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Summary 

The Drop out (Dop) kinase is the single homologue of the MAST kinase family in Drosophila 

melanogaster. Despite MAST kinases having been implicated in several human diseases such as 

breast cancer, neurodegenerative diseases, inflammatory bowel disease and cystic fibrosis, the 

biological role of this kinase family is still poorly understood. The study of Dop function in 

Drosophila is therefore of interest to elucidate the function of MAST kinases. Previous studies 

revealed that mutations in dop affect cellularisation, a process during early Drosophila 

embryogenesis which occurs after 13 syncytial divisions. Cellularisation establishes cells by 

invagination of membrane from the cortex to surround about 6000 nuclei, thereby forming 

polarised cells in a blastoderm epithelium. dop mutant embryos display defects in polarity 

establishment, furrow formation and the focussing of furrow canal proteins at the leading edge 

of the invaginating membrane. Additionally, several studies suggest that Dop affects 

phosphorylation of Dynein and Dynein-dependent transport processes. In this study, analysis of 

complete loss-of-function mutants for dop reveals that Dop function is specifically required for 

cellularisation, but is dispensable for syncytial divisions. The first protein defects are visible just 

prior to cellularisation affecting Slam and Eps15 protein focussing into furrow structures. In 

contrast, the first morphological defect occurs slightly later at onset of cellularisation affecting 

furrow canal formation. Membrane invagination is highly reduced in complete loss-of-function 

dop mutants and Golgi as well as recycling endosome localisation are affected, suggesting a 

function of Dop in membrane recruitment via both Dynein and Kinesin microtubule motors. 

Furthermore, the localisation of the Dynein subunit Dynein light intermediate chain (Dlic) 

displays only minor changes in dop mutants and is not altered expressing phospho-mutant 

versions of the candidate Dop substrate Dlic Serine 401. However, preliminary data suggest that 

a phospho-mimic version of Dlic Serine 401 can reduce lethality of dop mutant embryos. This 

thesis suggests, that Dop affects cellularisation by regulating membrane recruitment to the 

plasma membrane, likely by affecting Dynein- and possibly Kinesin-dependent microtubule 

transport.  
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1. Introduction 

 General introduction 

This thesis was created during a three and a half year project to gain more insight into the 

mechanism of MAST kinase function. Drosophila melanogaster was used as model organism. In 

Drosophila only one MAST kinase homologue exists which was identified previously in our lab as 

a gene called drop out (dop). Mutations in this specific gene were identified in a screen for 

maternal effect loci by Galewsky and Schulz and show their strongest effects during 

cellularisation in Drosophila melanogaster embryogenesis (Galewsky & Schulz 1992). Maternal 

loss-of-function alleles like the mutant allele dop1 lead to severe defects during this stage of 

embryo development and to embryo lethality. Further work in our lab led to characterisation of 

Dop-dependent processes during cellularisation and identification of possible Dop targets (Hain 

2010; Langlands 2012). Mutations in dop interfered with membrane growth and furrow canal 

formation. One important process also found to be disturbed by dop loss-of-function was the 

establishment of cell polarity in the newly forming cells of the blastoderm embryo. Several 

proteins important for polarity establishment were found to mislocalise within the new cell 

compartments (Hain 2010). Furthermore, some results suggested a possible involvement of Dop 

in Dynein-dependent transport processes, such as defects in lipid droplet clouding as well as 

mRNA transport (Hain et al. 2014; Meyer et al. 2006). Additionally, genetic interaction studies 

using mutant alleles of Dynein and Dynactin subunits showed enhanced dop phenotypes in 

combination with the dop1 mutant allele (Hain et al. 2014). Also biochemical studies found 

Dynein subunits as possible phosphorylation targets for Dop (Hain et al. 2014; Langlands 2012).  

This thesis builds on the previous studies and aims to identify the Dop-dependent mechanism 

by which this protein kinase affects cellularisation. The results are grouped into three parts: The 

first part aims to identify the stage in Drosophila embryo development during which maternal 

Dop function is initially required using hypomorphic and complete loss-of-function mutants of 

dop in comparison; the second part focusses on transport pathways to elucidate a possible 
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mechanism controlled by Dop function affecting cellularisation processes; in the third part, 

analysis is set on exploring Dynein function and localisation in regard to Dynein as potential Dop 

target. 

 

 Cellularisation during Drosophila embryogenesis 

After fertilisation, the Drosophila melanogaster embryo undergoes 13 rapid syncytial divisions. 

Each of these divisions involves duplication of DNA and nuclei but no cytokinesis. Thus, 

throughout these syncytial cycles the Drosophila embryo consists of only one cell with many 

nuclei, called a syncytium. The first 9 syncytial divisions take place in the interior of the embryo 

(Fig.1). However, between cycle 10 and 11, most nuclei migrate to the embryo cortex to form 

the syncytial blastoderm embryo. After 13 syncytial divisions, the embryo contains about 6000 

nuclei that are aligned at the cortex. Subsequently, during interphase of cycle 14, these nuclei 

get surrounded by membrane invaginating from the cortex and, in the process, the first cells are 

formed. This process of cell formation, transforming a syncytial blastoderm into a cellular 

blastoderm, is called cellularisation (for review see (Mazumdar & Mazumdar 2002)). 

 
Figure 1 Nuclear cycles during early Drosophila melanogaster embryogenesis. In the 
Drosophila pre-blastoderm stage, syncytial (nuclear) divisions take place in the interior of the 
embryo (cycles 1-9). A: During cycles 1-3, nuclei divide in a sphere at the anterior of the embryo. 
B: Afterwards, during cycles 4-6, the nuclei spread out along the anterior-posterior axis in a 
process called axial expansion. C: Most nuclei migrate to the cortex during cycles 8-9 (nuclear 
migration), leaving behind yolk nuclei. During cycle 10, most nuclei have reached the cortex and, 
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subsequently, pole cells (the germline precursors) form at the posterior end. The other cortical 
nuclei undergo four more syncytial divisions (cycles 10-13) to form the syncytial blastoderm. D: 
At interphase of cycle 14, the plasma membrane invaginates, led by a structure called furrow 
canal, from the cortex between each nucleus in a process called cellularisation. E: By the end of 
cellularisation, a cellular blastoderm has formed containing approximately 6000 individual cells. 
Scheme based on and modified after (Mazumdar & Mazumdar 2002; Tram et al. 2002). 

 

 Acquisition of epithelial apico/basal polarity 

Simultaneously with the formation of cells, also cell polarity is established in the embryo 

(reviewed in (Müller 2000; Müller 2001)). Establishment and maintenance of cell polarity is 

important for the function of most eukaryotic cells and tissues (Lo et al. 2012). The loss of 

polarity during epithelial to mesenchymal transition (EMT) enables tissue remodelling which is 

required for many developmental processes such as gastrulation. However, the same machinery 

that allows for EMT is also implicated in acquisition of invasiveness in tumours and, therefore, 

represents a key process in cancer development. Drosophila melanogaster is a widely used 

model system to elucidate how polarity is established and maintained in a genetically amenable 

system (reviewed in (Müller 2000; Müller 2001; Müller 2003). 

Cell polarity in Drosophila embryos is established gradually and starts during syncytial divisions. 

When the nuclei first reach the cortex after syncytial cycle 9, they form already distinct 

compartments with equally distributed secretory systems and microtubule networks 

surrounding each nucleus (Frescas et al. 2006). Even though no separating membranes are 

present, not much exchange of neither vesicles nor proteins is visible between the different 

nuclear compartments. This compartmentalisation is further supported by the plasma 

membrane which is also already polarised at this stage (Mavrakis et al. 2009a; Mavrakis et al. 

2009b). The plasma membrane above each nucleus has apical-like characteristics, whereas 

lateral membrane that is transiently invaginating during each division accumulates proteins that 

are specific for basolateral domains of polarised epithelial cells. Essential for this polarisation is 

the F-actin network that was shown to be required for the stable association of polarity proteins 

with the plasma membrane. 
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F-actin is also suggested as the main factor for compartmentalisation during cellularisation 

(Sokac & Wieschaus 2008a; Sokac & Wieschaus 2008b; Yan et al. 2013; Acharya et al. 2014; 

Figard et al. 2016). At onset of cellularisation, the plasma membrane invaginates between the 

nuclei at the cortex and forms a drop-like structure, called the furrow canal. This structure is 

formed when the membrane reaches about 5 µm into the embryo, about 5 to 8 min into 

cellularisation (Sokac & Wieschaus 2008b). Many proteins localise specifically to the furrow 

canal, such as F-actin, Rho1, Slow-as-molasses (Slam), RhoGEF2 and Diaphanous (Dia) (Acharya 

et al. 2014; Wenzl et al. 2010). As the furrow canal invaginates basally into the interior of the 

embryo, the lateral membrane is formed. The lateral membrane represents a compartment 

distinct from the furrow canal and several proteins that localise to the lateral membrane such 

as Discs large (Dlg) and Neurotactin (Nrt) are excluded from the furrow canal. 

During the process of cellularisation, also epithelial polarity is established. One important aspect 

of epithelial polarity establishment is the formation of cell junctions (Müller 2000; Müller 2001). 

In contrast to vertebrates that contain three types of junctions in epithelial junctional complexes 

(zonula adherens (ZA), tight junctions and desmosomes), invertebrate epithelial junction 

complexes are composed of two junction types (ZA and septate junctions (SJs)). SJs are formed 

late during Drosophila embryogenesis (Müller 2000). In contrast, formation of so-called apical 

junctions (AJs) that give rise later on to ZA starts early during cellularisation with the formation 

of basal adherens junctions (BJs). These BJs are localised just apical to and move inward with the 

furrow canal as the lateral membrane elongates (Fig.2). The BJs provide a tight association of 

the opposing invaginating membranes. Proteins like Armadillo (Arm; Drosophila homologue of 

β-catenin), α-catenin as well as E-cadherin that localise and form apical spot adherens junctions 

(SAJs) are also involved in assembling the BJs (Hunter & Wieschaus 2000; Müller & Wieschaus 

1996). SAJs form during mid-cellularisation as scattered protein accumulations distributed over 

the apical third of the newly forming lateral membranes (Fig.2). Whereas BJs dissolve at the end 

of cellularisation, the SAJs focus to the apical and basolateral border at this stage. Here, they 

begin to coalesce into incipient ZA during gastrulation and into a continuous ZA belt after 
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germband extension (Müller & Wieschaus 1996). Cadherins at the centre of ZA mediate cell-cell 

adhesions through their extracellular domains (Harris & Peifer 2004). With their intracellular 

domains, they bind to Arm/β-catenin which links the adhesions both to α-catenin and the F-

actin network. ZA as well as AJs are required for intercellular adhesion and provide stability to 

the tissue which is particularly important during the extensive gastrulation movements (Müller 

2001; Müller & Wieschaus 1996).  

 
Figure 2 Polarity formation and compartmentalisation in Drosophila embryos. At onset of 
cellularisation, the furrow canals and basal junctions (BJ) are established at membrane domains 
invaginating between the nuclei. In order for the membrane to invaginate further, membrane 
material is added apically during early and apico-laterally during late cellularisation stages 
(Lecuit & Wieschaus 2000). During mid-cellularisation stages, adherens junction precursors in 
form of spot adherens junctions (SAJ) localise to the lateral membrane and later on mature into 
zonula adherens (ZA). By the end of cellularisation, the furrow canal compartment resolves into 
the basal membrane, basal junctions disappear and the subapical region forms composed of 
many polarity proteins to separate the apical from the baso-lateral compartment. Scheme 
modified after (Müller 2001) 

At the beginning of cellularisation, proteins important to build AJs such as Bazooka (Baz), Arm 

and E-cadherin localise to apical microvilli at the embryo cortex (Harris & Peifer 2004). Here, 

Arm and E-cadherin form clusters before SAJs are formed (McGill et al. 2009). Baz is the first 

protein to mark the sites of apical junction formation and Arm and E-cadherin clusters were 

shown to be recruited by Baz to these sites (Harris & Peifer 2004; Harris & Peifer 2005; Müller 

& Wieschaus 1996; McGill et al. 2009). Moreover, Baz localisation itself is dependent on basal-

to-apical Dynein transport along microtubules as well as an apical actin scaffold (Harris & Peifer 

2005). Thus, the transport and the precise localisation of polarity markers is a very important 



Introduction|6 
 
process during polarity establishment. However, how this process is exactly regulated is not 

known in detail. 

One model suggests that the establishment of membrane polarity is achieved by the temporally 

controlled insertion of intracellular vesicles at specific (apical or apico-lateral) sites (Lecuit & 

Wieschaus 2000; Lecuit et al. 2002). This model predicts that membrane that invaginates first 

into the embryo derives from vesicle insertions early in cellularisation. It also suggests that 

protein and membrane sources from the secretory pathway play a major role in not only polarity 

establishment but also membrane invagination during cellularisation. 

 

 Vesicular transport pathways during cellularisation 

The formation of around 6000 cells during cellularisation leads to an about 25-fold increase in 

the embryo surface area (Lecuit & Wieschaus 2000). Thus, membrane synthesis, delivery and 

redistribution are important processes in cellularisation. Two models have been proposed in the 

past about where the invaginating membrane comes from. One model suggested that the 

membrane was mainly newly synthesised inside the cell and transported to the sites of 

membrane invagination during cellularisation (Lecuit & Wieschaus 2000; Rothwell et al. 1998; 

Riggs et al. 2003; Burgess et al. 1997). Another model predicted that the membrane for 

invagination was mainly coming from cortical microvilli that disassembled during cellularisation 

and, thereby, releasing membrane for immediate distribution into the invagination site (Figard 

et al. 2013; Figard & Sokac 2014; Fullilove & Jacobson 1971). A recent study connects both 

models and shows that they might depend on each other (Figard et al. 2016). It suggests that 

the expansion of the plasma membrane is enabled first through the unfolding of the cortical 

microvilli which can provide about 42-65% of the membrane required for cell formation. In 

addition, a burst of exocytosis from internal membrane sources at onset of cellularisation 

provides the remaining membrane required for membrane invagination. Figard et al 
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hypothesise that also this exocytosed membrane is stored in form of microvilli until it is released 

to fuel membrane invagination during fast phase of cellularisation. 

Membrane insertion to fuel membrane invagination is now also considered as the main force to 

lead to invagination (Sisson et al. 2000; Riggs et al. 2003; Riggs et al. 2007; Papoulas et al. 2005; 

Burgess et al. 1997; Mavor et al. 2016). Inhibition of membrane vesicle transport at different 

stages was shown to lead to impairment of membrane invagination. Preceding studies assumed 

that the contractions of an acto-myosin network provide the force for invagination. However, 

Royou et al found out that invagination of the plasma membrane is nearly unaffected in Myosin 

II-impaired embryos and, therefore, that the acto-myosin network does not have an important 

role for vertical membrane invagination during cellularisation (Royou et al. 2004). Albeit, the 

acto-myosin network is essential for basal closure at the end of cellularisation. 

Together with membrane, also proteins are suggested to be transported to the site of 

membrane invagination (Lecuit & Wieschaus 2000; Rothwell et al. 1999; Riggs et al. 2003). For 

example, the lateral membrane marker Nrt gets newly synthesised during cellularisation and 

was shown to be transported from the endoplasmic reticulum (ER) over the Golgi to the 

recycling endosome. From the recycling endosome, Nrt gets sorted and transported to the 

plasma membrane. If any of these steps in transport of Nrt is impaired, the protein accumulates 

in one of the organelles and its delivery to the plasma membrane fails (Lecuit & Wieschaus 2000; 

Murthy et al. 2010). Additionally, also membrane invagination is abolished in these embryos, 

presumable due to a lack of membrane exocytosis. 

These studies emphasize the importance of membrane delivery for overall cellularisation. 

Membrane lipids and proteins are both synthesised in the ER and afterwards transported to and 

partly modified in the Golgi network (Mellman & Nelson 2008; De Matteis & Luini 2008). In 

contrast to mammals, Golgi in insect cells consists of dispersed vesicles rather than a network 

of tubules (Ripoche et al. 1994). These Golgi vesicles undergo a dramatic localisation change 

during cellularisation (Sisson et al. 2000). Whereas they localise to the bases of the nuclei during 
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the beginning of cellularisation, at the end of cellularisation, Golgi vesicles rapidly localise to the 

cortex of the newly forming cells (Sisson et al. 2000; Ripoche et al. 1994). These Golgi dynamics 

were shown to depend on microtubules as well as the motor protein complex Dynein (Lecuit & 

Wieschaus 2000; Papoulas et al. 2005). Membrane material and proteins from the Golgi are 

transported to the pericentrosomal recycling endosome and, afterwards, transported to and 

released into the plasma membrane (Fig.3)(Riggs et al. 2003; Pelissier et al. 2003). The insertion 

of vesicles into the plasma membrane was shown to be highly polarised (Lecuit & Wieschaus 

2000). During slow phase of cellularisation, vesicle insertion was detected solely at the apical 

membrane, whereas during fast phase, it was detected only at the apico-lateral membrane. This 

strong spatial restriction of membrane insertion might be a parameter to control cell polarity as 

presented in the previous section. 

Even though the secretory pathway is clearly of high importance for cellularisation, also the 

endocytic pathway plays a role in membrane invagination (Sokac & Wieschaus 2008a; Fabrowski 

et al. 2013; Pelissier et al. 2003). Mutants of the small GTPase Rab5 display a reduced membrane 

growth which suggests that redistribution of membrane material via the endocytic pathway can 

also affect membrane invagination (Pelissier et al. 2003). Endocytosed vesicles from the plasma 

membrane are transported in a Rab5-dependent way to the early endosome (Lecuit 2004). From 

there they can be either transported back to the plasma membrane, sent for degradation to late 

endosomes and lysosomes or transported to the recycling endosome from which material can 

also be recycled back to the plasma membrane. The recycling endosome functions therefore as 

interface between the exocytic and endocytic pathways (Fig.3). In addition to the plasma 

membrane, endocytosis also takes place at the furrow canal during cellularisation (Sokac & 

Wieschaus 2008a; Lee & Harris 2013; Lee & Harris 2014). Scission of vesicles from the furrow 

canal is F-actin-dependent and timely restricted to onset of cellularisation concomitantly to 

furrow canal formation (Sokac & Wieschaus 2008a). This restriction of endocytosis is important 

to maintain furrow canal stability by retaining furrow canal components at this site. On the other 

hand, local endocytosis at the furrow canal seems also to regulate F-actin network formation at 
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this site as it was shown for the Arf-guanine nucleotide exchange factor (GEF) Steppke that 

regulates Rho1 levels at the furrow canal via induction of endocytosis (Lee & Harris 2013). Also, 

the vesicle fusion ability of Syntaxin1 seems to be required for proper F-actin formation at the 

cellularisation furrows (Burgess et al. 1997). Thus, the F-actin network and the endocytic 

machinery appear to be closely interlinked and their function mutually controlled during 

cellularisation. 

 
Figure 3 Vesicle transport pathways during cellularisation. Membrane invagination during 
cellularisation is dependent on the secretory pathway which delivers membrane from the Golgi 
over the recycling endosome (RE) to the plasma membrane as well as on membrane 
redistribution from apical microvilli dependent on Rab5. Another pathway involving vesicle 
transport is Clathrin-mediated endocytosis of material at the furrow canal, a pathway active only 
during early cellularisation (Sokac & Wieschaus 2008a). Scheme modified after (Lecuit 2004) 
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 The cytoskeleton network structure during early Drosophila embryogenesis 

F-actin network dynamics are crucial for regulating vesicular endo- and exocytosis (Eitzen 2003; 

Lee & Harris 2014; Sokac & Wieschaus 2008a). However, besides the F-actin network, also the 

microtubule network is an important component of vesicular trafficking as it provides the tracks 

along which the vesicles get transported. Both cytoskeletal components, F-actin and 

microtubules, show highly distinct dynamics throughout syncytial divisions and cellularisation in 

support of the morphological processes that take place during these stages. These dynamics of 

the microtubule and F-actin networks will be outlined in the following sections. 

 

 Cytoskeleton network dynamics during syncytial divisions 

Before nuclear migration during syncytial divisions in the earliest stage of Drosophila 

embryogenesis, nuclei divide in the interior of the embryo (Fig.1). Each of these nuclei comprises 

its own pair of centrosomes and microtubules (Foe et al. 2000). At the same time, F-actin and 

Myosin II accumulate and overlap at the cortex but do not display any dynamic changes during 

this stage. After syncytial cycle 9, nuclei migrate from the interior of the embryo to the cortex. 

Together with the nuclei, also the associated centrosomes migrate to the cortex in a 

microtubule-dependent manner (Schejter & Wieschaus 1993b). At the cortex, the centrosome 

pairs get localised between individual nuclei and the cortical membrane and induce 

restructuring of the overlying F-actin and myosin network (Raff & Glover 1989). In addition, 

microtubules organised by the centrosome pair surround the nucleus in a highly polarised way 

with microtubule plus-ends pointing away from the centrosomes and reaching either to the 

cortex or into the interior of the embryo. The minus-ends of the microtubules stay with the 

centrosomes and, thereby, enable directed apical and basal transport. As a result, microtubules 

form a structural compartment with a restricted protein and vesicle intermixing between the 

different compartments (Frescas et al. 2006). 
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After nuclei and their associated centrosomes have reached the cortex, division cycle-

dependent rearrangements of the cytoskeletal network take place (Foe et al. 2000). Myosin II 

which showed co-localisation with F-actin before the centrosomes reached the cortex does not 

show overlapping localisation with F-actin after the arrival of centrosomes and nuclei. During 

the following syncytial cycles, microtubules organised by the centrosomes cause a separation of 

F-actin and myosin which prevents contractions of the acto-myosin network and stabilises the 

cortical area. During interphase, F-actin caps form above each individual nucleus and its apically 

positioned centrosome pair (Fig.4). These cap structures are suggested to reduce lateral nuclear 

movement (Schejter & Wieschaus 1993b). Additionally, the microtubules emanating from the 

centrosomes form an astral array extending apically to the cortex and basally into the interior 

of the embryo surrounding the nuclei. During pro- and metaphase, the centrosomes migrate 

along the nucleus to opposite poles and, after nuclear breakdown, spindle arrays emerge from 

the centrosomes to capture the kinetochores of chromosomes for division. The F-actin network 

rearranges during this cycle phase to form furrows separating spindles from adjacent nuclear 

compartments. These metaphase furrows (also called pseudocleavage furrows) are structures 

made up of plasma membrane invaginating from the cortex. Several proteins are enriched in 

these furrows, such as F-actin, several F-actin regulator proteins and Anillin (Riggs et al. 2003). 

The position of the metaphase furrows is thought to be determined by the overlapping region 

of astral microtubules emerging from neighbouring centrosomes (Riggs et al. 2007; Crest et al. 

2012). Metaphase furrows reach a depth of about 8 µm before they retract during the following 

ana- and telophase (Riggs et al. 2003). The spindle separation by metaphase furrows is important 

to ensure that spindles do not misalign with neighbouring chromosomes (Postner et al. 1992). 

Despite the prominent localisation of F-actin to these furrows, it was shown that plasma 

membrane is the main component to create the barrier between the spindles (Rothwell et al. 

1999; Cao et al. 2008). During telophase, new furrows are formed separating the daughter nuclei 

created in the preceding division and the F-actin network reforms caps above each nucleus 

(Fig.4). 
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Figure 4 Cytoskeletal organisation during syncytial divisions. F-actin network (red) and 
microtubule (green) organisation are shown during S-phase, metaphase, anaphase and S-phase 
of the following cycle. Sagittal views (top panel) as well as cross-sectional views (bottom panel) 
are depicted. Membrane is shown in brown, nuclei and chromosomes in blue and centrosomes 
in green with dark green outline. 

During syncytial divisions, F-actin and Microtubules were shown to interact (Foe et al. 2000). 

Experiments using Cytochalasin as F-actin polymerisation inhibitor showed that F-actin is 

required to link microtubules and the nuclei to the cortex. Additionally, microtubules are likely 

to be the mediators between centrosomes and F-actin and boost F-actin cap or furrow assembly 

presumably by Kinesin-dependent transport. 

In addition to a requirement of centrosomes and microtubules in correct F-actin localisation 

during syncytial divisions, also endosomal transport is involved in proper actin dynamics at this 

stage. The recycling endosomal system was shown to be required for F-actin assembly from caps 

into metaphase furrows (Rothwell et al. 1998; Riggs et al. 2003; Riggs et al. 2007; Cao et al. 

2008). Mutations in genes required for recycling endosomal function (nuf, rab11) cause defects 

in F-actin formation at the furrow and ultimately in loss of furrow stability. This F-actin 

dependence on recycling endosomal transport might be due to transport of actin regulators to 

the furrows (Cao et al. 2008; Wenzl et al. 2010). Moreover, as previously mentioned, the Arf-

GEF Steppke positively regulates Clathrin-dependent endocytosis at metaphase (as well as 

cellularisation) furrows which reduces Rho1 levels at the furrow (Lee & Harris 2013). This in turn 

leads to a reduction in actomyosin activity which helps in orchestrating proper membrane 

growth.  
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 Cytoskeleton network dynamics during cellularisation 

After the cortical nuclei completed their 13th division, they enter an elongated interphase. This 

cycle 14 interphase gives rise to new cells at the cortex and is therefore called cellularisation. 

Cellularisation is a modified form of cytokinesis and, even though its regulatory system shares a 

lot of components required also for syncytial division cycles, the regulatory system differs from 

these cycles in one major aspect: It relies not only on maternally provided genes but also on 

zygotic gene products (Langley et al. 2014; Tadros et al. 2007). The bulk of zygotic gene 

transcription starts during cellularisation and cellularisation is the first process requiring zygotic 

genes. Only a few zygotic genes were found to be specifically expressed during cellularisation. 

Four of them, called bottleneck (bnk), slam, nullo and serendipity-α (sry-α), are required to 

regulate F-actin dynamics (He et al. 2016). This underpins the importance of F-actin dynamics 

during cellularisation. 

Cellularisation starts with a visible volume increase and elongation of the cortical nuclei. During 

the course of cellularisation, the nuclear volume increases by 2.5-fold (Schejter & Wieschaus 

1993b). Nuclei are at this stage surrounded by tight microtubule bundles forming an inverted 

basket structure and these microtubules are required to force nuclei to elongate rather than 

expand as spheres (Fig.5)(Fullilove & Jacobson 1971; Hampoelz et al. 2011). Similar to syncytial 

division interphases, microtubules during interphase of cycle 14 emerge from centrosomes 

apically of the nuclei and stretch their plus-ends either up to the cortex or down into the interior 

of the embryo with the minus-ends staying connected with the centrosomes. Thereby, 

microtubules form a scaffold along an apico-basal axis allowing for directed transport of 

different cargoes along this axis and from the interior of the embryo to the cortex as well as the 

other way round. 

