in Chapter 3, Table 3.3.

Let us consider what we might expect to see and how to approach investigations. Run

1C had the highest entropy value out of the three runs, so we would expect this to

93
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induce more complex tangling and provide more opportunities for current layers and

reconnection. As the least complex, Run 1A will perhaps induce fewer opportunities

for reconnection. We will look for signals of magnetic energy releases and how the

kinetic energy and heating quantities are affected by this. Examining the structure of

currents will provide an insight into reconnection events.

Comparison plots of quantities for the three runs 1A, 1B and 1C

Magnetic Energy

In Figure 4.1 we present the evolution of the magnetic energy over: a) the full simula-

tion time and; b) over a shorter interval where the extent of the oscillatory behaviour

is revealed. At the beginning of each simulation, the initial potential field has a to-

tal magnetic energy of 3000 simulation units. For each of these runs, we observe a

broadly similar ‘big picture’: all three see an overall increase in magnetic energy from

the initial potential state, until they settle into quasi-periodic states. This is particularly

apparent for runs 1B and 1C (x0 = 1,2). After about 22,000 time units (440 Alfvén

times), the magnetic energy average over 100 driving periods remains roughly con-

stant. For example for run 1B we split the last 300 full driving periods of the profile

into 3, since we can see from the full plots about 3 repeated sections. The average

magnetic energy values in these three sections are 3073.59, 3074.18, 3077.74 .

A common feature for all three profiles is their highly variable, ‘bursty’ character. En-

larging sections, as in Figure 4.1 (b), reveals the extent of the oscillatory behaviour.

There appear to be many short-lived energy releases on a variety of scales. Zooming

in on each of the runs at random time intervals showed that some of the smallest waves

created by a build up and release of energy occur on a timescale similar to that of the

driver; we will expand upon this shortly.
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We also note the clear ordering of magnetic energy levels above potential with topo-

logical entropy: recall, x0 = 2 gave the highest complexity, x0 = 0.5 the lowest. The

magnetic energy profiles match this ordering. More complex driving has given rise to

higher magnetic energy, both early in the simulation and as the runs settle into their

statistically steady states. The initial potential field has a magnetic energy of 3000

units. Taking the magnetic energy after 25,000 time units (during the statistically

steady state) we see that the average energy in excess of the potential level for each

run, as presented in Table 4.1, increases with complexity. Clearly this illustrates that

higher complexity photospheric motions have lead to higher injection of free magnetic

energy. This is a new finding.

So far we have discussed quantities in terms of the non-dimensional units of the sim-

ulation, which allow us to compare and contrast simulation data directly. However it

is obviously useful to think about what these numbers mean in real terms. Magnetic

energy is given by
∫

V B2/2µ0dV . At potential level, the magnetic energy in simu-

lation units is 3000. If we take a length scale of L0 = 1 Mm, then the domain in

physical space becomes [−5 Mm,7 Mm]× [−5 Mm,5 Mm]× [0 Mm,50 Mm]. Tak-

ing B0 = 5 G and µ0 = 4π × 10−7 Hm−1, we obtain a potential magnetic energy in

physical units of 5.97× 1020 J. Therefore, one simulation unit of magnetic energy is

equal to 1.99×1017 J.

A typical drop in the magnetic energy profile of run 1C covers about 10 units: this

means that the real energy release would be 1.99× 1018 J. To put this is context, a

nanoflare releases energy on the order of 1017−1019 J, so many of the events seen here

could correspond to nano flares. The largest drop seen for run 1C in plot (b) of Figure

4.1 spans about 30 units - an event releasing 5.97×1018 J. So we see that the energy

discharges are far from trivial in real terms. Even smaller releases could be interpreted
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Averages of Quantities for Case 1
Run x0 Excess Viscous/Ohmic Heating Rate |j| Filling Factor
1A 0.5 1.6 % 1.12 0.09 0.026% > 1

0% > 4
1B 1 2.3 % 0.66 0.12 0.13% > 1

0.00025% > 4
1C 2 2.9 % 0.46 0.18 0.41% > 1

0.006% > 4

Table 4.1: Case 1 average values: average magnetic energy in excess of potential
after t = 25000; average value of viscous/Ohmic heating for full simulations; average
values of heating rate (rate of change of Ohmic + viscous heating per timestep) for full
simulations; average filling factor over thresholds of 1 and 4 for full simulations.

as the signatures of events on the scale of pico flares (with energies of less than 1017

J) - see some of the smaller drops in the zoomed in plot of Figure 4.1. We discussed

the proposal that continuous occurrence of small scale events may be a contributing

factor to the basal coronal heating rate in Chapter 1, so these regular small drops are

very interesting. Say some of the smallest drops cover just one unit. This translates to

between 1.99×1017 J or 1.99×1024 ergs. This gives a range in event sizes from 1024

to 1025 ergs. The authors in [4] estimated, based on observations, that the largest flares

can release up to 1033 ergs, while research discussed in [42] calls events of energies at

least 1027 ergs microflares and 1024 ergs nanoflares. Our range puts events for Case 1

runs in the nanoflare category, with some even smaller picoflares. This suggests that in

a solar environment similar to ours, nanoflare heating could be significant.

Kinetic Energy

The kinetic energy displays particularly erratic behaviour, as seen in Figure 4.2. Again

we have plotted the full simulation data for all three runs (top 3 plots) and then fo-

cused in on a limited interval (between 14800 and 15500 time units) of run 1B. As

the magnetic energy, the kinetic energy seems to settle into a statistically steady state.

Taking the last 300 full driving periods of run 1C and averaging as before gives values
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Magnetic Energy for runs 1A , 1B , 1C

Figure 4.1: Magnetic energy evolution for runs 1A, (x0 = 0.5), 1B, (x0 = 1), and 1C,
(x0 = 2). The top plot, (a), shows the full simulation up to 45000 time units. The
section within the black box is plotted in the bottom plot, (b). Here we have zoomed in
on a section between 20000 and 24000 time units, part of the statistically steady state
section, to show the variation in the sizes of oscillations in and between the runs. Plots
are ordered with the entropy levels of the scenarios, with the largest magnetic energy
input above potential due to the highest entropy run 1C and so on. Profiles exhibit
bursty behaviour and runs 1B and 1C in particular appear to reach statistically steady
states with easily recognisable patterns.

of 1.22, 1.07 and 0.90. Upon inspection of the enlarged plot in Figure 4.2, we see that

the time between troughs at the level in the 1B case is fairly even. The half period of

the driver, i.e. the time taken for one vortex to spin, is 12π ≈ 38. A rough estima-

tion of the time between troughs in the plotted section is also around this value. This

periodicity appears in the kinetic energy profile of this run into the statistically steady
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state section (there are wavelengths over even shorter times earlier in the simulation).

However, there is also clearly further periodicity on a larger time scale, as is visible in

the last 15000 time units.

We can examine the periodicity beyond that resulting from the driver. Consider split-

ting the simulation into intervals, each the duration of one vortical twist of the driver.

Starting from t = 0, the first interval or half period runs from t = 0..12π , the time for

the first vortex to spin. The second half period runs from t = 12π..24π , the time taken

for the second vortex to spin, and so on. In this way the half periods correspond to

simulation time for the full simulation duration. We can average the kinetic energy

during each half period, thereby smoothing those variations due just to the action of

each twist. Plotting the average kinetic energy for each half period then, it is clearer to

see those larger scale oscillations which have influence over many periods. We can see

where plasma motion is perhaps a consequence of reconnection rather than driving.

We illustrate this technique for run 1B in Figure 4.3.

We can do the same for the magnetic energy. Figure 4.5 compares the two averaged

quantities during the steady state section while Figure 4.4 examines these variables

over a peak at around 15000 time units (about 400 half periods). The larger scale

variations which remain after averaging occur over many driving periods. We can also

see by comparing the two figures that these variations become more uniform during

the steady state section. This indicates that the system has settled into a steady pattern

of energy build up and release: this could be promising as a potential mechanism for

consistent background heating.

There is a clear difference to be seen in the magnitudes of magnetic and kinetic energy.

An average of the two quantities for run 1B shows that the ratio of excess magnetic
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Kinetic Energy for runs 1A , 1B , 1C

Figure 4.2: Kinetic energy evolution for runs 1A, 1B and 1C again with colours cor-
responding as before. The top three plots show the full simulations for all three runs,
with a black box again around the section of the middle plot which we enlarge in the
bottom plot. These profiles are so highly oscillatory that separate plots are required to
glean information and still we must zoom in, as in the bottom plot, for a clearer picture.
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Average Kinetic Energy for run 1B

Figure 4.3: Kinetic energy is averaged in each half driving period in run 1B. This
leaves more clearly visible the larger scales variations.

Average Kinetic and Magnetic Energy for run 1B
During 350−450th half periods

Figure 4.4: Comparison of averaged kinetic and magnetic energies in run 1B during
an obvious peak in kinetic energy at around 15000 time units.
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Average Kinetic and Magnetic Energies for run 1B
During Statistically Steady State

Figure 4.5: Comparison of averaged kinetic and magnetic energies in run 1B during
the statistically steady state section.

energy to kinetic energy is 30 : 1. These results are in agreement with previous sim-

ulations of continuously driven systems, for example [92], [93]. The highest entropy

run 1C, which had the highest energy injection, has the lowest kinetic energy. This run

settles into oscillating around roughly half the value of the other two lower complexity

runs: taking averages after 25000 gives values of 2.7, 1.7 and 1.0 for runs 1A, B and

C respectively, so here there is inverse ordering with complexity.

As seen from Figure 4.1, run 1C had the highest levels and largest drops in magnetic

energy. Looking ahead to the heating for this run, (Figure 4.8) it also has the the highest

Ohmic heating. These two facts suggests that there is more reconnection occurring,

which would trigger plasma flows and boost velocities and therefore kinetic energy,

so from this alone we would expect the kinetic energy to be higher than the other

two runs. However 1C also has the highest levels of viscous heating, as also seen

in Figure 4.8. Viscous heating removes kinetic energy from a system, therefore this
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could explain the lower levels for this run. More reconnection in turn may provide

more opportunities for shocks, leading to viscous effects, and the removal of kinetic

energy. Furthermore, from Figure 4.6, where we plot two snapshots of the magnitude

of velocity along y = 0 for runs 1C and 1A, we see that run 1C appears to induce

velocity fields which vary more over small scales. It may be that the more complex

driving function, as well as being able to create smaller scales in the magnetic field and

form more reconnection sites, can bring about smaller scales in the velocity field too -

particularly in the region closest to the driving action. These areas are noticeably more

variable, with strand-like features of varying strength close together. The same site

in the other run’s snapshots shows a much more homogenous velocity strength. Finer

velocity fields can lead to more conversion of kinetic energy to heating by viscosity,

and we have already identified this run as having the highest viscous heating.

Internal Energy

The internal energy evolution here is steadily increasing for all three runs, as seen in

Figure 4.7. This is expected, due to the fact that we have no radiation, so there is no

dissipation of internal energy. This consistent increase in internal energy will have

an effect on the plasma beta. At each end of a loop the plasma beta is large, which

is why we have line tying. As mentioned in Chapter 1, Section 1.1.1, the plasma

beta is generally taken to be small for a certain height window above the photosphere.

The unavoidable consequence of neglecting radiation gives us this increasing internal

energy which means the plasma pressure will also increase, until some point where

the plasma pressure dominates the magnetic pressure, and we no longer have a small

plasma beta regime. Including radiation may be something to consider in different

simulations and provide interesting alternative results. Again here there is an ordering

as per the complexity. The highest complexity run, which had the highest magnetic

energy and the largest scale energy releases, builds up the largest internal energy.
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Figure 4.6: Magnitude of velocity along y = 0 at times t = 36,000 and t = 40,000 for
runs 1C (top) and 1A. This quick check does appear to show slightly more variable
velocity in the 1C run. We can see finer detail for 1C. Being the most complex driving
motion, we have seen it tangle up the magnetic field and lead to smaller scales and
more reconnection, and it also seems that this case is able to create variation over
smaller scales in the velocity field too. This helps explain the lower kinetic energy in
this experiment, as the smaller scales in velocity give rise to higher levels of viscous
heating.
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Internal Energy for runs 1A , 1B , 1C

Figure 4.7: Internal energy evolution for runs 1A, 1B and 1C, with colours correspond-
ing as before. The simulation under the influence of the highest entropy driver builds
up the largest internal energy, by some way.

Heating

Figure 4.8 displays graphs of the heating in the system: Ohmic, viscous and total

(ohmic+viscous). In these plots the heating at each time is cumulative. The heating at

each stage is calculated by integrating over the domain and the timestep, and adding

this to the previous heating value. Ratios of the average viscous to average Ohmic

heating for each run are quoted in Table 4.1 and show that viscous heating dominates

only in run 1A, and only by a small margin; the values are 2220 average viscous

heating: 1980 average ohmic heating. It appears that the higher the entropy of the run,

the more dominant the Ohmic heating over viscous heating. Remember that for us,

the viscous heating is an artificial shock viscosity. It comes into play where quantities

build to a certain level in a localised region. So while our measure of viscous heating

is not the most physical concept, the presence of viscous heating implies occasions

where quantities must have built sufficiently to trigger the mechanism in the first place.

Higher viscous heating must mean that sufficiently large gradients must form more

frequently in that simulation. The viscous heating in each run, while still ordered with

complexity, varies less between each run than the Ohmic heating. Ohmic heating is

triggered by the flow of electric currents. It is sufficiently large electric currents in
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thin layers which can trigger reconnection. Therefore, the increasing value of Ohmic

heating and its dominance over viscous heating as the domain is subject to increasingly

complex tangling mechanisms suggests that highly braided fields are more prone to

reconnection.

Heating for runs 1A , 1B , 1C

Figure 4.8: Cumulative heating evolution for runs 1A, 1B and 1C. Total heating is the
sum of the viscous and Ohmic heating. Clearly the more complex braiding in Run 1C
has produced higher levels of heating.

We can examine where the Ohmic heating is occurring by looking at the Ohmic ‘heat-

ing density’ at certain times. Unlike the cumulative values considered in Figure 4.8,

here we take the quantity η j2 over the whole domain at one particular time to assess

how heating is distributed at that time. We compare this to the current density and

find that often the Ohmic heating takes place where currents have built up. Figure 4.9

shows the Ohmic heating (left) and the current density (right) for t = 30,000 at y = 0

for run 1A. The heating is greatest where the current density, and therefore magnetic

field gradients, are largest. Figure 4.10 displays these quantities at z = 0, z = 20 and
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Figure 4.9: Contour slices at y = 0 for run 1A at t = 30,000. The left hand plot shows
the Ohmic heating distribution while the right hand plot shows the current density.

z = 40 at the same time. Again the heating echoes the pattern of the current, concen-

trated in regions of largest current. For example at z = 0 we can see a thin curve of

high current around (0,0) and a corresponding curve in the heating plot.

Figures 4.11 and 4.12 display contours of Ohmic heating (left again) and current den-

sity (right again) for run 1B, at the same time t = 30,000 and at y = 0 and z = 0,20,40

respectively. There are clearly long, thin structures to be seen in the distribution of

heating and again the pattern of heating corresponds to that of the current density.

More diffuse regions of current translate into regions of lower heating.

Lastly, we do the same for run 1C. Figure 4.13 and Figure 4.14 show that at time

30,000 this highest complexity run results in more highly localised Ohmic heating, in

regions corresponding to thin current layers observed in the current density plots. The

maximum values are also larger. In all three runs then, it appears that the build up of

currents in long, thin layers triggers Ohmic heating in these layers, with the level of

heating becoming more intense with increasing complexity.
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η j2 1A | j|

Figure 4.10: Slices at z= 0,20,40 for run 1A at t = 30,000. Left hand plots display the
Ohmic heating at the three heights and the right hand plots show the current densities
in those planes.
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Figure 4.11: For run 1B at t = 30,000 we see contours of Ohmic heating (left) and
current density (right) through the slice y = 0.

This assessment also holds when looking at another time, t = 10,000, in Figure 4.15.

The top three plots show the distribution of Ohmic heating for runs 1A, 1B and 1C

(from left to right) at y = 0, while the bottom three plots displays the current density

over the same slices. Again we see the heating distribution echoing the current den-

sity, with higher complexity drivers inducing more current layers with greater heating

levels.

Heating Rate

We can also quantify the heat being supplied to the system by calculating the heating

rate; by this we mean the rate of change in total heat (Ohmic+viscous) in the system

per timestep. (Note the difference between time step and time unit: there are 45000 full

time units in the simulation, but the timestep dt in which the code updates all variables

varies and multiple time steps can make up one time unit. We will be elaborating on

timestep factors in the next chapter, but it is interesting to note that the highest energy

run, 1C, took the most timesteps to reach t = 45,000. The number of timesteps also is
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η j2 1B | j|

Figure 4.12: The left hand plots show the Ohmic heating at z = 0,20,40 for run 1B at
t = 30,000. The right hand plots show the same slices through the current density.
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Figure 4.13: For run 1C at t = 30,000 the plot on the left displays the Ohmic heating
and the plot on the right the current density, at y = 0.

an indicator of the most dynamic, variable systems. All energy diagnostics are given

by the code on every timestep).