The F-actin network first focusses into interphase caps at the cortex on top of each nucleus but 

these cap structures expand laterally to form an equally distributed mesh at the cortex 

(Fig.5)(Schejter & Wieschaus 1993b). Cortical F-actin is important to shape the microvilli which 
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represent membrane protrusions into the extra-embryo space that serve as membrane 

reservoir during cellularisation (Fullilove & Jacobson 1971; Figard et al. 2016). In addition, F-actin 

focusses into a hexagonal array fencing each individual nucleus. This focussing of F-actin into 

hexagonal arrays is tightly regulated and a prerequisite for furrow canal formation and stability 

(Mavrakis et al. 2009b; Sokac & Wieschaus 2008b; Sokac & Wieschaus 2008a; Yan et al. 2013; 

Afshar et al. 2000; Padash Barmchi et al. 2005; Wenzl et al. 2010; Field et al. 2005). By which 

process the site of furrow canal formation and membrane invagination between the nuclei gets 

determined is not known. However, the formation of actin structures during the preceding 

syncytial divisions seems not to be required for cellularisation furrow positioning (Postner et al. 

1992). It is speculated that also cellularisation furrow positioning is dependent on the overlap 

of astral microtubule plus-ends emerging from the centrosomes between nuclei and cortex as it 

seems to be the case for metaphase furrows (Riggs et al. 2007; Crest et al. 2012). This might be 

due to transport of specific cargo e.g. recycling endosome-derived vesicles to this particular site 

(Albertson et al. 2005). 

The accumulation of F-actin at the furrow canal is known to be regulated by two different 

pathways. Accumulation of branched F-actin is encouraged by the Cip4-Scar/WAVE-Arp2/3 

pathway (Yan et al. 2013). Branched F-actin is more dynamic than unbranched F-actin and 

enables vesicle endo- and exocytosis at the associated membrane (Zallen et al. 2002; Yan et al. 

2013). It is thought to be prominent only at the very onset of cellularisation when endocytic 

tubules form at the furrow canal (Sokac & Wieschaus 2008a; Yan et al. 2013). In contrast, linear 

F-actin formed downstream of the RhoGEF2-Rho1-Dia pathway increases the rigidity of the 

furrow canal and reduces endocytosis at this site (Webb et al. 2009). It is thought to accumulate 

at the furrow canal during slow phase of cellularisation, stabilising the furrow canal and enabling 

its invagination over the course of cellularisation (Sokac & Wieschaus 2008b; Sokac & Wieschaus 

2008a; Yan et al. 2013; Lecuit & Wieschaus 2000). Slam and Nullo are both known to regulate 

the pathway leading to unbranched F-actin and, additionally, have been identified as factors 

that stabilise the furrow canal (Acharya et al. 2014; Wenzl et al. 2010; Sokac & Wieschaus 
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2008b). They are assisted by proteins like the septin Peanut and the cortical scaffold protein 

Anillin (Mavrakis et al. 2014; Field et al. 2005). 

The RhoGEF2-Rho1-Dia pathway not only serves to regulate furrow canal stability and 

membrane invagination but is also required together with Peanut to recruit Myosin II to the 

furrow after Bnk degradation during fast phase of cellularisation (Mavrakis et al. 2014; Afshar et 

al. 2000; Padash Barmchi et al. 2005). This enables basal closure of the newly formed cells, a 

process dependent on actomyosin contractility and the last step during cellularisation. It gives 

rise to cells of about 5 µm in diameter and 35 µm height that are connected with the yolk plasm 

by 1 µm wide intercellular bridges (Schejter & Wieschaus 1993b; Warn & Robert-Nicoud 1990). 

Figure 5 Cytoskeletal organisation during cellularisation. F-actin network (red) and microtubule 
(green) organisation are shown during early, mid- and late cellularisation. Sagittal views (top 
panel) as well as cross-sectional views (bottom panel) are depicted. Membrane is shown in 
brown, nuclei in blue and centrosomes in green with dark green outline. 
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 Microtubule-associated transport during cellularisation 

Microtubules form the tracks by which many different cargoes get transported in a polarised 

manner. An essential requirement for its proper formation not only in mitotic cycles such as 

syncytial divisions but also during cellularisation has been established in several experiments 

injecting Drosophila embryos with Colchicine to depolymerise microtubules (Crest et al. 2012; 

Foe & Alberts 1983; Royou et al. 2004; Riggs et al. 2007; Sisson et al. 2000; Schejter & Wieschaus 

1993a; Harris & Peifer 2005). During cellularisation, microtubules were shown to be required for 

membrane invagination, F-actin accumulation at the furrow canal, elongation of the nuclei, 

transport of Golgi vesicles, and proper localisation of the polarity protein Baz as well as the 

recycling endosome protein Nuclear fallout (Nuf). 

Two motors are known that transport cargoes along microtubule tracks in opposite directions: 

The Dynein motor protein complex transports its cargo in the direction of the minus-end of 

microtubules (which is usually attached to the microtubule organising centre/centrosomes); the 

Kinesin motor protein complex transports its cargo in most cases away from the centrosomes to 

the microtubule plus-end. Both motors are required for diverse cellular functions, such as 

transport and positioning of organelles, vesicles and attached proteins, as well as mitotic spindle 

and chromosome movement (Karki & Holzbaur 1999). Whereas at least 14 different Kinesin 

classes exist, Dynein only belongs to two different classes: axonemal and cytoplasmic Dynein 

(Höök & Vallee 2006). Axonemal Dynein is only present in cilia and flagella, regulating their 

beating activity. Cytoplasmic Dynein is involved in many more cellular functions, it is essential 

for cell viability and autonomously required in all cells (Höök & Vallee 2006; Gepner et al. 1996). 

In the following, Dynein is corresponding to cytoplasmic Dynein. 

In Drosophila embryos, Dynein was shown to be responsible for recycling endosome localisation 

to the centrosomes influencing metaphase furrow assembly and Dynein is also required for 

apical Golgi transport during cellularisation affecting furrow invagination (Riggs et al. 2007; 

Papoulas et al. 2005). Additionally, Dynein is required for Baz basal-to-apical transport early in 
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cellularisation and apical lipid transport (lipid clouding) during late cellularisation and beginning 

of gastrulation (Harris & Peifer 2005; Gross et al. 2000; Welte 2015).  

Cytoplasmic Dynein consists of a multi-subunit protein complex: Heavy chains, intermediate 

chains, light chains and light intermediate chains. Each heavy chain includes an about 160 kDa 

N-terminal domain forming the base of the molecule that is responsible for binding of regulatory 

co-complexes (Fig.6)(Höök & Vallee 2006). Additionally, the heavy chain contains the about 360 

kDa motor domain made up of 6 AAA+ ATPase units which provide the force through nucleotide 

hydrolysis for moving the Dynein molecule along microtubules. Moreover, Dynein contains a 

stalk region made up of antiparallel coiled-coil α-helices attached to a globular structure for 

microtubule binding and several accessory subunits such as intermediate, light intermediate and 

light chains (Fig.6). Phosphorylation of these accessory subunits is a common way of regulating 

Dynein function. Several Dynein subunits were shown to be phosphorylated by different 

mechanisms in different organisms, leading either to down- (Dell et al. 2000; Addinall et al. 2001; 

Vaughan et al. 2001; Runnegar et al. 1999) or up-regulation (Whyte et al. 2008; Ikeda et al. 2011; 

Yang et al. 2005) of Dynein function. Dynein binding to specific cargoes is mainly regulated by 

different co-complexes, the most important one being the Dynein activating complex Dynactin 

which mediates most of Dynein functions in eukaryotes (Schroer 2004).  
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Figure 6 Structure of the Dynein complex. The minus-end directed motor Dynein is a multi-
subunit complex made up of two heavy chains (HC) which include the AAA+ ATPase motor region 
(blue and purple rings). A coiled-coil domain extending from these rings is connected to a 
globular head which mediates binding to microtubules (MT). Another coiled-coil domain extends 
from the motor region that mediates dimerization as well as Dynein light chain (LC), 
intermediate chain (IC) and light intermediate chain (LIC) binding. The Dynein intermediate chain 
is required for binding of the Dynactin complex. Figure modified after (Vale 2003) 

In comparison to Dynein, Kinesins are much more diverse in their structure and number of 

subunits with a wide range of tail domains attached to a conserved ATPase core (Vale 2003; 

Kardon & Vale 2009). This diversity enables Kinesin to recognise and bind multiple cargoes 

without the mediation of co-complexes. Only three Kinesins are reported so far to affect 

syncytial divisions and/or cellularisation: the Drosophila Kinesin-5 homologue, KLP61F, is 

required for formation of bipolar spindle arrays in mitosis (Heck et al. 1993; Sharp et al. 2000; 

Sharp & Rath 2009); Kinesin-1 in Drosophila is required to somehow link microtubules (and 

Dynein) to the actin cortex during interphases of syncytial divisions (Winkler et al. 2015); 

moreover, antibody injections directed against the Drosophila Kinesin-6 homologue, Pav-KLP, 

showed that this Kinesin is required for proper spindle dynamics in syncytial divisions, furrow 

ingression during both, syncytial divisions and cellularisation, as well as for F-actin and vesicle 

distribution and nuclear attachment to the cortex (Sommi et al. 2010). 
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 Protein kinases 

Protein kinases transfer phosphate groups from ATP to target substrate proteins in a reaction 

called phosphorylation. By addition of a phosphate group to specific sites of a substrate protein, 

kinases can regulate the enzyme activity of a substrate, mediate its protein-protein interactions, 

as well as alter its subcellular localisation and stability (Morrison et al. 2000). This can affect 

nearly all cellular functions including motility, growth, division, metabolism as well as membrane 

transport and gene expression (Johnson et al. 1998). The human kinome comprises 518 protein 

kinases and represents one of the largest superfamilies of homologous proteins in eukaryotes 

(Manning et al. 2002; Hanks & Hunter 1995). The members of this superfamily are defined by a 

kinase domain including a catalytic core of about 30 kDa (Manning et al. 2002; Hanks et al. 1988). 

This superfamily can be subdivided into kinases that phosphorylate proteins at serine and 

threonine residues or at tyrosine residues (Hanks & Hunter 1995). Furthermore, they can be 

grouped into families by looking for common substrate specificities and modes of regulation.  

In comparison to the human kinome, the Drosophila kinome comprises around 251 protein 

kinases, 30 of which are AGC kinases (Morrison et al. 2000). AGC serine/threonine kinases are 

named after three representative families (cAMP-dependent protein kinase (PKA), cGMP-

dependent protein kinase (PKG) and protein kinase C (PKC) family) and a common feature of 

AGC kinases is a C-terminal hydrophobic motif which helps to keep the catalytic core in an active 

conformation (Arencibia et al. 2013). AGC kinases are a highly conserved group of kinases and 

they function in several intracellular signalling pathways. They show a preference to 

phosphorylate residues that are C-terminal of basic amino acids (Arg and Lys), even though, 

many substrates of AGC kinases get phosphorylated at non-optimal sequences (Pearce et al. 

2010). In most AGC kinases, binding of substrates or membrane is often mediated by domains 

present in addition to the kinase domain. 
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 MAST kinases 

The MAST family of the group of AGC kinases is defined by proteins that contain a C-terminal 

PDZ domain, an N-terminal DUF1908 domain in addition to the serine/threonine kinase domain 

(Fig.7)(Pearce et al. 2010). MAST kinases exist in all kingdoms of life, from animals and plants to 

fungi and bacteria (Arencibia et al. 2013). In mouse, they show a wide-spread expression across 

various tissues like brain, heart, spleen, lung, liver, skeletal muscle, kidney and testis indicating 

a broad range of functions (Garland et al. 2008). MAST kinases are also implicated in several 

human diseases such as breast cancer, inflammatory bowel disease, rabies virulence, cystic 

fibrosis and secretory diarrhoea (Robinson et al. 2011; Wang et al. 2010; Labbé et al. 2008; Labbé 

et al. 2012; Terrien et al. 2009; Préhaud et al. 2010; Terrien et al. 2012; Loh et al. 2008; Ren et 

al. 2013; Wang et al. 2006). The same diversity as seen for the diseases MAST kinases are 

implicated in can be found among the interaction partners that were shown to bind to or 

somehow being regulated by the different MAST kinases. 

Figure 7 Alignment of the single Drosophila MAST kinase Dop with the four MAST kinase 
homologues in human. MAST kinases are characterised by a serine/threonine kinase domain 
(green), a PDZ domain (blue) and a domain of unknown function (DUF1908; red). The PDZ 
domain is known to mediate most of the known protein-protein interaction of these kinases. 
The sequences of the three known domains are highly conserved between the different 
members, whereas the sequences surrounding the domains show high variation (Hain 2010).  

The first MAST kinase to be identified was MAST2 which was shown to bind indirectly to 

microtubules at the spermatid manchette in mice via MAPs (microtubule associated proteins) 

(Walden & Cowan 1993). This association with microtubules gave the family its name: 

microtubule-associated serine/threonine kinase. Both, MAST1 and MAST2 were shown later to 

bind to β2-syntrophin in mice (Lumeng et al. 1999). This specific member of the syntrophin 
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family is only found at neuro-muscular junctions and binds to Utrophin. β2-syntrophin is thought 

to function as a link between MAST2 and Utrophin at the neuro-muscular junction. 

A connection exists between MAST kinase function and breast cancer. Several MAST1 and 

MAST2 gene fusions were identified in breast cancer cell lines and overexpression of these fused 

genes lead to enhanced proliferation in benign breast cell lines (Robinson et al. 2011). Moreover, 

an increased risk for breast cancer was associated with 9 SNPs found in MAST2 (Wang et al. 

2010). 

MAST1, 2 and 3 were all shown to bind to the tumour suppressor PTEN (phosphatase and tensin 

homologue) (Adey et al. 2000). Additionally, MAST2 was shown to phosphorylate PTEN (Valiente 

et al. 2005). The possible impact of this PTEN phosphorylation on PTEN function was not 

investigated in more detail. However, a possible functional mechanism of PTEN regulation by 

MAST2 was investigated through another interaction analysed in human neuroblastoma cells. 

MAST1 and MAST2 were shown to interact with the glycoprotein of the virulent rabies virus in 

these cells and the binding was shown to inhibit normal MAST2 localisation to apical membranes 

(Terrien et al. 2009; Préhaud et al. 2010). A follow-up study suggested that binding of the 

glycoprotein of rabies virus might inhibit binding of PTEN to MAST2 (Terrien et al. 2012). This 

inhibition seemed to prevent the phosphorylation-dependent nuclear localisation of PTEN and, 

in turn, inhibited PTEN function in preventing neuronal outgrowth and regeneration. This 

mechanism might explain the enhanced neuronal survival upon rabies virus infection. Another 

study which supports this mechanism is based on the result of an RNAi screen to find kinase 

families that regulate growth cone collapse, neurite retraction and neurite outgrowth (Loh et al. 

2008). RNAi directed against MAST2 promotes neurite outgrowth and inhibits 

(lipopolysaccharide (LPS)-induced) neurite retraction in rat primary midbrain neurons. 

Therefore, MAST2 function in this system resembles PTEN function which suggests that the 

functions of both proteins are linked to each other. 
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Both, MAST2 and MAST3 were shown to be involved in NF-κB activity. MAST3 was found as 

factor in inflammatory bowel disease (IBD) tissues to increase Toll-like receptor (TLR) 4-

dependent NF-κB activity and knock-down of MAST3 resulted in reduced NF-κB activity (Labbé 

et al. 2008). A follow-up study found that MAST3 acts on the NF-κB pathway by changing gene 

expression of several genes in the gut of IBD patients and, thereby, triggers immune reactions 

(Labbé et al. 2012). The direct target of MAST3 in this process remained unknown. These studies 

highlight a possible involvement of MAST3 in IBD pathogenesis. MAST2 was shown to regulate 

LPS-induced NF-κB regulation by forming a complex with TRAF6 (TNF receptor-associated factor 

6) which resulted in NF-κB inhibition and reducing inflammatory responses (Zhou et al. 2004; 

Xiong et al. 2004). Thus, MAST2 and MAST3 seem to have opposite functions in NF-κB regulation, 

MAST2 in inhibiting its function and MAST3 in increasing its function due to different stimuli 

(TLR4-dependent for MAST3 and LPS-dependent for MAST2). 

In addition to IBD and breast cancer, as well as regulation of neuronal survival, MAST kinases 

are also linked to cystic fibrosis and secretory diarrhoea. MAST2 was shown to form a complex 

with the cystic fibrosis transmembrane conductance regulator (CFTR), competing with the CFTR-

associated ligand (CAL) (Ren et al. 2013). CFTR is an anion channel transporting chloride (Cl-) and 

bicarbonate (HCO3
-) across the membranes of epithelial cells in lung, pancreas, liver, intestine, 

sweat ducts and the reproductive system and CFTR is implicated in cystic fibrosis and 

enterotoxin-induced secretory diarrhoea. A specific deletion of CFTR was found in over 90% of 

cystic fibrosis patients which reduces its functionality. Binding of CAL increases lysosomal 

degradation of CFTR. The competition with MAST2 for binding to CFTR has potential as a drug 

target to increase CFTR levels and its functions by overexpressing MAST2. MAST2 also binds to 

and phosphorylate the Na+/H+ exchanger NHE3 (Wang et al. 2006). This phosphorylation by 

MAST2 was shown to inhibit NHE3 activity. NHE3 is important to maintain normal 

gastrointestinal physiology and its malfunction leads to impaired absorption and can increase 

the fluidity of diarrhoea (Ren et al. 2013). The results which show that MAST2 regulates NHE3 

as well as CFTR function suggest MAST2 as potential cross-regulator that can possibly assemble 
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both channels and maybe other proteins into a macromolecular complex, thus, increasing its 

impact on intestinal physiology. 

A yeast 2-hybrid screen identified MAST2 as an interaction partner of Protocadherin LKC (liver, 

kidney, colon) (Okazaki et al. 2002). Protocadherin LKC induces contact inhibition of cell 

proliferation and is a potential tumour suppressor. Not much is known about its binding to 

MAST2. However, Protocadherin LKC might regulate MAST2 subcellular localisation by recruiting 

it from the cytoplasm to the cortex. MAST1, MAST2 and MAST3 were all found to bind to 

Adenomatous polyposis coli (APC) (Sotelo et al. 2012). However, no functional impact of this 

binding has been reported. Additionally, an RNAi screen found Drop out (Dop; CG6498) in 

Drosophila S2 cells as a factor essential for proper chromosome alignment (Bettencourt-Dias et 

al. 2004). 

Thus, MAST kinases seem to be involved in a lot of different processes and have a lot of very 

distinct binding partners, among those two potential phosphorylation targets (PTEN and NHE3). 

However, even though elucidating the functions of MAST kinases is of great interest, not much 

is actually known about the exact mechanism they are involved in and how they are able to 

influence that many processes. No specific phosphorylation sites have been identified on the 

potential phosphorylation targets PTEN and NHE3. A functional impact of binding of MAST to 

many of the different binding partners such as Protocadherin LKC, APC and β2-syntrophin still 

remains to be investigated. Moreover, specific binding partners or mechanisms are not known 

for some processes that MAST kinases seem to be involved in, such as hyperproliferation of 

breast cells induced by MAST1 and MAST2 gene fusions, TLR4-dependent NF-κB activation by 

MAST3 or chromosome alignment defects in S2 cells due to Dop impairment. 

Studies on the single MAST kinase in Drosophila melanogaster called Drop out might help to 

model specific MAST kinase functions in a non-redundant background to elucidate a general 

mechanism of MAST kinase action. 
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 Drop out function during early embryogenesis 

Drop out was first identified in a screen for female sterile mutations on the third chromosome 

of Drosophila melanogaster induced by EMS (Galewsky & Schulz 1992). Embryos with a mutation 

in one particular gene were shown to undergo abnormal cellularisation. Nuclei in this mutant 

lose contact to the cortex which led to their exclusion from the forming cells, they did “drop 

out”. Because of this phenotype, the mutant was called drop out (dop), the specific allele 

originally analysed was called dop1. In addition to the nuclear phenotype, the cellularisation 

furrow invaginated to a much lesser extent in the dop1 mutant in comparison to the one in wild 

type embryos. 

Genetic mapping and DNA sequencing revealed that the gene affected by the mutation is 

CG6498 encoding for the only MAST kinase homologue represented in Drosophila melanogaster 

(Fig.7) (Hain et al. 2014; Hain 2010)). 

In addition to dop1, several other alleles have been previously generated in our lab by EMS 

mutagenesis and were screened for mutations that failed to complement the maternal lethal 

phenotype of dop1 (Hauer and Müller, unpublished). Some of the identified alleles are shown in 

Fig.8. They were sequenced by Alistair Langlands and Daniel Hain (Langlands 2012; Hain 2010). 

Figure 8 Location and nature of dop mutant alleles. The location of the sequenced dop 
mutations are marked by arrows. Modified after (Langlands 2012). 

Four of the five missense mutations identified so far are located within the kinase domain of the 

Dop protein (dop1, dop6, dop11 and dop23) indicating the importance of the kinase function for 

the overall function of the protein. The only identified missense mutation that does not affect 

the kinase domain is located within the DUF domain of the protein (dop7). This allele suggests 

that also the DUF domain is important for the function of the Dop protein. Two nonsense 
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mutations have been identified that introduce a stop codon just amino-terminal of the PDZ 

domain (dop5 and dop9), Dop protein products would lead to a protein with intact amino-

terminus, DUF and kinase domain but deleted PDZ domain and carboxy-terminal sequences. 

These mutations suggest an important function for the PDZ domain of the protein in addition to 

the kinase and DUF domain. In addition to the dop1 allele, an allele that is used in this thesis is 

the allele dop10. This allele introduces a stop codon in the sequence encoding the DUF domain 

and the translated protein would result in a highly truncated protein, lacking both the kinase 

and PDZ domain as well as part of the DUF domain. However, a truncated protein could not be 

detected on western blots using embryo extracts from dop10 over a chromosomal deficiency 

(dop10/Df(3L)MR15) (Hain 2010). In contrast, a weak protein band was detected using extracts 

from dop1 homozygous mutant embryos. These data indicate that dop1 is a hypomorphic loss-

of-function allele, whereas dop10 represents a protein null and complete loss-of-function allele 

of dop. 

Detailed analysis of the dop1 allele revealed that the mutant embryos have a defect in furrow 

canal formation (Hain et al. 2014). Furrow canals are normally formed within the first 5 to 8 min 

of cellularisation (Sokac & Wieschaus 2008b), however, in dop mutants no furrow canal was 

formed 20 min into cellularisation. The protein Slam showed an abnormally broad localisation 

at the cortex and during membrane invagination in dop1 mutants (Fig.9) (Meyer et al. 2006). 

slam is an early zygotic gene and specifically required for cellularisation in Drosophila (Stein et 

al. 2002). The gene encodes a 135 kDa protein without any identifiable conserved domain apart 

from a short coiled-coil region and a low similarity to protein phosphatases (Lecuit et al. 2002). 

No homologous proteins are present for Slam outside of the Drosophilidae family. Low levels of 

Slam are maternally contributed, however, zygotic expression of slam after syncytial cycle 10 

until late cellularisation was shown as necessary and sufficient for Slam function during 

Drosophila embryogenesis (Stein et al. 2002; Lecuit et al. 2002). Zygotic slam mutants display 

severe defects in membrane invagination during slow and fast phase of cellularisation and 
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Myosin II as well as RhoGEF2 fail to localise to the furrow canals (Lecuit et al. 2002; Wenzl et al. 

2010). Additionally, Slam has a redundant function with Nullo in furrow canal specification and 

Slam protein localisation to the furrow canal was shown to be dependent on recycling endosome 

transport (Acharya et al. 2014). Because of the diverse functions of Slam protein during 

cellularisation, the mislocalisation of Slam that was seen in dop1 mutants could account for other 

defects present in these embryos. 

In addition to the Slam localisation defect, establishment of different compartments failed 

during cellularisation in dop1 embryos. Proteins that usually localise solely to the lateral 

membrane, such as e.g. Dlg, were also visible at the furrow canal (Fig.9). In addition, RhoA (also 

called Rho1) which is only found at the furrow canal in wild type embryos, displayed extended 

localisation also at the lateral membrane. 

dop1 mutant embryos additionally displayed defects in the assembly of epithelial cell junctions. 

The adherens junction components Arm and E-cadherin failed to focus into BJs as well as AJs 

during cellularisation and instead remained apical at the cortex (Meyer et al. 2006; Hain et al. 

2014). Also the Drosophila Par-3 protein Baz, which is required for the establishment of apical 

AJs, was found to form abnormal aggregates in the cytoplasm and some Baz failed to move apical 

to the apicolateral membrane where the AJs would form (Fig.9) (Müller & Wieschaus 1996; 

Harris & Peifer 2004; Hain et al. 2014). All these defects show a specific involvement of Dop in 

polarity establishment during cellularisation. 
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Figure 9 Polarity defects in dop1 mutant embryos during cellularisation. At onset of 
cellularisation, Slam protein localises to very distinct internuclear foci to establish the furrow 
canal in wild type embryos. The localisation of Slam is abnormally broadened in dop1 mutants at 
this stage and, as a result, the furrow canal is enlarged. During the course of cellularisation, 
lateral and basal polarity markers localise to distinct membrane regions separated from each 
other. This separation fails in dop1 mutants where Dlg spreads into the furrow canal 
compartment and RhoA localises to the lateral membrane. Also, Baz protein fails to get inserted 
into the apicolateral membrane region in the mutant but instead accumulates in the apical 
cytoplasm preventing formation of AJs. Furthermore, lateral membrane proteins show punctate 
distribution alongside the lateral membrane in dop1 mutants indicating that they are trapped in 
vesicles and fail to insert into the membrane. (Hain 2010) 

Unfortunately, none of the MAST kinase targets identified in other organisms so far can serve as 

a good candidate to explain the cellularisation defects seen in dop mutants. In the case of the 

cystic fibrosis factor CFTR, no homologue is known to exist in Drosophila. Many of the MAST 

interaction partners or targets are not expressed during cellularisation as the case for APC, the 

protocadherin protein Fat and β2-syntrophin (Hayashi et al. 1997; Mahoney et al. 1991; Berkeley 

Drosophila Genome Project). Other protein targets might be expressed during cellularisation, 

meaning they are either maternally deposited and/or expressed during early embryogenesis. 

However, they do not have any reported functions during this stage. Proteins belonging to this 

category are dTRAF6, the NF-κB homologue Relish and DmNHE3 (Berkeley Drosophila Genome 

Project). Only the tumour suppressor PTEN (dPTEN in Drosophila) was shown to be expressed 

during cellularisation and to exert a certain function during this process (von Stein et al. 2005). 

dPten mutants showed a delay in posterior membrane formation during cellularisation. 

However, this defect was likely to be based on an earlier defect in posterior pole cell formation. 
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Additionally, the PTEN binding site for binding to MAST kinases is not conserved in dPTEN. Thus, 

it is unlikely that PTEN in flies acts in the same way with Dop as with MAST kinases in humans. 

 

 Dependence of Dynein on Dop function 

Even though interaction partners of MAST kinases identified in other organisms cannot provide 

clear candidates for Dop targets during cellularisation, some of the previously identified 

cellularisation defects point towards an impairment of Dynein-dependent transport. 