Figure 4.16 shows how the heating rate changes over the course of the simulation.

While appearing highly variable, the magnitude of the variations in these profiles are

extremely small relative to the values of total heating themselves. Table 4.1 shows the

average values of the heating rates, and illustrates that this quantity is also ordered with

topological entropy. The Case 1 setup appears to give rise to a nicely consistent pattern.

It is satisfying that again we have the ordering of heating levels with ordering of com-

plexity. This would support the idea that the degree of complexity of a photospheric

motion could be key variable for heating.

Current Properties

Identification of finite current layers would be further support of reconnection. The

knowledge we have gained from energy diagnostics leads us to suspect that most com-

plex setup will provide more frequent and thinner current layers. Figure 4.17 shows
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η j2 1C | j|

Figure 4.14: The Ohmic heating distribution (left) and the current density (right) for
1C, t = 30,000, at z = 0,20,40.
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Figure 4.15: For time t = 10,000 we take another look at the Ohmic heating and the
correspondence with the current structure. For y = 0, the top three plots show the
heating distribution for runs 1A, 1B and 1C, while the bottom three plots show the
current density.
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Heating rate for runs 1A , 1B , 1C

Figure 4.16: Heating rate for runs 1A, 1B and 1C. This is the difference in total heating
per timestep.

the maximum current in the domain at points in time across the simulations. The sim-

ulation with the highest entropy driver generally provides the largest current densities.

Further, we observe larger drops in the maximum current value for the highest entropy

simulation than in the others; this suggests that a higher degree of braiding has resulted

in larger reconnection events. Not only does this run have the largest values, but we see

the most significant dissipation of those currents in the form of large decreases in the

maximum current. Furthermore, Figures 4.18 and 4.19 illustrate the percentage of the

domain filled with current densities larger than 1 and 4 units, respectively. We observe

that run 1C also has larger currents filling more of the domain than the other two lower

complexity simulations. Run 1A does not even have any instances of currents larger

than 4. These analyses suggest that the higher complexity run, with its ability to induce

more intricate braiding, leads to more regions of higher currents.

Current Structures
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Maximum current density for 1A , 1B , 1C

Figure 4.17: Comparison of the maximum current density j in the domains, for runs
1A,B and C. The highest complexity/largest magnetic energy run has the largest max-
imum currents.

Percentage of domain where |j|> 1 for 1A , 1B , 1C

Figure 4.18: Here we see the percentage of the domain at points in time which is filled
with current densities larger than 1 unit, again for runs 1A,B and C. As well as having
the largest current maxima, run 1C also fairly consistently has the largest volume of
currents above this level.
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Percentage of domain where |j|> 4 for 1B , 1C

Figure 4.19: Only runs 1B and C have any parts of the domain with currents above 4
units.

We now turn to the structure of currents within the domain - do we see thin current

layers forming? We will focus on run 1C since this looks to be the best candidate for

reconnection. Figure 4.20 displays isosurface plots of current for run 1C. The plots

show current structures at different levels, both before and after one of the largest vis-

ible magnetic energy release, between 22800 and 23200 time units. Over this interval

we see a release of around 13% of free magnetic energy. The top two plots show the

current density at a value of 2 units, the middle plots are at 3 units, and the last plot is

at 6 units (the domain maximum current at the earlier time is 8.51). Before the drop,

we see some thin current layers scattered through the domain at current density levels

of 2, 3 and 6. Afterwards we see fewer layers, covering a smaller surface area, in the

case of each threshold - in fact there are no current values of 6 at all at this later time.

The volume filling factor has been reduced, indicating that larger currents have been

dissipated.

It is also instructive to look at current structures at lower levels, where most of the
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Isosurfaces for 1C

Figure 4.20: Isosurface plots for run 1C at times t = 22,800 and t = 23,200. The top
two plots are at a |j|value of 2 units, the middle two at 3 units, and the last at 6 units.
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current activity lies. Figure 4.21 shows current density at 10% of the domain maxima

for run 1B and 1C respectively at time t = 35200 (during the steady state section).

The lower complexity and magnetic energy run, 1B, has a more volume filling current

structure at this point. The second plot, for run 1C, the most complicated simulation,

appears to be less volume filling at this level, but we have already seen how this run

has a higher fraction of current density at higher levels. Both show thin but three

dimensional layers, agreeing with the results presented in [36].

Isosurfaces for 1B, 1C

Figure 4.21: Isosurfaces for runs 1B and C at t = 35200 at 10% domain maximum.

We note also the difference to reduced MHD simulations. In RMHD, |Bx| and |By| are

taken to be much less than |Bz|. Looking over snapshots from all three runs (ignoring

t = 0 since we know the field at that time), the minima and maxima of the absolute

value of each of the components cover the ranges:
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1A : |Bx| : 2.0×10−12→ 0.17

|By| : 1.2×10−11→ 0.21

|Bz| : 0.82→ 1.0

1B : |Bx| : 4.2×10−12→ 0.17

|By| : 2.4×10−11→ 0.20

|Bz| : 0.77→ 1.0

1C : |Bx| : 1.7×10−12→ 0.28

|By| : 8.3×10−11→ 0.36

|Bz| : 0.63→ 1.0

These ranges show Bz to be larger, but we cannot say we are in a situation where

|Bz| >> |Bx|, |By|. Other models using reduced MHD and similar field set-ups have

seen long ribbons of current flowing from the bottom to the top of the domain. Seeing

as many of our current isosurfaces, particularly for the most complex run, show more

localised current layers, we can say it appears that a difference is made by using a fully

3D magnetohydrodynamic model.

The plots of Figure 4.22 show contours of current density at these same times, in the

z mid plane (top) and y mid plane (bottom). The maximum current in these slices

decreases across the drop, with the structure in the region above the driver in the y = 0

plots appearing to simplify slightly.

Fieldlines

Examining some sample fieldlines traced from seed points on z = 0 up through the do-

main further illustrates the degree of braiding. We provide a ‘bird’s eye’ view, looking
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Density contours for 1C

Figure 4.22: Contours for run 1C at the same times as the isosurface plots, t = 22,800
and t = 23200.
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down from the top of the box. As we move across the base of the box from minimum

to maximum x value, the colour of the lines darkens. This makes it clearer to see the

braiding; the more lines of differing shades interacting, the more tangled the field. In

addition, we have taken 2D slices at constant z and over-plotted the magnetic field

vectors too fieldlines to show the structure throughout the domain.

Figure 4.23 displays these concepts at t = 10,000 for run 1A. In the top plot, we have

traced fieldlines up the box. At the extremities of the x-axis, the fieldlines maintain

similar x and y coordinates; in between they swirl around as they travel up the domain.

We recognise the action of the vortices creating twist in the field, but it does not appear

to be particularly tangled at this time. The lower plots show the structure in detail at

z = 20 and z = 40. The field is dominated by two large, swirling structures, which

create strong field where they interact.

Figure 4.24 shows the same information at the same time for Run 1B. Again we see

large vortical structures. The fieldline plot shows a slightly more complicated structure:

there is a little more interaction in the middle of the domain between fieldlines of

varying shades. The slices illustrate two large vortical forms with opposing circulation,

with the field strengthened where they interact.

Figure 4.25 corresponds to run 1C at t = 10,000. This is the most complex run of

the three, with the highest levels of magnetic energy and heating. At this snapshot

the fieldlines appear to be dominated by one large vortical formation and an area of

sheared field; more variable than the previous runs.
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Fieldlines for 1A

Figure 4.23: Field structures for run 1A at t = 10,000. The top plot shows a bird’s
eye view of the domains fieldlines trace up the box. The lower two plots show 2 slices
through z = 20,40, where the fieldlines and vector field are traced.
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Fieldlines for 1B

Figure 4.24: Fieldlines for run 1B at t = 10,000.
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1C

Figure 4.25: Fieldlines for run 1C at t = 10,000.

Figures 4.26 to 4.28 display the same plots for all three runs at time 30,000. Again the

most obvious features are the large swirling forms. Run 1C shows the most interaction

between fieldlines originating in different sections of the numerical photosphere, and

the vortical forms are more distorted. The most complex driver appears to create the

most complexity in the magnetic field.
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1A

Figure 4.26: Fieldlines for run 1A at t = 30,000.

Fieldline plots can also illustrate the change in the system with the release of free mag-

netic energy. Figure 4.29 takes a snapshot at t = 22,800 during run 1C, during a drop

in magnetic energy. The fieldlines are particularly messy, with lines of differing shades

reaching across the domain. We see distorted swirling features, and also sheared field

regions. By Figure 4.30 at time t = 23,200, the swirling is more ordered: fieldlines of

different shades remain closer to the regions they were seeded in. The 2D streamlines

also appear less variable,often either in a more spherical forms. The field seems to

have been untangled somewhat, with the twisted regions more contained.

Overall, the highest complexity driver has consistently produced evidence for more
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1B

Figure 4.27: Fieldlines for run 1B at t = 30,000.
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1C

Figure 4.28: Fieldlines for run 1C at t = 30,000.
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1C, t = 22,800

Figure 4.29: Fieldlines for run 1C during a drop .
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1C, t = 23,200

Figure 4.30: Fieldlines for run 1C after a drop.
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reconnection opportunities and heating. In this net zero helicity driver case, the com-

plexity dominates the behaviour, and the more complex the driver the more complex

the magnetic and velocity fields, leading to higher levels of heating.

4.1.1.2 Case 2

We now turn to the high helicity, low complexity runs with driving vortices spinning

with equal circulation. We may see an ordering with complexity as before, but cannot

predict how the higher helicity in these systems will come into play and affect potential

heating. Again we would expect to see the periodicity of the driver appearing in some

quantities.

Comparison plots of quantities for the three runs 2A, B and C

Magnetic Energy

Figure 4.31 (a) illustrates quite a different picture of magnetic energy evolution to that

seen previously. Immediately we see that we do not reach a statistically steady state

for any of the simulations in this time frame, even though we are running for 596 full

periods of driving. The profiles do again have an overall jagged appearance with many

small oscillations, but the most intriguing features are drops, much larger than previ-

ously seen, over short time periods. At several points in the 2A and 2B runs, there

appear to be release events much larger than anything we have observed before in this

work. Plot (b) of Figure 4.31 displays an enlarged section of the run during which the

largest energy release occurs. This event is part of the evolution of run 2A: the lowest

complexity run. In this set of tests, it appears that the ordering of magnetic energy

levels is inverted, with the most complex driving leading to lower magnetic energy and

vice versa. Driver 2A would twist the field in to the tightest helical structure. The
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coherence of the twisting seems to be more important than the complexity: the change

in the driving action has made a significant difference. We suspect there is some in-

stability being triggered after sufficient build up of energy. This has not been seen

before. Previously, authors such as [90] and [91], when applying shearing motions and

coherent twisting, saw tearing mode and kink instabilities take place. However, there

the authors only saw a single occurrence, even though these simulations ran for some

time; the kink instability case ran for on the order of 1000 Alfvén times and the tearing

mode case for 600 Alfvén times. The main difference with our experiments is that

the authors used reduced MHD. Again we see that fully 3D MHD may be necessary

to capture system behaviour. We will analyse in detail the properties of one of these

events and assess the nature of the instability in Section 4.1.2. For now note that here

we appear to have the first demonstration of how significant instabilities can actually

build up multiple times and lead to reconnection in this type of system.

The peak in magnetic energy for the highest energy run, 2A, 3473 units, is 15.8% in

excess of potential. The result of this event is to return the system almost back to its

potential level. Here the set-up has allowed a large amount of energy to build up in

the field and the release event has successfully dissipated almost all of that energy in

a short time span. The magnetic energy drops from 3473 units to 3029 units in a time

interval of 909.6 units. This is a release of 93.9% of free magnetic energy over 18.2

Alfvén times, or 12.1 driving periods. From previous calculations we have one unit

of magnetic energy representing 1.99× 1017 J for a potential field strength B0 = 5 G

and a length scale of 1 Mm. Therefore in real terms, this release would correspond to

a flare of 8.84×1019 J, or 8.84×1026 ergs - a large nanoflare, not far from microflare

category. In addition, the excitement of the large events still should not overshadow

the more numerous, smaller events. There are regular discharges of magnetic energy,

on a scale comparable to the previous, zero helicity/higher complexity runs. We may
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have similar small scale activity, potentially sufficient to maintain a background level

of heating, supplemented by larger flare events. The smaller drops here look around

the same size as some of the larger drops in 1C, suggesting that these coherent cases

induce larger events overall.

Magnetic Energy Evolution for 2A, 2B and 2C

Figure 4.31: Magnetic energy plots for runs 2A, (x0 = 0.5), 2B, (x0 = 1), and 2C,
(x0 = 2) for blinking vortices of equal circulation. The run with the most coherent
driver, 2A, has the highest levels of magnetic energy. Both this run and 2B, the second-
most coherent run, feature build ups to large energy release events. The least coherent
run has less dramatic details, but is still highly oscillatory.
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Averages of Quantities for Case 2
Run x0 Excess Viscous/Ohmic Heating Rate Filling Factor
2A 0.5 7.7% 0.30 0.342 0.75% > 1

0.043% > 4
2B 1.0 7.4% 0.28 0.332 0.73% > 1

0.044% > 4
2C 2.0 4.9% 0.30 0.235 0.51% > 1

0.019% > 4

Table 4.2: Case 2 average values: average magnetic energy in excess of potential
value; average viscous to Ohmic heating; average heating rate (rate of change of
Ohmic+viscous heating); average percentage volume filling

Kinetic Energy

The kinetic energy profiles differ less - we have very jagged plots, with small values

relative to the magnetic energy behaviour. We see very prominent spikes protruding

infrequently from a background level. These spikes correspond to times when the mag-

netic energy is going through large releases. This supports the idea of an instability -

clearly there will be a surge in kinetic energy as the field reconnects, particles are ac-

celerated and a flare is triggered. Looking more closely at the spike in run 2A seen

in the last plot of Figure 4.32, we see that this lines up with the largest drop in mag-

netic energy between 19,000 and 20,000 time units. The rapid increase and decrease

consisting this spike occurs towards the end, but well within, the time interval of the

largest magnetic energy drop. This is not the whole story though. The magnitude of

kinetic energy is still small in comparison with the magnetic energy, as in Case 1, how-

ever the fraction of magnetic energy converted into kinetic energy is even smaller than

before. The average kinetic energies over the full simulations are 0.77,0.74,0.8 for

runs 2A, 2B and 2C respectively, with a ratio over the full simulation of average free

magnetic energy to average kinetic energy for 1C of 298 : 1. This even more significant

dominance of magnetic energy over kinetic energy suggests that a smaller fraction of

the free magnetic energy being built up is being dissipated through kinetic energy and
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then viscous heating. A larger proportion of energy is being dissipated directly through

Ohmic heating. Also, the kinetic energy appears to oscillate around a lower average

level than in the complex cases, and there is less variation between these three lower

complexity runs. Previously the most complex case had lowest kinetic energy.

We can, as before, look at the magnetic and kinetic energy averaged over half driver

periods to extract larger scale variations. Doing this for the magnetic energy over the

same time interval as in Figure 4.31 (b) showed very little change, indicating that in

this case the driving has less of a directly translatable effect and oscillations are not

correlated as directly to driving time. The kinetic energy averages in each half period,

for the same time interval as in Figure 4.32 (b), are shown in Figure 4.33. The snapshot

begins during the 477th half period, which corresponds to 18,000 time units. It ends

during the 583rd half period, at a simulation time of 22,000. This does simplify the

picture somewhat but we can still see variations above and beyond driver motion. The

largest spike still dominates the picture, supporting the idea of a large reconnection

event.

Internal Energy

The internal energy follows the same ordering as the magnetic energy, as seen in Figure

4.34. The lowest complexity but most coherent twisting run, 2A, displays highest

internal energy, closely followed by the second most coherent run 2B. There are slight

bumps visible in these two profiles, corresponding to large events in the magnetic

energy profile. This is further evidence of reconnection. Note again however that the

constantly increasing internal energy is due to the lack of radiation, and at some point

in each of the simulations the plasma beta will become greater than one, switching

from a low plasma beta regime to a larger one.
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Kinetic Energy Evolution for 2A, 2B and 2C

Figure 4.32: (a) Kinetic energy plots for runs 2A, (x0 = 0.5), 2B, (x0 = 1), and 2C,
(x0 = 2) for blinking vortices of equal circulation. (b) Zoomed in kinetic energy for
run 2A including the spike corresponding to the largest magnetic energy release.
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Average Kinetic Energy Evolution for 2A

Figure 4.33: Average kinetic energy plots for the most tightly twisting run 2A, (x0 =
0.5).

Internal Energy Evolution for 2A, 2B and 2C

Figure 4.34: Internal energy plots for runs 2A, (x0 = 0.5), 2B, (x0 = 1), and 2C, (x0 = 2)
for blinking vortices of equal circulation. Run 2A and B both featured large magnetic
energy releases and both have higher internal energy values than the highest complex-
ity/lowest coherence in twisting run, 2C.
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Heating

Looking at the heating properties, we see new ratios of average viscous to average

Ohmic heating, which are presented in Table 4.2. The plots of viscous, Ohmic and

total heating are presented in Figure 4.35. This time the ratio is roughly the same for

each run. Ohmic heating dominates in each simulation to about the same degree. There

is less variation between runs compared to the previous set of simulations. Viscous

heating appears to increase in proportion with ohmic heating, leading to a similar ratio

each time. Instead of the completely smooth heating profiles of the complex case,

we see small jumps. As with internal energy the sudden small increases correspond

to the large magnetic energy release events. The average total heating rates are also

presented in Table 4.2. All are much higher than before. This tells us that even in

lower complexity environments, higher helicity injection is able to lead to more energy

release.

We look at the heating rate (rate of change of the viscous plus Ohmic heating) for these

simulations in Figure 4.36. Once again there are prominent spikes in this quantity at the

release event times. This points to flare like events occurring in these lower complexity

but more tightly twisted runs.

4.1.2 Currents, Field Structure and Instability

Here we will compare the current levels of each run, and then focus in on the largest

event occurring in Run 2A, a suspected instability.
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Heating Evolution for 2A, 2B and 2C

Figure 4.35: Heating plots for runs 2A, (x0 = 0.5), 2B, (x0 = 1), and 2C, (x0 = 2) for
blinking vortices of equal circulation. Again the most coherent run involves the largest
heating levels.
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Total Heating Rate for 2A, 2B and 2C

Figure 4.36: Heating rate plots for runs 2A, (x0 = 0.5), 2B, (x0 = 1), and 2C, (x0 = 2)
for blinking vortices of equal circulation.
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Figure 4.37 displays the maximum current density present in the domain over time for

each of the higher helicity scenarios. Clearly runs 2A and 2B see the largest currents.

Run 2C varies over a smaller range of values with a smaller maximum. This fits with

the narrative already established: the higher helicity levels in these runs is the domi-

nant factor in behaviour, with instabilities and currents most significant for the most

coherently twisted states.

Figures 4.38 and 4.39 illustrate how the percentage of the domain filled with current

densities larger than 1 and 4 units, respectively, changes over time. Both show the runs

with large magnetic energy release features containing more regions of higher currents.

We continue to see an ordering with driver’s abilities to twist the field into a tight spiral.

This seems to be the determining factor in reconnection and heating opportunities for

Case 2, rather than the complexity as in Case 1.
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Maximum current density for 2A, 2B and 2C

Figure 4.37: Comparison of the maximum current in the domain over the simulation,
for runs 2A,B and C. The largest maximum currents are to be found in run 2A, closely
followed by run 2B, echoing the trends seen so far in other variables.
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Instability

Based on the vortical driver profile, we first considered the possibility of a kink instabil-

ity occurring at the large release event. The work in [91] found a kink instability taking

place as a result of the application of vortical motion on one photospheric boundary.

Rather than blinking vortices, their method used one, time independent vortex only,

driving for long time durations. Kink instabilities can develop in a system where some

critical degree of twist is attained, and a kink is triggered along an axis of symmetry.

In some cases the instability may lead to a solar flare as the system attempts to relax to

a lower energy state, via reconnection and energy release.

Kink instabilities in MHD environments have been examined before. For example, the

authors of [45] explores the phenomenon in an ideal environment, discussing how kink

instabilities can lead to solar flares. They show how even with line tying (which our

system has) of fieldlines at the photosphere, which should stabilise things, a flux tube

still becomes unstable after sufficient twisting. Kink mode perturbations lead to recon-

nection and potential for flares. Resistive experiments include those by [37], who also

used Lare3d. Some of these tests also found kink instabilities occurring in line-tied

resistive loops under the influence of shearing. To ascertain if we have this type of

instability here we will have to examine current and fieldline properties. In our setup

we do not have a distinct axis of symmetry along which the magnetic field is twisted -

in all of our simulations there are two vortices, placed apart. But note that the largest

events happen in the run where the vortices are closest together. We do have contin-

uous twisting of the overlying field in one direction. We see multiple occurrences in

two of the three runs of an increase in magnetic energy, up to a point whereby a large

amount of energy is relaxed, accompanied by a spike in kinetic energy (indicating ac-

celeration of plasma) and heating. This fits with the profile of a flare resulting from

some instability.
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Percentage of domain where |j|> 1 for 2A, 2B and 2C

Figure 4.38: Percentages of each domain where the current density is greater than
1. Runs 2A and B are closely matched, whereas the least coherent run 2C generally
oscillates about a lower average.
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Percentage of domain where |j|> 4 for 2A, 2B and 2C

Figure 4.39: Profiles of the domain percentage filled with currents with value higher
than 4 for 2A, B and C, where again we see the same ordering with coherence, rather
than complexity.
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Why do we observe evidence for instability in only 2 of the 3 runs? We can understand

this by returning to the argument of limiting cases of vortex placement, which we dis-

cussed in Section 2.1.5. Were both vortices positioned at x0 = 0, each vortex would

twist the same volume of the field the same way. This would be the most coherent

case of twisting we could implement and would be closer to the scenario mentioned

in [91]. We would have a single, tightly wound structure. Taking x0 to infinity, the

action of one vortex would not affect the other. We would eventually see two tightly

wound structures, constructed in twice the time. Between these two cases the twisting

is less coherent and contained; we see twisting over a larger domain, but at a shallower

angle. Run 2C is the furthest (of our 3 cases) from either of these limiting cases, and

it is where we do not see large release events. In order to trigger something like a kink

instability the field has to be sufficiently coherently wound up; the angle of twisting

must reach a critical point. When x0 = 2, perhaps the winding is not tight enough.

This run has the highest complexity out of the Case 2 scenarios, and is most similar to

the previous Case 1 scenarios. We see a magnetic energy profile closer to that of the

previous runs, with many smaller events only. Run 2B has the vortices closer together

and would lead to tighter winding, but not as tight as in run 2A, x0 = 0.5. By our

hypothesis run 2A should be most susceptible to instability; and indeed, this is where

we see the largest reconnection events.

Firstly, we look to sample fieldlines and current density isosurface plots for Run 2A.

Time 19,000 to time 20,200 covers the largest magnetic energy release, from the last

of the build up, until the instability sets in and free magnetic energy is released, and

the beginning of the next wind up of energy. Between these two times is where we

see jumps in viscous and Ohmic heating and the internal energy, as well as a spike in

kinetic energy. We focus on this interval.



145

The plots in Figure 4.40 give a sense of how tangled the fieldlines are. Looking down

into the domain from above, fieldlines are coloured in shades corresponding to where

on the z = 0 plane they began. Footpoints situated towards maximum x are darker,

while those towards the minimum value are lighter. At t = 19,000, when the magnetic

energy is still building, the field displays a localised twisted region in the middle of the

box. Fieldlines outside this region maintain similar x coordinates but appear to reach

across in y as they trace up the box, in opposing directions depending on whether

they started at x < 0 or x > 0. In the next snapshot the picture is less ordered and

by t = 19,600 we see a much messier structure. Light coloured fieldlines are seen to

reach across in x to the darker half of the domain, indicating a great deal of tangling,

and we see this to an even greater extent at the next snapshot at t = 19,800. By the last

two times, the magnetic energy release has ended and the spikes in kinetic and internal

energy and heating have occurred. Clearly a restructuring has taken place. At this point

the magnetic energy has almost returned to its potential level, and the fieldlines start to

re-form the swirling structure, particularly evident in the last plot at t = 20,200.

Looking now at current density isosurfaces, Figure 4.41 displays regions of constant

current density over the event, starting from |j| = 1, then 2, 4 and 6, at times t =

19,000, 19,600 and 19,800. At t = 19,000 we have several ribbons of current flow-

ing up through the domain at the lowest threshold. Increasing the level of |j| we very

quickly see these ribbons all but disappear, with only one small current fragment ev-

ident at the highest thresholds. By t = 19,600, during the energy release, the do-

main is filled with many long, thin current layers at |j| = 1. We see fewer as we in-

crease the threshold and the extent of each ribbon becomes smaller, but even at |j|= 6

there are still many small fragments visible. Towards the end of the energy release at

t = 19,8000 we still see multiple current layers at the lowest current value but they

have become less volume filling, narrower and more elongated. There are only some
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Fieldlines for 2A

Figure 4.40: Fieldlines for run 2A, (x0 = 0.5), seen from the top of the box over the
course of the largest release event.



147

Isosurface for 2A
j = 1.0 j = 2.0 j = 4.0 j = 6.0

Figure 4.41: Isosurface plots for run 2A, (x0 = 0.5), at values of |j|= (1,2,4,6) during
the large release event.
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x"

y"

Figure 4.42: Sketch of a scenario in which a tearing mode instability may occur. Field-
lines are illustrated switching orientation across x = 0, where the gradient in the mag-
netic field causes the red current layer. This type of field is said to be unstable to tearing
modes, such that reconnection can be triggered across the boundary.

tiny fragments still present at the highest level. These tell us two things. Firstly, we

have further support for an instability being responsible for a large reconnection event.

Across the time span the current structure changes from consisting of very volume

filling, high valued, messy current layers (matching the messy appearance of the field-

lines) to narrower, smoother layers which do not attain the same levels. Secondly,

while we see an instability, it does not appear to be a kink. There are no swirling he-

lical structures in the isosurfaces, only broad vertical layers. This points instead to a

tearing mode instability. There was evidence of this category of instability in the field

line plots also: recall snapshot t = 19,000, where those fieldlines outside of the twisted

region in the middle of the box appeared to shear across in y. When the fieldline was

seeded between x = [−5,0] the trajectory seemed to take it towards y = −5; many of

those seeded beyond the swirling region at x = [2,7] sheared across towards y = 5.

This type of field has been known to give rise to instability in the form of a tearing

mode since the work of [34]. Tearing mode instabilities can occur when a field changes
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direction across some interface. Figure 4.42 illustrates the nature of the structure which

can give rise to this type of event. This simple 2D sketch shows that when the direction

of the magnetic field changes across x = 0, a boundary is formed along the y-axis. The

large gradient in the magnetic field caused by the sudden change in alignment can

form a current layer, which if strong enough and for non-zero resistivity can trigger

reconnection. This type of field set-up is therefore said to be unstable to tearing modes,

almost as if the two opposing field directions tear the field apart. We mentioned before

the work of [90], who observed tearing mode instabilities when applying shear flows on

numerical photospheric boundaries. However, that work employed reduced MHD and

saw only one reconnection event take place before the system settled into a statistically

steady state. No further instabilities developed even though the simulations ran for

600 Alfvén times and were continuously driven. Note the difference to our fully 3D

simulations, where two of our set-ups have triggered multiple events.

For further details and confirmation of the tearing instability, we turn to 2D fieldline

plots and also consider the strength and direction of the field by taking slices through

the domain at constant z. By plotting the vector field over fieldlines we can see exactly

where and why boundaries are forming.

Figure 4.43 shows such slices at heights of z = 10,20,30 and 40 at t = 19,000. In the

first plot at z = 10 we see a confirmation of the structure suggested by the fieldline plot.

Between about x = [−1..1.5] the streamlines and vector field outline a region where

the field is twisting. It is not perfectly circular however, taking an elongated, elliptical

form. On either side of this, the stronger, oppositely directed field regions are clear: on

the left hand side the field points to negative y, while on the right hand side it points to

positive y. At z = 20 we see a similar picture. In the illustrations at z = 30 and 40 also

there is a clear switching in field direction between x = 0 and x = 1. There are some

regions of stronger field along fieldlines outlining twisted structure too, for example in

x × y = [−2,2]× [−5,−3], but the oppositely sheared regions dominate the picture.
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t = 19000
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Figure 4.43: The magnetic field at slices of constant z at t = 19,000 for run 2A. The
strength and direction of the field are represented by the black arrows, while the field-
lines are plotted in purple-white.
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We look also at the current density and Ohmic heating distribution at these same slices

in Figures 4.44 and 4.45 respectively. In all slices, the regions of highest current and

heating correspond primarily to the boundary layer between opposing field orientation

and to a lesser extent, the twisted field regions.

Current density at t = 19,000

Figure 4.44: The value of | j| in planes of constant z for run 2A at t = 19,000.

The fieldlines and orientation at the same heights for the snapshot at t = 19400 are

shown in Figure 4.46. Again we see a pronounced division in field direction as we

move across x, at all heights. There is twisted field also, but again this tends to be in the

form of elongated, elliptical shapes lying along y between the regions of opposing field

direction. Visually the streamlines are dominated by oppositely sheared field. As seen

in Figures 4.47 and 4.48, the layers of current and heating are generally higher than

before and are present at the boundaries between opposing field, supporting further the

tearing mode theory.

Next we check time t = 19600, for slices at z = 20 and 40. Recall by this time the
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Ohmic Heating at t = 19,000

Figure 4.45: Distribution of the Ohmic heating at slices z = 10,20,30,40 for run 2A,
t = 19,000.

release event was well underway. The top plot in Figure 4.49, for z = 20, shows both

a large vortical region in the upper half of the plot and a picture similar to our cartoon

in Figure 4.42 in the lower half. The second plot at z = 40 shows the same features

but this time the twisted region is in the bottom half, and we also see vortical geometry

towards the extremes of the x axis. The topology is no longer so clearly dominated

by sheared fieldlines: we see more circular paths forming. At this time, the isosurface

plots showed lots of volume filling currents at low levels of |j| and the field line plots

were very messy. The contours in Figures 4.50 and 4.51 show current and heating

occurring in the boundaries between oppositely oriented field, but at this stage the

reconnection is in full swing and the field clearly has many regions of interest. The

strong opposing field is not the main factor. It is just after this time that the spike in

kinetic energy and heating occurred.

Lastly, Figures 4.52 and 4.53 at times t = 20,000 and t = 20,200 suggest that the
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t = 19400
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Figure 4.46: 2D fieldlines and vector field illustration for 2A, t = 19400.
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Current density at t = 19400

Figure 4.47: Current density in slices across the domain for 2A, t = 19400

Ohmic Heating at t = 19400

Figure 4.48: Ohmic heating distribution for 2A, t = 19400.
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t = 19600

Figure 4.49: Fieldlines and the field direction and strength at t = 19600 for run 2A.
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Current density at t = 19600

Figure 4.50: Current density layers for run 2A at t = 19600.

Ohmic Heating at t = 19600

Figure 4.51: Ohmic heating distribution at t = 19600 for run 2A.
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instability has been resolved. At heights of z = 20 and z = 40, we do not see the

same clear division with the field oriented in opposing directions on either side. The

picture is now created by lots of swirling structures. By these times the magnetic

energy is ramping up again and the kinetic energy returns to its previous lower levels.

The fieldlines did not show the domain split into two distinct regions any longer and

display behaviour more akin to the field line slices we saw for Case 1.

Furthermore, Figures 4.54 and 4.55 illustrate these similar properties for two snapshots

in Run 2B. Between t = 33,000 and t = 34,000 this simulation saw its largest drop in

magnetic energy, accompanied by spikes in kinetic and internal energy and heating. At

heights of z = 20 and z = 40 at times t = 33,200 and t = 33,400, we see again that

the domain is split into two main regions, with the field pointing downwards on the

left hand side of the plots and upwards on the right hand side, with elongated vortical

structures lying along the boundary. Visually the plots are dominated by sheared field

rather than vortical field.

As mentioned, the two large release events analysed here coincided with spikes in ki-

netic and internal energy and heating. Both runs 2A and 2B display two events like

this. None of the smaller release events in run 2C produced such obvious indicators,

but there is still a magnetic energy release event covering over 100 units. Slices at

z = 20 are shown in Figure 4.56 for three times covering this event. We do see sheared

fieldlines of opposing direction, but the division between the two regions is not as

pronounced and the boundary layer is not as obvious. While there are regions of op-

positely sheared field, there is more of a mix with swirling structures too. This picture

is more like that of the plots of run 1C over one of the small drops present for that

simulation. Figure 4.57 shows the current and Ohmic heating distribution at z = 20

at time 12,600, and unlike as we saw in, for example, Run 2A, there are no strong

currents lying along the boundary between sheared regions. Coupled with the lack of

signatures in the other quantities, we surmise that in this case, the opposing shears in
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t = 20,000

Figure 4.52: Field topology, strength and direction in 2D planes at t = 20,000, run
2A..
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t = 20,200

Figure 4.53: Fieldlines and vector field for run 2A at t = 20200.
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2B, t = 33,200

Figure 4.54: Field at t = 33200.
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2B, t = 33,400

Figure 4.55: Field at t = 33400.
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the field are not significant enough to result in a significant tearing mode instability,

even if some reconnection does take place. It appears that with the vortices further

apart, no long, narrow boundary layer is created, so we do not see such intense current

layers and there is no large instability triggered.