First, Baz was mislocalised and showed some abnormal basal localisation in dop1 embryos (Hain 

et al. 2014). Dynein is required to transport cargoes along microtubules from basal to apical in 

the early embryo and was shown to be required for Baz transport (Harris & Peifer 2005). An 

accumulation of Baz at the basal end of microtubules indicate that Dop might affect Dynein 

transport. Another Dynein-dependent transport process affected in dop1 mutant embryos is the 

transport of mRNAs (Bullock et al. 2006; Dix et al. 2013). Specifically, the minus-end directed 

transport of the apically localising hairy mRNA was analysed and found to be significantly 

impaired in dop1 mutants during cellularisation (Hain et al. 2014). In addition to impairment of 

Dynein-dependent transport of Baz protein and mRNA, dop mutant embryos fail to undergo 

Dynein-dependent minus-end transport of lipid droplets during late cellularisation and early 

gastrulation (Meyer et al. 2006; Gross et al. 2000; Welte 2015). During early cellularisation, 

Kinesin-1-dependent transport of lipid droplets is up-regulated which results in transport of lipid 

droplets away from the cortex and the cortical region becomes transparent. This process is 

called lipid clearing. At the end of cellularisation, Dynein-dependent minus-end transport gets 

upregulated instead resulting in apical transport of lipid droplets towards the cortex. The caused 

accumulation of lipid droplets at the cortex leads to a darkening of the cortical area called lipid 

clouding. This process fails in dop1 maternally homozygous embryos so that the cortical area 

stays transparent throughout gastrulation. Even though this defect indicates that Dop affects 

Dynein-dependent transport, no functional consequences connected to the dynamics of lipid 



Introduction|29 
 
droplets at this stage are known (Welte 2015). Thus, Dop might affect lipid droplet dynamics at 

this stage but without any consequences for the following embryo development or viability. 

Further support for a function of Dop in Dynein-dependent transport comes from genetic 

interaction studies and biochemical analysis (Hain et al. 2014; Hain 2010; Langlands 2012). 

Zygotic double mutants for dop1 and short wing1 (sw1; mutation allele of the Dynein 

intermediate chain subunit) as well as dop1 in combination with Glued1 (Gl1; mutation allele of 

the Dynactin complex subunit p150/Glued) showed enhanced sw1 and dop1 wing phenotypes 

and Gl1 eye phenotypes, respectively (Hain et al. 2014). In addition, both mutants enhanced dop1 

membrane invagination defects during cellularisation. These data suggest that Dop might act in 

the same pathway as Dynein and Dynactin among others involved in membrane invagination. 

2D gel electrophoresis using early stage embryo extracts showed a reduction of Dynein 

intermediate chain (Dic) phosphorylation in dop1 mutant embryos compared to wild type. This 

suggests that Dop might function in regulating phosphorylation of the Dynein intermediate 

chain during early embryogenesis. As the intermediate chain has been shown to mediate binding 

of Dynein to Dynactin, the regulation of this subunit might have important implications for 

overall Dynein activity (Schroer 2004; Vale 2003). 

Another biochemical experiment identified a different Dynein subunit as a potential 

phosphorylation target of Dop (Langlands 2012). A SILAC screen on embryo extracts from wild 

type and dop1/dop10 mutant embryos undergoing cellularisation was performed. The following 

mass spectrometry analysis showed a down-regulation of Dynein light intermediate chain (Dlic) 

phosphorylation in dop mutants. Additionally, serine 401 of the Dlic subunit came up as 

potential phosphorylation site with reduced phosphorylation in dop mutants in this experiment. 

Thus, Dop might affect Dynein function by regulating the phosphorylation state of several of its 

subunits. 
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 Aim of the study 

The study of Dop function as an in vivo model for MAST kinase function might give insights into 

a mechanism by which MAST kinases act and affect several human diseases. The aim of this PhD 

study is to analyse the function of Drop out during early cellularisation in Drosophila embryos in 

more detail. 

 To understand which is the first requirement of Dop in early embryogenesis, F-actin 

dynamics are analysed to determine at which stage the first defects occur in dop 

mutants.  

 Additionally, defects in maternal complete loss-of-function dop mutant embryos are 

studied to gain insight into the very first process that is affected by the loss of Dop 

function and to elucidate a possible mechanism by which Dop affects cellularisation.  

 Furthermore, Dynein as possible Dop target during early embryogenesis is analysed to 

test if Dynein can provide a link between Dop impairment and cellularisation defects. 
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2. Materials and methods 

 Materials 

 Fly strains 

Reference strains 

Genotype Description Donor/origin Reference 

white[1118] 
Spontaneous partial deletion of 
white; standard laboratory wild 

type strain 

BDSC 
(BL#3605) 

 

Table 1 Control line used in this thesis 

 

Mutants 

Genotype Description Donor/origin Reference 

w[*] baz[815-8] 
P{w[+mW.hs]=FRT(w[hs]
)}9-2/FM7a; Sp/CyO 

P-element insertion in the 
bazooka locus on the X-

chromosome, balanced over 
FM7a, second chromosome 

marked with Sternopleural and 
balanced with CyO 

Hamze Beati  

w[67c23] 
P{w[+mC]=lacW}Dlic[G0
065]/FM7c 

P-element insertion in the 
dynein light intermediate chain 

locus on the X-chromosome 

BDSC (BL# 
11696) 

(Mische et 
al. 2008) 

y[1] w[*]; dop[1] red[1] 
e[1]/TM6B, Tb[1] 

EMS induced allele of the drop 
out locus on the third 

chromosome 

BDSC (BL# 
5242) 

(Galewsky 
& Schulz 
1992) 

dop[10],st,FRT2A/TM3,S
b 

EMS induced allele of the drop 
out locus on the third 

chromosome 

Alistair 
Langlands 

 

w; ovo[D]FRT2A/ 
βTub85[D],ss,e/TM3,Sb 

Dominant female sterile marker 
allele ovoD with FRT site or 

dominant male sterile marker 
βTub85D balanced over TM3 

BDSC (BL# 
2139) 

(Chou & 
Perrimon 
1996) 

Table 2 Mutant lines used in this thesis 
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UAS-lines 

Genotype Description Donor/origin Reference 

y, w; P{w+ pUASp-wtDlic-
linker-GFP}attP40/CyO 

wild type Dlic-GFP under 
UAS control on the second 

chromosome 
this thesis  

y, w; P{w+ pUASp-S401DDlic-
linker-GFP}attP40/CyO 

Phospho-mimic S401D 
mutated Dlic-GFP under 

UAS control on the second 
chromosome 

this thesis  

y, w; P{w+ pUASp-S401ADlic-
linker-GFP}attP40/CyO 

Phospho-dead S401A 
mutated Dlic-GFP under 

UAS control on the second 
chromosome 

this thesis  

y, w; P{w+ pUASp-wtDlic-
linker-GFP}attP40/CyO; 
dop[1], mat-α-
Tubulin_VP16[15]Gal4/TM6B 

wild type Dlic-GFP under 
UAS control on the second 
chromosome, drop out [1] 

allele on the third 
chromosome 

this thesis  

y, w; P{w+ pUASp-S401DDlic-
linker-GFP}attP40/CyO; 
dop[1], mat-α-
Tubulin_VP16[15]Gal4/TM6B 

Phospho-mimic S401D 
mutated Dlic-GFP under 

UAS control on the second 
chromosome, drop out [1] 

allele on the third 
chromosome 

this thesis  

y, w; P{w+ pUASp-S401ADlic-
linker-GFP}attP40/CyO; 
dop[1], mat-α-
Tubulin_VP16[15]Gal4/TM6B 

Phospho-dead S401A 
mutated Dlic-GFP under 

UAS control on the second 
chromosome, drop out [1] 

allele on the third 
chromosome 

this thesis  

YFP-ASL; UAShDMN/TSTLR 
Human Dynamitin under 
UAS control on the third 

chromosome 

Jens 
Januschke, 
Dundee, UK 

(Januschke 
et al. 2002) 

w[*]; P{w[+mC]=UAS-
Eb1.GFP}2/CyO 

EB1-GFP under UAS control 
on the second chromosome 

DGGR (# 
109614) 

(Rolls et al. 
2007) 

w[*]; P{w[+mC]=UAS-
Eb1.GFP}2/CyO; 
dop[1]/TM6B 

EB1-GFP under UAS control 
on the second 

chromosome, drop out [1] 
allele on the third 

chromosome 

This thesis  

UAS:Tubulin-GFP;;FRTG13 
insc22/TSTLR 

Tubulin-GFP under UAS 
control on the X-

chromosome 

Jens 
Januschke, 
Dundee, UK 
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w[1118];P[w[+], UAS:Rab11-
GFP]/CyO 

Rab11-GFP under UAS 
control on the second 

chromosome 

BDSC (BL# 
8506) 

 

w[1118]; P[w[+], UAS:Rab11-
GFP]/ CyO; dop[1]/TM6B 

Rab11-GFP under UAS 
control on the second 

chromosome, drop out [1] 
allele on the third 

chromosome 

Daniel Hain  

Table 3 UAS effector lines used for protein expression in situ 

 

RNAi-lines 

Genotype Description Donor/origin Reference 

y[1] sc[*] v[1]; P{y[+t7.7] 
v[+t1.8]=TRiP.GL00543}a
ttP40 

Expression of dsRNA for RNAi of 
Dhc64C (FBgn0261797) under 

UAS control, TriP line 

BDSC (BL# 
36583) 

 

y[1] sc[*] v[1]; P{y[+t7.7] 
v[+t1.8]=TRiP.HMS01587
} attP2 

Expression of dsRNA for RNAi of 
Dhc64C (FBgn0261797) under 

UAS control, TriP line 

BDSC (BL# 
36698) 

 

Table 4 RNAi lines used for targeted gene silencing 

 

Gal4 driver lines 

Genotype Description Donor/origin Reference 

w; Kr[If]/CyO ; dop[1], mat-α-
Tubulin 15 (rec3)Gal4 / TM6B 

Maternal Gal4 expression 
under control of the α-

Tubulin 15 enhancer and 
drop out [1] allele on the 

third chromosome 

Arno Müller  

w[1118]; mat-α-
tubulin_VP16[67]Gal4/CyO 

Maternal Gal4 expression 
under control of the α-
Tubulin 67 enhancer on 

the second chromosome 

Daniel St. 
Johnston, 

Cambridge, UK 
 

w[1118]; mat-α-
tubulin_VP16[67]Gal4/CyO; 
dop[10]/TM3, Ser 

Maternal Gal4 expression 
under control of the α-
Tubulin 67 enhancer on 

the second chromosome, 
drop out [10] allele on the 

third chromosome 

Arno Müller  

w; mat-α-
tubulin_VP16[67]Gal4/CyO; 

Maternal Gal4 expression 
under control of the α-

Tubulin 67 and α-Tubulin 
67 enhancers on the 

Daniel St. 
Johnston, 

Cambridge, UK 
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mat-α-
Tubulin_VP16[15]Gal4/TM6 

second and third 
chromosomes 

w[*]; P{w[+m*]=Ubi-
GAL4.U}2/CyO 

Ubiquitous expression of 
Gal4 under control of the 
ubiquitin enhancer on the 

second chromosome 

BDSC (BL# 
32551) 

 

Table 5 Driver lines used in this thesis 

 

Miscellaneous strains 

Genotype Description Donor/origin Reference 

y,w, hs::FLP; Sp/CyO; 
ubi::GFP-FRT2A/TM6B 

Expression of flippase 
recombinase under heat 

shock promoter control on 
the X-chromosome, 

construct for ubiquitous 
expression of GFP coupled to 
flippase recognition site on 

the third chromosome 

Arno Müller  

y,w;sqh::UtrophinGFP/ CyO 

Recombinant of the actin-
binding domain of human 
Utrophin fused to GFP and 

expressed under the 
spaghetti-squash promoter 

Katja Roeper, 
Cambridge, UK 

(Rauzi et al. 
2010) 

y,w;sqh::UtrophinGFP/ 
CyO; dop[1]/TM6B 

Recombinant of the actin-
binding domain of human 
Utrophin fused to GFP and 

expressed under the 
spaghetti-squash promoter, 

drop out [1] allele on the 
third chromosome 

this thesis  

w;If/CyO;MKRS,Sb/ 
TM6B,Tb,Hu 

Marker strain with markers 
and balancers on the first, 

second and third 
chromosome 

Kevin Johnson, 
Düsseldorf, 
Germany 

 

w[1118]; In(2LR)Gla, 
wgGla-1 Bc1/CyO [ftz::lacZ] 

Marker strain with markers 
and balancers on the first 
and second chromosome 

Tanja Gryzik  

P{ry[+t7.2]=hsFLP}1, y[1] 
w[1118]; Dr[Mio]/TM3, 
ry[*] Sb[1] 

Expression of flippase 
recombinase under heat 

shock promoter control on 
the X-chromosome 

BDSC (BL# 7) 
(Golic et al. 
1997) 
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P{ry[+t7.2]=hsFLP}1, y[1] 
w[1118]; 
dop[10],st,FRT2A/TM3,Sb 

Expression of flippase 
recombinase under heat 

shock promoter control on 
the X-chromosome, drop out 

[10] allele on the third 
chromosome 

Arno Müller  

Table 6 Lines used for chromosomal balancing, flippase expression and UtrophinGFP 
expression 

 

 Chemicals 

Chemical Donor/distributor 

Ciliobrevin D 

Jason Swedlow, Dundee, UK 

(originally Calbiochem, Merck Millipore 
#250401; concentration of 3000 μM) 

Ciliobrevin D 
James Chen lab, Stanford, USA 
(concentration of 7387 μM) 

1,4-diazabicyclo[2.2.2]octane (DABCO) Sigma-Aldrich, St. Louis, USA 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich, St. Louis, USA 

6x DNA Gel Loading Dye 
Thermo Fisher Scientific, Massachusetts, 
USA (#R0611) 

Fluorescein isothiocyanate-Dextran 500000-
Conjugate (FITC-Dextran) 

Sigma-Aldrich, St. Louis, USA 

Formaldehyde Sigma-Aldrich, St. Louis, USA 

GelRed Nucleic Acid Gel Stain Biotium (#41003) 

GeneRuler 1kb+ DNA Ladder Thermo Fisher Scientific, Massachusetts, 
USA (#SM1331) 

Glycerol  Sigma-Aldrich, St. Louis, USA 

Halocarbon oil 27 Sigma-Aldrich, St. Louis, USA 

Heptane Sigma-Aldrich, St. Louis, USA 

Methanol VWR, Pennsylvania, USA 

Mowiol 4-88 

(for use 5g dissolved in 20 ml PBS and 10 ml 
Glycerol) 

Sigma-Aldrich, St. Louis, USA 

Triton X-100 Sigma-Aldrich, St. Louis, USA 

https://en.wikipedia.org/wiki/Waltham,_Massachusetts
https://en.wikipedia.org/wiki/Waltham,_Massachusetts
https://en.wikipedia.org/wiki/Waltham,_Massachusetts
https://en.wikipedia.org/wiki/Waltham,_Massachusetts
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Tween 20 VWR, Pennsylvania, USA 

Table 7 Chemicals used in this thesis 

 

 Cell lines 

Cell line Antibiotic resistance 

E. coli DH5α no resistance 

E. coli XL-1 Tetracycline 

Table 8 Cell lines used for cloning 

 

 Cloning vectors  

Vector Size 
Antibiotic 
resistance 

Purpose Donor/distributor 

pGEX-6P 
4984 
bp 

Ampicillin 
original vector with Dlic 
cloned in 

Amersham 

pUAST-
EBKXN-EGFP 

9813 
bp 

Ampicillin 
cloning of Dlic versions 
to linker-GFP 

Tadashi Uemura, 
Kyoto, Japan 
(Satoh et al. 2008) 

pUASp K10 
attb 

9537 
bp 

Ampicillin 
somatic and female 
germline expression in 
vivo under UAS control 

Drosophila 
Gateway 
collection 

Table 9 Cloning vectors used in this thesis 

 

 Enzymes 

Enzyme Company Purpose 

Bsu15I (ClaI) Thermo Fisher Scientific Test digest 

DpnI 
Agilent Technologies, QuikChange 
Lightning Site-Directed Mutagenesis 
Kit 

Template DNA digest after 
mutagenesis PCR 

EcoRI Thermo Fisher Scientific 
Subcloning of Dlic versions into 
pUAST vector 

FastAP Fermentas 
Dephosphorylation of plasmid 
ends 
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HpaI (KspAI) Thermo Fisher Scientific Test digest 

NheI Thermo Fisher Scientific Test digest 

NotI Thermo Fisher Scientific Test digest 

Pfu DNA 
polymerase 

Promega Standard PCR 

T4 DNA Ligase Fermentas, Rapid DNA Ligation Kit 
Ligation of PCR products and 
vector plasmids 

XbaI Thermo Fisher Scientific 
Subcloning of Dlic versions into 
K10 vector 

Table 10 Enzymes used for cloning 

 

 Oligonucleotides  

Name Sequence (5‘-3‘) Tm (°C) Purpose 

HS phos-mim for 
CAC CAC CGG ACA GAG TGA CCC 
CAA AAA GAT TGA TCC (36bp) 

72.9°C 
Mutagenesis of S401 
to aspartic acid 

HS phos-mim rev 
GGA TCA ATC TTT TTG GGG TCA CTC 
TGT CCG GTG GTG (36bp) 

72.9°C 
Mutagenesis of S401 
to aspartic acid 

HS phosdead for 
CCA CCG GAC AGA GTG CGC CCA 
AAA AGA TTG (30bp) 

70.9°C 
Mutagenesis of S401 
to alanine 

HS phosdead rev 
CAA TCT TTT TGG GCG CAC TCT GTC 
CGG TGG (30bp) 

70.9°C 
Mutagenesis of S401 
to alanine 

Dlic-EcoRI for 
GTC TAG AAT TCA TGG CGA TGA 
ACA GTG GGA C (31bp) 

68.2°C 
Introduction of EcoRI 
site to clone Dlic into 
pUAST vector 

new Dlic rev 
CAT ATG AAT TCA ACA CTC ACT CTG 
CGA CAT GTC AAT CTC (39bp) 

69.5°C 
Introduction of EcoRI 
site to clone Dlic into 
pUAST vector 

HS XbaI for 
CCT CTA GAT TAC TTG TAC AGC TCG 
TCC (27bp) 

65.0°C 
Introduction of XbaI 
site to clone Dlic into 
K10 vector 

HS XbaI rev 
CAT CTA GAA TGG CGA TGA ACA 
GTG GG (26bp) 

64.8°C 
Introduction of XbaI 
site to clone Dlic into 
K10 vector 

pUAST reverse 
new 

CTT GCT CAC CAT GCT AGA ACC T 
(22bp) 

60.3°C 
test primer for 
sequencing of Dlic 3‘ 

Dlic SDM for 
GTC GCA GAG TGA GTG TTC AAT 
TCG TTA ACA GAT C (34bp) 

64°C 
Mutagenesis of first 
stop codon  
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Dlic SDM rev 
GAT CTG TTA ACG AAT TGA ACA CTC 
ACT CTG CGA C (34bp) 

64°C 
Mutagenesis of first 
stop codon 

Dlic2 SDM for 
GTG AGT GTT CAA TTC GTT TAC AGA 
TCT TGG TAC CAA CTC GAG GCG G 
(46bp) 

70°C 
Mutagenesis of 
second and third stop 
codon 

Dlic2 SDM rev 
CCG CCT CGA GTT GGT ACC AAG 
ATC TGT AAA CGA ATT GAA CAC 
TCA C (46bp) 

70°C 
Mutagenesis of 
second and third stop 
codon 

Table 11 Oligonucleotides used in this thesis 

 

 Antibodies 

Primary antibodies 

Antigen 
Host 

species 
Concentration Donor/distributor Reference 

βTubulin mouse 1:50 DSHB E7 

Centrosomin (Cnn) rabbit 1:500 
Eric Griffis, Dundee, 

UK 

(Vaizel-Ohayon 
& Schejter 
1999) 

Dynein heavy 
chain (Dhc) 

mouse 1:100 DSHB 2C11-2 

Epidermal growth 
factor receptor 
pathway substrate 
clone 15 (Eps15) 

guinea pig 1:300 
Hugo Bellen, 

Houston, USA 
GP59, (Koh et 
al. 2007) 

Green fluorescent 
protein (GFP) 

rabbit 1:250 Invitrogen  

golgi protein 120 
(gp120) 

mouse 1:500 Calbiochem 
no longer 
available 

Kinesin heavy 
chain (Khc) 

rabbit 1:100 Cytoskeleton  

Lava lamp (Lva) rabbit 1:1000 
John Sisson, 

Texas, USA 

(Sisson et al. 
2000) 

Neurotactin (Nrt) mouse 1:5 DSHB BP 106 

Nuclear fallout 
(Nuf) 

rabbit 1:250 
William Sullivan, 

Santa Cruz, 
California, USA 

(Rothwell et al. 
1998) 
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Table 12 Primary antibodies used in this thesis 

 

Secondary antibodies 

Table 13 Secondary antibodies used in this thesis 

 

 Fluorescent dyes  

Table 14 Fluorescent dyes used in this thesis 

 

 

Slow-as-molasses 
(Slam) 

rabbit 1:5000 
Jörg Großhans, 

Göttingen, Germany 
(Stein et al. 
2002) 

Anti-species Conjugate Concentration Distributor 

guinea pig Cy3 1:250 Stratech 

guinea pig Alexa647 1:250 Invitrogen 

mouse Alexa488 1:250 Invitrogen 

mouse Cy3 1:250 Stratech 

mouse Alexa647 1:250 Invitrogen 

rabbit Alexa488 1:250 Invitrogen 

rabbit Cy3 1:250 Stratech 

rabbit Alexa647 1:250 Invitrogen 

Dye Description Concentration Distributor 

4‘,6-Diamidino-2-
phenylindole 
dihydrochloride (DAPI) 

DNA-binding probe; forms 
fluorescent complex 

(excitation at 340 nm; 
emission at 488 nm) 

1:1000 (stock 
solution: 1 mg/ml 

in ddH2O) 

Sigma-
Aldrich, St. 
Louis, USA 

Phalloidin-Alexa594 

fluorophore-coupled 
phalloidin for detection of 

filamentous actin (excitation 
at 581 nm; emission at 609 

nm) 

1:40 (stock 
solution: 200 
units/ml in 
methanol) 

Invitrogen, 
Oregon, USA 
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 Commonly used buffers and media 

Buffer/media Composition 

PBS 137 mM NaCl 
2.7 mM KCl 
10 mM Na2HPO4 
1.76 mM KH2PO4 
pH 7.4 

PBT PBS 
0.1 % Tween 20 

PBTx PBS 
0.5 % Triton X-100 

TAE 40 mM Tris-Acetate 
20 mM NaAcetate 
2 mM EDTA 
pH 8.3 

Standard corn meal agar medium 356 g corn grist 
47.5 g soy flour 
84 g dry yeast 
225 g malt extract 
75 ml 10 % Nipagin 
22.5 ml propionic acid 
28 g agar 
200 g sugar beet molasses 
4.9 l dH2O 

 

Apple agar plate medium 40 g agar 
340 ml apple juice (100 %) 
17 g sucrose 
30 ml Nipagin (10 %) 
(100 g Nipagin were dissolved in 1 l 70% Ethanol) 
in 1 l H2O 

LB medium 1 % Trypton 
0.5 % yeast extract 
1 % NaCl 

Table 15 Buffers and media used in this thesis 

 

 Instruments  

Instrument Company Purpose 

Centrifuge 5424 Eppendorf Different cloning steps 
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Centrifuge Avanti J-25 Beckman 
Midi-scale plasmid 
preparation 

Centrifuge Rotina 380 R 
Hettich 
Zentrifugen 

Midi-scale plasmid 
preparation 

Microscope Confocal 710 Zeiss 
Microscopy of embryo and 
ovary stainings 

Microscope Confocal SP8 Leica 
Fluorescence microscopy of 
stainings and live-imaging 

Microscope BX61 with Orca-ER Digital 
Camera (Hamamatsu) 

Olympus Bright field live-imaging 

Microscope Confocal spinning disk 
CSU-X1 system 

Yokogawa Fluorescence live-imaging 

Microscope Axiovert 135 M Zeiss Ciliobrevin injections 

Microscope IX70 with CoolSNAP HQ2 
CCD Camera (Photometrics) 

Olympus 
Bright field and fluorescence 
imaging of injected embryos 

BioPhotometer Eppendorf 
DNA concentration 
measurement 

Mastercycler gradient  Eppendorf 
Standard and mutagenesis 
PCR 

GenoView and GenoSmart gel 
documentation system 

VWR 
Imaging and documentation 
agarose gels 

Visi-Blue Transilluminator UVP 
Excision of DNA from agarose 
gels 

FemtoJet microinjector Eppendorf Ciliobrevin injections 

InjectMan NI 2 micromanipulator Eppendorf Ciliobrevin injections 

Table 16 Instruments used in this thesis 

 

 Software 

Software Software developer Purpose 

ApE A plasmid editor M. Wayne Davis, University of Utah DNA sequence analysis 

Illustrator CS5.1 Adobe Figure labelling 

ImageJ/Fiji 
Wayne Rasband, National Institutes 

of Health, Maryland, USA 

Image analysis and 
processing, Plugins: Multiple 
Kymograph written by J. 
Rietdorf (FMI Basel) and A. 
Seitz (EMBL Heidelberg) 
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Jalview Version 2 (Waterhouse et al. 2009) Conservation analysis  

OMERO Open Microscopy Environment 
Data storage, data 
visualisation, figure 
construction 

Photoshop CS5.1 Adobe Figure labelling 

SigmaPlot 12.3 Systat Software Inc Statistical analysis 

Volocity Perkin Elmer 
Image acquisition and 
visualisation 

Table 17 Software used in this thesis 

 

 Methods 

 Fly maintenance and genetics 

 Stock keeping 

Fly stocks were kept on standard corn meal agar medium and raised at room temperature (22°C) 

or at 25°C in small plastic tubes. Selection of specific animals for crossings was accomplished 

using CO2 for anaesthetisation. 

 

 Collection of embryos 

To collect embryos for immunostainings, live imaging or hatching rate determination, parental 

flies were kept in embryo collection cages. The bottom opening was closed by an embryo 

collection plate with apple juice agar and additional yeast for stimulation. 

 

 Generation and balancing of transgenic fly strains 

The production of transgenic fly lines is based on the introduction of attP sites in the Drosophila 

genome by P-element insertion. The attP site allows the targeted insertion of a plasmid carrying 

an attB site. By injecting the plasmid into a phiC31 integrase-expressing germ line, the enzyme 
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recombines both attP and attB sites and integrates the plasmid DNA permanently into the 

progenies genome (Bischof et al. 2007). In this thesis, wild type and phospho-mutant versions 

of dynein light intermediate chain (dlic) fused to GFP were cloned into a K10 vector with an 

Upstream Activating Sequence (UAS) controlling Dlic-GFP expression as well as an attB site for 

targeted genome insertion (see Fig.10). The injection of the germ line was performed by the Fly 

Facility, Department of Genetics at the University of Cambridge. Integration was targeted to the 

second chromosome at position 25C6. After raising the F1 generation, the flies were sent back 

to our lab. The white marker was used to identify successful integrations and flies with reddish 

eyes were crossed to w-; Gla/CyO flies to balance the integration with CyO on the second 

chromosome. 