2C, t = 12,600,13,000,13,400

Figure 4.56: Fieldline and vector field slices at z = 20 for run 2C, at times covering
one of the larger release events in this simulation.

We conclude then that we have a new result: the most coherent cases can trigger mul-

tiple tearing mode instabilities. The tangling of the field by the continuous driving

causes many small events in all three coherent cases as in the Case 1 runs, but the most

coherent are able to induce larger reconnection events by creating clear boundaries

between regions of oppositely sheared field. The fact that our driver consists of two
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2C,t = 12,600,13,000,13,4000

Figure 4.57: Current and Ohmic heating at z = 20 for run 2C at t = 12,600.

vortices placed at different points prevents the field from twisting uniformly along an

axis to create a kink instability, as in papers such as [91]. Instead, the interaction of

the vortical motions, while they are placed close enough together, cause distinct re-

gions of oppositely sheared fieldlines, which are unstable to tearing modes and lead

to reconnection. When x0 = 2 it seems that the field is not sheared in opposite direc-

tions strongly enough and the distance between the vortices is too much to create clear

narrow boundaries between the differing shears.

4.1.3 Power Spectrum Analysis

Our analyses to this point indicate that the different drivers can induce different types

and levels of heating. We wish to go further now in quantifying the nature of heating

and scales on which activity takes place. All simulations show small scale variations in

the magnetic and kinetic energies, suggesting small scale reconnection events, which

may possibly be categorised as nano or microflares. In addition, we have observed

the large reconnection events in the high helicity runs. We wish to gain a sense of

the distribution of energy over different scales and how this may differ for different

drivers. Further, if we observe a cascade to small scales, i.e. a transfer of energy from

the larger scales as we decrease in spatial resolution, we may have a turbulent system.



166

Turbulence can be a marker of particle acceleration and flaring, so this analysis can

provide information about the nature of a system.

In Chapter 1, Section 1.1.1 we discussed the plotting flare energies versus frequency to

examine the frequency of flares of different scales. It was concluded by the authors of

the work that whichever scale you looked on, the smallest flares happened with larger

frequency. We can use the same technique here. We will examine the power spectra

of the magnetic and kinetic energy profiles to assess the distribution of energy through

different scales and whether turbulence is taking place. A power spectrum considers an

energy signal, where that signal has been broken down into its constituent sinusoids,

and binned with the frequency k of each, and plotted against these frequencies, hence

‘power’ spectrum. The line formed over the frequency range may follow some power

law, proportional to ka, where a is called the power law index, and its value can tell us

if, for example, the plasma is turbulent. We will think about this in further detail, but

first let us discuss the method we use to calculate the power spectra.

4.1.3.1 Fourier Transform

Concept

The method we use to break a signal into sinusoidal elements is the discrete Fourier

transform. There are two approaches we could take - we could look at energy variations

in time over the full simulation duration, or at how energy density varies over different

spatial scales within the domain at set times.

In the context of the energy signal in time, higher frequency components correspond to

variations over smaller time scales. So a higher proportion of the signal coming from

high frequencies would mean that the shortest lived events are more influential in the

overall energy profile, and vice versa. This doesn’t however provide any information
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about the size of events and how reconnection sites are concentrated. Therefore, we

will focus on the spatial variations.

The magnetic or kinetic energy density over the domain at a certain time can be seen

as a three dimensional signal, so can be split up into its constituent sinusoids. Now the

smallest ‘frequencies’ represent where the signal varies over the largest length scales

and vice versa. We will refer to the inverse length scale as k. So physically, if we

find a lot of energy coming from large inverse length scales then the energy in small

sub-volumes is significant to the overall energy density in the domain. Then, things

like nanoflares and reconnection over small scales may be more influential to heating.

Turbulence and Power Law Index

Turbulence is fluid phenomenon which occurs throughout the universe and has inspired

a vast library of research. An overview of MHD turbulence can be found in [10], but

the key point we are concerned with is this: a turbulent MHD system is a magnetised

plasma containing chaotic flows. A turbulent plasma is full of swirling eddies and vor-

tices creating complex, chaotic structure across a range of scales. Large-scale eddies

induce smaller eddies, which in turn can induce even smaller swirls, and so on, trans-

ferring energy down the spatial scale - this is referred to as a turbulent energy cascade.

Turbulent flows can be triggered by events such as reconnection, since reconnection

can induce particle acceleration and complex plasma flows. Some of the largest and

most powerful reconnection events are solar flares, with authors such as those in [32]

using the concept of turbulence to help explain the mechanisms of a flare.

Power spectra can help us to identify turbulence if it is present. Some of the founda-

tions of this area of research were laid in a famous paper by Kolmogorov, [50]. This

work states that power spectra often show three distinct regions as we move across

the spectrum of k. At the small k end of the scale energy variations are occurring on

longer length scales, perhaps induced by external influences - for example our drivers
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input kinetic energy, triggering motions on a relatively large scale within the domain.

At very high k, variations are on very small scales and so the energy can be dissipated

as heat via viscous and resistive effects. In between these two extremes is the inertial

range - where the flow is dictated not by some driving force or viscous and resistive

effects. It is within this inertial range where one can observe a turbulent cascade, if it

exists. As mentioned briefly, the energy can be described as being proportional to k to

some power a, so E(k) ∝ ka. The exact value of this power law index which indicates

turbulence is debated and depends on the properties of the system being investigated.

In paper [50], the author proposed that in a three dimensional (non-magnetised) tur-

bulent fluid a = −5/3 - subsequently this is referred to as Kolmogorov turbulence.

Later, Iroshnikov ([48]) and Kraichnan ([52]) considered MHD turbulence and calcu-

lated a =−3/2, hence this is referred to as Irosnikov-Kraichnan turbulence. However,

both of these scenarios assumed turbulence occurred isotropically. Subsequent studies

have shown that turbulent cascades occur anisotropically, in planes perpendicular to

the field, when considering a plasma under the influence of a strong magnetic field in

one dominant direction (for example [99]). Interestingly, however, the values of −3/2

and −5/3 still crop up in analysis of two dimensional planes in these more physically

realistic experiments (the authors of [99] went on to obtain −5/3 in [39]), leading to

much debate on the true value of the turbulent power law index. In the work of [58], the

authors conducted a series of tests which involved drivers of various speeds acting on

the velocity and/or the magnetic fields. They concluded that the power law index was

−3/2, appearing in 2D planes, unless there was relatively fast driving of the velocity

field only, when a = −5/3. Recall that we designed our drivers to be slower than the

Alfvén speed in the initial field, so it will be interesting to discover if either of these

indexes apply to any of our simulations.

Formulae and Fourier Transform

Before proceeding, let us make a quick note on the following notation and terminology.
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Since we will be conducting spatial Fourier transforms, we will be breaking up func-

tions into sinusoids with different lengthscales, rather than frequencies. The Fourier

transformed energies will be integrated over k space, where k is an inverse length

scale, but not technically wave number, since there is no factor 2π in the calculation

of these values. The Fourier transforms themselves are calculated independently of

spatial scale, in terms of κ , which is related to k by k = κ/∆ where ∆ is the total length

in the relevant direction. The Fourier constituents are then allocated to their relevant

inverse length scale k in the integration.

The Transform: Taking a component Bx(x), the three dimensional discrete Fourier

transform Bx(κ) is given by;

Bx(κ) =
N1−1

∑
j=0

N2−1

∑
l=0

N3−1

∑
m=0

Bx(x)exp−2πi(x jκ1/N1+ylκ2/N2+zmκ3/N3), (4.1)

where N1, N2 and N3 are the number of elements in the x, y and z directions and

(κ1,κ2,κ3) are the integer indices of each constituent sinusoid. Since the magnetic

energy density is |B|2/2, we simply calculate 4.1 for the By and Bz components also

and calculate;

B(κ) · B̂(κ)
2

=
Bx(κ) · B̂x(κ)+By(κ) · B̂y(κ)+Bz(κ) · B̂z(κ)

2
,

where hat variables represent the complex conjugates. Note that we are transforming

each component individually and then calculating the energy in k-space, rather than

transforming the magnetic energy directly. This is the approach taken in much of the

literature, for example the method outlined in [15] performs the process in this way.

If we transform the magnetic energy directly, then we simply obtain the transformed
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energy. We want to look at how energy is stored at each spatial scale, which we obtain

from transforming each component first.

We can also look at planar components of magnetic and kinetic energy and carry out

two dimensional Fourier transforms in light of the research on how in magnetic envi-

ronments with a strong guide field, for example one in which the vertical field is much

stronger than the horizontal field, turbulent cascades occur in 2 planes perpendicular to

the direction of the guide field. So, rather than calculating E(κ) where κ = (κ1,κ2,κ3),

we may calculate E(κ⊥) where κ⊥ = (κ1,κ2), using 2D Fourier transforms. The vol-

ume integral over k-space then becomes a surface integral. In our case, the initial field

is (0,0,1) and checks generally show Bz larger than Bx and By through the simula-

tion runtimes, so we do have a stronger vertical field although it is not significantly

dominant. We will therefore investigate 3D and 2D transforms to gather as much in-

formation as possible. We use a Python function to compute the Fourier transforms of

each field component and their complex conjugates. The k domain set-up and integra-

tion step requires further explanation.

K-space and Integration Over K-Shells

In the three dimensional scenario, we construct the three dimensional inverse length

scale domain (k1,k2,k3) using Python programs. These functions take the x, y and z

Cartesian domains and calculate the corresponding k1,k2,k3 in k-space. The x, y and z

arrays have different interval spacing but the same size, so each k dimension also has

the same size - any point [x,y,z] in Cartesian space has a corresponding k-space vector

[k1,k2,k3]. We then create the three dimensional mesh in k-space using these vectors.

The next step is to sum the power in each ‘shell’. These shells, or k-shells, can be

thought of as spheres centred at the k-space origin, with radii of i · dk, where i is the

number of the k-shell and dk is the radial distance between the boundaries of k-shells.

For example - the zeroth shell has a radius of 0, while the first shell has radius dk, and
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so on. If the energy density has a value a at a point in k-space [k1,k2,k3], then this

point lies at a magnitude from the k-space origin of
√

k2
1 + k2

2 + k2
3. This point must sit

within one of the k-shells, so its value a contributes to energy contained in that shell.

Therefore, the only energy densities in k-space which contribute to the signal in the

zeroth shell, for example, is that defined at the origin, E(0). The first k-shell has a

radius of dk and spans a radial distance between 0 and dk. The contribution to this

shell will be the sum of the energy density at those points which lie at a radius r where

0 < r ≤ dk. The next k-shell has a radius of 2dk and spans the region lying between a

magnitude of dk and 2dk. So the energy in this shell is the sum of the energy densities

defined at points which lie at a radius between dk and 2dk. This continues until the

energy densities at all k-space points have been summed. We obtain an array of the

total energy lying in each shell, where a shell corresponds to a volume in k-space. We

plot this against the radius of the k-shell to obtain our power spectra.

In the two dimensional case, k-space is constructed from the perpendicular k vectors

and the shell integration becomes a ring integration. We sum up the value of points

at distances r =
√

k2
1 + k2

2 lying between circular regions instead. Figure 4.58 shows

a schematic of the ring integration. The dots represent the k-space mesh, with some

k-rings overlaid onto this mesh to illustrate how the domain is sectioned off. The

orange double arrows represent the radial distance dk, the magnitude chosen as the

separation between shells. The crosses are coloured to match the ring in which they lie

and contribute their values to.

Choice of dk

We have some freedom to choose a value for dk, the radial distance between shells or

rings. A sensible starting point is to take the minimum positive value from the k-arrays,

ki, thereby calculating the energy on the largest possible range of scales. Figure 4.59

(a) shows an example of a 3D dimensional power spectrum for the magnetic energy
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Figure 4.58: Diagram of k-shell mesh in 2D. The dots show how the inverse length
scales translate to points defined in a grid. Each point has some energy density at-
tached to it and a radius r from the origin which places it inside one of the correspond-
ingly coloured rings. The orange double arrows highlight the distance dk marking the
boundaries between rings. The concept is the same for the 3D case, but with spherical
shells.

for run 2A at time 19400, where dk was taken to be the minimum of the minimum

positive values of each of the three arrays. We observe many oscillations across the

range of k, giving the profile a very jagged appearance. Figure 4.59 (b) shows the

power spectrum of the same scenario but taking dk to be the maximum of the minima

of the three arrays. This is much smoother, but still contains small spikes whose origin

we must consider.

We can explain this by looking at slices through the original field and Fourier trans-

forms, as in Figure 4.60. In plot (a) there appear to be small wave like features in

the image of the real component of the Fourier transform of Bx, with regions of larger

magnitude alternating with regions of smaller magnitude within small areas: this can

account for the jagged spectrum, as there must be instances of summing a relatively

large energy value in one shell and then a relatively small value in the next shell, and so
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Figure 4.59: Three dimensional power spectra example with different values of dk.
Plot (a) was calculated using the minimum of the minimum values of each of the k-
arrays . Plot (b) used the maximum of the minimum values. We can see that summing
over a slightly larger range at a time gives a smoother line.

on. This feature appears to be due to the nature of the original field. In Figure 4.60(b)

a slice through Bx reveals structure in the field, where the gradient moving across the

area changes quite significantly and quickly. Moving across the domain, regions of

larger values switch quickly and dramatically to lower values. This results in ringing,

or the so-called Gibbs phenomenon - an artefact of signals containing discontinuities

or large gradients, whereby their Fourier transforms contain extra oscillations. We can

confirm this by carrying out the same transform on a domain containing a spherical

boundary with value two inside the sphere and one elsewhere - a type of step function

given by f = 2 for x2 + y2 + z2 < 1 and f = 1 otherwise. Figure 4.61 illustrates the

same phenomenon occurring for this spherical test - the function value jumps at the

boundary of the sphere, leading to waves appearing in the Fourier transform.

As we proceed we choose to take dk to be the maximum of the three k-array minima,

to obtain smoother power spectra and a simpler picture of the resulting power law

indexes.

The Spectra

We first examine three dimensional spectra at certain points, taking into account the
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Figure 4.60: Plot (a) shows how the jumps in the power spectra result - small waves in
the value of the quantity leads to shell energy values alternating rapidly between large
and small values. The real space image slice in (b) shows the structure of Bx in the
xy-plane. This has clear boundaries between regions of different values, which are to
blame for the ringing in the Fourier transform.

Figure 4.61: We see again the ringing effect in the Fourier transform of the sphere
function. The discontinuity across the boundary of the sphere again leads to waves in
the Fourier transform. Rings of alternating values propagate outwards across frequency
space.

magnetic energy, kinetic energy, and magnetic plus kinetic energy. For Case 1 we start

by looking at some of the data snapshots in the statistically steady state section, while

for Case 2 we first look at the energy distribution at times before, during and after large

drops in magnetic energy. Figures 4.62 to 4.67 display red solid lines representing the

magnetic energy, blue solid lines the kinetic energy, and black solid lines the magnetic

plus kinetic energy. We also plot c1k−5/3 and c2k−3/2 in green dotted and purple

dotted lines respectively, in order to quickly compare the gradient of each power law
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and identify potential turbulence. The constants c1 and c2 are chosen simply to position

these plots at levels helpful to the comparison.

Figure 4.62: 3D spectra for run 1A, (x0 = 0.5, opposite/zero helicity), at times t =
29,000,30,000,31,200.

One feature jumps out and is common to all runs: none of the runs exhibit slopes

close to the Kolmogorov or Iroshnikov-Straichnan slopes. A few of the snapshots, for

example Plot (a) in Figure 4.62, show a small range of k values in the inertial range

(from around k = 1 to k = 2.5) where the slope is not too far off, however even then

this brief correspondence is interrupted by the other main feature which is common to

most of the snapshots - a sudden and large drop, generally in both the magnetic and

kinetic energy, and always at a certain k-shell radius, k = 2.5.

Snapshots which either have a very minimal or no characteristic drop at this value of k

are seen for runs 1C and 2A and B. These are the simulations with the largest energy

values and largest energy releases. However generally there is at least a small drop at

k = 2.5, regardless of the driver - the point of change is always the same. This suggests

that driver characteristics are not responsible for the existence of the drop, but do affect
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Figure 4.63: 3D spectra for run 1B, (x0 = 1.0, opposite/zero helicity), at times t =
29,000,30,000,31,200.

Figure 4.64: 3D spectra for run 1C, (x0 = 2.0, opposite/zero helicity), at times t =
28,800,30,000,32,000.



177

Figure 4.65: 3D spectra for run 2A, (x0 = 0.5, equal/high helicity), at times t =
19,000,19,400,20,000.

Figure 4.66: 3D spectra for run 2B, (x0 = 1.0, equal/high helicity), at times t =
30,800,33,000,34,000.
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Figure 4.67: 3D spectra for run 2C, (x0 = 2.0, equal/high helicity), at times t =
30,000,31,000,32,000.

the magnitude. The value k = 2.5 corresponds to a length scale in physical space of

λ = 1/2.5 = 0.4. Therefore, for some reason, as we look at the energy at the largest

length scales down, we reach a length scale of 0.4 and the energy value drops. The 3D

spectrum does not offer any more information beyond this. We need to look at some

2D examples for further clues.

Figures 4.68 provide some examples of 2D spectra. We provide these plots for the ini-

tial snapshot analysed by 3D spectra for the run 1A, at t = 29,000. All other snapshots

examined in 3D above showed the same picture in 2D. Taking the two dimensional

transforms of the magnetic and velocity fields at for example, constant x, for all val-

ues of x, averaging, and then summing over 2D rings instead of the 3D shells, gives

us a picture of the energy distribution in k2− k3/y− z. Doing so for constant y and

z also reveals, as in Figure 4.68, that it is only in k2− k3 and k1− k3 where the drop

appears. The spectra in k1− k2 are smooth, suggesting that it is in the z-direction that
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Figure 4.68: Two dimensional average power spectrum for run 1A at t = 29,000.

the characteristic length scale 0.4, which gives rise to the drop, lies. Also, the drop is

larger in magnitude for constant x than for constant y (again this the same picture for

all snapshots). To understand this we re-consider the numerical mesh constructed in



180

k-space.

Figure 4.69: Shell drop off diagram.

The diagram in Figure 4.69 shows the k-space mesh for k3 against k2, with a couple of

the rings in which values are summed superimposed. The k3 axis corresponds to z, and

k2 corresponds to y. In physical space, the z-axis is the longest and the y-axis the short-

est, therefore in k-space the corresponding axes k3 and k2 have the opposite attributes.

The k values along these axes range from k2 = [−12.8, ...,12.7], k3 = [−2.56, ...,2.54],

indicated in the diagram by blue and green markers respectively. Beyond the k-shell

defined from a radius of 2.5 to 2.6 and shaded in red, the mesh has no more vertical

extent, and larger and larger portions of each subsequent shell is empty - those areas

shaded in orange. Beyond the red shell there are simply not as many points with values

to sum, so the energy in larger shells takes a dip compared with those inside the red

shell. Note also that the diameter of this boundary shell is 5, making the corresponding

length-scale in physical space λ = 0.2, which is also around the value of dz in physical

space (50/256 = 0.195). We simply do not have the resolution in z to keep counting

energy values past this point. The resolution in x and y is much closer: dx = 0.047 and
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dy = 0.039, so the mesh in the x− y plane is not just as asymmetric. There is a ring

past which there is no further extent in k1, but it is much further down the length scales

towards the limit of k, so we do not see the characteristic drops in the x− y spectra.

The difference in the magnitude of the drop still requires an explanation. In Table 4.3

we show the average absolute value of each of the components of the magnetic and

velocity fields in the domain at the first snapshot we have plotted 3D spectra for, for

each simulation. We generally have Bz larger than Bx or By, so this is where the mag-

netic energy density receives its most significant amount. It is perhaps unsurprising

then that when considering energy distribution involving the z axis that we can some-

times see such a large drop when we pass the smallest length scale in z - the signal has

lost its largest factor. Bz is not defined at scales as small as Bx or By. We also note

that the average |By| is larger than the average |Bx|. Consider this: say each vortex’s

influence is only felt within a radius of 2 around the centre. Then the driver affects

an area measuring about −2...(2+ x0) units in x by 4 units in y. The action along x is

distributed over a larger distance, while the action in y is confined between y =−2...2

for every driver. Recall that the most coherent driver twisting the field tighter lead to

larger magnetic energies. If the energy is larger, the magnitude of the field components

must be larger. The closer the vortices, the more confined the action, the tighter the

twist, and the larger the field components. For each simulation the field is driven over

a more confined distance in y, so this perhaps explains the field component in the y

direction being generally larger than the field component in the x direction. Along x,

the field is not twisted as tightly.

Further, note that in the 2D spectra the magnitude of the drop is larger in k2− k3 than

for k1− k3 - this is because dx is closer to dz than dy, so the k1− k3 mesh is less

asymmetric than the k2− k3 mesh. Those runs with smaller or no drops - like 2A and

2B - have larger average Bx and By values (although still at least one order of magnitude

smaller than Bz). These are also the runs with larger energy heating values and large
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Average Magnetic and Velocity Components.
Run Bx By Bz vx vy vz
1A 0.03 0.06 1.0 0.02 0.02 0.004
1B 0.04 0.12 1.0 0.02 0.02 0.005
1C 0.05 0.13 1.0 0.009 0.01 0.006
2A 0.06 0.341 1.0 0.005 0.008 0.005
2B 0.06 0.28 1.0 0.004 0.008 0.005
2C 0.07 0.18 1.0 0.007 0.010 0.005

Table 4.3: Average values of magnetic field and velocity field components at the first
snapshot illustrated by the 3D spectra plots for each simulation.

reconnection events. The drop in the kinetic energy profile tends to be smaller than

in the magnetic energy profile despite being defined on the same mesh - this can be

explained by the fact that vz is generally smaller than vx and vy, so when we pass

k = 2.5 the loss of values further up the k3 axis is not as important and leads to a

smaller drop.

To confirm the theory that the difference in resolution in z is the key to this feature, we

can run some other tests. We will use the driver from run 1A, which appears to result in

a drop which, we hypothesise, is due to the resolution in z being much smaller than in x

or y. In our simulations, recall that the physical domain spans [−5,7]× [−5,5]× [0,50].

We will compare the spectrum of this original simulation to spectra of test domains:

(1) [−5,7]× [−5,5]× [0,75] . Based on our our theory, we would expect to see some

drop at a specific value of k based on the relative resolutions of each direction.

As before dx and dy are similar, but now dz = 75/256 = 0.293. The diameter

of the corresponding k-shell would be 1/0.293 = 3.413. We expect then to see

some sort of decrease in the energy distribution around k = 3.413/2 = 1.7.

(2) [−5,7]× [−6,6]× [0,12]. Now the resolution is the same in each direction we

predict that we will not see an obvious drop in energy as we pass along the

k-shells.
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In Figure 4.70 we compare 3D spectra at t = 200 for the original 1A run, Test 1 and

Test 2. As predicted, we see a distinct decrease in energy at k = 1.7 in Test 1. For Test

2 we do not see a significant fall in energy until we pass k = 10, which corresponds

to a shell of diameter 20, or a length scale of 0.05 - which is the value of dx, dy and

dz. Also interesting is the fact that in this case, there is a better similarity between our

magnetic energy gradient and the turbulence power laws. Between about k = 1..10,

the slopes are much closer. Considering that all other factors in these tests where the

same, this raises an interesting question about the role of resolution in affecting results.

We should also note that the magnetic energy spectrum dominated the kinetic energy

spectrum (other than in the test snapshots which were early in the simulations) and the

magnetic plus kinetic energy looks much the same as the magnetic energy alone. This

is simply consistent with what we have observed before.

Overall then, it is difficult to say whether turbulence is present in any of the simu-

lations. None appear to induce a classical turbulent cascade with a power law index

−5/3 or −3/2. Generally the slopes in 2D and 3D for both kinetic, magnetic and

magnetic plus kinetic energy are much steeper. This suggests that energy is not be-

ing transferred down spatial scales, but is dissipated at larger scales. One of the more

promising candidates for turbulence is Run 1A in Figure 4.62 - the magnetic energy in

particular shows more of an agreement with the turbulence slopes in range k = 1..2.5,

but then the profile is interrupted by the characteristic drop. The Test 2 profile for this

same driver suggests that had the asymmetric mesh resolution not been an issue, we

may have seen more evidence of turbulence. Future work could involved integrating

in such a way as to avoid this issue.

The spectra with no characteristic drop are those with (relatively) larger Bx and By

values. These are also the simulations which were driven by lower complexity, high

helicity motions. These motions must be able to generate structures varying more from



184

Figure 4.70: Comparison at time= 200 for run 1A, Test 1 and Test 2.

the initial field (0,0,1). The studies of the energy distribution over the large magnetic

energy releases also show more of the small oscillations we discussed as being ringing

artefacts. In particular run 2A at time 19,400 (plot 2 of Figure 4.65), during the largest
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magnetic energy discharge, shows several small oscillations. This itself tells us that

the field at this point must have large gradients, which fits with the theory that current

layers are present and reconnecting in some large event. The smoother profile of the

next plot in this figure suggests that current layers which had build up have been dissi-

pated and the field now has a smoother structure once again.



Chapter 5

Magnetic Carpet Experiments

5.1 Initial Attempt

In this Chapter we will discuss the multiple problems that we ran into when testing our

drivers on the magnetic carpet environment. We will look further into the code details

to explain why these problems appear and how we tried to solve them.

Our first attempt at these simulations used the parameters presented in Table 5.1. In this

scenario, we are investigating the carpet field, with magnetic features at the base and

straight field rising up through the corona, rather than a straightened loop. Therefore,

we initially set the upper z boundary to open - i.e. the velocity on the upper z boundary

is not set to zero. All other parameters were the same as previous runs in Chapter 4.

186



187

Property Value/Nature
x, y boundaries periodic

Upper z boundary open
Lower z boundary driven, ‖v‖ ≤ 0.1vA

B0 ez + CARPET
v0 0

Resolution 256×256×256
Domain [−5,7]× [−5,5]× [0,50]

η 0.0005, uniform
viscosity shock capturing form

Duration
45000 time units (596 driver
periods, 900 Alfvén times)

Table 5.1: Simulation details for carpet field tests.

5.1.1 First Instance of Problems

We began to experiment with the initial carpet field, applying each of our established

drivers in turn; instantly we had the problem that all six simulations progressed incred-

ibly slowly. We illustrate this in plot (a) of Figure 5.1. Here is plotted the time against

the timestep (the number of predictor-corrector + remap steps taken) for the simulation

under driver 2A, but all other new simulations showed the same problem. We can see

that it took around 4500 time steps to reach 10 time units, but then a further 25,500

time steps to evolve another 5 time units to reach 15 time units - a rapid drop in the

size of successive time steps and efficiency of the code. This was far too slow to be

practical and affected all other simulations in the same way, regardless of driver type.

As a first test then, since the driver type seemed to be innocent, we considered the

boundary conditions. We had the x and y boundaries set to be periodic as before.

Unlike the simple uniform field (0,0,1) which was automatically periodic across these

boundaries, the magnetic carpet field is not. This means that the carefully constructed

magnetic carpet, designed to be divergence free and potential, is being forced into

periodicity by the code, giving the field different values at some points than the initial
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Figure 5.1: Time progressions for driver 2A acting on the magnetic carpet field.
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design - could this affect the set up in a way that could cause the time progression to

stall? We set the x,y boundaries to be closed too, and checked that the field values at

random points on the numerical grid now gave the same values as for the same points

substituted into the original algebraic expression. This change was to no avail, as

seen in plot (b) of Figure 5.1. This simulation reached around 10 time units in a little

under 5000 time steps, and had almost made it to 15 time units by a further 22,500

time steps. This is comparable to this first attempt, so the periodic boundaries were

not the problem, even though the field was more accurate. Lastly we tried making

the upper z boundary line tied too, since that was the only other difference with the

previous experiments. Plot (c) of Figure 5.1 shows the time progression for this test

and again we see no improvement - it made 10 time units in just under 5000 time

steps and 15 time units in around a further 22,500 time steps, so the difference in

boundary conditions are not to blame for this issue. Therefore, clearly the approach

taken previously is not appropriate for this new scenario. We now set out to understand

why, and what we should do differently.

5.1.2 Timestep Factors: CFL Condition and Simple Fix Attempts

Now we focused specifically on factors which could affect the size of the time step.

The interval in time covered by each timestep depends on a number of variables and

therefore does tend to vary slightly, but ideally (for example in our previous simple

field simulations) each timestep will advance the simulation by roughly the same time.

Our problem here is that each subsequent timestep is evolving the system over a shorter

and shorter period of time until we effectively have a stalled simulation, with such a

small timestep that time is practically no longer advancing.

The timestep in a numerical simulation may be able to change from step to step, but

there are restrictions placed on it due to the CFL condition: that is, the Courant,
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Friedrichs and Lewy condition (see [23] for the original work). The solution to a

partial differential equation at time t > 0 depends on the data at some continuous set

of points at t = 0 - this set of points is called the mathematical domain of dependence.

The finite difference scheme chosen to approximate the differential equation is defined

on a mesh of discrete points. Data from a discrete set of points will be needed in order

to update each variable at each step, and so the scheme has a numerical domain of

dependence. Courant, Friedrichs and Lewy showed that a condition for convergence

of a finite difference scheme is that the mathematical domain of dependence must be

contained within the numerical domain of dependence. In other words, finite differ-

ence regimes update the value of a variable at some point in space and time using the

value of variables at neighbouring positions in space and time. Therefore, for a scheme

to be successful there must be a way to guarantee that the code will have access to all

potentially necessary points at each step, so the timestep must be limited such that we

will not run into the situation where the value at a point is relying on an undefined

value.

This can be quantified algebraically. The variable C is referred to as the Courant num-

ber and is a ratio involving timestep, velocity and grid spacing as in Equation 5.1.

Grid spacing is chosen by the user of the code and the velocity is dependent on sys-

tem dynamics. Therefore the timestep ∆t is set at each iteration in order to keep the

Courant number at every point less than or equal to some number Cmax. Physically,

the Courant number quantifies how information travels at velocity u over a distance

measuring ∆x in time ∆t. For a given grid spacing, the velocities generated will dictate

how large we can take ∆t. We want this time interval to be as large as possible in order

to complete the simulation in as few time steps as possible, completing the simulation

efficiently, but we cannot make it so large that C exceeds Cmax somewhere on the grid.

If C becomes too large, the physical speed of information in the system is faster than

the speed ∆x/∆t in which the code can update the variables. The value of Cmax also



191

varies depending on the finite differencing scheme utilised - Lare3d uses Cmax = 0.8.

So if, for example, the grid spacing becomes smaller, the ratio of the velocities to grid

spacing may become larger, therefore ∆t may have to decrease in order to maintain

C ≤ 0.8. Similarly, an increase in velocities may lead to ∆t being decreased. This

condition must be met for every point on the computational grid, so at each iteration

∆t must be set to the value which will satisfy Equation 5.1 for every single point. Ve-

locities can depend on the current density and plasma density amongst other things.

Therefore at each iteration the code considers a number of properties and settles on a

feasible timestep length.

C =
u∆t
∆x
≤Cmax (5.1)

The next step we took attempted to prevent this timestep magnitude falling. We tried

simple alterations - some made minimal improvements - i.e. the time progression did

not stall as early or as steeply - but none removed the problem or even sped things up

enough to be practical solutions. These attempts included the following:

1. We tried things which would have an immediate and direct effect on the CFL

limit - by equation 5.1, increasing the grid spacing may allow the timestep to

increase. We therefore increased the domain range in x, y and z by various

different test amounts, to no avail - it was not enough to make a difference.

2. By Equation 5.1, if we can decrease the velocities we may be able to bring up the

timestep. Reconnection can lead to plasma flows, therefore reducing η may re-

duce reconnection opportunities and the velocities around potential reconnection

sites. Setting η to various smaller values, some an order of magnitude smaller,

led to a small improvement, but again not enough to be a viable solution. We

also turned off resistive effects entirely, but the time progression for this test is
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shown in Plot (d) of Figure 5.1. It illustrates how the point of stalling was only

delayed a little.

3. We tried both a slower boundary motion and turning off driving. The fact that

this did not help, again helps exclude the driving process from any suspicion.

4. We also tried making the grid spacing equal in all dimensions, so that dx = dy =

dz. Irregularity in cell dimensions can sometimes lead to problems. However

adjusting this made no significant difference here.

5. We tried both turning off shock viscosity and using a different form, as per the

Lare3d user guide suggestion when a code seems to hang. The problem still did

not go away.

We now turned again to the initial condition and other simulation variables which can

affect the timestep more indirectly. For example the current density depends on the

magnetic field, whose evolution depends on velocity; the velocities are also affected

by plasma pressure and density. We found three key issues:

1. the divergence of the numerical field was non-zero,

2. the initial currents and therefore initial Lorentz forces were non-zero, and

3. the minimum plasma density in the domain drops further and further as the sim-

ulation slows and is close to zero when it halts almost entirely.