 

Figure 10 pUASp K10 attb vector with Dlic insert. 

 

 Creation of germ line clones 

Embryos that lack the maternal contribution of a gene that is homozygous lethal can be 

produced by the induction of germ line clones (or germline mosaics) (Blair 2003). Three 
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constructs are required in combination. A site-specific recombinase called Flippase (FLP) under 

control of a heat-shock promoter induces mitotic recombination of two FRT (Flippase 

recombination target) sites in the genome of proliferating cells (Golic & Lindquist 1989). To 

create germ cells homozygous for dop10, flies were crossed together to create progeny that carry 

the dop10 allele with FRT site on one chromosome arm of chromosome 3 and an ovoD allele (a 

dominant female sterile marker which induces lethality of germ cells) with FRT site on the other 

chromosome arm. By shifting third instar larvae of this progeny to 37°C, FLP expression was 

activated. FLP creates a break in FRT sites of metaphase chromosomes which may lead to mitotic 

cross-over between the FRT sites. If such a cross-over occurs in a germ cell during development 

a possible result is the formation of homozygous mutant ovaries. Third instar larvae have been 

chosen for mitotic cross-over induction since germ cell precursors do proliferate during this 

stage. FLP expression was induced on two consecutive days for 2 hours each at 37°C. Eggs 

produced by females deriving from these larvae are exclusively homozygous for dop10 since germ 

cells either homozygous or heterozygous for ovoD do not produce eggs (Chou & Perrimon 1996). 

Fig.11 shows the cross performed to produce germ line clone dop10 embryos. 
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Figure 11 Cross performed to produce germ line clone dop10 embryos. Females carrying the 
flippase gene under heat-shock promoter control on the X and the homozygous lethal mutation 
dop10 and a FRT site on the third chromosome were crossed to males carrying the ovoD female 
sterile allele and a FRT site on the third chromosome. 3rd instar larvae progeny were heat-
shocked to activate FLP expression on 2 consecutive days for 2 hours at 37°C. Females carrying 
both FRT sites developing from the heat-shocked larvae were separated, crossed to brothers 
and their progeny further analysed. 

 

 Generation of follicle clones 

Patches of follicle cells homozygous for dop10 in an egg chamber heterozygous dop10 can be 

created similar to creation of germ line clones (Harrison & Perrimon 1993; Horne-Badovinac & 

Bilder 2005; Blair 2003). Also for follicle clone creation, a flippase gene under heat-shock 

promoter control is required to induce mitotic recombination of two FRT sites (Golic & Lindquist 

1989). Flies were crossed together to create progeny that carry the dop10 allele with FRT site on 

one chromosome arm of chromosome 3 and, in this experiment, a GFP marker gene under 

ubiquitin promoter control with FRT site on the other chromosome arm. Adult females were 

shifted to 37°C to induce mitotic recombination between the FRT sites during egg chamber 

development. Three types of follicle cells are generated by this method: 1. Follicle cells in which 
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no mitotic recombination took place (expression of GFP leads to green cells) and follicle cells in 

which mitotic recombination took place and the progeny did inherit 2. both dop10 alleles 

(homozygous for the mutation, no GFP expression) or 3. both gfp genes (GFP expression 

stronger in these cells than in the ones without induced recombination). 

 

Figure 12 Cross performed to produce follicle cell clones homozygous for dop10. Males carrying 
the flippase gene under heat-shock promoter control on the X and a gfp gene under control of 
an ubiquitin promoter and a FRT site on the third chromosome were crossed to females carrying 
the homozygous lethal mutation dop10 and a FRT site on the third chromosome. Adult females 
carrying the flippase gene, the dop10 mutation and the gfp gene were heat-shocked to activate 
FLP expression after one day of eclosion for 1 hour at 37°C and crossed to brothers. Ovaries of 
these females were prepared after 4 days. 

 

 The UAS/Gal4 system 

The Gal4/UAS system enables the targeted temporal and spatial control of gene expression 

(Brand & Perrimon 1993). In this thesis, the system was used for targeted gene expression of 

GFP fusion proteins and induction of transcriptional gene silencing using RNA interference 
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(RNAi). All Gal4 driver, UAS effector and UAS-RNAi lines are listed in the materials section of this 

thesis. 

 

 Hatching rate determination 

Embryos were collected over night and afterwards transferred and lined up onto fresh apple 

agar plates. Hatching rates determination was repeated at least three times with maximal 100 

embryos of each line. 2 to 3 days after keeping the embryos at the respective temperatures, 

unhatched and hatched embryos were counted and the percentage calculated as follows: 

ℎ𝑎𝑡𝑐ℎ𝑒𝑑 𝑒𝑚𝑏𝑟𝑦𝑜𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑚𝑏𝑟𝑦𝑜𝑠
𝑥100. 

 

 Live imaging of protein dynamics and cellularisation processes in embryos 

In order to image dynamics of GFP fusion proteins, embryos were dechorionated by bleach and 

staged in halocarbon oil. Embryos in syncytial cell cycles 10-13 were selected and stuck with 

heptane glue to a “FluoroDish” (WPI, FD35-100) and covered with halocarbon oil. Different 

microscopes have been used in this thesis to image GFP fusion proteins (see 2.1.10 Instruments). 

For live imaging of membrane growth during cellularisation, embryos in syncytial cell cycles 10-

13 were selected in halocarbon oil under a dissection microscope. Afterwards, the embryos 

were mounted in Halocarbon oil with a cover slip on top and using two cover slips as spacer. A 

BX61 microscope with Orca-ER Digital Camera was used. 

 

 Ciliobrevin D injections into embryos 

white1118 embryos were collected for 10 to 15 min and aged for another hour at 25°C. 

Afterwards, embryos were dechorionated and aligned on an apple agar plate. Part of the fringe 



Materials and methods|48 
 
of a “FluoroDish” (WPI) was removed to create a gap for the injection needle (Femtotips II, 

Eppendorf #930000043). Embryos were stuck to the dish with heptane glue in such a way that 

the embryo posterior pole is facing the gap. To prevent embryos from exploding during injection, 

embryos were dried for 15 to 20 min at room temperature before covering with Halocarbon oil. 

During the drying time, the needle was prepared. Ciliobrevin D (stock of 7386.65 µM) in a 1:1 

mixture with FITC-Dextran was spun down for 1 min to get rid of undissolved particles in the 

supernatant. Then, microinjection needles were filled with 3 µl of the supernatant. Embryos 

were injected with differing pressure at a microscope using a FemtoJet microinjector and an 

InjectMan NI 2 micromanipulator. Afterwards, successfully injected embryos were imaged at an 

IX70 microscope for 3 hours with a time interval of 20 sec. 

 

 Immuno staining techniques 

 Standard fixation of embryos 

To collect embryos for fixation at onset of cellularisation, eggs were collected for 1 hour and 

aged for 1.5 hours at 25°C. The collected embryos were transferred into a collection net, rinsed 

with water to remove remaining yeast and dechorionated in 100% bleach. To remove the bleach, 

embryos were washed again and transferred into glass vials with 5 ml 4% formaldehyde in PBS 

and 5 ml heptane. Embryos were fixed at room temperature for 25 min on a shaker. Afterwards, 

the bottom formaldehyde phase was removed and replaced by 5 ml methanol. Devitellinisation 

of the embryos took place by vigorously shaking the vials for 20 sec. Embryos that sunk down 

into the methanol phase were transferred into a reaction tube and washed three times with 

methanol before used for immunostaining or stored at -20°C. 
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 Methanol-free fixation for phalloidin stainings of embryos 

As for the standard fixation, embryos were dechorionised in bleach before the transfer into glass 

vials. The fixative for phalloidin staining contained 5 ml of 18% formaldehyde final concentration 

in PBS and 5 ml heptane. Embryos were fixed for 30 min under agitation. Afterwards, the bottom 

formaldehyde phase was discarded. For manual devitellinisation, embryos were fixed on a 

microscope slide on a double-faced adhesive tape. A drop of heptane with embryos was pipetted 

on the tape and the heptane was allowed to dry. To protect the embryos from running dry, they 

were wetted with PBT. Embryos were liberated from their vitelline membrane by using the tip 

of a syringe to break up the membrane and pushing the embryos out. The devitellinised embryos 

were transferred into a reaction tube with PBT, washed and subsequently stained with 

phalloidin o/N at 4°C. 

 

 Immunofluorescence staining of embryos 

In order to visualise the presence of specific proteins in embryonic tissue, embryos were stained 

using specific antibodies. Every step was performed on a shaker. Methanol was replaced by PBT 

and embryos washed three times for 15 min at room temperature. Unspecific binding sites were 

saturated by incubating the embryos for at least 1 hour in 10% donkey serum in PBT. The epitope 

specific primary antibody was diluted in 350 µl PBT and 10% donkey serum with the embryos 

incubated o/N at 4°C. Subsequently, the primary antibody was removed off the embryos, 

followed by at least four washing steps in PBT and incubated with the fluorophore-coupled 

secondary antibody at room temperature for 2 hours. In the following, embryos were stained 

with DAPI for 10 min, washed at least four times for 15 min and embedded on a microscope 

slide with Mowiol and DABCO. 
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 Preparation, fixation and staining of ovaries 

Females of the respective fly lines were anaesthetised and killed by removing their heads. The 

abdomen was opened by tweezers and the ovaries isolated and spread. Afterwards, ovaries 

were fixed in pre-cooled 4% formaldehyde in PBS on ice for 15 min. After the fixation, 

formaldehyde was replaced by PBT and ovaries washed three times for 10 min. For phalloidin 

staining, ovaries were immediately mixed with phalloidin in PBT and 10% donkey serum and 

incubated o/N at 4°C. To stain with antibodies, ovaries were blocked after the washing steps 

with PBTx and 10% donkey serum for at least 3 hours before primary antibody was applied. 

Further staining followed the same protocol as embryo stainings (see section 1.1.2.3.). 

 

 Molecular biology 

 Site-directed mutagenesis PCR 

To perform site-directed mutagenesis on dynein light intermediate chain Serine 401, the 

QuikChange Lightning Site-Directed Mutagenesis Kit (Agilent Technologies, #210519) was used. 

Reactions containing 12.5 pmol mutagenesis-oligonucleotides and 116.5 ng template DNA (Dlic 

in pGEX-6P) were performed according to the protocol of the manufacturer. The final volume 

was set to 50 µl in all reactions. Table 18 shows the PCR parameters used for the site-directed 

mutagenesis PCR for phospho-mimic (S401D) and non-phosphorylatable (S401A) versions of 

Serine401 in Dlic. 

  

http://www.agilent.com/cs/library/msds/210519_NAEnglish.pdf
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Lid temperature: 112°C    

 Cycles Temperature Time 

Initial denaturation  95°C 2 min 

Denaturation  95°C 30 sec 

Annealing 18 60°C 30 sec 

Elongation  68°C 4 min 20 sec 

Final elongation  68°C 5 min 

 storage at 10°C  

Table 18 PCR parameters used for site-directed mutagenesis PCR 

After each PCR reaction, 2 µl of DpnI enzyme provided by the kit were added to the reaction and 

incubated for 1 hour at 37°C to digest methylated template DNA. 

 

 PCR 

Polymerase chain reactions (PCR) were performed to create specific enzyme restriction sites to 

the dynein light intermediate chain constructs for subcloning into another vector. The reactions 

were performed in a final volume of 40-50 µl containing 50-100 pmol oligonucleotides and 80-

240 ng template DNA. Table 19 shows the standard PCR parameters used for the PCR reactions. 

Lid temperature: 105°C    

 Cycles Temperature Time 

Initial denaturation  95°C 2 min 

Denaturation  95°C 30 sec 

Annealing 34 58-65°C 1 min 

Elongation  72°C 1 min/kb 

Final elongation  72°C 5 min 

 storage at 4°C  

Table 19 Parameters used for PCR reactions in this thesis 
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 Restriction of plasmid DNA and PCR fragments 

For analytical restriction reactions, 0.5 µg of DNA was digested by 5 U of enzyme in a volume of 

20 µl for 2 hours at 37°C. For cloning purposes, the restriction reactions were scaled up to 5 µg 

plasmid DNA and 10 µg insert DNA. After the restrictions, enzymes were heat inactivated at 

enzyme-specific temperatures for 30 min. 

 

 Agarose gel electrophoresis 

DNA PCR products or restriction products were separated according to their length by 

conventional agarose gel electrophoresis. 1% horizontal agarose gels in TAE buffer were used to 

separate DNA fragments mixed with 6x DNA Gel Loading Dye. Gels were run at 100 V for 30-40 

min. DNA bands were visualised by 3 µl GelRed mixed to the gel and on a GenoView and 

GenoSmart gel documentation system using UV light. The length of each DNA fragment was 

estimated by comparison to a GeneRuler 1kb+ DNA Ladder. 

 

 Isolation of DNA fragments from agarose gels 

To isolate DNA fragments of a certain size or to clean-up PCR reactions, DNA fragments were 

separated on an agarose gel. The DNA bands of interest were excised from the gel using an UV 

transilluminator and a scalpel and placed into a reaction tube. The DNA fragments were eluted 

and separated from the gel using the Wizard SV Gel and PCR Clean-Up System (Promega; 

#A9281) following the manufacturer’s protocol. 

 

 Ligation of PCR fragments into plasmid vectors 

For ligation of linearised and dephosphorylated plasmids with PCR fragments, the Rapid DNA 

Ligation Kit (Fermentas #K1422) was used. 100 ng of vector DNA was set into the ligation 
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reaction together with Insert DNA in either 1:3 or 1:6 molar excess over vector. 5 U of T4 DNA 

Ligase were added to the reaction with a total volume of 20 µl. The ligation mixture was 

incubated for 2 hours at 37°C. 

 

 Heat shock transformation of DNA into E. coli cells 

Chemical competent cells were taken out of a -80°C freezer and thawed on ice. 45 µl for each 

sample were aliquoted into pre-chilled 14-ml BD Falcon polypropylene round-bottom tubes. 2-

3 µl of DNA were gently mixed with the cells and the reaction incubated for 30 min on ice. 0.5 

ml LB medium per reaction were pre-heated in a water bath to 42°C. After the 30 min incubation 

time, the reaction mix was heat-pulsed in the water bath at 42°C for 30 seconds and 

subsequently chilled on ice for 2 min. Pre-heated 0.5 ml LB medium was added to each reaction 

and the tubes incubated at 37°C for 1 hour shaking at 225-250 rpm. Afterwards, different 

volumes of cells in solution were plated on LB Ampicillin selective medium plates and grown o/N 

at 37°C. 

 Cultivation of E. coli 

Liquid cultures of E. coli strains were grown in Luria-Bertani (LB) medium at 37°C. For bacteria 

selection, ampicillin was added to the medium to a final concentration of 100 µg/ml. Bacteria 

colonies were grown on LB agar plates containing 2% agar. 

 

 Plasmid preparation (mini scale) 

To isolate plasmid DNA from cells, single colonies from over-night plates were picked and 

transferred into 3 ml of LB selection medium (Ampicillin 1:500 concentration). The culture was 

grown over night at 37°C on a shaker. Plasmid mini preparation from this culture was performed 

using the QIAprep Spin Miniprep Kit (QIAGEN #27106) following the manufacturer’s instructions. 
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 Plasmid preparation (midi scale) 

To perform a plasmid midi-preparation, 3 ml of LB selection medium (Ampicillin 1:500 

concentration) were inoculated with single colonies and grown over night at 37°C on a shaker. 

150 µl of this pre-culture was transferred into 75 ml of LB selection medium and again grown 

over night at 37°C on a shaker. Plasmid midi preparation from this culture was performed using 

the QIAGEN Plasmid Midiprep Kit (QIAGEN #12143) following the manufacturer’s instructions. 

 

 Spectrophotometer-measurement of DNA concentration 

DNA concentrations were measured using a spectrophotometer at the wavelength of λ=260nm 

(light absorbance of nucleic acid). 1 µl of DNA sample was diluted in 99 µl dH20 and 

measurements were taken against a blank (100 µl dH20). Values were given in ng/µl. 

 

  



Results|55 
 

3. Results 

 Part 1: Identification of the requirement of maternal drop out function 

Introduction 

The maternal effect mutation drop out (dop) was first identified for its effects on cellularisation 

of Drosophila embryos, leading to embryonic lethality (Galewsky & Schulz 1992). Previous work 

showed that hypomorphic alleles of dop disturb cortical membrane compartmentalisation by 

affecting the localisation of specific polarity proteins (Hain et al. 2014). Furthermore, dop affects 

normal furrow canal formation and focussed localisation of furrow canal proteins and F-actin at 

internuclear sites. The gene dop has been mapped to the CG6498 locus and encodes the single 

Drosophila homolog of microtubule-associated serine/threonine (MAST) kinase family. Even 

though MAST kinases are implicated in several human diseases, MAST kinase function is poorly 

understood on the cellular and molecular level (Labbé et al. 2008; Loh et al. 2008; Robinson et 

al. 2011). Previous studies suggest that Dop function is implicated in Dynein-dependent 

transport and in phosphorylation control of two Dynein subunits, Dynein light chain and Dynein 

light intermediate chain (Hain et al. 2014; Langlands 2012). However, all the phenotypes 

observed with direct implication on Dynein function (lipid droplet transport, mRNA transport, 

Bazooka localisation, genetic interactions with short wing and Glued) taken together cannot 

explain the comprehensive defects seen during cellularisation in dop mutants. Either Dynein 

regulates more processes than the previously shown ones to affect cellularisation or other 

cellular events are affected by Dop leading to cellularisation phenotypes in dop mutants. 

One cellular process that could lead to the observed cellularisation defects in dop mutants could 

affect the regulation of F-actin dynamics. As outlined in the introduction, F-actin fulfils many 

different tasks during cellularisation and is essential for membrane invagination. It is involved in 

stabilising the cortex and specific cortical structures like the furrow canal (Sokac & Wieschaus 

2008b; Foe & Alberts 1983; Edgar et al. 1987), it is required for endosomal trafficking (Lee & 
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Harris 2014; Lee & Harris 2013; Sokac & Wieschaus 2008a) and it was shown to interact with 

microtubules, possibly anchoring them to the cortex (Foe et al. 2000). 

F-actin localisation was previously examined in fixed embryos obtained from dop1 homozygous 

mutant mothers (Hain et al. 2014). In these mutant embryos, a high amount of F-actin stays at 

the cortex and the lateral membranes throughout cellularisation. Additionally, F-actin does not 

focus into distinct internuclear foci where the furrow canal should form but stays broad at the 

tip of the invaginating membrane, leaving no distinct space for the nuclei. These data clearly 

show that F-actin is not localising properly to the furrow canal compartment during 

cellularisation. However, the cause of this defect is not known, in part, because no information 

about the dynamics and the timing of F-actin mislocalisation has been available. Imaging F-actin 

dynamics in a living embryo during syncytial divisions and cellularisation could provide the 

information about when F-actin starts to mislocalise in dop mutants and how the defect is 

emerging, which then in turn could give a hint on the molecular function of Dop. 

 

 Embryos derived from dop mutant mothers fail to establish actin rich furrow canals in 

cellularisation 

The F-actin network is a central component of cellularisation and its malformation could lead to 

the mislocalisation of other proteins similar to what was shown for dop1 mutants. In order to 

investigate whether F-actin is defective and to visualise F-actin dynamics in dop mutants, an 

Utrophin-GFP construct driven by the spaghetti squash (sqh) promoter was used for live-

imaging. The sqh promoter drives expression maternally as well as zygotically and ubiquitously 

throughout embryogenesis (Karess et al. 1991). Utrophin is an actin binding protein required to 

link the intracellular actin cytoskeleton to the extracellular matrix (Tinsley et al. 1994; Zuellig et 

al. 2011). In this construct, the actin-binding domain (~30 kDa) of the large Utrophin protein 

(395 kDa) has been fused to eGFP (Moores et al. 2000; Rauzi et al. 2010). It has been 

demonstrated that the actin-binding domain binds to F-actin without stabilising it and without 
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interfering with F-actin-dependent processes (Burkel et al. 2007). Live imaging of this construct 

in embryos during cellularisation was used to test whether actin network formation is affected 

in dop mutants (Fig.13). 

 
Figure 13 F-actin fails to localise to furrow canals and lateral membrane in hypomorphic dop 
mutants. Images taken from time lapse videos on embryos with a sqh-Utrophin-GFP construct 
50 min after onset of cellularisation and 75 min after S-phase of cell cycle 13. Cell cycle 13 S-
phase was determined by the last cap structure formation prior to cellularisation. Three 
different z-levels for wild type (A-A’’), homozygous dop1 (B-B’’) and dop1/dop10 (C-C’’) embryos 
are depicted showing the cortex (A, B, C), the lateral membrane (A’, B’, C’) and the level of the 
furrow canal (A’’, B’’, C’’). The depth of the z-plane in respect to the cortex is indicated. (Penetrance 

of phenotype in both dop mutants: 100%; white1118 n = 16, dop1/dop1 n = 6, dop1/dop10 n = 8) Scale bars represent 
10 µm. 

During late stages of cellularisation, the F-actin network is spread over the cortex of wild type 

and dop1 homozygous and dop1/dop10 hemizygous embryos (Fig.13 A, B, C). This F-actin structure 

emerged from broadening actin caps at onset of cellularisation and is present throughout the 
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cellularisation process not only in wild type but also in mutant embryos. During membrane 

invagination, F-actin accumulates in a distinct honeycomb-like pattern at the furrow canal 

(Fig.13 A’’) as well as at the lateral membrane (Fig.13 A’) in wild type embryos. However, in both 

mutants the F-actin network is highly broadened at the furrow canal (Fig.13 B’’, C’’) and also 

along the forming lateral membrane (Fig.13 B’, C’). This demonstrates a strong defect in 

focussing of the F-actin network during furrow canal invagination in dop mutants. Moreover, in 

homozygous dop1 mutants and dop1/dop10 mutants differences in Utrophin-GFP signal depth 

can be seen. 50 minutes after cellularisation onset, the Utrophin-GFP signal in dop1 mutants 

reached a depth of 6 µm similar to wild type (Fig.13 A’’, B’’). However, in dop1/dop10 mutants 

the signal stays right below the cortex at a depth of 2 µm and no lateral membrane formation 

occurs at all (Fig.13 C’, C’’). This indicates a difference in membrane growth between the dop1 

homozygous and the stronger dop1/dop10 transheterozygous mutants. 

 

 Embryos derived from dop mutant mothers exhibit defects in F-actin network formation 

during syncytial divisions 

Homozygous dop1 mutants and hemizygous dop1/dop10 mutants both show severe defects in F-

actin localisation during cellularisation. However, Dop protein is already present during syncytial 

division stages during which F-actin also plays a fundamental role (Hain 2010; Foe et al. 2000). 

Earlier studies suggested that syncytial divisions were overall normal in embryos maternally 

homozygous for dop1 (Galewsky & Schulz 1992). However, nothing is known about F-actin 

network formation during these stages in dop mutant embryos. In order to address whether 

Dop affects F-actin localisation in syncytial divisions as well as during cellularisation, Utrophin-

GFP localisation during the last syncytial divisions in wild type, dop1 homozygous and dop1/dop10 

hemizygous embryos was analysed (Fig.14). 
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Figure 14 Actin network structures during syncytial divisions in wild type and dop mutant 
embryos. Images from sqh-Utrophin-GFP time lapse videos of wild type, homozygous dop1 and 
dop1/dop10 embryos showing the three main structures that form during the 13th syncytial 
division. Actin caps during interphase (A, B, C), pseudocleavage furrows during metaphase (A’, 
B’, C’) and dispersing furrows during ana- and telophase (A’’, B’’, C’’) are visible in wild type (A-
A’’) and embryos of both dop mutants (B-B’’, C-C’’). Note that the space between the furrows 
varies in dop1/dop10 embryos (arrows in C’, C’’). (Penetrance of phenotype in dop1/dop10: 50%; white1118 n 

= 11, dop1/dop1 n = 3, dop1/dop10 n = 8) The depth in respect to the cortex is indicated in μm. Scale bars 
represent 10 µm. 

As revealed by the Utrophin-GFP construct, wild type and both dop mutant embryos form actin 

structures during the last 3 syncytial divisions resembling F-actin structures in published studies 

(Foe et al. 2000; Schejter & Wieschaus 1993b). Throughout the syncytial cell cycles 11 to 13, F-

actin caps are formed (Fig.14 A, B, C), disperse and refocus into furrows (Fig.14 A’, B’, C’). In the 

following, these furrows reshape and form new furrows between daughter nuclei (Fig.14 A’’, B’’, 

C’’). Finally, the furrows disperse and give rise to smaller F-actin caps above each nucleus again. 

All these structures are formed in wild type and dop mutant embryos. However, in contrast to 
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wild type and homozygous dop1 mutants, dop1/dop10 mutants display a partially irregular shape 

of the F-actin furrow network. In dop1/dop10 mutant embryos, spaces between the furrows are 

variable in extent and locally seem to form an actin patch with nearly no space in between 

(arrows Fig.14 C’, C’’). Thus, dop mutants seem to display an F-actin defect already during 

syncytial divisions which is only visible in strong heteroallelic combination of dop1/dop10 mutants 

(with a penetrance of 50%).  

 

 The F-actin network shows mild defects in dop1/dop10 mutants at onset of cellularisation  

The previous results indicate that the actin network in dop mutants is not properly focussed into 

furrow canals during furrow invagination. During syncytial divisions, dop seems to exhibit an 

additional doses effect since dop1/dop10 mutants display a defect in F-actin localisation which is 

not present in weaker homozygous dop1 mutants. However, compared to the severe defect in 

actin localisation during cellularisation, the defect visible in dop1/dop10 mutants during syncytial 

divisions is mild and the penetrance was not 100% as during cellularisation. Therefore, it is 

interesting to see how the F-actin network is formed in dop mutants during the transition of the 

last syncytial division to cellularisation which seems to represent a transition of low to high 

dependency on Dop function. Onset of cellularisation was defined as timepoint 25 min after F-

actin cap formation during the last syncytial division. 
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Figure 15 Actin network formation at cellularisation onset in wild type and dop mutant 
embryos. Images from sqh-Utrophin-GFP time lapse videos of wild type, homozygous dop1 and 
dop1/dop10 embryos showing F-actin cap structures that form at onset of cellularisation. Images 
show different z-levels starting from the embryo cortex (0 µm; A, B, C) and going down to 2 µm 
(A’, B’, C’) and 4 µm (A’’, B’’, C’’) below the cortex. Note that dop1/dop10 mutants display actin 
caps that are unequally spaced and smaller in size (arrows in C, C’). (Penetrance of phenotype in 

dop1/dop10: 50%; white1118 n = 14, dop1/dop1 n = 3, dop1/dop10 n = 8) Scale bars represent 10 µm. 