Clearly items 1 and 2 should not be the case at all based on the design of the field, and

item 3 must somehow be caused by one or both of these inaccuracies, which in turn is

causing the timestep to drop. We sought now to pinpoint the details.
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5.1.3 Discretisation Error

There is naturally a discretisation error introduced when one translates a field, given by

an algebraic expression, into a variable prescribed only on the finite number of points

of a numerical grid. This error vanishes in the limit of vanishing grid point spacing, so

the higher the resolution employed, the closer to the analytic form the numerical field

will be. The results obtained will be more accurate with a smaller error. We are also

obviously aware that the higher the resolution, the more computationally expensive a

simulation will be. We found that a grid of 2563 was a good resolution in terms of

accuracy and practicality in previous simulations, and continued with that for our first

attempt at the magnetic carpet experiments. The other factor affecting the accuracy of

a numerical scheme is the order of the finite differences. One could increase the order

of the derivatives calculated and gain precision without increasing resolution. Lare3d

is second order, while codes such as the Pencil code (we will return to this in Section

5.3) can use differences of up to order six. The nulls and topology of our carpet field

result in highly variable fields within small regions, the behaviour of which perhaps

second order differencing cannot capture as accurately as one might hope.

Let us return to the error which we may try to address within these particular experi-

ments: the discretisation error. One consequence of this is that an initial field whose

algebraic expression is, as in our magnetic carpet case, divergence and current free,

may have a non-zero divergence and current in the code. It appears that the non-

zero current leads to non-zero Lorentz forces acting on the plasma and influencing the

plasma flows, and therefore plasma density distribution, from the very beginning of

these simulations.

Let us consider the divergence first of all. Both our very first attempt using the set up

described in Table 5.1 and the test setting the x and y boundaries to be line-tied had

stalling. Intuitively we expect there to be more of a discretisation error in the section
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of the domain containing the parasitic polarities and their local field. As we move

up the computational box to higher values of z we move into a uniform field region

like that of the previous chapter’s initial condition where the numerical divergence

should be close to zero. This leads us to think of the maximum absolute divergence

in planes of constant z, as in Figure 5.2. We have plotted the maximum absolute

value of the divergence at each value of z for different boundary conditions, and we

see that it does indeed decrease with z. The maximum divergence occurs near z = 0

for simulations with x and y boundaries periodic and line-tied - but the value of the

maximum varies significantly. For x and y periodic, where the field is forced into

periodicity, the maximum magnitude of divergence is 25.26 - this is wildly inaccurate.

For x and y boundaries closed, the maximum magnitude of the divergence is 0.56 -

two orders of magnitude smaller than the first set-up and clearly the better of the two,

but still much larger than we want. The tests for all boundaries closed for resistive and

ideal circumstances tell the same story. While the divergence issue is very worrying,

the fact that the difference in divergence does not appear to make a direct difference in

the timestep issue as seen from the time progression plots led us to first consider the

Lorentz forces in more detail.

To investigate the details of the Lorentz forces we focus on a less complicated carpet

field, to make things clearer.

Simple Carpet Tests

The simplified test uses an initial condition with a source placed at (−1,0,−0.85),

so that our null is positioned at around (−1,0,0.737) - simply put we have one of

the dome structures we illustrated in the basic unit, centred at x = −1. This field is

sketched in Figure 5.3 - in the first plot we are lying along the y-axis through the

middle of the separatrix dome created, with the same picture lying along x =−1 in the

second plot.
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Figure 5.2: Maximum absolute value of ∇ ·B in planes of constant z. Clockwise from
top left, the first plot is for a simulation with periodic x and y boundaries, open upper
z boundary and line tied lower z boundary. Next is the scenario with line tied x,y and
lower z boundaries and an open upper z boundary. Then we have the same quantity
when setting all boundaries to be line tied and taking an ideal environment. Lastly, we
return to a resistive simulation and keep all boundaries line tied.
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Figure 5.3: Original field structure around our single parasitic polarity field. The single
null lies at [−1,0,0.737], with fieldlines curving over and up from the null above the
separatrix dome and up and back down again inside the dome.
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Figure 5.4: Time progressions of the simple field tests for (a) 2563, with driving, (b)
5123, with driving and (c) 2563, no driving.

We ran these tests on a smaller domain consisting [−5,7]× [−6,6]× [0,12] to keep

everything as symmetric and simple as possible and avoid additional complications.

We kept the x and y boundaries line-tied and returned to an open upper z boundary.

Initially, to check if this simplification itself gave rise to any improvement, we tried

running tests on this setup with driving (driver 2A) for resolutions of 2563 and 5123,

and then without driving for 2563. The time progression plots for these tests are shown

in Figure 5.4. Again none of the changes have removed the problem, illustrating that

this problem lies in the nature of the translation of the basic parasitic polarity structure

to the numerical grid.

Proceeding on a 2563 grid, the investigations showed that the unintended non-zero
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Lorentz forces act from the beginning within the dome region to force plasma towards

the separatrix surface, letting the density within fall close to zero. We illustrate this in

detail in the following plots, and refer to the Lorentz force as L = (Lx,Ly,Lz).

Figure 5.5 illustrates the magnitude of these forces. We see that that Lx,Ly,Lz are small

(indeed close to zero) everywhere but inside the region where the dome structure sits.

The black regions have zero magnitude where there is uniform field, but under the

separatrix layer the Lorentz magnitude reaches up to around 21 units. Figure 5.6 (a)

shows a cross-section of the 2D vector field (Lx,Lz) at y = 0, and (b) shows (Ly,Lz)

at x = −1. Clearly Lorentz forces are acting from the centre of the dome down and

out. Initially the density is set to be constant throughout the domain and velocity is

zero, however right from the very beginning we have magnetic forces acting within the

dome. We will call the region with these anomalous Lorentz forces region L.

We reassess the state of the field once the simulation has started. For this set-up we

saw the time progression slowing significantly by 8 time units. At this point in the

simulation we are not even yet halfway through the first driving period. The first

vortex is spinning from t = 0..12π = 0..37.7, so it is still early in its first cycle. The

density distribution has already been altered greatly, as seen in Figure 5.7, where we

observe plasma density along (a)y = 0 and (b)x =−1. Outside the dome the density is

still fairly uniform but plasma has migrated from the region L up to the cusp of the null

region and out towards the separatrix surface, leaving a region with very low plasma

density - region L has effectively been evacuated by plasma. Figure 5.8 shows the

plasma pressure and also how material is collecting around the location of the original

null, leaving low pressure regions within.

Velocity fields are illustrated in Figures 5.9 and 5.10 and show exactly how the plasma

is being moved, the arrows of the field echoing the outline of the plasma suggested

by the density and pressure plots. The magnitude of the velocities range around levels
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Figure 5.5: Magnitude of the Lorentz forces at t=0. Highly localised non-zero forces
are at work.
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Figure 5.6: Initial Lorentz forces - these should be zero everywhere, but we see non-
zero forces acting in the region of the magnetic . These act away from the middle of
the dome from the very beginning of the simulation.

comparable to that of the driver - i.e. slower than Alfvén speed but not insignificant.

Again, this is still very early in the simulation, and there are still significant Lorentz

forces acting as seen in Figures 5.11 and 5.12. They appear to continue to be acting

away from the already depleted region of low density, and indeed the problem escalates

further.

Figure 5.13 shows the structure of the magnetic field at this point - the centre of the ac-

tion has shifted a little but the overall topology is still very similar. Therefore, we end

up in a situation that is doomed from the beginning, with our original region L becom-

ing increasingly depleted, the timestep decreasing continuously, until the simulation

effectively stops.
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Figure 5.7: Plasma density at t=8. Plasma has moved from region L outwards and
upwards, leaving behind a volume of very low density.
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Figure 5.8: Plasma pressure at t=8. Plasma appears to be collecting in layers around
the original null location leaving region L depleted in its wake.
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Figure 5.9: Velocity profile at time=8. In cross section of the xz and yz planes we see
how the plasma is moving up and away from region L.
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Figure 5.10: Velocity magnitudes at 8 time units in the magnetic feature region.
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Figure 5.11: Lorentz forces at t=8.
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Figure 5.12: Lorentz force magnitude at t=8.
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Figure 5.13: Magnetic field at t=8. This is still very early in the simulation and the
field is mostly unchanged, and the plasma migration continues, leading to stalling of
the simulation.

The details of key values and locations are summarised in Table 5.2. The maximum

divergence is located just under the null, but the real problem appears closer to the xy

plane. By 8 time units the minimum density is 0.000177, at a point inside the dome.

By 10 time units, this minimum value has dropped to 0.00000172 and the simulation

is not making any progress. Again this occurs within the dome, close to the xy plane.

The simulation has failed before it even really got going.

Simulation Details: Null Location: [−1,0,0.737]
Variable Value Location

∇ ·B max= 0.0859 [−0.99,0.0234,0.02]
ρ t = 8 : min= 1.77×10−4 t = 8 : [−0.945,0.26,0.02]

t = 10 : min= 1.72×10−6 t = 10 : [−0.945,0.44,0.02]

Table 5.2: Details of problem variables. By the time we reach 10 time units, the
minimum density has dropped to the order of 10−6, within region L, and the simulation
has stalled.
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We saw two mains options to deal with this issue:

1. We could re-write the initial condition in some way, so that the numerical curl

was identically zero. This is highly non-trivial task, however.

2. We could accept the non-zero forces and attempt to ‘limit the damage’. Plasma

flow is dictated by the balance between the Lorentz force and the plasma pres-

sure. In this case the Lorentz force appears to be too dominant - could we reduce

its influence instead?

We could reduce it, rather crudely, simply by dividing the magnetic field by some

constant. This would also affect the normalised Aflvén speed, so we would have to

adjust our driving speed and period to keep everything in the same relative proportions

as before. The normalising constants could be adjusted to keep everything the same in

real terms. However, this is rather complicated and unsatisfactory.

Rather than actually reducing the Lorentz force then, we can try to reduce its level of

dominance over the problem plasma flows by increasing the plasma pressure, thereby

increasing the plasma beta, making the two factors more equally matched. Initial pres-

sure is not explicitly set in Lare3d, but by changing the initial specific internal energy

density ε , we change the plasma pressure. This would not have any other knock-on

effects either, as nothing else is defined in terms of ε . We did have ε = 0.01. Trial and

error tests of different values led us to set ε = 0.25 - this gave good improvement on

simulation speed without changing things any further than necessary. Most of the field

is uniform and therefore the previous normalised plasma beta in most of the domain in

terms of ε was

β =
2(γ−1)ρε

B2 = 0.0133.
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Therefore, setting ε = 0.25 leads to multiplying this by 25, giving β = 0.332 in most

of the domain.

Figure 5.14 shows the time progression for this particular test up to 8 time units in

plot (a) and 190 time units in plot (b). For comparison, (by eye estimates from the

plots), the run with ε = 0.01 was slow at around 8 time units, and it took about 6000

time steps to reach that. We can see from plot (a) that the simulation with ε = 0.25

reaches around 8 time units after about 1500 time steps. Plot (b), while far from a

straight line, shows that time is not stalling as it was before. The timestep does not

remain as consistent for the duration as it was up until 8 time units. For comparison,

the uniform field under the influence of this driver had consistent time progression

and reach 200 time units in around 10% of the time steps, as shown in Figure 5.15.

However, the rate of progression of the simulation is now much better than it was and

the time step does not plummet any more. This is a definite improvement, and seemed

a good compromise.

We also questioned whether this approach would simply slow down how long it took

for the plasma to migrate and end up leading to the same problem further down the

line. Looking at the Lorentz profiles in Figure 5.16, in the same planes as before, at

t = 190 for this new experiment, shows that these forces are changed from their initial

states - the original field has evolved past the point where we met problems before, and

will hopefully not run into the stalling problem later in the simulation.

5.2 Increased Plasma Pressure Runs

We proceeded with this new approach and applied each driver to the initial carpet field,

this time with ε = 0.25, line-tied x and y boundaries and an open upper z boundary -

everything else remaining as originally intended. We did not see any further significant
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Figure 5.14: Time progression for ε = 0.25 up to t = 8 for plot (a) and t = 190 for plot
(b). Previously the time step had fallen significantly by 8 time units and the simulation
was slowing. Here we see a fairly uniform timestep and no loss of progress. Plot (a)
shows how the simulation makes it to 8 time units in just under 1500 time steps - a vast
improvement on the almost 6000 time steps it took to reach this stage previously. Plot
(b) shows the time progression up to t = 190 time units. The timestep has not stayed
consistent but the simulation has not stalled.

Figure 5.15: Time progression up to t = 200 for the uniform field under the influence
of driver 2A.
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Figure 5.16: Lorentz forces at y = 0 (plot (a)), and x =−1 (plot (b)).

time progression issues - some started more slowly than others, but we had no further

problems with very slow progress .

Figure 5.17 shows energy diagnostics for the system under the influence of driver 2A.

These plots run to almost 24,000 time units - but there is not much happening. The

profiles appear thick due to many small oscillations, but overall the quantities have

very smooth profiles. The magnetic energy in particular seems unusually lacking in

features. After a brief decrease at the beginning of the simulation it begins to rise

slowly. The internal energy has a spike at the beginning and then stays roughly con-

stant, while the Ohmic and viscous heating rise steadily. The magnitude of the heating

is small compared with the levels seen for the uniform case over this length of time,

but is larger than the change in internal energy. This can be explained due to the fact

that the Ohmic and viscous heating are calculated cumulatively and in this case we

have an open upper z boundary. These plots and the following analyses point to theory

that the initial structure is quickly destroyed by the driving at the very beginning of the

simulation, so we see a drop in magnetic energy, a spike in internal energy and rise
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in Ohmic heating at the very start. We will see that the field then remains quite uni-

form, with the only activity coming from the driving action which triggers a relatively

small amount of heating via Ohmic and viscous effects. The heating variables are

stored cumulatively, so they continue to rise. It seems that a stable system is reached

whereby the total internal energy is not changing particularly because the heating from

the driving and that lost through the top boundary appear to be balanced. Checking this

by carrying out a second simulation with the top boundary closed and everything else

the same confirms this, since in this test the internal energy continued to rise, rather

than staying along a roughly constant level. All other variables exhibited the same

kind of behaviour, indicating that the boundary difference is not responsible for their

characteristics.

Figure 5.18 displays the magnetic energy profiles for each of the other five runs - they

all look suspiciously similar. We began some further checks to explain this.

Figure 5.19 displays energy diagnostics for a test with no driving, all boundaries closed

and the larger ε value. The kinetic and internal energies look sensible - after some

initial activity, they settle to roughly constant values (kinetic to zero as expected).

The heating quantities also level out after some initial changes. The magnetic energy

however, seems to settle to a lower level, as we would expect for a system under no

external forcing which approaches equilibrium, but then starts increasing slowly but

steadily again. There is no physical reason why this should happen.

This initially seemed very worrying. Take driver 2A again. The initial magnetic field

has a magnetic energy of 2969.2 units. It falls to a minimum of 2955.1 units at t =

1,586. By 23,599.6 time units, i.e. 22,013.6 time units later, the magnetic energy

value has risen back to 2968.1 units. So in the space of around 292 driver periods, the

magnetic energy has risen by 0.44% of its minimum value, and is almost back to the

same value as the initial state. Comparing to the non-driven initial field, it reached its
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Figure 5.17: Driver 2A, magnetic carpet field original attempt with ε = 0.25.
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Figure 5.18: Magnetic energy evolutions for the other runs.

minimum value of 2954.9 and then started rising again to a value of 2957.1, 4,2298

time units (or 57 driver periods) later. This is an increase of 0.0744%. To establish

an explanation for this consider the following facts. For a direct comparison of these

two cases, note that our non-driven case ran until 6631 time units. By this same time,

the driven case had a magnetic energy value of 2958.4 units - a 0.11% increase from

the minimum. Furthermore, it took the driven case 951,684 time steps to reach this

point, whereas the non-driven case took 551,930 timsteps. So, the driven case has

taken 399,754 more time steps to reach the same simulation time as the non-driven

case and when it gets to that time the increase in magnetic energy from the minimum

values is larger. These properties suggest that the increase is due to an error - the non-

driven case simply should not display this behaviour, but if there are errors in current

calculation in parts of the code from the very beginning (and these errors are passed

on in the magnetic field evolution through the induction equation), then this effect will
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Figure 5.19: No driving, magnetic carpet field with ε = 0.25 and all boundaries closed.
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Driver % Increase from min Timesteps from min
1A 0.030 115,587
1B 0.034 127,544
1C 0.037 133,453
2A 0.020 106,005
2B 0.020 100,527
2C 0.024 107,325

Table 5.3: Increase in magnetic energy by 3000 time units in terms of percentage of
the minimum value, and the number of time steps it takes to reach this point, for each
driver.

build up with each successive iteration. The more iterations, the more the error should

build, and this is indeed confirmed by the fact that the driven case takes more timesteps

to reach the same time and in turn shows a larger increase in magnetic energy.

To check if this concept is consistent we can check the other runs too. Table 5.3

compares for each different driver what was the percentage increase in magnetic energy

from the minimum value by 3000 time units. It also quotes how many time steps it took

to reach this point from the time of the minimum value. In general we can see that the

size of the increase does appear to increase with number of timesteps. We can also see

a correlation with the characteristics of the drivers - the Case 1 drivers were the higher

complexity runs, with 1C being the most complex. It is also driver 1C which takes

the most time steps and leads to the highest increase after the minimum, with 1B and

1C the next highest timestep resolutions. Driver 2C is the most complex of the other

drivers and is the next most labour intensive run. So, higher complexity runs, seem to

induce conditions whereby timestep is lowered further and numerical errors can build

up more.