At onset of cellularisation, not only wild type embryos but also both the dop1 and the dop1/dop10 

mutants form actin caps at the surface of the embryo (Fig.15 A, B, C). A mild abnormality in actin 

cap formation is visible in embryos derived from dop1/dop10 mutant mothers (Fig.15 C, C’): the 

cap structures have distinct sizes and are not separated locally from each other as it is visible in 

wild type and dop1 homozygous mutants (Fig.15 C in comparison with A and B). The caps reach 

a similar depth of about 4 µm in both wild type and dop mutant embryos (Fig.15 A’’, B’’, C’’). 

Caps are still separated at their base and furrows are not yet formed. The caps later on spread 
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out laterally to form the more uniformly distributed cap structure visible in Fig.13 and which is 

similarly formed in wild type and both dop mutants. In summary, a defect of F-actin distribution 

similar to the syncytial division defect is visible in stronger dop1/dop10 mutants during onset of 

cellularisation which does not account for the stronger defect visible at the furrow canal during 

later cellularisation stages. 

 

 The F-actin network defect during cellularisation of embryos derived from dop mutant 

mothers develops over 30 min from onset of cellularisation 

The previous results show that the severe defect of F-actin network formation visible in dop 

mutant embryos after 50 min of cellularisation is not yet visible right at onset of cellularisation. 

To further define the timing of the F-actin defect and get more detail about its development 

over time, Utrophin-GFP localisation in wild type, dop1 homozygous and dop1/dop10 hemizygous 

embryos was determined over a time course of 50 min from onset to late cellularisation (Fig.16). 

 

Figure 16 F-actin broadens instead of focusses its localisation during cellularisation in dop 
mutants. Images from sqh-Utrophin-GFP time lapse videos of wild type, homozygous dop1 and 
dop1/dop10 embryos. Depicted are images of six different time-points showing progress of 
furrow formation during cellularisation (0 to 50 min from onset of cellularisation) and of two 
different z-levels: A, C and E show the bases of actin caps at onset of cellularisation (-4 µm below 
the cortex: A, C; -2 µm below the cortex: E) and B, D and F show the invaginating actin-rich 
furrow (-6 µm below the cortex: B, D; -4 µm below the cortex: F). Scale bars represent 10 µm. 
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Visualising Utrophin-GFP localisation during cellularisation over time (Fig.16) shows that F-actin 

starts to focus into an internuclear structure at the bases of the F-actin caps during the first 10 

min of cellularisation in wild type embryos (-4 µm; Fig.16 A). This focussing is intensified during 

the following 20 min. About 30 min after onset of cellularisation, a fully-formed honeycomb-like 

F-actin network invaginated -6 µm below the cortex (Fig.16 B). In dop mutant embryos, F-actin 

becomes more dispersed instead of focussed into internuclear spaces in the first 30 min of 

cellularisation (Fig.16 C, E). A broadened F-actin structure invaginates in homozygous dop1 

mutants about 10 min later compared to wild type, whereas F-actin stays within the apical 2 µm 

in dop1/dop10 embryos. These data implicate Dop function in the process that leads to the 

invagination of the F-actin network. Timing and location of F-actin focussing at the bases of the 

F-actin caps coincides with the formation of the furrow canal after about 5 to 8 min after onset 

of cellularisation at a depth of 5 µm (Sokac & Wieschaus 2008b). During that period, the first 

severe F-actin localisation defect becomes visible. 

Analysis of Utrophin-GFP localisation during early Drosophila embryogenesis revealed two 

different F-actin phenotypes in dop mutants: one displays an F-actin localisation defect during 

syncytial divisions in only 50% of strong hypomorphic dop mutant embryos. This defect affects 

only patches of the embryo cortex, where specific actin structures like the metaphase furrows 

either fail to leave space for microtubules and DNA or the spaces are enlarged. The other defect 

displays an F-actin defect in all embryos of both dop1 homozygous and dop1/dop10 hemizygous 

mutants. This defect is highly uniform compared to the defect during syncytial divisions. The F-

actin network at the furrow canal level is highly broadened and this phenotype is visible at the 

whole embryo cortex. It is not known whether both defects are caused by the same Dop-

dependent mechanism or by different Dop-dependent mechanisms. Both possibilities will be 

discussed later. 
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 Clonal analysis reveals a specific function for dop in cellularisation 

During Drosophila oogenesis, the developing oocyte is surrounded by somatic follicle cells. These 

cells have a high impact on shaping and patterning of the oocyte and the embryo (Horne-

Badovinac & Bilder 2005). If the mother is mutant for a gene which affects the follicle cells, this 

mutation can influence embryonic development. It is therefore possible that a putative defect 

in the follicle cells contributes to the defects during syncytial divisions and cellularisation in 

embryos derived from dop homozygous or hemizygous females. 

Thus, maternal dop mutant embryos were analysed which derive from ovaries with normal 

follicle cells. Since dop is a maternal gene, germ line clone-derived embryos in females 

heterozygous for the dop10 mutation were generated (see Methods section for further details). 

This enables us to separate somatic follicle cell effects from mutant germ line effects. Moreover, 

this method allows to generate embryos homozygous mutant for maternal contributions even 

if the mutation is homozygous lethal in the mother (Blair 2003). This aspect is important because 

females zygotically mutant for the so far strongest and only protein null allele dop10 showed very 

low viability and, in case of eclosion, low fertility (Hain 2010). The heterozygosity of the mother 

for the dop10 allele secures her viability and fertility. 

 

 Germ line clones for dop10 show no defects during syncytial divisions  

All the studies addressing the requirement of Dop function during cellularisation have studied 

effects of hypomorphic alleles or null alleles hemizygous over a chromosomal deficiency 

(dop10/Df(3L)MR15). The hypomorphic alleles pose a problem because of residual function of 

Dop and maybe masking some of the functions Dop has during early embryogenesis. The use of 

the deletion creates the problem that Df(3L) MR15 deletes or partially deletes three genes which 

could contribute to the phenotypes observed. Additionally, phenotypes in those embryos could 

be due to dop mutations in the maternal somatic follicle cells. To address specifically dop mutant 
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null phenotypes due to Dop loss-of-function in the germ line, germ line clone-derived embryos 

homozygous for the dop null allele dop10 were generated. Following up on the previous results, 

indicating that Dop may have dose-dependent functions during syncytial divisions and 

cellularisation, F-actin localisation was first examined in fixed germ line clone dop10 embryos 

during these stages (Fig.17). 

 
Figure 17 F-actin structures in wild type and germ line clone dop10 mutant embryos during 
syncytial divisions and cellularisation. Formaldehyde-fixed wild type and germ line clone dop10 
mutant embryos stained with phalloidin (F-actin; red) and DAPI (DNA; white) and in 
cellularisation with antibodies against Centrosomin (centrosomes; green). Shown are sagittal-
sections (A-H) and cross-sections (A’-H’) of each embryo. wild type as well as dop10 germ line 
clone (glc) embryos show F-actin cap structures (A, A’, E, E’), pseudocleavage furrows (B, B’, F, 
F’) and dispersing furrows (C, C’, G, G’) during syncytial divisions. Note that during cellularisation, 
F-actin focusses into a distinct honeycomb-like structure in wild type embryos but is broadened 
in dop mutant embryos (D, D’, H, H’). Scale bars represent 10 µm. 

Both wild type and mutant embryos display the F-actin structures characteristic for syncytial 

divisions in early Drosophila development. The structures correspond to the Utrophin-GFP 

structures in time lapse movies of wild type embryos (Fig.17 A-C, E-G in comparison with Fig.14 

A-A’’). Syncytial divisions seem to proceed properly in germ line clone mutants since all 



Results|66 
 
metaphase furrows surround only one nucleus (Fig.17 F, F’). However, during cellularisation F-

actin fails to focus into a honeycomb-like structure in germ line clone-derived embryos and F-

actin remains at a centrosomal level (Fig.17 H, H’). This mislocalisation phenotype during 

cellularisation is very similar to Utrophin-GFP localisation in hypomorphic dop mutants and 

contains both, F-actin broadened localisation during cellularisation and the absence of 

invagination. In contrast, no F-actin defect is visible during syncytial divisions in germ line clone 

derived dop10 embryos. The absence of a syncytial F-actin defect in germ line clone derived dop10 

embryos excludes that the defect seen in hypomorphic dop1/dop10 hemizygous embryos during 

syncytial divisions is a pure dose-dependent defect because Dop function is even more impaired 

in germ line clone derived dop10 embryos. Thus, the syncytial division defect would have been 

expected to be even stronger in germ line clone derived dop10 embryos. A possible involvement 

of follicle cell function defects in creating the dop1/dop10 hemizygous mutant phenotype during 

syncytial divisions will be investigated in section 3.1.5.3. 

 

 The slow and fast phases of cellularisation require Dop function 

Several studies demonstrated that homozygous dop1 embryos show a strong delay in membrane 

growth during the slow phase but normal membrane growth during fast phase of cellularisation 

(Hain et al. 2014; Hain al et. 2010; Meyer et al. 2006). In contrast, hemizygous dop10 mutants in 

trans to a chromosomal deficiency for the dop locus display only weak membrane growth during 

both phases (Hain 2010). A complete dop loss-of-function is expected to resemble the 

dop10/deficiency membrane growth phenotype if mutated follicle cells have no impact on 

membrane growth during cellularisation. Phalloidin stainings on fixed germ line clone dop10 

embryos suggested already that not only F-actin localisation but also membrane invagination is 

impaired in these complete loss-of-function mutants. To see to what extent membrane 

invagination is affected and to compare this with the data for hypomorphic dop mutants, 
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kymographs of bright field movies on wild type and germ line clone dop10 embryos were created 

to image membrane growth over time (Fig.18). 

 

Figure 18 Germ line clone-derived embryos maternally homozygous for dop10 show significant 
decrease in membrane growth during slow phase and fast phase of cellularisation. Membrane 
growth was measured using kymographs generated from bright field movies using ImageJ. An 
area of interest of 1 by 400 pixels at the same position in every movie frame was selected. 
Assembly of the selected regions created an image showing the progression of the membrane 
in time. The kymographs (A, B) were analysed by marking the membrane furrow (green) and the 
basal ends of the nuclei (blue) (A’, B’). In addition, the progression of membrane growth in 
degrees was determined (ImageJ) for slow phase (yellow) and fast phase (red) by measuring the 
angle between the invaginating membrane front and the outer membrane of the embryo (A’’, 
B’’). The time progression is indicated by t (A, B). Comparison of membrane invagination slopes 
between wild type and germ line clone dop10 embryos shows a significant reduction in 
membrane growth during slow (C) and fast phase (D) of cellularisation in the mutant. (Two tailed 

t-test, *p<0.05, **p<0.01; +/- SEM; slow phase: white1118 n = 2, glc dop10 n = 3; fast phase: white1118 n = 4, glc dop10 n 
= 3) 

Wild type embryos display membrane growth that can be clearly divided into slow phase 

(membrane invagination slope of 9.60°) and fast phase (invagination slope of 54.50°) (Fig.18 A-

A’’). In contrast, in germ line clone dop10 embryos membrane invagination is strongly impaired 

(Fig.18 B-B’’). There is very little membrane invagination visible during the first 40 min of 
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cellularisation (slow phase; Fig.18 B’’, C) and a minor increase in membrane growth compared 

to wild type during fast phase (Fig.18 B’’, D). Even though the elongation of the nuclei is not 

affected in germ line clone dop10 mutants (Fig.18 B’), the basal ends of the nuclei leave their 

normal strung orientation and start to fluctuate from onset of fast phase on.  

These kymographs show that maternal homozygous dop10 mutants have a much more severe 

membrane invagination defect than the ones seen in dop1 homozygous embryos (slow phase: 

7.46°; fast phase: 43.15°) (Hain et al. 2014). In the complete loss-of-function mutant embryos, 

neither membrane invagination during slow phase nor during fast phase is similar to wild type. 

Additionally, germ line clone homozygous dop10 mutants resemble membrane invagination rates 

similar to what has been shown for dop10/deficiency embryos (Hain 2010). This result was 

expected if Dop function during cellularisation is based on Dop function in the germ line and not 

in maternal somatic cells (like follicle cells). Therefore, these data indicate that Dop function is 

required in the germ line to ensure membrane invagination during slow phase as well as fast 

phase of cellularisation. 

 

 Dop loss-of-function has no effect on follicle cell morphogenesis 

Live-imaging of Utrophin-GFP expressing dop1/dop10 hemizygous mutant embryos and stainings 

on germ line clone dop10 mutant embryos showed a discrepancy in syncytial division 

phenotypes. Whereas embryos derived from dop1/dop10 hemizygous mothers exhibited defects, 

embryos derived from dop10 germ line clones showed normal F-actin localisation in syncytial 

divisions and exhibited defects exclusively during cellularisation. These data suggest that there 

might be an additional requirement for Dop in somatic follicle cells which are mutant in embryos 

derived from dop1/dop10 hemizygous mothers but not in embryos derived from dop10 germ line 

clones. Follicle cells are somatic maternal tissue and emerge from dividing somatic stem cells to 

surround the 16 germ cell cysts that give rise to the oocyte (Horne-Badovinac & Bilder 2005). 

Molecular signalling between follicle cells and the oocyte is essential to establish the future 
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embryonic body axes. Additionally, both the egg yolk as well as the eggshell are produced by the 

follicle cell epithelium and secreted from the apical site facing the oocyte during late stages of 

oogenesis. Thereby, follicle cells have a huge impact on embryonic development. Moreover, the 

monolayered follicle cell epithelium is a well-established system to study epithelial 

morphogenesis and polarity (Müller 2000; Horne-Badovinac & Bilder 2005). To investigate the 

possibility that follicle cells mutant for dop are causing syncytial defects in embryos derived from 

dop1/dop10 hemizygous females, mosaic follicle epithelia homozygous for dop10 were generated 

in dop10 heterozygous females (see Methods section for details). The overall structure of these 

follicle cells was examined by phalloidin and anti-tubulin stainings (Fig.19). 

 

Figure 19 The morphology of follicle cells homozygous for dop10 is unaffected. Top view (A-A’’) 
and cross section (B-B’’) of follicle clones homozygous for dop10. Egg chambers were fixed and 
stained with DAPI (DNA; blue), phalloidin (F-actin; white) and antibodies against GFP (green) and 
β-tubulin (red). Homozygous dop10 follicle cells (cells without GFP expression, dashed lines) show 
cell morphologies comparable to wild type (cells with GFP expression). Microtubule (A’, B’) and 
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F-actin (A’’, B’’) network formation are indistinguishable from wild type cells. Egg chamber A-A’’: 
stage 9; egg chamber B-B’’: stage 7. Scale bars represent 10 µm. 

Follicle cells in wild type egg chambers accumulate actin at their apical site (facing the oocyte 

and the nurse cells) and the microtubules form arrays along the apicobasal axis orienting their 

minus-ends apically and their plus-ends basally (Baum et al. 2000; Clark et al. 1997; Doerflinger 

et al. 2003). Somatic follicle cells homozygous for dop10 did not show a morphological difference 

compared to surrounding follicle cells heterozygous for dop10. Follicle cells lacking Dop function 

are indistinguishable from wild type cells in size and shape, as well as F-actin and β-tubulin 

distribution (Fig.19). Also the specific polarity of both microtubule network and F-actin network 

in follicle epithelia is maintained in dop10 homozygous cells (Fig.19 B’, B’’). This result indicates 

that while function in the germ line is essential, dop appears not to be required for overall follicle 

cell morphology and polarity. Thus, dop mutations might affect follicle cells in more subtle ways 

or dop is dispensable for normal follicle cell function. Moreover, this result shows that a function 

for Dop in follicle cells is unlikely to account for F-actin defects seen in dop1/dop10 hemizygous 

mutant embryos during syncytial divisions. The cause for this phenotype is still unknown and 

will be discussed later. 

 

 Conclusion of Results Part 1 

In this chapter, the requirement of Dop for early embryogenesis has been explored to determine 

the time and the specific location of its requirement. The results show that Dop is crucial for F-

actin localisation during cellularisation. In dop mutants, F-actin formed a broadened structure 

where the furrow canals should form and did not focus into a distinct honeycomb-like structure. 

This defect develops during the first 30 min of cellularisation and concomitantly with furrow 

canal assembly. Another process during cellularisation requiring Dop function is membrane 

invagination. This process showed a clear dose-dependency of Dop function: the partial loss of 

function allele dop1 affected membrane invagination only during slow phase, whereas complete 

loss-of function mutants created by the germ line mosaic technique severely affected both slow 
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and fast phase. This result demonstrates that Dop function for cellularisation is required in the 

germ cells. Moreover, it shows that it is important to study dop null mutants to reveal Dop 

requirement in all Dop-dependent processes (e.g. membrane invagination). Another F-actin 

defect was visible only in strong hypomorphic dop1/dop10 mutant embryos during syncytial 

divisions but not in the germ line clone-derived dop null mutants. This defect could not be 

explained by a loss-of-function of Dop in follicle cells, which do not seem to depend on Dop 

function, and its cause remains to be investigated. 
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 Part 2: Exploring the mechanism of Dop function during cellularisation 

Introduction 

Drop out has been studied intensively in our lab and a lot of phenotypes caused by dop 

mutations have been discovered (Meyer et al. 2006; Hain et al. 2010; Hain et al. 2014; Hain 2010; 

Langlands 2012). Many of these phenotypes affect processes based on Dynein transport 

function, such as Dynein-dependent transport of Bazooka, lipid droplets and mRNA (Hain et al. 

2014; Meyer et al. 2006; Harris & Peifer 2005; Gross et al. 2000; Bullock et al. 2006; Wilkie & 

Davis 2001). Additionally, genetic interaction studies with dop1 and short wing1 (allele of the 

dynein intermediate chain gene) as well as dop1 and Glued1 (allele of the Dynactin subunit 

required for Dynein and Dynactin interaction) double mutants show enhanced phenotypes in 

adult wing and eye as well as membrane growth during embryo cellularisation compared to the 

respective single mutants (Hain et al. 2014). In addition to these genetic studies, also two 

biochemical studies support a function of Dop in the control of Dynein. Dynein intermediate 

chain protein displays a reduced phosphorylation in dop1 mutant embryo extracts compared to 

wild type despite equal overall levels of protein (Hain et al. 2014). Moreover, a SILAC screen 

identified Dynein light intermediate chain protein as a possible phosphorylation target of Dop 

(Langlands 2012). Dop-dependent phosphorylation of Dynein could have major impact on 

Dynein function as it has been shown for Dynein subunit phosphorylations in several other 

studies (Vaughan et al. 2001; Runnegar et al. 1999; Whyte et al. 2008; Yang et al. 2005; Mische 

et al. 2008). 

Dynein is involved in many different cellular processes and its function is essential for cellular 

and organismic viability (Gepner et al. 1996; Karki & Holzbaur 1999). Thus, a malfunction of 

Dynein in dop mutants could account for many, if not all, defects seen in these mutants. Also 

defects seen in the F-actin network localisation presented in Results Part 1 could be due to 

malfunctioning of Dynein-dependent transport since Dynein is required for transport of actin 

regulators and possibly F-actin itself (Cao et al. 2008; Acharya et al. 2014; Rothwell et al. 1999; 
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Albertson et al. 2008). Additionally, Dynein regulates transport and localisation of proteins 

required for polarity establishment, such as Bazooka and Slam (Slow-as-molasses) (Harris & 

Peifer 2005; Acharya et al. 2014). Another Dynein-dependent transport process important for 

cellularisation is membrane addition from intra-cellular and recycled sources via transport of 

Golgi-derived and endosomal vesicles (Lecuit & Wieschaus 2000; Papoulas et al. 2005; Riggs et 

al. 2007; Sisson et al. 2000; Pelissier et al. 2003; Figard et al. 2016). Testing whether the transport 

of any of these Dynein cargoes is affected in dop mutants could provide a direct link between 

Dop function, Dynein and cellularisation. 

 

 Overall microtubule organisation and polarity is not affected in dop mutants during 

cellularisation 

An experiment on mRNA particle transport showed that Dop is required for minus-end directed 

microtubule transport (Hain et al. 2014). The net apical, i.e. minus-end directed movement of 

mRNA particles was significantly reduced in dop mutant embryos. One reason for this phenotype 

could be that dynamics or overall length of microtubules is altered. To investigate this, a 

transgenic EB1-GFP construct expressed under control of a maternal α-tubulin Gal4 driver was 

imaged in dop mutant embryos and compared to wild type. EB1 is a microtubule plus end-

binding protein and as such marks the growing plus-ends of microtubules, thereby indicating 

direction and speed of microtubule growth (Tirnauer et al. 1999; Berrueta et al. 1998). In wild 

type embryos, EB1 comets are expected to emerge from the centrosomes between the nuclei 

and the embryo cortex. As the microtubules elongate and form a basket-like structure 

surrounding the nuclei, EB1 is expected to move in direction of the embryo interior. Additionally, 

EB1 comets should be visible moving from the centrosomes to the cortex as astral microtubules 

emerge. 
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Figure 20 Microtubule distribution is not altered during cellularisation in dop mutants. Images 
taken from time-lapse recordings of EB1-GFP expressing embryos under control of the maternal 
α-tubulin Gal4 driver during cellularisation. Images show EB1-GFP localisation at the cortex (A, 
B) and on the centrosome level (A’, B’) of the embryo in wild type and dop1/dop10 mutants, 
respectively. Note that microtubule distribution and polarity is similar in the mutant (B, B’) 
compared to wild type (A, A’) embryos. Scale bars represent 10 μm. 

Imaging of the EB1-GFP construct revealed a similar microtubule distribution in wild type and 

dop mutant embryos (Fig.20). Comets of EB1-GFP emerge from the centrosomes and move into 

the interior of the embryo to a similar extent in wild type and dop1/dop10 transheterozygous 

embryos (Fig.20 A’, B’ and movies provided). Also astral microtubules (indicated by EB1-GFP 

comets emerging from centrosomes and moving to the embryo surface) are formed to a similar 

extent in wild type and dop1/dop10 mutant embryos (Fig.20 A, B). This result indicates that the 

dynamics of microtubule formation are similar in wild type and dop mutants. Thus, Dop function 

seems not to have a major impact on general microtubule dynamics as judged by EB1-GFP 
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binding. This result supports previous data on fixed embryos stained for β-tubulin which show 

that microtubule organisation per se is not affected in dop mutants (Hain et al. 2014). 

 

 Embryos from dop mutant mothers show defects in Golgi and endosomal vesicle 

localisation during cellularisation 

 Apical Golgi particle localisation is impaired in dop mutants 

During cellularisation, Golgi-derived vesicles move along microtubules in a Dynein-dependent 

manner to the apical cortex of the newly forming cells where they accumulate during late 

cellularisation stages (Papoulas et al. 2005; Sisson et al. 2000; Ripoche et al. 1994). This 

movement is required for furrow ingression during cellularisation (Sisson et al. 2000; Papoulas 

et al. 2005). Therefore, Dynein-dependent Golgi transport could provide a link between 

membrane invagination defects seen in dop mutants and Dynein dependency on Dop function. 

In order to localise Golgi-derived vesicles in dop mutant embryos, fixed embryos were stained 

using an antibody against the Golgi-resident protein 120 (gp120), a 120 kDa protein localising to 

the Golgi membrane (Stanley et al. 1997) (Fig.21). The staining and quantification were 

performed by Dr. Arno Müller. 
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Figure 21 Apical Golgi particle localisation is impaired in dop mutants. Anti-gp120 Golgi 
antibody staining of fixed white1118 and dop1/dop1 embryos during early cellularisation (A, B). 
Detail views of the cortical embryo area (A’, A’’, B’, B’’). Quantification of apical Golgi particles 
reveals a significant reduction in apical Golgi particles in dop mutant embryos (C). (t-test, **p<0.01; 

+/- SEM; white1118 n=7; dop1/dop1 n=9). Images and quantification by Dr. Arno Müller. 

Stainings against gp120 revealed that Golgi-derived vesicles are abundant in both wild type and 

dop mutant embryos during cellularisation (Fig.21 A-A’’, B-B’’). Quantification of Golgi particles 

localising apically of the nuclei revealed that the number is significantly reduced in dop mutants 

compared to wild type (Fig.21 C). These data indicate that not Golgi number but Golgi transport 

via Dynein is impaired in dop mutants. 

 

 Rab11 endosomal vesicles display a more compact localisation at the centrosomes in dop 

mutants compared to wild type 

In addition to Golgi transport, also recycling endosomal trafficking and exocytosis are required 

for cellularisation to enable furrow ingression specifically during slow phase (Figard et al. 2016; 

Riggs et al. 2003; Rothwell et al. 1998; Pelissier et al. 2003). Impairment of Rab11 (a small GTPase 

required for recycling endosome targeting) function exhibits similar defects compared to dop 

mutants (Pelissier et al. 2003). These defects include membrane invagination impairment, a 
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nuclear drop out phenotype, as well as Slam and F-actin broadening at the furrow canal (Pelissier 

et al. 2003; Riggs et al. 2003; Riggs et al. 2007). In accordance with a specific requirement during 

slow phase, Rab11 shows a specific pericentrosomal localisation only during this stage of 

cellularisation (Pelissier et al. 2003). After slow phase, Rab11 disperses into small vesicular 

structures. To see if recycling endosome localisation is affected in dop mutants, wild type 

(heterozygous for the dop1 mutation) and dop1/dop10 transheterozygous mutant embryos 

expressing Rab11-GFP were analysed during slow phase of cellularisation (Fig.22). 

 
Figure 22 Rab11 endosomal vesicles display a more compact localisation at the centrosomes 
in dop mutants compared to wild type. Images taken from time-lapse recordings of Rab11-GFP 
expressing embryos under control of the maternal α-tubulin Gal4 driver during cellularisation. 
Images show Rab11-GFP localisation at the embryo cortex (A’’, B’’, C’’, D’’) and in cross-sections 
(A’, B’, C’, D’) in wild type (A, B) and dop1/dop10 mutants (C, D), respectively. Differential 
interference contrast (DIC) images show the nuclei elongation status as reference for 
cellularisation timing (A, B, C, D). Rab11-GFP signal localisation is more compact in mutants (C’’, 
D’’) compared to wild type embryos (A’’, B’’). Scale bars represent 10 μm. 

During slow phase of cellularisation (Fig.22 and movies provided), Rab11 endosomal vesicles 

show dynamic localisation to, and in the vicinity of, the centrosomes apical to each nucleus both 

in wild type embryos and embryos derived from dop1/dop10 transheterozygous mothers. This 

localisation is consistent with what has been reported for Rab11 localisation during early 

cellularisation in other studies (Pelissier et al. 2003). However, compared to wild type in dop 

mutants Rab11-GFP was more concentrated to the centrosomal area (Fig.22 A’’, B’’, C’’, D’’). 

Together with the previous finding showing that apical Golgi localisation is impaired in dop 
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mutants, these data indicate that Dop is required for proper distribution of the endomembrane 

system which could provide a link to membrane growth defects seen in dop mutants. It also 

indicates that Dop regulates organelle transport in the Drosophila embryo. However, the 

available data point to an involvement in different transport processes: Apical localisation of 

Golgi particles is clearly a Dynein-dependent, microtubule minus-end-directed transport process 

which seems to be affected by Dop function impairment. In contrast, the tight localisation of 

Rab11 endosomes in dop mutants points to an involvement of Dop function in Kinesin-

dependent, microtubule plus-end-directed transport. Both these possibilities will be discussed 

later. 

 

 Golgi as well as endosomal vesicle localisation show impairment in complete loss-of-

function dop mutants 

 Apical Golgi particle localisation requires Dop function 

Apical Golgi particle localisation in dop1/dop10 hypomorphic mutants was significantly reduced 

in cross-sections of mutant embryos compared to wild type (Hain et al. 2014). In order to see if 

there is a difference in complete loss-of-function dop mutants compared to the hypomorphic 

condition, transversal sections of wild type and complete loss-of-function dop mutant embryos 

stained against Lava lamp (Lva), a Golgi-associated protein involved in Dynein-dependent 

movement of Golgi particles, were imaged and projections of the first apical 5 µm in embryos at 

onset of cellularisation were analysed (Fig.23) (Papoulas et al. 2005; Sisson et al. 2000). 



Results|79 
 

 
Figure 23 Lava lamp-positive Golgi particles display a reduced number in the apical 5 µm in 
complete loss-of-function dop mutants. Images show a projection of the first apical 5 µm from 
the cortex (A, A’, B, B’) and cross-sections (A’’, B’’) of the same wild type (A, A’, A’’) and germ 
line clone dop10 mutant embryos (B, B', B’’). Embryos were fixed and stained for the Golgi protein 
Lava lamp (Lva, green) as well as DAPI (only shown in A’’, B’’). ImageJ was used to determine 
signal maxima for calculating the number of apical Golgi particles in both lines per μm2 (A’, B’). 
Quantification of Golgi particles reveals a significant reduction of apical Golgi particles in dop 
mutant embryos compared to wild type (C). (Two tailed t-test, **p<0.01; +/- SEM; white1118 n = 4, glc dop10 

n = 3). Scale bars represent 10 μm. 

Analysis of Lava lamp punctae in wild type and germ line clone dop10 mutant embryos in the first 

apical 5 µm of embryo transversal views showed a significant reduction of Lva-positive particles 

in the mutant (Fig. 23). This result shows that apical Golgi localisation is affected in both 

hypomorphic dop1/dop10 mutants as well as complete loss-of-function germ line clone dop10 

mutants, and is likely caused by a defect in its transport by Dynein to the apical domain (Papoulas 

et al. 2005). 
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 Dop affects endosomal transport during cellularisation 

Rab11-positive endosomal vesicles are mislocalised in dop1/dop10 transheterozygous embryos 

and focus more around the centrosomes than in wild type (Hain et al. 2014). To look for 

endosomal distribution in germ line clone dop10 mutants, two different markers of the 

endosomal pathway were analysed. Nuclear fallout (Nuf) is a Rab11 effector, co-localises with 

Rab11 at the recycling endosome during cellularisation and is required for membrane addition 

and actin organisation at the elongating furrow during this stage (Cao et al. 2008; Riggs et al. 

2003; Riggs et al. 2007). Both, Rab11 and Nuf function in an exocytic step of endosomal 

trafficking, delivering membrane and membrane-associated proteins from the recycling 

endosome to the plasma membrane (Ullrich et al. 1996; Lecuit & Wieschaus 2000; Riggs et al. 

2003; Rothwell et al. 1999). In contrast, Eps15 (Epidermal growth factor receptor Pathway 

Substrate clone 15) is a member of the Clathrin coated vesicle transport and functions in 

endocytosis, endosomal protein sorting and cytoskeletal organization (Koh et al. 2007; Roxrud 

et al. 2008). Its function in Drosophila is well studied in the nervous system during larval stages 

where Eps15 has an essential role in synaptic vesicle recycling (Koh et al. 2007; Majumdar et al. 

2006). Localisation of Eps15 and Nuf in respect to each other and in respect to β-tubulin was 

analysed by immunostaining of fixed wild type and germ line clone dop10 mutant embryos 

(Fig.24). 
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During cellularisation, Nuclear fallout (Nuf) is mostly localised at the centrosomes apical to the 

nuclei in both wild type and complete loss-of-function dop mutants (Fig.24 green channel). This 

localisation differs from Eps15 localisation which in contrast localises to the furrow canal and 

the lateral membrane (Fig.24 red channel). The localisation at the furrow canal supports the role 

of Eps15 in Clathrin coated vesicle transport since Clathrin components localise to the furrow 

canal which is the major site of endocytosis during early cellularisation (Albertson et al. 2005; 

Sokac & Wieschaus 2008a). Microtubule bundles do not co-localise with either the centrosomes 

or the furrow canal but are localised tightly around the nuclei and, thereby, in proximity to the 

emerging lateral membranes (Fig.24 white channel). Basally of the nuclei, Nuf and Eps15-

positive punctae can be seen which are possibly co-localised with microtubules. However, the 

resolution is not high enough to substantiate this possibility. The stainings show that Nuf and 

Eps15 are localising to different components of the endosomal pathway which is consistent with 

their different functions during endosomal trafficking. β-tubulin localisation is not disturbed in 

complete loss-of-function dop mutants, however, during late cellularisation the microtubule 

baskets surrounding the nuclei stay with the nuclei when they get pushed away from the cortex 

whereas the centrosomes stay at the cortex (Fig.24 D‘) which is consistent with previous 

stainings done on dop1 hypomorphic mutants (Hain 2010). In complete loss-of-function dop 

mutants, Nuf seems to localise in a more compact way around the centrosomes during late 

cellularisation compared to wild type (Fig.24 B, B‘, D, D‘). This phenotype is reminiscent of the 

phenotype seen for Rab11-GFP localisation in dop1/dop10 mutant embryos (Hain et al. 2014). 

This similarity is expected because Nuf and Rab11 have been shown to co-localise at recycling 

endosomes in a mutually dependent way (Riggs et al. 2003). This result shows that the Nuf- and 

Rab11-dependent transport of vesicles from the recycling endosome to the plasma membrane 

is also impaired in complete loss-of-function dop mutant embryos. In addition, also Eps15 shows 

an altered localisation in germ line clone dop10 mutant embryos (Fig.24 C, C’, D, D’). Whereas 

Eps15 localises mainly to internuclear foci and the furrow canal during cellularisation in wild type 

embryos (Fig.24 A, A’, B, B’), in dop mutants, Eps15 localisation is broadened and resembles the 
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localisation of F-actin in hypomorphic and complete loss-of-function mutants as shown earlier 

in this thesis. This mislocalisation of an endocytic factor at the furrow canal could have 

implications for other furrow canal proteins. This possibility will be investigated in the following 

experiments. 

 

 Exploring a possible mechanism of Dop function during cellularisation 

 Furrow canal initiator protein Slam is mislocalised in dop mutants 

Analysis of proteins specifically localising to the furrow canal during cellularisation point to 

broadening of this structure in dop mutants (Hain et al. 2014; Hain 2010 and this thesis). Furrow 

canal specification is dependent on the redundant function of the two early zygotic genes slam 

(slow-as-molasses) and nullo (Acharya et al. 2014). Additionally, slam is required for furrow 

invagination in a non-redundant manner, a process that is also impaired in dop mutants as 

shown above. Slam has been shown to mislocalise in dop1 homozygous embryos (Hain et al. 

2014). Thus, Slam could provide a link between Dop function during cellularisation and two 

major phenotypes in dop mutants (i.e. furrow canal formation and membrane invagination 

defects). To see if Slam also mislocalises in the complete loss-of-function mutant for dop10, 

immunostainings against this protein have been performed (Fig.25). 
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Figure 25 Slam mislocalises already during the last syncytial division in complete dop10 loss-of-
function mutants. Formaldehyde-fixed wild type and germ line clone dop10 mutant embryos 
stained for Slam (green), Neurotactin (red, membrane marker) and DNA (blue). Shown are cross-
sections (A-H) and sagittal-sections (A’-H’) of each embryo. During telophase of cell cycle 13, 
Slam starts to focus into later furrows in wild type embryos (B), whereas in germ line clone dop10 
mutants, Slam remains broadened and punctate throughout cellularisation (F, G, H). Scale bars 
represent 10 µm. 

In wild type embryos, Slam displays a punctate and uneven distribution in the internuclear space 

during interphase of syncytial cell cycle 13 (Fig.25 A, A‘). However, already during telophase of 

cell cycle 13, Slam punctae connect to focus at the site of the later furrows (Fig.25 B, B‘). This 

focussing is not visible in germ line clone dop10 mutants (Fig.25 F, F’). Instead, the punctate 

localisation of Slam persists during cellularisation (Fig.25 G, G’, H, H’). During cellularisation, 

Slam overall localisation is broadened at the internuclear space resembling a phenotype also 

characteristic for F-actin distribution. The similarity of F-actin and Slam phenotypes in germ line 

clone dop10 mutants could be due to an involvement of Slam in F-actin localisation. Slam has 

been shown to recruit the F-actin regulator RhoGEF2 and non-muscle Myosin II to the sites of 

membrane invagination (Wenzl et al. 2010; Lecuit et al. 2002). Furthermore, RhoGEF2 is 

required for F-actin accumulation at the furrow canal and embryos mutant for RhoGEF2 display 
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enlarged furrow canals (Padash Barmchi et al. 2005; Grosshans et al. 2005). Therefore, this result 

could provide a link between Slam in F-actin mislocalisation and furrow canal malformation in 

dop mutants. 

 

 Eps15 co-localises with Slam at the furrow canal and gets mislocalised in dop mutants 

It is published that Slam localisation to the furrow is controlled by the Nuf/Rab11-dependent 

recycling endosome (Acharya et al. 2014). Slam localisation in turn enables RhoGEF2 recruitment 

to the furrow canal and thereby maintains F-actin stability at the invaginating furrows (Cao et 

al. 2008; Wenzl et al. 2010). However, Slam is not directly transported by Nuf/Rab11-positive 

recycling endosomes because Slam did not co-localise with Rab11 proteins (Acharya et al. 2014). 

Instead, it was proposed that Nuf/Rab11-positive vesicles transport a receptor to the furrow 

canal that binds Slam and restrict it to the furrow canal. Slam protein localisation is dynamic only 

during onset of cellularisation (Acharya et al. 2014). Thus, Dop function in affecting Slam 

localisation must be required at this stage. During this period also the endocytic endosomal 

protein Eps15 is mislocalised as shown earlier (Fig.24). In order to see if not only exocytosis but 

also endocytosis could play a role in Slam dynamics during onset of cellularisation, co-staining 

of Eps15 with Slam has been performed (Fig.26). 
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Figure 26 Eps15 co-localises with Slam and is mislocalised in complete dop10 loss-of-function 
mutants. Formaldehyde-fixed wild type and germ line clone dop10 mutant embryos stained for 
Eps15 (red), Slam (white), Neurotactin (green, membrane marker) and DNA (blue). Shown are 
sagittal-sections (A-H) and cross-sections (A’-H’) of each embryo. In wild type (A-D’) as well as in 
dop mutants, Slam co-localises with Eps15. Both proteins are mislocalised during cellularisation 
in dop mutants (E-H’). Scale bars represent 10 µm. 

During telophase of cell cycle 13, Eps15 begins to accumulate into a pseudo-hexagonal pattern 

(Fig.26 A, A’). At onset of cellularisation, it accumulates to the future furrow canal region apical 

to the nuclei in a broad distribution in wild type (Fig.26 B, B‘). During mid-cellularisation, this 

distribution sharpens to internuclear foci when the furrow canal invaginates into the embryo 

(Fig.26 C, C‘). Eps15 is mainly localised to the furrow canal but is also visible at the forming lateral 

membrane. At late cellularisation, Eps15 is not as focussed to the furrow canal as in mid-

cellularisation but is localising to the furrow canal and the lateral membrane to a similar extent 



Results|87 
 
(Fig.26 D, D‘). The focus into a furrow canal structure and internuclear foci is not visible at any 

stage in germ line clone dop10 mutants (Fig.26 E-H). Eps15 localisation is punctate with an 

accumulation apical to the nuclei throughout cellularisation. Eps15 protein is co-localising with 

Slam protein during cellularisation in wild type as well as germ line clone dop10 mutants. 

However, Slam is not localising to the lateral membrane like Eps15 but solely to the furrow canal 

(Fig.26 C‘, D‘). This indicates that Eps15-positive vesicles could be responsible for Slam exchange 

and endocytosis at the furrows. Additionally, Eps15 may also initiate endocytosis of other cargo 

that is possibly localised to the furrow canal as well as the lateral membrane. Furthermore, FRAP 

experiments propose that Slam protein is transported to the furrow canal just at onset of 

cellularisation but the exchange rate of Slam at the furrow canal in later cellularisation is very 

low (Acharya et al. 2014). Other proteins localising to the furrow canal in a more dynamic 

manner throughout cellularisation like e.g. RhoGEF2 are therefore also possible cargoes of 

Eps15-positive vesicles. Riggs et al report that Nuf-recycling endosomal transport is Dynein-

dependent (Riggs et al. 2007). It would be interesting to investigate if also the endocytic 

trafficking is Dynein-dependent. This could provide an interesting link between an endosomal 

recycling phenotype, Dynein and Drop out function. 

 

 Analysis of Kinesin heavy chain and Dynein heavy chain protein localisations during 

cellularisation 

In addition to previous studies, many of the phenotypes described in this thesis suggest a defect 

in Dynein and/or Kinesin function in dop mutants (Hain et al. 2014; Hain 2010; Langlands 2012; 

Meyer et al. 2006). Additionally, a study in Daniel Hains thesis on germ line clone–derived 

embryos mutant for the kinesin light chain shows cellularisation defects similar to dop mutants 

(i.e. embryo lethality during cellularisation, severe nuclear drop out and impairment of 

membrane invagination) (Hain 2010). However, no reliable data are available that show Dynein 

or Kinesin localisation in dop mutant embryos which could possibly give further insights into 
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Dynein or Kinesin malfunction. To test for the localisation of both transporter proteins, fixed 

embryos were immunostained against Dynein heavy chain and Kinesin heavy chain, in addition 

to Eps15 to elucidate potential co-localisations (Fig.27). 
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At onset of cellularisation, both Dynein heavy chain (Dhc; Fig.27 green channel) and Kinesin 

heavy chain (Khc; Fig.27 red channel) localise all around the nuclei in a punctate fashion both in 

wild type and complete loss-of-function dop mutants (Fig.27 A-C, D-F). In wild type, Khc and Dhc 

seem to localise strongly apically and basally to the nuclei. Lateral of the nuclei there is a weak 

accumulation of Dhc visible at the furrow canal, co-localising with Eps15 (Fig.27 C, C‘). In 

complete loss-of-function dop10 mutants, no furrow canal is visible and Eps15 stays broadly 

along the cortex with some accumulations at internuclear foci (Fig.27 D, E, F). It seems that Dhc 

shows some accumulation at the same sites as Eps15 in contrast to Khc. However, it cannot be 

determined if this localisation is specific (Fig.27 F‘). All three stainings against Khc, Dhc and Eps15 

seem to be stronger in complete loss-of-function dop mutants compared to wild type (Fig.27 A-

C, D-F). This could be due to an artefact because wild type and complete loss-of-function dop 

mutant embryos were stained in separate tubes and a lower number of complete loss-of-

function dop mutant embryos were stained compared to wild type. Therefore, the antibodies 

might have had a higher dilution in the wild type embryo tube compared to the dop mutant 

embryo tube. 

The co-localisation of Dynein heavy chain and Eps15 at the furrow canal in wild type embryos 

suggests the possibility of a Dynein-dependence of Eps15 localisation at this site. However, it 

could not be determined if this relation is disturbed in complete loss-of-function dop mutants. 

Further stainings using more specific antibodies or different fixation methods are needed to 

determine if Kinesin and/or Dynein are mislocalised in germ line clone dop10 mutant embryos. 

 

 Conclusion of Results Part 2 

In this Results part, localisations of different proteins representative for major cellular processes 

have been analysed in dop mutants to determine by which mechanism Dop affects 

cellularisation. The focus was set on processes that are dependent on Dynein function and that 

have been shown previously to have an impact on Drosophila cellularisation. It was shown that 
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Golgi as well as endosomal trafficking was impaired in dop mutants. These defects were visible 

in hypomorphic dop1/dop10 mutant embryos as well as complete loss-of-function germ line clone 

embryos homozygous for dop10 mutants. As revealed by live-imaging of microtubule formation 

by tracking EB1-GFP and in accordance with previous stainings against β-tubulin (Hain et al. 

2014), the microtubule network seemed to be unaltered in dop mutants and is therefore unlikely 

as a cause for the defects in microtubule-dependent transport. Two different stages of 

endosomal transport have been analysed, one stage by analysing Rab11 and Nuf localisation 

which mark vesicles on the way from the recycling endosome to the plasma membrane for 

exocytosis, and another stage where Eps15 marks membrane sites targeted for endocytosis. 

Both stages showed altered protein localisations in dop mutants compared to wild type. 

Whereas Rab11 and Nuf display a more restricted localisation to the centrosomes and 

microtubule minus-ends which is more suggestive for a malfunction of Kinesin than of Dynein, 

Eps15 showed a broadened localisation at the furrow canal in dop mutants, similar to what has 

been seen for F-actin localisation and other furrow canal proteins (Hain et al. 2014). This shows 

that both exo- and endocytosis of endosomal trafficking seem to be affected in dop mutants. In 

addition, Slam, a protein required during cellularisation for furrow canal formation and 

membrane invagination, showed the same broadened appearance at the furrow canal as Eps15 

and co-localised with this endocytic marker. This raises the possibility that impaired endocytosis 

could account for protein mislocalisation at the furrow canal and furrow canal broadening. This 

hypothesis will be discussed later together with the suggestion of further experiments to test 

this hypothesis. Moreover, it would be interesting to test if this Eps15 mislocalisation could be 

caused by Dynein malfunction in dop mutants. As a starting point in addressing this possibility, 

stainings against both microtubule motors Dynein and Kinesin as well as Eps15 were performed 

to test for co-localisations. The stainings showed a weak accumulation of Dynein and a strong 

accumulation of Eps15 at the furrow canal of wild type embryos in early cellularisation. However, 

the background signal was too strong in both Kinesin and Dynein stainings to determine any 

further localisation and to make a definitive statement about the localisation in dop mutants. 
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Further experiments will be needed to determine Dynein and Kinesin localisation in dop mutants 

and their impact on cellularisation processes.  
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 Part 3: Studying Dynein as potential drop out target 

Introduction 

Cytoplasmic Dynein is a multiprotein complex essential for cell viability in Drosophila (Gepner et 

al. 1996; McGrail & Hays 1997). It is involved in many cellular processes such as minus-end 

directed transport of organelles and vesicles, mitotic spindle morphogenesis and chromosome 

movements as well as nuclear positioning (see Karki & Holzbaur 1999 for review). The 

phosphorylation of several of its subunits was shown as being important for Dynein regulation 

(Addinall et al. 2001; Dell et al. 2000; Ikeda et al. 2011; Runnegar et al. 1999; Vaughan et al. 

2001; Whyte et al. 2008; Yang et al. 2005). Previously, it was found that phosphorylation of 

Dynein intermediate chain (Dic) as well as phosphorylation of Dynein light intermediate chain 

(Dlic) was reduced in dop mutant embryos (Hain et al. 2014; Langlands 2012). This suggested 

that Dop is required for regulating phosphorylation of these Dynein subunits. Additionally, the 

mutant allele dop1 showed genetic interaction with short wing1 (a loss-of-function allele of dic) 

and Glued1 (a dominant-negative mutation affecting the Dynactin complex subunit p150/Glued 

(p150/Gl)). An impairment of Dynein function by dop mutations was also implied by phenotypes 

seen in dop mutant embryos affecting Dynein-dependent transport processes, such as Bazooka 

protein, pair rule gene products and lipid droplet transport (Gross et al. 2000; Meyer et al. 2006; 

Hain et al. 2014). Apart from these Dynein-dependent processes which provided a link between 

Dop and cellularisation, Dynein was shown to be directly involved in proper furrow invagination 

by transport of Golgi vesicles, two processes also affected in dop mutants (Papoulas et al. 2005; 

this thesis). Thus, Dynein regulation by Dop could provide a mechanistic basis between Dop 

function and cellularisation. 
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 Attempts to inhibit Dynein function specifically during cellularisation 

Studies done by Daniel Hain indicated a link between Dop function and Dynein transport during 

cellularisation (Hain 2010; Hain et al. 2014). The function of Dynein-dependent microtubule 

transport in cellularisation is not known in detail because Dynein is required for many processes 

occurring prior to this developmental stage and, therefore, Dynein mutants do not develop 

normally up to this stage. To get around this problem, Papoulas et al., 2005 looked at Dynein 

function during cellularisation by injecting a Dynein heavy chain antibody. They found that cell 

membrane invagination was disturbed during fast phase in injected embryos but focussed more 

on the impact of Dynein impairment on Golgi vesicle movements than on further defects 

occurring by Dynein inhibition (Papoulas et al. 2005). However, Dynein could provide a strong 

link between Dop function and cellularisation defects like furrow formation impairment, 

membrane invagination defect and F-actin mislocalisation. Thus, it would be interesting to look 

at embryos with impaired Dynein function in more detail. 

 

 Dynamitin zygotic overexpression 

One way to inhibit Dynein function is the expression of a subunit of the Dynactin complex called 

Dynamitin. Dynamitin overexpression was shown to lead to dissociation of Dynactin from Dynein 

and therefore an inhibition of Dynein function (Echeverri et al. 1996; LaMonte et al. 2002; 

Januschke et al. 2002). In Drosophila, maternal overexpression of Dynamitin leads to eggs with 

abnormal dorsoventral polarity (Januschke et al. 2002).  

To investigate an effect of Dynein impairment on cellularisation, Dynamitin was overexpressed 

zygotically by crossing females carrying a maternal α-tubulin Gal4 driver to males carrying the 

UAS:(human)Dynamitin effector. Gal4 is expressed throughout early embryogenesis, however, 

in this cross Dynamitin should be expressed at the maternal to zygotic transition, so just prior to 

cellularisation. This should provide a tool to inhibit Dynein specifically from cellularisation 
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onwards. The purity of the fly stock carrying the UAS::Dynamitin effector was verified by the 

presence of the published phenotypes in embryos maternally expressing the human Dynamitin 

construct (Januschke et al. 2002; see Appendix Fig.S1). To test if Dynamitin overexpression can 

alter cellularisation, time-lapse movies of cellularisation were produced and membrane 

invagination measured by generating kymographs (Fig.28). 

 

 

Figure 28 Zygotic Dynamitin overexpression with a single maternal driver does not impair 
cellularisation in Drosophila embryos. Membrane growth in wild type embryos (A, A’) or 
embryos expressing human Dynamitin under control of a single maternal α-tubulin Gal4 driver 
(hDmn ox; B, B’) was measured in kymographs generated from bright field movies using ImageJ. 
An area of interest of 1 by 180 pixels at the same position in every movie frame was selected. 
Assembly of the selected regions created an image showing the progression of the membrane 
in time (A, B). The progression of membrane growth was analysed for slow phase (yellow) and 
fast phase (red) by measuring the angle between the invaginating membrane front and the outer 
membrane of the embryo (A’, B’). The time progression is indicated by t (A, B). Comparison of 
membrane invagination slopes shows no significant difference during slow or fast phase of 
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cellularisation in Dynamitin overexpressing compared to wild type embryos (C, D). (Two tailed t-

test, ns = not significant; +/- SEM; wild type n = 3, hDmn ox n = 3) 

Analysis of membrane invagination during cellularisation in embryos overexpressing Dynamitin 

in comparison to wild type embryos does not show an overall defect (Fig.28). Membrane 

invagination can be separated into slow phase (yellow line) and fast phase (red line) both in wild 

type and Dynamitin overexpressing embryos. Membrane invagination rates were not 

significantly different between both conditions, even though a tendency is visible showing that 

slow phase in Dynamitin overexpressing embryos might be impaired (Fig.28 C, D). The sample 

sizes for both conditions were not high enough, thus, the power of the performed t-test was 

below the desired power of 0.800 (at only 0.363 for slow phase). To verify an impairment of slow 

phase, more embryos have to be analysed. Even if slow phase of cellularisation is impaired in 

embryos overexpressing Dynamitin, this seems not to have a strong impact on further 

development because embryos developed normally throughout embryogenesis up to hatching 

(no data obtained). 

Dynamitin overexpressed with a single maternal α-tubulin Gal4 driver did not show a strong 

effect on membrane invagination during cellularisation and later embryogenesis (Fig.28). To aim 

for the highest zygotic expression possible, Dynamitin expression was promoted using a strong 

double-driver (maternal α-tubulin driver on the second and third chromosome) at 18°C (optimal 

temperature for strongest maternal Gal4 expression). Expression was induced by crossing 

females carrying the maternal α-tubulin Gal4-double driver to males carrying the 

UAS::(human)Dynamitin effector. As in the previous experiment, Dynamitin in this experiment 

set-up should get expressed just prior to cellularisation. To test its possible effects on embryo 

development by Dynein impairment, embryo hatching rates were determined (Fig.29). 
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Figure 29 Zygotic Dynamitin overexpression with a double maternal driver does not have an 
effect on embryo hatching rates. Survival rates of wild type embryos (white (18°C)), embryos 
without driver construct (UAS::hDmn control) and embryos expressing human Dynamitin under 
control of a maternal α-tubulin Gal4 driver on the second and third chromosome (double-mat x 
UAS::hDmn) are shown. Hatching rates have been determined at 18°C. No significant difference 
in hatching rates can be detected between embryos expressing Dynamitin and the control lines. 
(Two tailed t-test, ns = not significant; +/- SEM; at least 3 independent tests have been performed; Number of eggs 
(total): white (18°C) = 300, UAS::hDmn control = 300, double-mat x UAS::hDmn = 379) 

The determined hatching rate of zygotic Dynamitin overexpression was slightly reduced 

compared to wild type flies at 18°C (Fig.29). However, it was comparable to the survival rates of 

embryos carrying the UAS effector construct alone and the difference was not significant. Thus, 

the reduced survival rate was unlikely to be caused by a strong inhibition of Dynein function. 

Strong Dynein inhibition was the aim of this experiment, thus, this experiment has not been 

followed up and different tools were tested as an alternative. 

 

 Ciliobrevin injections 

Injecting embryos at onset of cellularisation with Ciliobrevin D (a small molecule that inhibits 

Dynein by blocking its ATP binding site in a reversible manner) could provide another tool to 

inhibit Dynein specifically during cellularisation (Firestone et al. 2012). Ciliobrevin D was shown 
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to inhibit Dynein in various cell types (murine NIH-3T3, Xenopus melanophores, Drosophila S2 

cells, murine IMCD3 cells) as well as in mouse oocytes and Drosophila embryos during late 

embryogenesis (Hyman et al. 2009; Ye et al. 2013; Łuksza et al. 2013; Le Droguen et al. 2015). 