Above and beyond this, none of the simulations show the energy diagnostics changing

in significant ways, relative to the previous chapter runs, and we are not able to learn

much from them. Focusing again on the driver 2A run, which we eventually ran to

45,000 time units, we see that there continues to be very little activity compared with
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Figure 5.20: Contours of |B| at t = 10,000. Planes lying at z = 0, z = 25 and y = 0
show that the magnetic field strength is fairly homogenous compared to the initial state.
The field has been smoothed out.

the previous uniform field tests. Figure 5.20 illustrates the field strength at t = 10,000

in cross sections of the domain. This is during the 133rd driving period. The driver

has therefore had lots of time to act on the initial structures and we expected to see the

field beginning to to twist up in the same way as the initially uniform field. However it

seems that the field is quite smooth, with the field strength actually varying very little

in all of the planes shown. We can see this in Figure 5.21, where we plot the magnetic

field.

Figure 5.22 shows contours of density at this same time, for planes lying at z = 25

(halfway up the box), z = 50 (at the top of the box) and y = 0. Outside of the regions

with initial polarity features and directly above the driven area, the density is largely

unchanged and remains at the initial value of 1.

Lastly, Figure 5.23 shows contours of the magnitude of the velocity at z = 25, halfway
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Figure 5.21: (a) Bx, Bz field through y mid plane at t = 10,000. (b) Bx, By field on
z = 0 at t = 10,000.

Figure 5.22: Density plots for t = 10,000. Plot (a) is the xy plane lying halfway up the
numerical box, (b) is at the top of the box, and (c) is along y = 0.
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Figure 5.23: Velocity magnitude for t = 10,000. There is very little happening outside
of the driver influence.

up the box. Again we can see that beyond the direct action of the driven region, velocity

is unchanged from its initial value of zero. It seems that really, not much is happening

in the system relative to the activity we saw before.

We ran this simulation to the intended end point of 45,000 time units and found that

it continued in the same way, with very little activity. Figure 5.24 shows the density

and magnetic field strength in cuts through the domain at the end of the runtime. The

density profile has not changed much from that at t = 10,000, and the magnetic field

strength is looking fairly uniform.

It seems that here the increased plasma pressure experiments have stopped timestep

failure, but we simply do not see much activity. We considered that maybe the tech-

nique made competing forces too well balanced. After a relaxation of the initial field

the only changes we see are from numerical error build up, which we may not even

have noticed if other things were happening in the plasma. On the other, more likely

hand, there remained the fact of the non-zero divergence and its impact; this is in fact

probably the fundamental flaw.
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Figure 5.24: Density, (plots (a) and (b)) and |B| (plot (c)) for t = 45,000. The magnetic
field is quite smooth and the density profile looks at lot like it did at t = 10,000.
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5.3 Magnetic Carpet by Scalar Potential

First Attempt

To remove any doubt of the exact role of the finite divergence, we return to the second

option - giving the code an initial field which does automatically have zero current

density. This should remove the initial Lorentz forces to stop timestep collapse, while

avoiding the change in plasma pressure too. If we can run a simulation with steady

progress and still see very little activity, then the non-zero divergence must destroy the

null structures and stop any further formations arising.

The problem we have is that the numerical curl of the discretised analytic field we

give to Lare3d is not zero. Other codes, such as the Pencil code, appear to avoid

this problem. The Pencil code (available at pencil-code.nordita.org, another

MPI MHD code) accepts a vector potential as the initial condition and calculates the

numerical curl of this to obtain B. This guarantees a divergence free field. Further,

this code’s calculations using the numerically calculated field rather than a discretised

analytical field appear to be more accurate and free of the unintentional currents. The

authors of Paper [19] used this code for their own investigations, of a field containing

the same parasitic polarities we have, and were successful, free of the unexpected

complications we have encountered with Lare3d.

Based on the form of the calculation of j in Lare3d’s predictor-corrector step (note that

the staggered nature of the magnetic field components mean there is more than one

method to calculate current!), a scalar potential ψ was created such that the curl of

B = −∇ψ is, by definition, zero, and we should have no troublesome initial currents

or Lorentz forces to worry about.

Unfortunately, in practice this did not work either; the timestep crash returned.

pencil-code.nordita.org


222

Digging deeper into the code, we saw that this was due to the fact that we can calculate

current in different ways and define its components at different places on each cell. For

our illustrations of Lorentz forces we calculated the current density and interpolated

both it and the magnetic field such that all components were defined at the centre of

each grid cell, to make the calculation of j×B simple, and this was fine in order to get

a big picture, qualitative view of what was happening. It turns out however that Lare3d

not only calculates the current in a different way during the predictor-corrector step

(i.e. the method for which ψ was created), but also calculates a further, different ver-

sion of the current in other parts of the code which take into account resistive effects. In

other words, the predictor-corrector step updates variables ideally, calculating one cur-

rent density - let us call this ji. Then, if resistive MHD is set, further routines are called

where another version of the current is calculated and used in other variable updates.

Let us call this current jr. Using the carpet-by-ψ method, zero currents were satisfied

in ideal parts of the code but not in the resistive parts. Therefore the problem remained.

Second Attempt

Since the code calculates different methods, there is no way to design a scalar potential

which satisfies both ji = 0 and jr = 0. Instead, we try to manipulate the code to create

a new starting point, using the carpet-by-ψ field as part of a relaxation process.

Starting again from the carpet-by-ψ field which we know satisfies ji = 0, we ran a

non-driven resistive simulation. We overwrote the density at each timestep to reset the

value at all points to their initial starting value of 1, and did the same for the specific

internal energy density ε , which we set back to 0.01. These steps keep the timestep

up and remove heating and the increasing magnetic energy error. This process was

allowed to run until things seemed stable, with the topology and magnetic energy still

very close to the original parasitic polarity field. This took around 6,200 time units.

We then tried using this as the initial state for new driven runs.
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Figure 5.25: Time progression for the relaxed state attempt. This driven, resistive sim-
ulation under driver 2A encounters the same problem as before - a continuous decrease
in timestep.

Unfortunately, the old problem of timestep fall returned. It did not stall completely,

but slowed to the point that it took over 2,000,000 time steps to cover around 75 time

units as shown in Figure 5.25. Clearly this is still impractical. The relaxation process

avoided a timestep fall by overwriting the density and pressure at each step, but this

did not necessarily mean the original problem of jR went away and furthermore, while

ji was zero in the carpet-by-ψ field, the relaxation process may lead to it becoming

non-zero. Therefore as soon as we have stopped overwriting in the latest test, there is

nothing to stop the currents having an effect and the density has been allowed to fall in

places again, as can be see in Figure 5.26. Again the regions inside the dome structures

have lost plasma density.

At this point, we must conclude that while there may be other ways to work around

this problem, when undertaking further research with this type of scenario one must

consider priorities. Once one becomes acquainted with a code it is of course useful to

be able to continue using the same one where appropriate. Furthermore, in many cases

when problems do arise it may be easier to find solutions if one is already quite familiar

with the workings of the code. There may be other times however, when it is more
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Figure 5.26: Density distribution along y = 0. The regions inside the original dome
structures have become depleted, resulting in a slump in the time progression.

useful to investigate the possibility of a different code. For example if the problem

in question is far from trivial, and the user’s priority is obtaining results rather than

developing robust numerical schemes. In our case, we had two problems - non-zero

divergence and non-zero initial Lorentz forces. Giving the code a vector potential for

the magnetic field to guarantee zero divergence does not guarantee zero initial currents.

The non-zero initial currents lead to non-zero Lorentz forces and immediate runaway

loss of density in some regions, causing the timestep to drop and the simulation to

stall. Giving the code a scalar potential for the magnetic field does not result in zero

initial currents in all parts of the code and so the simulation still stalls. Increasing

plasma pressure to reduce the effect of the initial currents allows the simulation to

progress since plasma density is no longer decimated in certain pockets, but the non-

zero divergence now has the chance to fully come into play and destroy any potential

activity. Our approach going forward would be to switch to a different code entirely.



Chapter 6

Conclusions and Future Work

6.1 Motivation and Starting Point

The purpose of this work was to investigate how, if at all, the nature of coronal loop

evolution and heating depend on the type of motions taking place on the photosphere

below. In Chapter 1 we discussed how the initial inspiration for this question began

with Parker and the theory of topological dissipation (see [68]). This work posed that

for a field anchored at two perfectly conducting parallel plates representing the pho-

tosphere, sufficient tangling by footpoint motions would lead to tangential discontinu-

ities in the form singular current sheets between braided strands. Parker hypothesised

there would be no smooth force free equilibria to relax to while maintaining ideal con-

ditions. In a resistive environment, stresses built up by such braiding motions would

lead to sufficiently small scale currents for magnetic reconnection to occur. This would

provide heating in the form of free magnetic energy release as the field reconnects to a

simpler, smooth state. Since photospheric motions are ubiquitous on the solar surface,

this could be happening throughout the corona on a range of scales and could therefore
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be responsible for a significant amount of heating. If so, this heating could be a con-

tributing factor to the unexpectedly high temperatures observed in the solar corona, a

mystery solar scientists have been trying to solve for decades.

Subsequent studies by many authors in the years since this theory was formed pro-

vide support for and against it. Most experiments, analytical and numerical, suggest

that true tangential discontinuities do not form and there may exist smooth force-free

equilibria for an ideal field to relax to. However, many find that while truly singular

currents may not form, sufficiently strong finite current layers do, leaving open the pos-

sibility that field line braiding could trigger reconnection events and provide heating

in a resistive environment. Various numerical simulations have applied shear and rota-

tional boundary motions to magnetic field set-ups in ideal and resistive environments.

Some have taken initially braided fields and analysed the subsequent behaviour. Key

research was carried out in papers such as [112], [115] and [82], where the authors

examined a field containing pairs of twists of opposite sense, such that the straightened

coronal loop being considered had braiding but no net twist. In a series of ideal and

resistive experiments, while no truly singular currents formed, current layers did and

reconnection occurred for non-zero η . Furthermore, increasingly well resolved obser-

vations are beginning to provide better visual evidence of tangled field, for example

[21]. The idea behind this work was to design a driving function which would induce

braiding in the fashion of the initial condition used in the aforementioned papers. The

function would have adjustable parameters which would allow us to create multiple

drivers with different, measurable characteristics. We would then apply each driver

to a magnetic field and analyse the particular effect of each, in order to ascertain how

different types of motions could bring about reconnection and heating.

The driving motion would be based on a pair of blinking vortices - one vortical motion

would occur at a time, alternating between the two. They would have an exponential

form and be slow relative to the Alfvén speed. Initially we considered each vortex
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spinning with opposing circulation acting on the lower z boundary of a uniform field

representing a straightened coronal loop. So, one vortex would turn anticlockwise,

twisting the field above it, then stop, and then the second vortex would spin in a clock-

wise direction, contributing the same amount of opposite twist and creating a field with

braiding but no net twist. We then created two key categories from this basic idea.

6.2 Drivers and Categories

The first question was where to place the blinking vortices. The closer together we

place them, the more the action of one will interfere with that of the other. A thought

experiment tells us that different degrees of braiding will occur depending on this.

If two oppositely twisting vortical motions are centred at the same place, then in an

idealised environment where no relaxation at all can occur, the action of the second

vortex would completely undo the braiding brought about by the first. The net result

would be an unchanged field and no tangling of any degree. Similarly, if we were to

place each at an infinite distance from each other, the action of one would not affect the

action of the other and we would not see complex tangling between fieldlines affected

by the different vortices. Between these two cases the braiding will be more complex

with fieldlines crossing over and under each other and the braiding done and undone to

different degrees, creating varyingly complex tangling. We needed a way to quantify

this, and chose the concept of topological entropy, as described in Chapter 2.

Topological entropy is a measure of complexity. Mathematically it approximates the

rate at which a material line length grows in some flow due to the ability of that flow

to mix. In practice it is not always possible to calculate the true entropy, but instead

estimate it using braids. So for example, a stirring protocol in a 2D fluid will move



228

seed points, initially at different coordinates, along different trajectories, and those

trajectories will create braids when considered in time. The braid representing these

motions can be applied to a random material line, and the rate of stretching of this

line under the braid action tells us how complex the motions are. The more initial

seed points we take the closer we get to the true entropy value. We carried out these

calculations using the MATLAB code ‘braidlab’ (see [103] and [104]).

To create different driver functions, one vortex was held fixed centred on the origin

(0,0) and the second was placed at (x0,0), where we varied x0 between 0 and 4 in

intervals of 0.25. This analysis showed us that the complexity versus distance between

vortex centres followed a roughly Gaussian shape, as predicted.

We also decided to examine a second set of drivers whereby the vortices would twist

in the same direction. This type of motion would be less complex, as fieldlines are

twisting with the same sense and forming a coherent structure. It too reached a peak

complexity as x0 increased before dropping off for larger values, but was generally of

lower entropy than the first case.

The introduction of the second set of drivers also created another way to categorise

them: the concept of magnetic helicity. Helicity is the measure of twist in a magnetic

system. The oppositely twisting cases would inject equal and opposite amounts, and

in an ideal case, have no net helicity. Where reconnection can take place, the twist in

the overlying field may not cancel entirely due to changes in topology over the course

of a driving period, but the driver action considered in isolation would contribute zero

net helicity. The drivers with equally spinning vortices will always be injecting more

helicity as the field is twisted the same way. Varying x0 changes the tightness, or

coherence, of the twist. Therefore the lower complexity case is also referred to as

the high helicity case or the coherent case. In summary then, having carried out this

analysis in Chapter 3, we chose three different values of x0 for both the equal and
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Run Circulation Helicity x0 Entropy (95% C.I) Category
1A Opposite Zero 0.5 0.161±0.004 Complex
1B Opposite Zero 1 0.786±0.017 Complex
1C Opposite Zero 2 1.321±0.028 Complex
2A Equal 65.14 0.5 0.265±0.104 Coherent
2B Equal 65.14 1 0.444±0.046 Coherent
2C Equal 65.14 2 0.888±0.039 Coherent

Table 6.1: Entropy calculations with 95% confidence intervals for each driver and their
characteristics.

opposite cases, giving us six different drivers falling into categories as detailed in Table

6.1

At this stage we also described the types of magnetic field we planned to set the drivers

to act on. The first set of experiments took a uniform field, ez, representing a straight-

ened coronal loop. For the second, we wanted to investigate the effect on a magnetic

carpet field - a field with magnetic features like those observed on the solar surface.

The magnetic carpet comprises many different structures on different scales, creating

a complex topology near the photosphere. Null points and their associated separatrix

surfaces and separator fieldlines are thought to be common features. Our magnetic

carpet setup featured parasitic polarities, consisting of multiple occurrences of a null

point sitting within a small (relative to the height of the domain) dome-like structure

which intersects the surface, in a background field of ez.

6.3 Uniform Field Experiments

Once the driver functions were finalised we incorporated them into the MPI code,

Lare3d [2]. This is a staggered grid code which solves the full resistive 3D MHD

equations and is able to deal with shocks through artificial viscosity.

The following simulations are analysed in Chapter 4. We applied the drivers to the
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lower z boundary continuously, throughout the runtime of the simulations. We wanted

to investigate the long term effects of such activity and so ran each simulation for

45,000 time units. The domain extended over [−5,7]× [−5,5]× [0,50]. The resistivity

is included by way of inverse Lundquist number, which we set to 0.0005. The upper z

boundary was closed and the x and y were boundaries periodic.

6.3.1 Case 1

Case 1 includes three simulations with the zero helicity, high complexity, oppositely

twisting vortex drivers. We saw that many properties were ordered with complexity.

Run 1C, where x0 = 2, had the highest complexity and turned out to inject the high-

est levels of magnetic energy, followed by the second highest complexity run 1B, and

lastly the lowest complexity run 1A. Runs 1B and C in particular appear to settle into

a statistically steady sates after 30,000 time units. All three profiles showed a range

of energy release events throughout each simulation, corresponding in real terms to

picoflares and nanoflares, lending support to the idea that the continuous braiding of

a field could contribute to a background level of heating in the solar atmosphere. The

levels of kinetic energy are ordered in the opposite direction, with the highest complex-

ity run settling into an average level around half that of the other two. The subsequent

examination of current levels and structures also showed that the highest complexity

run induced more and higher currents lying in finite layers through the domain, and the

corresponding levels of both viscous and Ohmic heating show more heating coming

from this run also. Looking at isosurfaces, fieldlines and contours of current before and

after release events shows evidence of reconnection, as current levels decrease and fill

less volume across the drop. This also all comes together to point to the conclusion that

the more complex the driving motion, the more tangled the overlying field becomes,

injecting more free magnetic energy and leading to more build up of current layers
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and Ohmic heating as a result of reconnection events. We see a correlation of heated

layers with layers of localised current. It seems also that in this case more kinetic en-

ergy is dissipated as viscous heating, leading to this run having lower kinetic energy

and highest viscous heating. The most complex driver leads to smaller scales in the

magnetic and velocity fields. The main point then is that complexity of photospheric

motions may be a key factor in the formation of finite current layers and opportunities

for heating.