Ciliobrevin D from two different sources and different concentrations were used (see Materials 

section). Only data from embryos injected with Ciliobrevin D donated by the James Chen lab are 

shown (concentration injected: 7387 μM). Injections were verified by co-injection of Dextran-

FITC (see Appendix Fig.S2). To test if Ciliobrevin D injection has an effect on cellularisation, 

development of injected and uninjected control embryos (wild type condition) was recorded 

over the course of cellularisation using bright field imaging and membrane invagination was 

analysed on kymographs (Fig.30). 

 
Figure 30 Analysis of membrane invagination during cellularisation reveals no significant 
difference in Ciliobrevin injected embryos compared to uninjected embryos. Membrane 
growth in uninjected embryos (wild type condition) or embryos injected with Ciliobrevin D was 
measured using kymographs generated from bright field movies using ImageJ. An area of 
interest of 1 by 180 pixels at the same position in every movie frame was selected. Assembly of 
the selected regions created an image showing the progression of the membrane in time (A, B). 
The progression of membrane growth was analysed for slow phase (yellow) and fast phase (red) 
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by measuring the angle between the invaginating membrane front and the outer membrane of 
the embryo (A’, B’). The time progression is indicated by t (A, B). No significant difference in 
membrane growth between uninjected and Ciliobrevin D injected embryos could be detected 
during slow or fast phase of cellularisation (C, D). Imaging at 18°C. (Two tailed t-test, ns = not significant; 

+/- SEM; slow phase: uninjected n = 3 (controls in this experiment are the same as in the Dynamitin overexpression 
experiment), Ciliobrevin D-injected n = 11; fast phase: uninjected n = 3, Ciliobrevin D-injected n = 10) 

Embryos injected with Ciliobrevin D underwent cellularisation clearly dividable into slow phase 

(yellow line) and fast phase (red line) (Fig.30 B’). At 18°C, the change of slow phase to fast phase 

occurred ~50 min after onset of cellularisation in embryos with and without Ciliobrevin injection. 

Membrane invagination rates were not significantly different in Ciliobrevin D-injected embryos 

compared to uninjected embryos (Fig.30 C, D). Additionally, embryos developed normally 

throughout embryogenesis (no data obtained). If Ciliobrevin D is inhibiting Dynein in this system, 

these data indicate that Dynein has no or just a minor effect on cellularisation. However, the 

data presented here comprise certain weaknesses: First, the sample sizes for the uninjected 

condition are very low and the power of the performed t-test for both slow phase (= 0.417) and 

fast phase (= 0.257) of cellularisation was below the desired power of 0.800. Thus, more 

embryos have to be imaged to get a convincing result and to see a possible effect on the timing 

of membrane invagination. Second, it is not clear if Ciliobrevin D used in this experiment is 

inhibiting Dynein. A clear effect at least on fast phase during cellularisation would be expected 

upon Dynein inhibition according to published results (Papoulas et al. 2005). Therefore, a new 

experiment had to be set up to verify Dynein impairment upon Ciliobrevin D injections in early 

embryos. 

 

3.3.1.2.1 Test for specific effects of Ciliobrevin D on Dynein function during syncytial divisions 

No significant difference in membrane invagination rates and timings could be detected due to 

Ciliobrevin D injections and embryos developed through whole embryogenesis. This result 

would indicate that Dynein does not have an essential function during cellularisation and 

embryogenesis. However, it had not been verified that Ciliobrevin D inhibits Dynein in early 

embryos in the used assay. Robinson et al. reported free centrosomes and multipolar spindle 
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arrays during syncytial divisions in embryos mutant for dynein heavy chain (Robinson et al. 

1999). To test for Dynein inhibition by Ciliobrevin D, embryos expressing Tubulin-GFP were 

injected during syncytial divisions either with DMSO/Dextran-FITC or with Ciliobrevin D/ 

Dextran-FITC and analysed for spindle defects reported in Robinson et al. (Fig.31). 

 
Figure 31 Spindle array formation during syncytial divisions. Images taken from time-lapse 
recordings of Tubulin-GFP expressing embryos under control of a maternal α-tubulin Gal4 driver 
during syncytial divisions. Embryos were either injected with DMSO and Dextran-FITC (A) or 
Ciliobrevin D and Dextran-FITC (B). Arrows point to multipolar spindle arrays in DMSO and 
Ciliobrevin D injected embryos. (DMSO-injected n = 3, Ciliobrevin D-injected n = 5) Scale bars represent 
10 μm. 

Embryos injected with either DMSO or Ciliobrevin D show multipolar spindle arrays (Fig.31 A, B; 

see arrows). The penetrance of the phenotype has not been determined. However, these data 

show that even by injecting DMSO phenotypes similar to dhc mutants can be created. This made 

it impossible to determine Ciliobrevin D effects on Dynein function using this assay. Due to a lack 

of available assays to determine Ciliobrevin D effects on Dynein function in early embryos, no 

further experiments using Ciliobrevin D have been performed. 
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 Dhc64C-RNAi maternal overexpression 

Another attempt to interfere with Dynein function was performed using overexpression of RNAi 

against Dynein heavy chain 64C (Dhc64C)-encoded transcripts. The Dhc64C was shown to be 

essential for oogenesis and overall cell survival in Drosophila (McGrail & Hays 1997; Rasmusson 

et al. 1994; Gepner et al. 1996). An assay had to be developed that reduced Dynein function but 

enabled oogenesis and development of embryos up to cellularisation to look for Dynein 

impairment effects during this particular stage. The dosage of Dhc64C-RNAi supply was crucial 

in this experiment. The UAS/Gal4 system is temperature sensitive, usually driving more 

expression at high temperatures up to 30°C than at lower temperatures (Brand & Perrimon 

1993). In contrast, the driver-construct used in this assay (maternal α-tubulin Gal4 driver) shows 

a reverse temperature-dependence with driving higher expression at low temperatures and 

lower expression at high temperatures (Jörg Großhans, personal communication). Consistent 

with this, females driving an RNAi construct against Dynein heavy chain 64C on the second 

chromosome (Dhc64CGL00543) with a single maternal α-tubulin Gal4 driver did not lay any eggs at 

18°C or 25°C but layed fertilised eggs at 29°C. To test if Dhc64C-RNAi significantly inhibits Dynein 

function under this condition, hatching rates of layed eggs with normal overall appearance have 

been determined at 29°C (Fig.32). Two different RNAi constructs against Dynein heavy chain 64C 

were analysed. 
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Figure 32 Dynein heavy chain 64CGL00543-RNAi expression at 29°C shows highly reduced 
embryonic survival. Survival rates of embryos expressing one of two different RNAi constructs 
against Dynein heavy chain 64C under control of a single maternal α-tubulin Gal4 driver are 
shown. Hatching rates of wild type embryos (white (29°C)) and embryos carrying just the effector 
construct and not the driver (UAS-Dhc64CGL00543 RNAi control, UAS-Dhc64CHMS01587 RNAi control) 
were used as controls. Embryos carrying either of two Dhc64C-RNAi constructs were analysed 
(construct either on the second chromosome (Dhc64CGL00543 RNAi) or on the third chromosome 
(Dhc64CHMS01587 RNAi)). Hatching rates have been determined at 29°C. (Mann-Whitney Rank Sum Test, 

*p<0.05; ns = not significant; +/- SEM; at least 3 independent tests have been performed for each condition; Number 
of eggs (total): white (29°C) = 297, UAS-Dhc64CGL00543 RNAi control = 323, Dhc64CGL00543 RNAi = 265, UAS-
Dhc64CHMS01587 RNAi control = 295, Dhc64CHMS01587 RNAi = 207) 

Embryos driving either of the two Dhc64C-RNAi constructs (Dhc64CGL00543 RNAi or Dhc64CHMS01587 

RNAi) show a reduction in embryonic survival compared to wild type control embryos (white 

(29°C)) (Fig.32). However, only the construct on the second chromosome shows a significantly 

reduced hatching rate compared to its effector-only control (UAS-Dhc64CGL00543 RNAi control), 

whereas the construct on the third chromosome shows a similar hatching rate compared to its 

effector-only control (UAS-Dhc64CHMS01587 RNAi control). Both constructs target different sites 

of the Dhc64C transcripts which is likely to cause the differences in the efficiency of the knock-

down (Fig.33) (Ni et al. 2011).  
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Figure 33 RNAi constructs used to target Dhc64C transcripts. Shown are the Dhc64C-RNAi 
target sites of both tested Dhc64C-RNAi constructs (Dhc64CGL00543 and Dhc64CHMS01587) which 
target different exons present in all eight Dhc64C transcripts. (A) The construct on the second 
chromosome (Dhc64CGL00543) targets the transcript sequence from 3L between 4,811,640 and 
4,811,660. (B) The construct on the third chromosome (Dhc64CHMS01587) targets the transcript 
sequence from 3L between 4,823,022 and 4,823,042. Figure modified after FlyBase. 

The Dhc64C-RNAi construct on the second chromosome shows an about 16-fold reduction in 

the hatching rate compared to wild type embryos (Fig.32). Therefore, it is a promising tool to 

inhibit Dynein during embryogenesis and to look for defects during cellularisation. 

 

 DlicGFP localisation is not affected in hypomorphic dop mutants during either syncytial 

divisions or cellularisation 

Dynein is an important candidate as potential Drop out target (Hain et al. 2014). However, not 

much is known about its localisation in dop mutants. Antibody stainings have not been 

successful (using an antibody against Dynein heavy chain protein from DSHB, this thesis) or not 

reproducible (using an antibody against Dynein heavy chain protein from Thomas Hays lab (Hays 

et al. 1994), done by Daniel Hain, unpublished). One subunit of cytoplasmic Dynein is the Dynein 

light intermediate chain (Dlic) (Mische et al. 2008). This subunit is essential for oocyte 

development, zygotic development and required for mitosis in Drosophila. Whereas two genes 



Results|103 
 
encode for many isoforms of the Dlic in vertebrates, Drosophila only contains one gene encoding 

for two isoforms of which many differentially-phosphorylated forms exist. The Dynein subunit 

Dlic is an interesting protein for analysis because it was shown as a possible target for Dop 

function (Langlands 2012). In order to test if Dynein localisation is impaired in dop mutants, a 

DlicGFP construct was imaged in dop mutant embryos in comparison to wild type during 

syncytial divisions (Fig.34) and cellularisation (Fig.35).  

 

Figure 34 During syncytial cycle 13, wild type DlicGFP shows similar localisation in wild type 
and dop mutant embryos. Images taken from time-lapse recordings of wild type embryos (A, B) 
and dop1/dop10 mutant embryos (C, D) expressing wild type DlicGFP under control of a double 
maternal α-tubulin Gal4 driver. Shown is DlicGFP signal at the cortex (A, C) as well as at the 
centrosomes/spindles of the embryos (B, D) during 3 different stages of syncytial cell cycle 13 
(S-phase, Pro/Metaphase, Ana/Telophase). Images of different structures in one construct do 
not always show the same embryo. Time after cycle 13 S-phase indicated in min. Scale bars 
represent 10 µm. 

DlicGFP in wild type as well as dop1/dop10 mutant embryos localise to distinct structures during 

syncytial divisions (Fig.34). In S-phase, DlicGFP accumulates mainly at the centrosomes at either 

side of the nucleus (Fig.34 first frames B, D). DlicGFP does not localise to the nucleus. Another 

signal is visible apical of the centrosomes (Fig.34 first frames A, C). This signal is filamentous and 

may be due to DlicGFP binding to astral microtubules. It is visible in a cap-like structure 

reminiscent of F-actin caps. Otherwise, DlicGFP imaging displays a diffuse signal all over the first 

apical 5 µm which is maybe due to a pool of unbound Dlic. However, it could also be caused by 

an excess of DlicGFP due to its overexpression in addition to endogenously-derived Dlic in the 

embryo. During prophase and after nuclear breakdown, DlicGFP signal invades the area that was 
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occupied before by the nuclei (Fig.34 second frames B, D). The signal at the cap structures 

weakens and spreads out laterally (Fig.34 second frames A, C). DlicGFP still localises to 

centrosomes but is weaker than during S-phase. During metaphase, DlicGFP marks the spindle 

arrays appearing between the centrosomes. The signal at the centrosomes and the spindles is 

similarly strong. The metaphase plate is visible between the spindle arrays as area without any 

DlicGFP signal. During ana- and telophase, DlicGFP stays with elongating spindles and localises 

as well with central spindles (Fig.34 third frames B, D). The caps start to re-form as the nuclei 

reassemble (Fig.34 third frames A, C).  

All these above described localisations of DlicGFP are visible in both wild type and dop1/dop10 

mutant embryos to a similar extent. This indicates that Dlic is not mislocalised during syncytial 

divisions in dop1/dop10 mutant embryos. 
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Figure 35 During cellularisation, wild type DlicGFP localises similarly in dop mutants compared 
to wild type embryos but shows a higher number and stronger accumulation to punctate 
structures. Images taken from time-lapse recordings of wild type embryos (A-D) and dop1/dop10 
mutant embryos (E-H) expressing wild type DlicGFP under control of a double maternal α-tubulin 
Gal4 driver. Note the prominent structures visible due to DlicGFP signal localisation during onset 
and mid-cellularisation: cap filaments (A, E), vesicular accumulations (B, F), centrosomes (C, G) 
and at nuclear level (D, H). Time after cycle 13 S-phase indicated in min. Scale bars represent 10 
µm. 

DlicGFP localisation in dop1/dop10 mutant embryos is similar to wild type during cellularisation 

(Fig.35). DlicGFP localises to filamentous structures, presumably astral microtubules, at the 

cortex in a dynamic manner (Fig.35 first frames A, E). Similar to F-actin caps, the filamentous 

structure spreads out to build a layer of dynamic filaments on the surface during the course of 

cellularisation (Fig.35 second frames A, E). DlicGFP accumulates at the centrosomes throughout 



Results|106 
 
cellularisation (Fig.35 C, G). The nuclei display a shape change during cellularisation going from 

a round shape to a “bumpy” shape likely to be due to squeezing of the nuclei by microtubules 

(Fig.35 D, H) which is reported to affect nuclear elongation during cellularisation (Brandt et al. 

2006). dop1/dop10 mutant embryos do not undergo this shape change comparable to wild type 

embryos. However, nuclei in many cases lose their cortical contact and migrate basally. 

One difference between DlicGFP localisation in wild type and dop1/dop10 mutant embryos is 

detectable. In wild type, punctate accumulations of DlicGFP are apparent throughout 

cellularisation but migrate basally during the course of cellularisation (Fig.35 B). Maybe these 

punctate structures are localising to and move inwards together with the invaginating furrow 

canal. In dop1/dop10 mutant embryos, more punctae are detectable and they display a stronger 

DlicGFP signal than wild type embryos (Fig.35 F). Additionally, they do not move basally during 

cellularisation but stay in the first apical 5 µm. 

What nature these punctate structures are could not be determined. It would be interesting to 

know if they belong to a specific trafficking route or if they are accumulating degradation 

products that may arise because the embryo is beginning to die at this stage. However, whatever 

nature the accumulations are, they seem not to influence the wild typic DlicGFP localisation 

which is still present in dop1/dop10 mutant embryos. 

 

 Studying effects of Dop target Dynein light intermediate chain Serine 401 phospho-

mutants  

dop mutations affect different Dynein transport-dependent processes during or prior to 

cellularisation like lipid droplet clouding, Bazooka transport or mRNA transport (Meyer et al. 

2006; Hain et al. 2014). Alistair Langlands found evidence through SILAC proteomic analyses that 

Dynein light intermediate chain (Dlic) phosphorylation is reduced in dop mutants (Langlands 

2012). Specifically, the phosphorylation at Serine 401 showed a reduced phosphorylation in dop 
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mutant embryos compared to wild type. Serine 401 of Dlic is a highly-conserved amino acid 

present in at least one Dynein light intermediate chain homologue of Drosophila, mouse (Mus 

musculus), chicken (Gallus gallus) and human (Homo sapiens) (Fig.36). 
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No function has been reported so far for the phosphorylation of this particular serine in the 

above mentioned organisms. To investigate the developmental impact of this Serine 401 and its 

phosphorylation status, a non-phosphorylatable Dlic (Serine 401 mutated to an Alanine) and a 

Dlic which mimics phosphorylation (Serine 401 mutated to Aspartic acid) were created and 

cloned into a vector under UAS control and with GFP tag. The analysis was focussed on syncytial 

divisions and cellularisation in wild type and dop mutant embryos. 

 

 Phospho-mimic and non-phosphorylatable forms of Dlic S401 do not have an effect on 

DlicGFP localisation in wild type embryos 

A SILAC screen performed by Alistair Langlands indicated Dlic as a potential substrate of Dop 

(Langlands 2012). Additionally, Serine 401 came out as a phosphorylation site whose 

phosphorylation was potentially dependent on Dop function. To see if the regulation of this 

specific Serine has an impact on cellularisation in Drosophila embryos or at overall 

embryogenesis, wild type, phospho-mimic (S401D DlicGFP) and non-phosphorylatable (S401A 

DlicGFP) forms of Dlic Serine 401 were expressed in wild type embryos. Maternal expression of 

the DlicGFP constructs was controlled by a maternal α-tubulin Gal4 driver. The localisation of 

both DlicGFP mutant versions during syncytial divisions (Fig.37) and cellularisation (Fig.38) was 

analysed and compared to the localisation of wild type Dlic. 
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A strong difference of the overall signal intensity is visible in the shown embryos expressing the 

different DlicGFP constructs in wild type background (Fig.37). The expression strength varied a 

lot between the embryos of each DlicGFP construct and there is no overall difference detectable 

between embryos expressing different constructs. A few more examples are shown in the 

appendix to show the variations of signal intensities (Appendix Fig.S3). 

Phospho-mimic or non-phosphorylatable versions of DlicGFP expressed in a wild type 

background (endogenous wild type Dlic expressed) do not have an effect on DlicGFP construct 

localisation during syncytial divisions. As in wild type DlicGFP (Fig.37 A, B), phospho-mimic 

(Fig.37 C, D) and non-phosphorylatable (Fig.37 E, F) versions of DlicGFP localise mainly to the 

centrosomes as well as spindles during syncytial divisions. They also form cap structures during 

S-phase reminiscent of F-actin caps which spread out during the division. 

 
Figure 38 During cellularisation, wild type, S401D mutant and S401A mutant DlicGFP show 
similar localisation to prominent structures in wild type embryos. Images taken from time-
lapse recordings of wild type embryos expressing either wild type (A-D), S401D (E-H) or S401A 
(I-L) versions of Serine 401 in DlicGFP under control of a double maternal α-tubulin Gal4 driver. 
Shown are the prominent structures visible due to DlicGFP signal localisation during onset and 
mid-cellularisation: cap filaments (A, E, I), vesicular accumulations (B, F, J), centrosomes (C, G, 
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K) and at nuclear level (D, H, L). Note that all three DlicGFP Serine 401 versions localise to the 
same structures. Images of the different structures in one construct do not always show the 
same embryo. Time after cycle 13 S-phase indicated in min. Scale bars represent 10 µm. 

During cellularisation, phospho-mimic and non-phosphorylatable DlicGFP localise similar to 

different structures in wild type embryos as seen for wild type DlicGFP fusion protein localisation 

(Fig.38). All three DlicGFP versions form filamentous cap structures that spread out during the 

course of cellularisation (Fig.38 A, E, I). During cellularisation, few small DlicGFP-positive 

punctate accumulations form that migrate into the interior of the embryo (Fig.38 B, F, J). These 

punctae are very small and visible usually only in one 0.5 µm z-section. Slight differences of their 

signal strength or size might be based on how they got captured by the microscope. Some more 

examples of these punctate structures can be found in the appendix (Appendix Fig.S4). These 

DlicGFP accumulations might get pushed into the embryo by the invaginating membrane. 

However, how they migrate into the embryo and what these punctate structures are is not 

known. Throughout cellularisation, all DlicGFP versions localise to the centrosomes (Fig.38 C, G, 

K). In embryos expressing either of the three DlicGFP versions, nuclei undergo a conformational 

change from a rounded to a „bumpy“ shape. This shape change of nuclei is not specific to any of 

the DlicGFP versions. 

The previously mentioned SILAC screen indicated that Serine401 in Dynein light intermediate 

chain is less phosphorylated in drop out mutants than in wild type. The hypothesis is that this 

reduced phosphorylation could account for phenotypes seen in dop mutants. The non-

phosphorylatable form of S401 in Dlic should lead to an artificially reduced phosphorylation and 

could possibly mimic some dop mutant phenotypes. However, neither phospho-mutant version 

of S401 in DlicGFP showed an obvious effect on DlicGFP localisation in wild type embryos in 

neither syncytial divisions nor cellularisation. On the other hand, these data do not indicate if 

the phospho-mutants have an effect which is independent of protein localisation. On overall 

observations, cellularisation was not affected to an extent as in dop mutants (no data obtained). 

Further studies are needed to look in more detail for dop phenotypes. 
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 Phospho-mimic and non-phosphorylatable forms of Dlic S401 do not have an effect on 

embryo survival in wild type background 

To test if phospho-mutants of Dlic have an effect on overall embryonic survival in a competition 

background with endogenous wild type Dlic, hatching rates were determined of wild type 

embryos expressing either wild type (wt), phospho-mimic (S401D) or non-phosphorylatable 

(S401A) versions of DlicGFP (Fig.39). 

 
Figure 39 Dlic S401 phospho-mutant expression in wild type embryos does not affect 
embryonic survival rates. Survival rates of wild type embryos expressing either a wild type form 
of Dlic (wtDlicGFP), Dlic S401D or Dlic S401A. Expression under control of a double maternal α-
tubulin Gal4 driver. wild type (white (25°)) hatching rates were used as a control. Hatching rates 
have been determined at 25°C. None of the DlicGFP protein versions expressed in a wild type 
background impair embryo survival rates significantly compared to wild type embryos. (Two tailed 

t-test, ns = not significant; +/- SEM; at least 3 independent tests have been performed for each condition; Number of 
eggs (total): white(25°C) = 297, wtDlicGFP = 365, S401D DlicGFP = 355, S401A DlicGFP = 329) 

The expression of all three DlicGFP versions resulted in embryo hatching rates similar to the wild 

type control (white (25°), Fig.39). This result shows that at least in a wild type background the 

overexpression of phospho-mutant forms of Serine 401 in Dynein light intermediate chain does 

not affect embryo survival. Thus, this result does not mimic the embryonic lethality seen in drop 

out mutants. However, it is possible that effects are masked by the endogenous wild type Dlic 

in the system.  
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 Phospho-mimic and non-phosphorylatable forms of Dlic S401 do not have an effect on 

DlicGFP localisation in dop mutant embryos 

Serine 401 of Dlic showed reduced phosphorylation in dop1/dop10 transheterozygous mutants 

as revealed by a SILAC screen. Dlic S401 mutants that are not phosphorylatable at this particular 

site should possibly be able to mimic this situation in wild type embryos. However, non-

phosphorylatable mutant versions of S401 in DlicGFP seem not to affect embryo development 

similar to dop mutants when expressed in wild type embryos. In dop mutants that were shown 

to have reduced phosphorylation of Dlic S401, maybe a Dlic S401 mutant mimicking 

phosphorylation could substitute for reduced endogenous Dlic S401 phosphorylation. To see if 

phospho-mimic mutant versions of Serine 401 in DlicGFP could rescue phenotypes in dop 

mutants, wild type and phospho-mutant versions of DlicGFP were expressed in dop1/dop10 

transheterozygous mutant embryos and analysed for DlicGFP protein localisations during 

syncytial divisions (Fig.40) and cellularisation (Fig.41). 



Results|114 
 

 

Fi
gu

re
 4

0
 D

u
ri

n
g 

sy
n

cy
ti

al
 c

yc
le

 1
3

, 
n

ei
th

er
 w

ild
 t

yp
e 

n
o

r 
S4

0
1

D
 m

u
ta

n
t 

o
r 

S4
0

1
A

 m
u

ta
n

t 
D

lic
G

FP
-e

xp
re

ss
in

g 
d

o
p

 m
u

ta
n

t 
em

b
ry

o
s 

d
is

p
la

y 
lo

ca
lis

at
io

n
 

d
ef

ec
ts

 o
f 

D
lic

. I
m

ag
es

 t
ak

en
 f

ro
m

 t
im

e
-l

ap
se

 r
ec

o
rd

in
gs

 o
f 

d
o

p
1 /d

o
p

10
 m

u
ta

n
t 

em
b

ry
o

s 
ex

p
re

ss
in

g 
ei

th
er

 w
ild

 t
yp

e 
(A

, B
),

 S
40

1
D

 (
C

, D
) o

r 
S4

0
1

A
 (

E,
 F

) v
er

si
o

n
s 

o
f 

Se
ri

n
e 

40
1

 i
n

 D
lic

G
FP

 u
n

d
er

 c
o

n
tr

o
l 

o
f 

a 
d

o
u

b
le

 m
at

er
n

al
 α

-t
u

b
u

lin
 G

al
4 

d
ri

ve
r.

 S
h

o
w

n
 i

s 
D

lic
G

FP
 s

ig
n

al
 a

t 
th

e 
co

rt
ex

 (
A

, 
C

, 
E)

 a
s 

w
el

l 
as

 a
t 

th
e 

ce
n

tr
o

so
m

es
/s

p
in

d
le

s 
o

f 
th

e 
em

b
ry

o
s 

(B
, 

D
, 

F)
 d

u
ri

n
g 

3
 d

if
fe

re
n

t 
st

ag
es

 o
f 

sy
n

cy
ti

al
 c

el
l 

cy
cl

e 
1

3
 (

S-
p

h
as

e,
 P

ro
/M

et
ap

h
as

e,
 A

n
a/

Te
lo

p
h

as
e)

. 
N

o
te

 t
h

at
 n

o
 

lo
ca

lis
at

io
n

 d
if

fe
re

n
ce

 is
 v

is
ib

le
 b

et
w

ee
n

 t
h

e 
d

if
fe

re
n

t 
D

lic
 v

er
si

o
n

s.
 Im

ag
es

 o
f 

th
e 

d
if

fe
re

n
t 

st
ru

ct
u

re
s 

in
 o

n
e 

co
n

st
ru

ct
 d

o
 n

o
t 

al
w

ay
s 

sh
o

w
 t

h
e 

sa
m

e 
em

b
ry

o
. 

Ti
m

e 
af

te
r 

cy
cl

e 
1

3 
S-

p
h

as
e 

in
d

ic
at

ed
 in

 m
in

. S
ca

le
 b

ar
s 

re
p

re
se

n
t 

1
0

 µ
m

. 