6.3.2 Case 2

We then turned to the low complexity, high helicity, equally twisting vortex drivers.

Keeping everything else as before we applied these to the lower z boundary of a uni-

form field. We again saw a specific ordering of properties, but this time helicity and

coherence of twist appeared to be the dominant factors. The case with the most tightly,

coherently twisted field, run 2A (which also had the lowest complexity), induces the

highest levels of free magnetic energy, and also triggers the most dramatic features in

the form of large release events. Run 2B also exhibits these features, but they are gener-

ally smaller. Run 2C, with the least tightly twisting driver, does not result in discharge

events on these larger scales. Each of the three runs again show many smaller magnetic

energy release events indicating nanoflare type occurrences. The largest event, taking

place during Run 2A, releases 93.9% of the free magnetic energy, corresponding to

something verging on a microflare. It seems that in the runs with vortices closest to-

gether, where the overlying field is twisted most tightly, instability has the chance to

take hold. We pose that the large events are due to the triggering of a tearing mode

instability after sufficient twisting of the field. Vector plots illustrate sheared fields

running in opposite directions on either side of x≈ 0, a configuration prone to tearing

modes. We also observe spikes and small bumps in the kinetic and internal energies
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and viscous and Ohmic heating at times when these instabilities take place, supporting

the theory. Again we see an ordering of these other quantities, but this time it is the

closest placed vortex runs which exhibit the highest levels across the board. We exam-

ined current values and structures again, seeing that the highest magnetic energy run

also contained currents which were the largest and most volume filling. Fieldline plots

over the course of the largest drop in run 2A show the degree of tangling reducing as

time goes on. Fieldlines evolve from criss-crossing through each other and the box

to lying in simpler, helical patterns. Contours and isosurface plots of currents around

these same times illustrate how ribbons of higher valued currents flowing through the

domain at the beginning of the event have decreased in value and number by the end.

Heating is shown to correspond to regions with current layers. In this lower com-

plexity experiment it is the driver’s ability to trigger instabilities which is the defining

characteristic.

Comparing between the two Cases, it appears that coherent motions are effective at

inducing both higher general levels of Ohmic heating through reconnection and larger

release events. The lowest energy and heating run of the coherent cases, 2C, still has

higher levels of magnetic energy, heating, current levels and volume filling levels than

run 1A, the complex case run with lowest values. Therefore, in scenarios with zero net

twist, complexity of driving is the key factor, while in high helicity environments it is

the degree of twist itself that dictates reconnection and heating level.

6.3.3 Power Spectrum Analysis

Next in Chapter 4 we considered the power spectra of each simulation. This technique

uses Fourier transforms to break signals, or in our case energy data, into the sum of

their constituent sinusoidal parts. We transformed the magnetic and kinetic energies in

space, therefore the process binned these data into the different spatial scales present
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in the domain. Different fractions of the overall energy lie in different spatial scales,

ranging from the grid cell volume up to the volume of the whole domain. Plotting

this with inverse length scale, which we call k, gives a ‘power spectrum’. Examining

power spectra provides a picture of the way energy is distributed through a system and

tells us if there is turbulent motion. Turbulence describes a plasma whereby eddies and

vortical motions induce smaller eddies and vortical motions, transferring energy down

into smaller regions until the spatial scales become small enough for viscous effects

to come into force and dissipate the energy. Power spectra can often be divided into

three sections: the smallest k values, corresponding to the largest length scales, where

external forcing, such as our driver motions, dictate behaviour; the largest k values,

corresponding to the smallest spatial scales where viscous effects are dominant; and

an intermediate range, the inertial range, where a turbulent flow will follow a power law

cka with a particular value of index a. This value has been calculated by many different

authors. Values of−5/3 (the Kolmogorov value) and−3/2 (the Iroshnikov-Kraichnan

value) have been posed, appearing in transforms of the magnetic and kinetic energies.

Often −3/2 is calculated in 2D transforms of a field dominated by one component, in

the plane perpendicular to this component. We calculated 3D transforms of magnetic

and kinetic energy and some 2D transforms also.

Once we had transformed the magnetic and kinetic energies into k-space, we integrated

the energy densities over k-space using shell integration (for 3D transforms) and ring

integration (for 2D transforms). We construct k-space using the k-vectors correspond-

ing to the Cartesian space vectors. This space is then divided up into shells or rings

spanning some radial distance i · dk, where i is the number of shells or rings needed

to take in all the data. Each transformed energy value lies at some radius from the

k-space origin and falls within one particular shell or ring, and so counts towards the

total energy contained on that particular scale.

We focused on times during the statistically steady state section for the complex runs
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and around large drops in the case of the coherent runs. None of the spectra exhibited

inertial range gradients of either Kolmogorov or IK values. However, each spectrum

was interrupted during the inertial range by a sudden drop at a characteristic k-value

of around k = 2.5. The magnetic energy profile for driver 1A looked promising for

turbulence within the range k = 1..2.5, before being disrupted by the drop. Looking

into the reasons for this we concluded that this drop is due to the non-uniform nature

of the grid resolutions. The 2D spectra showed that the drop only occurred when

transforms along the z direction were involved. All Cartesian space arrays had the

same number of elements but different extents, such that dz > dx > dy, therefore dk3 <

dk1 < dk2. Although dx and dk1 are still close to dy and dk2, dz and dk3 are sufficiently

different such that when k-shells or k-rings are constructed, many of them extend pass

the maximum k3 value, at which point these shells have large, empty regions. The

value k3 varies between −2.56 and 2.54, while k2 extends from −12.8 to 12.7. Once

we move into shells with radii greater than about 2.5 we have no contributions at all

from sections of the shell. This theory is supported by the fact that 2D transforms in

x and y where the k-grid is much more uniform do not suffer from this interruption.

Furthermore, a test with a uniform grid produced smooth profiles, while a test with an

even smaller extent in k3 did result in a power spectrum with a drop, at the predicted

value of k = 1.7.

This all means that it is currently difficult to say if turbulence is present or not. Fu-

ture work could include using a method of integration which does not involve placing

uniform shells or circles over a highly non-uniform grid. If we could sum up energy

contributions in such a way that many of the k-space bins are not largely empty by de-

sign, we may get a clearer picture of whether turbulence occurs in these experiments.

If carrying out similar investigations in the future we would seek to have similar reso-

lutions in each dimension to avoid the problem altogether.
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6.4 Magnetic Carpet Experiments

In Chapter 5 we applied the same six driving motions to an initial condition designed

to have features of magnetic carpet field. We hoped to establish whether the different

types of footpoint motions could, as with the uniform field, induce specific types of

behaviours when acting on a non-trivial, more realistic atmospheric field.

These simulations used the same physical domain as before, with the same initial pa-

rameter values as before. Initially we set the upper z boundary to be open, but also

experimented with a closed upper boundary and closed/periodic x and y boundaries,

but these changes were shown not to make any difference to the subsequent problems.

Each of the six simulations suffered from a fatal decrease in timestep, to the point

where progress slowed effectively to a halt. The timestep at each iteration of the code

depends on the CFL condition, which places restrictions on the timestep in order to

ensure that the code has access to all necessary information at each iteration. Therefore

initial attempts to solve this issue involved changes which would directly affect the

CFL condition, for example slowing driver speeds, changing the resolution, changing

η , turning off driving and resistivity, and changing the artificial viscosity. None of

these resulted in a big enough improvement.

We moved on to considering the discretisation error involved in translating the analytic

expression for B to the numerical grid. We discovered that the numerical divergence

was non-zero. Although unsatisfactory, this still did not seem to be the problem with

the timestep. We also had a non-zero current density, for a field which was designed to

be potential. This led to non-zero Lorentz forces, acting in particular within the sepa-

ratrix dome structure, down and out underneath the null point from the very beginning

of the simulations, as illustrated when we took a simpler, one parasitic polarity field

to investigate further. This led to flows of plasma away from this region, depleting it
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and leaving a very low density volume. As the minimum density becomes smaller, the

timestep drops accordingly, and the simulation stalls.

The simplest way to work around this was to reduce the influence of these unintended

Lorentz forces by increasing the plasma β , by increasing the initial specific internal

energy density. Trial and error gave us a new value of ε which prevented the density

drop by counteracting the influence on the plasma of the Lorentz force. The one po-

larity simple test field was shown as a result to be able to evolve past the point where

the initial Lorentz forces were acting uniformly away from the problem area, and the

simulation could continue hopefully without encountering the same issue.

Having set up all six simulations again as before with the new ε , all six made good

progress. However, looking at the data showed that there seemed to be very little activ-

ity of any kind. For each of the runs, after an initial burst of activity where the parasitic

polarity structures were destroyed, the energy diagnostics remained very unchanging.

Small oscillations were seen in the kinetic energy in particular, corresponding to the

driver. The magnetic energy however, decreased by about 15 units and then very slowly

but consistently increased for the rest of the simulation. Switching driving off revealed

an unexpectedly similar picture. The magnetic energy once again decreased and then

began increasing slowly, even though in this non-driven scenario there should be noth-

ing to cause this.

The increase in ε , while preventing the timestep fall, did not capture any interesting

behaviour. We contemplated that this could be due to the fact of balance in the forces

themselves, or more likely the still non-zero divergence annihilating the structure and

preventing any more features forming. The increase in magnetic energy observed even

without driving is due to numerical error, which shows up because there is not really

any other activity. The more timesteps a simulation took to reach a certain time, the

larger the increase in magnetic energy by that time, indicating that this is an error
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which builds up with each iteration. It may be something that would not even have

been picked up on if there was other activity taking place to mask it.

We made an attempt to re-write the initial condition such that the numerical error in the

current responsible for the timestep fall and magnetic energy increase did not occur.

A scalar potential, ψ , was constructed and the magnetic field calculated from this

within the code, so that j = ∇×B =−∇× (∇ψ) is identically zero. If we could run a

simulation in this way and still see no activity after the initial structures were destroyed,

then this would be a final confirmation that the non-zero divergence is a fundamental

problem when using this code in this scenario. Unfortunately the timestep problem

returned.

It was then discovered that this is due to the fact that Lare3d calculates currents in

different ways in different parts of the code. The function ψ was designed such that

currents in the ideal parts of the code, ji, are zero. However, the code calculates a

second current density, jR, in the resistive subroutines, and so error arises in this way

still and we see the timestep drop again. Since it is not possible to design a scalar

potential which will give rise to zero currents by both methods, we attempted another

approach.

If we could somehow let the initial currents dissipate and the field relax to a stable

state with the topology mostly preserved, we may be able to use this an initial condi-

tion instead. Using the scalar potential ψ so ji is zero, we ran a non-driven resistive

simulation whereby we over-wrote the density and the specific internal energy density

to their initial values at each step. This removed any heating due to jR and reinstated a

uniform plasma density. We ran this relaxation until we were sure no magnetic energy

increase or timestep decrease due to current errors was going to occur. We took this

relaxed state as the initial condition in a new driven simulation with ε set back to the
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lower value we used before. Unfortunately, it appeared that the initial Lorentz forces

continued to be large enough to cause problems, and once we stopped overwriting,

there was nothing to undo the damage of the initial jR. The same problems returned.

Other work, for example that of [19], investigated systems containing the same type

of parasitic polarity under the influence of driving motions, but using the Pencil code,

an alternative MHD code. This code handles variables in such way that this work did

not run into these issues. Future work could continue to attempt to find a solution to

the problems encountered using Lare3d, or consider a different code. In general, in

future it would be instructive to think carefully about which codes are most suited to

the problem one is investigating, since it may be that some will handle certain things

more easily than others. Furthermore, in the event that one does run into significant

issues with a code, one should be prepared to consider an alternative approach in terms

of the numerical scheme employed.

6.5 Summary

We have examined the effect of different types of photospheric motion on a coronal

loop and concluded that both motion complexity and ability to inject helicity have an

impact on the evolution of the overlying field. When the driving does not inject any net

helicity, it is the complexity which dominates the energy and heating levels observed.

The most complex blinking vortex driver set-up was shown to inject the highest levels

of free magnetic energy, create larger valued and more volume filling currents, and

result in the highest levels of Ohmic heating. It also led to smaller scales in veloci-

ties, creating further heating in the form of viscous effects. In the case of the equally
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twisting vortices with lower complexities and positive helicity injection, the level of

coherence was the key factor. The simulation with the closest placed vortex centres,

while the lowest complexity of the three, twisted fieldlines most tightly and led to the

highest levels of magnetic energy, current formation and heating, as well as inducing

the largest energy release events. Both this and the next most coherent run were found

to trigger two instances of tearing mode instability. The least coherent and most com-

plex was not able to bring about events of this size, which were also registered as spikes

in kinetic and thermal energy and heating. We suggest that when considering similar

driven simulations one should consider the properties of complexity and helicity injec-

tion and keep in mind that results can fundamentally differ depending on what driving

profile is employed. Furthermore, we judge that it is important to use full MHD in this

type of research as we have found activity, such as repeated instabilities, which have

not previously been captured using reduced MHD.

We were unable to reach a conclusion on whether or not a turbulent cascade occurred

in any of the runs: the power spectra were interrupted by a characteristic drop, seen

for all drivers, and appearing to be due to the non-uniform gird resolution meaning

that Bx and By are defined beyond the spatial scales of Bz and so energy shells past a

certain scale are partially empty. In future we would seek to set grid spacing in each

dimension to be as close as possible in order to avoid this problem again.

Finally, our experiments with a magnetic carpet field containing null points and sep-

aratrices were hampered by the discretisation error and low order difference scheme

of the code causing non-zero magnetic divergence and and currents in the initial con-

dition. The initial currents generate Lorentz forces which diminish plasma density in

some regions to a point where the code stalls. Lare3d calculates current in two dif-

ferent ways in the code and so we could not design a scalar potential for the initial

magnetic field such that currents were identically zero for both methods. Reducing the

influence of the Lorentz forces by increasing plasma pressure allows the code to run
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longer, however the non-zero divergence destroys the field structure and prevents any

further feature formation occurring. The best solution to this type of problem in future

work would be to use a vector potential initial condition in a higher order differencing

scheme code, which would prevent numerical error entirely dominating the evolution,

as encountered in this work.
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M. R. Kundu, and A. Veronig. Microflares and the Statistics of X-ray Flares.

Space Science Reviews, 159:263–300, September 2011.

[43] D. L. Hendrix and G. van Hoven. Magnetohydrodynamic Turbulence and Impli-

cations for Solar Coronal Heating. The Astrophysical Journal, 467:887, August

1996.

[44] M. Hesse and K. Schindler. A theoretical foundation of general magnetic re-

connection. Journal of Geophysical Research, 93:5559–5567, June 1988.

[45] A. W. Hood and E. R. Priest. Kink instability of solar coronal loops as the cause

of solar flares. Solar Physics, 64:303–321, December 1979.



246

[46] F. Hoyle. Some recent researches in solar physics. Cambridge University Press,

1949.

[47] H. S. Hudson. Solar flares, microflares, nanoflares, and coronal heating. Solar

Physics, 133:357–369, June 1991.

[48] P. S. Iroshnikov. Turbulence of a Conducting Fluid in a Strong Magnetic Field.

Astronomichesskii Zhurnal, 40:742, 1963.

[49] . M. Janse and B. C. Low. The Topological Changes of Solar Coronal Magnetic

Fields. I. Spontaneous Current Sheets in Three-Dimensional Fields. Astrophys-

ical Journal, 690:1089–1104, January 2009.

[50] A. Kolmogorov. The Local Structure of Turbulence in Incompressible Viscous

Fluid for Very Large Reynolds’ Numbers. Akademiia Nauk SSSR Doklady,

30:301–305, 1941.

[51] A. G. Kosovichev. Advances in Global and Local Helioseismology: An In-

troductory Review. In J.-P. Rozelot and C. Neiner, editors, Lecture Notes in

Physics, Berlin Springer Verlag, volume 832 of Lecture Notes in Physics, Berlin

Springer Verlag, page 3, 2011.

[52] R. H. Kraichnan. Inertial-Range Spectrum of Hydromagnetic Turbulence.

Physics of Fluids, 8:1385–1387, July 1965.

[53] R. B. Leighton. The Solar Granulation. Annual Review of Astronomy and As-

trophysics, 1:19, 1963.

[54] A. W. Longbottom, G. J. Rickard, I. J. D. Craig, and A. D. Sneyd. Magnetic

Flux Braiding: Force-free Equilibria and Current Sheets. Astrophysical Journal,

500:471–482, June 1998.



247

[55] D. W. Longcope and R. N. Sudan. Evolution and statistics of current sheets in

coronal magnetic loops. The Astrophysical Journal, 437:491–504, December

1994.
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