 



Results|115 
 
Phospho-mimic or non-phosphorylatable versions of DlicGFP expressed in a dop1/dop10 mutant 

background do not change DlicGFP localisations in comparison to wild type DlicGFP (Fig.40). As 

seen previously in wild type embryos expressing phospho-mimic and non-phosphorylatable 

versions of DlicGFP, all DlicGFP versions expressed in dop mutant background localise to 

centrosomes, spindles (Fig.40 B, D, F) and filamentous caps (Fig.40 A, C, E) during syncytial 

divisions. 

 
Figure 41 During cellularisation, dop mutant embryos expressing wild type, S401D mutant and 
S401A mutant DlicGFP show similar localisation defects of Dlic. Images taken from time-lapse 
recordings of dop1/dop10 mutant embryos expressing either wild type (A-D), S401D (E-H) or 
S401A (I-L) versions of S401 in DlicGFP under control of a double maternal α-tubulin Gal4 driver. 
Shown are the prominent structures visible due to DlicGFP signal localisation during onset and 
mid-cellularisation: cap filaments (A, E, I), vesicular accumulations (B, F, J), centrosomes (C, G, 
K) and at nuclear level (D, H, L). Images of the different structures in one construct do not always 
show the same embryo. Time after cycle 13 S-phase indicated in min. Scale bars represent 10 
µm. 

Also during cellularisation, no specific localisation differences are detectable between the three 

S401 DlicGFP constructs (Fig.41). DlicGFP localises to the filamentous cap structures (Fig.41 A, E, 

I) and centrosomes (Fig.41 C, G, K) throughout cellularisation. Additionally, the nuclear drop out 

phenotype is present in embryos expressing either of the three DlicGFP versions (more examples 
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can be found in the appendix Fig.S5). However, more vesicular accumulations are visible in dop 

mutant embryos expressing either of the three DlicGFP constructs compared to wild type 

embryos expressing these constructs. The vesicular accumulations are visible in mutant embryos 

expressing either construct to a similar extent (Fig.41 B, F, J). This means that neither of the 

mutants was able to rescue the only clear DlicGFP localisation phenotype visible in dop1/dop10 

mutants in comparison to wild type embryos. 

 

 The phospho-mimic form of Dlic S401 can rescue lethality of dop hypomorphic mutations 

To test if mutant forms of Dlic can rescue drop out-induced lethality, hatching rates of 

dop1/dop10 transheterozygous embryos expressing either wild type (wt), phospho-mimic 

(S401D) or non-phosphorylatable (S401A) versions of DlicGFP were determined (Fig.42). 

 

Figure 42 S401D expression in dop1/dop10 mutant embryos is able to rescue dop embryonic 
lethality. Survival rates of dop1/dop10 mutant embryos expressing either a wild type form of Dlic 
(wtDlicGFP) or Dlic Serine401 mutated to aspartic acid (S401D) or mutated to Alanine (S401A) 
are shown. Expression under control of a double maternal α-tubulin Gal4 driver. wild type (white 
(25°C)) hatching rates were used as a control. Hatching rates have been determined at 25°C. 
Embryos expressing S401D mutant versions of DlicGFP hatch in a highly significant number 
compared to wild type DlicGFP in dop1/dop10 embryos. Even though some embryos expressing 
S401A mutant versions of DlicGFP also hatch, the percentage is not significant compared to wild 
type DlicGFP. (Two tailed t-test, ***p<0.001; ns = not significant; +/- SEM; at least 3 independent tests have been 

performed for each condition; Number of eggs (total): white(25°C) = 297, wtDlicGFP = 300, S401D DlicGFP = 300, 
S401A DlicGFP = 700) 
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Maternally mutant dop1/dop10 embryos are 100% lethal. By bringing in wild type DlicGFP, the 

lethality rate did not change and all the tested embryos died (Fig.42). In contrast, dop1/dop10 

mutant embryos expressing phospho-mimic versions of DlicGFP survived at a rate of 17.33%. 

This suggests that the artificial form of Dlic which mimics a phosphorylation at position 401 

partially reverses a defect caused by reduced Dlic phosphorylation in dop mutants. Furthermore, 

this result supports a role of Dop in regulating the phosphorylation state of Serine 401 in Dlic 

and thereby affecting embryo viability. However, also 3.86% of the non-phosphorylatable 

mutants of Dlic survived (rate was not significant). These mutants mimic a non-phosphorylation 

state of Serine 401 like it was seen in dop mutants. They would therefore not be expected to 

rescue a dop phenotype. It might be that the expression of a non-phosphorylatable S401 Dlic 

version somehow affects phosphorylation levels of the endogenous non-mutant Dlic in the 

system. Further experiments should be performed to validate the rescue and to look in detail 

into effects on cellularisation due to the different phosphorylation states of Dlic Serine 401 in 

dop mutant embryos. 

 

 Can artificial DlicGFP expression rescue lethality of a dlic mutation during larval stages? 

To verify that the artificially created DlicGFP versions function like the endogenous wild type 

version of Dlic and can substitute for its function in a mutant background, crosses were set-up 

that create flies with the DlicG0065 mutation on the X-chromosome and express one of the three 

synthesised and characterised versions of DlicGFP under control of an ubiquitin-Gal4 driver 

(Fig.43). 
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Figure 43 Cross performed to test rescue in males carrying the DlicG0065 mutation and 
expressing ubiquitin-Gal4 (ubiGal4) driven DlicGFP. Note that DlicGFP is representative for all 
three Dlic Serine401 versions (wild type, phospho-mimic, non-phosphorylatable). Crosses were 
all performed at 25°C. 

ubiquitin-Gal4 drives expression throughout Drosophila development and in all cells 

(Bloomington Stock Report). The Dlic gene is essential for Drosophila viability and the allele 

DlicG0065 is recessive lethal during the first and second larval instars (Mische et al. 2008; Peter et 

al. 2002). Due to this allele being recessive, either both X chromosomes in females have to carry 

this allele to create the desired background phenotype (larval lethality) or the only X 

chromosome of male flies has to be mutant. Fathers of progeny to create DlicG0065 mutant flies 

cannot carry this allele on their X chromosome because they would die during larval stages not 

creating any progeny. Thus, due to the nature of the cross, only male progeny could be 

generated that were hemizygous for DlicG0065 on the X-chromosome. These males could be 

identified by the lack of the dominant eye marker Bar which is connected to the X chromosomal 

FM7 balancer. Therefore, adult flies were counted that hatched from their pupal cases and it 

was analysed if males underwent eclosion that were hemizygous for DlicG0065 (not displaying the 

Bar eye phenotype). 
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Adult flies 

(total) 
hatched males 

(total) 
males with GFP 

expression 

males hemizygous 
for DlicG0065 

(without Bar 
phenotype) 

wild type DlicGFP 149 
56 

all FM7 
20 

all FM7 
none 

phospho-mimic 
DlicGFP 

304 
94 

all FM7 
26 

all FM7 
none 

non-
phosphorylatable 

DlicGFP 
176 

77 
all FM7 

18 
all FM7 

none 

Table 20 Analysis of the DlicG0065 ubi::Gal4>>UAS::DlicGFP rescue crosses.  

According to Mendelian inheritance, the probability to get males hemizygous for DlicG0065 

expressing DlicGFP was 1:6. However, none of the hatching adult males were hemizygous for 

the DlicG0065 mutation (Table 20). This result indicates that either none of the DlicGFP versions 

created in this thesis is functional and can therefore not rescue lethality of the DlicG0065 mutation 

during larval stages or that the expression with ubiquitin-Gal4 used as driver for Dlic expression 

was not high enough or did not resemble the endogenous Dlic expression patterns well enough 

to substitute for Dlic function in DlicG0065 mutants. Further experiments have to be performed to 

distinguish between these possibilities. 

 

 Conclusion of Results Part 3 

In this Results part, different tools have been developed and used to establish a method to 

specifically impair Dynein function during cellularisation to investigate its impact on different 

cellularisation processes and to study Dynein as a potential link between Dop function and 

cellularisation (Hain et al. 2014; Langlands 2012). Neither Dynamitin zygotic overexpression nor 

Ciliobrevin D injections at onset of cellularisation showed a strong expected and desired effect 

on Dynein function. However, maternal Dynein heavy chain-RNAi expression of one construct 

directed against the essential Dhc64C gene showed significant embryo survival defects 
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compared to the effector-only control. In the future, embryos expressing this Dhc64CGL00543 RNAi 

construct and surviving up to cellularisation should be analysed to test for defects during 

cellularisation caused by Dynein impairment. This analysis could provide important insights into 

how Dop could impair cellularisation through a direct or indirect link provided by Dynein. 

Another focus of this part was the study of the potential Dop target Dynein light intermediate 

chain (Langlands 2012). The phosphorylation of this Dynein subunit was shown to be dependent 

on Dop function. Therefore, it was tested if Dop also affects its localisation by imaging a DlicGFP 

construct in dop mutant embryos in comparison to wild type. The localisation of Dlic seemed not 

to be overall affected in dop mutants, apart from some vesicular accumulations that were more 

numerous and showed stronger DlicGFP signal in the mutant during cellularisation. A SILAC 

screen that was previously done identified Serine 401 of Dlic as a specific site affected by Dop 

function. Therefore, non-phosphorylatable and phospho-mimic forms of this Dlic site were 

generated and, fused to GFP, expressed in wild type and dop mutant embryos to analyse any 

possible impact this particular phosphorylation site might have on DlicGFP localisation and 

embryo survival. In wild type embryos (expressing also the endogenous wild type version of Dlic), 

neither mutant form of S401 showed an effect neither on DlicGFP localisation nor on embryo 

survival in comparison to wild type DlicGFP. Also in dop mutant background, neither DlicGFP 

mutant version changed the localisation seen for wild type DlicGFP in the mutant. However, the 

phospho-mimic version of DlicGFP S401 showed a significant rescue of embryo viability in dop 

mutants which raises the possibility that a reduction in phosphorylation of Dlic S401 as identified 

in dop mutants causes embryo lethality in dop mutants. Further experiments need to be done 

to support this indication. With the previous experiments, the question if different 

phosphorylation states of Dlic S401 are able to rescue phenotypes seen in dop mutants by 

presumably substituting for a malfunction of endogenous wild type Dlic has been addressed. 

Important to know in this context is if the different versions of Dlic S401 fused to GFP are able 

to take over the function of endogenous Dlic. Therefore, an experiment was set-up to test if the 

artificially created DlicGFP versions can rescue the larval lethality of the DlicG0065 allele. No rescue 
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of lethality could be identified by expression of the different DlicGFP versions, neither wild type 

nor phospho-mutant. However, also this experiment needs further verification by using a 

different (stronger) driver and a wild type DlicGFP version as control created by Satoh et al. 

which was shown to rescue Dlic function in arborisation of neurons (Satoh et al. 2008). 
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4. Discussion 

This thesis describes an approach to identify the specific function(s) of the Drop out (Dop) kinase 

during cellularisation. drop out was first discovered by Galewsky and Schulz as a locus on the 

third chromosome important for proper cellularisation during Drosophila melanogaster 

embryogenesis (Galewsky & Schulz 1992). Previously, drop out was identified in our lab as a 

mutation in a hitherto uncharacterised gene named CG6498 and further analysis showed that 

this gene encodes for the single member of the MAST kinase family in Drosophila melanogaster 

(Hain et al. 2014). The MAST kinases are a poorly characterised family belonging to the AGC 

kinase subfamily of protein kinases (Pearce et al. 2010; Arencibia et al. 2013). MAST kinases have 

a domain of unknown function (DUF), an AGC kinase domain and a PDZ domain in common. 

Even though members of the MAST kinase family are implicated in several human diseases, not 

much is known about their function and about the mechanism by which they affect cells and 

tissues. The ongoing study on Drop out in Drosophila embryos is aimed to find the general 

mechanism by which this single homologue of the MAST kinases in the fly ensures proper cell 

behaviour and affects cell viability. Many defects were found until now that are caused by 

mutations in drop out (Hain et al. 2014; Hain 2010; Langlands 2012; Meyer et al. 2006). However, 

most of the studies are based on hypomorphic alleles of dop and few on null alleles hemizygous 

over a chromosomal deficiency (dop10/Df(3L)MR15). In this study, phenotypes of a complete null 

allele of Dop were described for the first time using embryos derived from dop10 germ line 

clones. 

 

 Furrow canal formation and specification is the first morphological event that 

requires Dop function 

Analysis of the complete loss-of-function mutant embryos revealed that Drop out is required for 

cellularisation but not for syncytial divisions of Drosophila embryogenesis. The first 

morphological defects in dop mutants were seen at onset of cellularisation and comprised a 



Discussion|123 
 
failure in specification and proper formation of the furrow canal. This defect was apparent via 

imaging of the F-actin network in hypomorphic dop embryos. The observation that F-actin in 

dop mutants gets more dispersed over time but initially localises correctly to internuclear spaces 

suggests that the initial accumulation of F-actin at destined furrow sites is not impaired in the 

mutants. However, the restriction to the furrows seems to be defective. What processes and 

proteins could be important to restrict F-actin to distinct furrow sites? 

The protein Discontinuous actin hexagon (Dah) is a good candidate to link F-actin to the furrow 

canal membrane: a) Dah associates indirectly with membranes as well as F-actin, b) it is localised 

at the furrow canal during cellularisation, c) it was shown to be required for furrow formation 

during cellularisation and d) Dah localises to vesicles that are often associated with actin 

(Rothwell et al. 1999; Zhang et al. 1996; Zhang et al. 2000). Additionally, Dah could provide a link 

between the dop mutant F-actin phenotype and endosomal transport phenotype because Dah 

localisation to the furrow is Nuf- and Rab11-dependent (Zhang et al. 2000; Riggs et al. 2003). 

Dah protein might be trapped in recycling endosomal vesicles as they fail to move along 

microtubules to the furrow sites and instead remain pericentrosomal as seen in dop mutants. 

Therefore, it would be interesting to see if Dah shows any localisation defects in dop mutants. 

Another protein that could be responsible to restrict F-actin to the furrows is Slow-as-molasses 

(Slam). Slam is required for recruiting RhoGEF2 to the furrow (Wenzl et al. 2010). In turn, 

RhoGEF2 is required for Rho1 activation and, thus, F-actin polymerisation (Padash Barmchi et al. 

2005; Crawford et al. 1998). Therefore, Slam could account for localised polymerisation and 

accumulation of F-actin. Data presented in this thesis and in Hain et al., 2014 show that Slam is 

similarly mislocalised as F-actin during cellularisation which would further support an 

involvement of Slam in the F-actin phenotype (Hain et al. 2014). Moreover, Slam localisation is 

like Dah localisation dependent on recycling endosome function. Thus, if the broadened Slam 

localisation that was seen in dop mutants is caused by endosomal transport this could also be 

responsible for the broadened F-actin polymerisation in dop mutants (Acharya et al. 2014).  
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Thus, it is likely that dop mutants indirectly affect F-actin restriction to the furrow by inhibiting 

recycling endosomal transport. 

 

 Slam and Eps15 protein localisation just prior to cellularisation are the first 

processes requiring Dop function  

The first protein localisation defects could be detected for Slam and Eps15 (Epidermal growth 

factor receptor pathway substrate clone 15) proteins during telophase of cell cycle 13 just prior 

to cellularisation and, therefore, slightly earlier than any morphological defect in dop mutants. 

Syncytial division 13 up to telophase, did not show any defects in protein localisation. Slam 

protein localisation was shown to depend on the recycling endosome (Acharya et al. 2014). It 

was proposed that the localisation of Slam by the recycling endosome takes place through an 

indirect mechanism because no co-localisation between recycling endosome and Slam could be 

detected. It was suggested that localisation of Slam to the furrow canal is restricted by the 

transport of an anchor that Slam binds to. The localisation phenotype of Slam in dop complete 

loss-of-function mutants could as well be based on an indirect mechanism. Slam protein localises 

to internuclear regions throughout cellularisation even though these regions are broadened in 

dop mutants. Thus, the initial localisation of Slam protein seems not to be affected in dop 

embryos, in contrast to the restriction of Slam protein to specific and narrow internuclear 

spaces. This restriction could be mediated by the particular anchor that might be transported by 

the recycling endosome to the furrow canal region at telophase of cycle 13 and onset of 

cellularisation. In dop mutants, the Slam broadening might be due to this anchor missing from 

this particular site and, thus, could be explained by impaired recycling endosome transport. 

Instead of anchoring proteins to the furrow, targeted localisation of furrow canal proteins could 

also be achieved by a constant clearing of the cortex removing furrow-specific proteins that 

become localised too close to the centrosomes. A process like this could avoid furrow canal 

formation apically of the nuclei and would be dependent on astral microtubules and supposedly 
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on Dynein-dependent transport from the plus-ends at the cortex to the minus-ends at the 

centrosomes. dop mutants might affect furrow-restriction of proteins by impairment of this 

Dynein-dependent cortical clearing. This hypothesis includes a model which proposes that 

centrosomes define the position of the furrows through overlapping arrays of astral 

microtubules and interaction of the microtubule plus-ends with the cortex (Riggs et al. 2007; 

Glotzer 2004; Crest et al. 2012). It has been proposed for metaphase furrows and cytokinetic 

furrows but could equally be important for cellularisation furrows. 

Not only Slam but also Eps15 displayed a defect just prior to onset of cellularisation in dop 

mutants. The Slam and Eps15 defects were very similar in that both proteins failed to focus into 

narrow internuclear furrows and remained punctate and broadened throughout cellularisation. 

The nature of these punctate structures was not determined but both Slam and Eps15 seemed 

to co-localise to these structures. In mammalian cells, Eps15 is a protein involved in Clathrin-

dependent and –independent endocytosis (Benmerah et al. 1998; Benmerah et al. 1999; Salcini 

et al. 1999; Savio et al. 2016; Sigismund et al. 2005; Carbone et al. 1997). Eps15 was also shown 

to localise to early endosomes and to interact with Hrs (Hepatocyte growth factor-regulated 

tyrosine kinase substrate) in endosomal sorting of internalised receptors (Bean et al. 2000; 

Bache et al. 2003; Roxrud et al. 2008). In Drosophila, the function of Eps15 has been studied at 

the neuromuscular junction where it is required for synaptic vesicle endocytosis and recycling 

by maintaining high concentrations of endocytic proteins at synaptic membranes (Majumdar et 

al. 2006; Koh et al. 2007). To our knowledge, Eps15 has not been studied during early 

embryogenesis. However, its accumulation at the furrow canal in wild type embryos during 

cellularisation indicates that Eps15 fulfils a role in endocytosis also in this system because other 

endocytic proteins were shown to localise to the furrow canal as well (Lee & Harris 2014; Sokac 

& Wieschaus 2008a). As a protein involved in endocytosis, Eps15 could be important for 

recycling of various proteins. Its co-localisation with Slam at the furrow canal and in vesicular 

structures indicates a possible role for Eps15 in Slam recycling. As revealed by FRAP experiments, 

Slam localisation to the furrow canal is highly stable apart from onset of cellularisation (Acharya 
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et al. 2014). In contrast, the PDZ domain of RhoGEF2 and Amphiphysin were highly dynamic 

throughout cellularisation. The specific dynamics of these proteins must be controlled by a 

mechanism that recycles them away and back to the furrow canal. Clathrin-dependent 

endocytosis and, therefore, the endocytic protein Eps15 are possibly involved in the recycling 

away part of this mechanism. How the endocytic machinery is able to ensure the specific 

dynamics of each protein at the furrow canal remains to be investigated. However, the endocytic 

machinery was shown to be highly selective for transmembrane proteins with certain motifs 

(Whitney et al. 1995). Therefore, it could provide a suitable mechanism for the timely and 

spatially restricted transport of specific proteins away from the furrow canal during 

cellularisation. However, Eps15 is not restricted to the furrow canal but also localises to lateral 

membranes during late stages of cellularisation. This might indicate that endocytosis also takes 

place at lateral membranes which would suggest a different set of targets for the endocytic 

machinery. In the context of cellularisation phenotypes in dop mutant embryos, impaired 

endocytosis at the furrow canal could lead to broadening of the furrow canal due to withholding 

of membrane material and connected proteins. However, Eps15 localisation is also broadened 

at the furrow canal and not absent from this structure as revealed in this thesis, thus, there is 

no direct evidence so far that endocytosis is impaired. To test whether there is a defect in 

endocytosis, localisation of other endocytic proteins should be analysed in wild type and dop 

mutants. 

 

 Experiments to test furrow canal formation 

Furrow canal formation was discovered as the first morphological phenotype in dop mutants. 

Additionally, Slam and Eps15, two proteins that localise to this structure, were shown to be the 

first proteins that mislocalise in dop mutants. It is not known in detail how the membrane is 

affected by the dop mutation. Most furrow canal markers are mislocalised in dop mutants in the 

same way, showing a broadened localisation and failing to focus into a narrow furrow structure. 
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The question to address is what the protein mislocalisations are based on. It might be that a 

normal furrow canal structure is built in dop mutants which does not resemble the broadened 

phenotype of most of its marker proteins. However, it is more likely that also the membrane 

shows a broadened phenotype. Several proteins that localise to the furrow canal are known to 

interact with membranes such as Slam and Dah (Wenzl et al. 2010; Zhang et al. 2000). Therefore, 

they should either be influenced by the membrane shape or themselves influencing the shape 

of the membrane. It would be interesting to know at what point the membrane gets misshaped 

and which proteins mislocalise before this event. These proteins are most likely influencing 

membrane invagination during furrow formation. A tool to label membranes is the 

phosphatidylinositol-3,4,5-P3 (PI(3,4,5)P3)-binding domain (PH domain) of the General receptor 

for phosphoinositides-1 (GRP1) which could be particularly useful because it can be used for live-

imaging (Dasgupta et al. 2009). This domain of the GRP1 protein is available fused to GFP and 

under control of the UAS promoter. 

The questions to address in this experiment are the following: Does Dop possibly affect a protein 

that links membrane and other furrow canal proteins? Or does Dop affect the localisation of a 

protein that would be important for furrow canal membrane invagination and shaping? 

In case that the membrane at the furrow canal does not resemble the broadened shape of its 

markers during cellularisation, all the proteins that could be important for linking membrane 

and other furrow canal proteins should be looked at in detail. The protein Dah is a good 

candidate in this case because of its proposed function as actin-membrane linker (as discussed 

above).  

In case that the membrane is broadened, it needs to be investigated what proteins could be 

responsible. Different proteins were shown to cause a furrow canal broadening when their 

function is impaired.  
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For example, steppke mutants and mutants affecting the Steppke interactor Stepping stone 

show broadened furrows during cellularisation (Lee & Harris 2013; Liu et al. 2014). Steppke is 

important to increase endocytosis by controlling F-actin networks at the plasma membrane. It 

does so by reducing Rho1 protein levels. Thus, looking at localisation of Steppke in dop mutants 

and also looking in detail at Rho1 levels could give a hint on a mechanism by which the shape of 

the furrow canal is altered in dop mutants. 

A broadened phenotype of the furrow canal in mutants of the endocytic regulator Steppke 

indicated that a reduction in endocytosis can indeed lead to furrow canal broadening. This 

possibility was discussed also in the context of Eps15 mislocalisation/broadening at the furrow 

canal. Besides Steppke and Eps15, also many other factors could lead to an impaired 

endocytosis.  

One of these factors is Amphiphysin (Amph), a BAR domain-containing protein found to act in 

endocytosis during cellularisation by forming tubules at the furrow canal that can be pinched-

off by dynamin (Su et al. 2013; Takei et al. 1999). These furrow tip tubules are indicators for the 

efficiency of endocytosis at the furrow canal and can be marked by antibodies directed against 

Amph (Sokac & Wieschaus 2008a). Thus, it would be interesting to test if any difference can be 

detected in their appearance in dop mutants and wild type embryos. High resolution microscopy 

is required for this experiment because the tip tubules are very thin. 

Additionally, also impairment of Kinesin- or Dynein-dependent transport along microtubules 

could result in a defect of endocytosis by a failure to transport the vesicles away from the furrow 

canal, suggesting yet another link between Dop function and function of microtubule motor 

proteins. 

Also a mutation in bottleneck (bnk), one of the early zygotic genes, causes a broadened furrow 

canal phenotype by premature basal closure due to untimely recruitment of Myosin II to the 

furrow canal (Schejter & Wieschaus 1993a; Theurkauf 1994). This basal closure is brought about 
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by actin and myosin contractions and causes furrow canal broadening resembling the furrow 

canal phenotype in dop mutants (Reversi et al. 2014). It might be that Dop affects Bnk function 

and, thereby, the shape of the furrow canal. In the same context, it would be possible that Dop 

affects the levels of PI(3,4,5)P3 at the furrow membrane which were shown to stabilise Bnk at 

the furrows and counteract actomyosin contractility (Reversi et al. 2014). 

The lipid composition of the plasma membrane is of great importance for different processes in 

the cell, for example cell migration, proliferation, differentiation and intracellular trafficking (Xi 

et al. 2014). The formation of cortical domains with distinct lipid compositions was shown to be 

critical for cytokinesis in different organisms (Albertson et al. 2005; Logan & Mandato 2006; 

Wong et al. 2007). Especially the control of two phosphoinositides, PI(4,5)P2 and PI(3,4,5)P3, as 

well as the control of proteins important for their generation were shown to be essential for 

actin network organisation and furrow stability as well as furrow ingression during cytokinesis 

(Logan & Mandato 2006; Wong et al. 2007; Xi et al. 2014; Reversi et al. 2014; Wong et al. 2005). 

In Drosophila, PI(4,5)P2 impairment and mutants for PI4K, important for PI(4,5)P2 generation, 

led to furrow regression and defective cytokinesis in male germ cells (Wong et al. 2005; Brill et 

al. 2000). In contrast, PI(3,4,5)P3 and PI3K were shown to counteract PI(4,5)P2 function at the 

furrow and seem to be down-regulated during furrow ingression in cytokinesis (Logan & 

Mandato 2006). Defects in PI(4,5)P2 generation in Drosophila embryos mutant for pten resulted 

in actin organisation defects, defects in nuclear migration and divisions during syncytial cycles, 

and defects in pole cell formation (von Stein et al. 2005). One study analyses PI(4,5)P2 and 

PI(3,4,5)P3 functions during Drosophila cellularisation (Reversi et al. 2014). This study suggests 

that high levels of PI(4,5)P2 are required for actomyosin assembly and contractility during basal 

closure. During slow phase of cellularisation, PI(4,5)P2 function is counteracted by PI(3,4,5)P3 

and Bnk that are both required to maintain the actin hexagonal arrays, to restrict actomyosin 

constriction and to prevent plasma membrane lateral expansion. If the balance of both 

phosphoinositides would be disturbed by dop mutations, this could possibly lead to the 

broadening of the furrow canal and associated proteins during cellularisation. Since the lipid 
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composition is also important for intracellular transport processes, an overall change of this lipid 

composition could also affect vesicle distribution which was defective as well in dop mutants. 

Earlier studies in our lab show that the apical microvilli pool at the cortical plasma membrane 

does not diminish during the course of cellularisation in dop mutant embryos the way it does in 

wild type embryos (Hain et al. 2014). This microvilli pool serves as membrane reservoir for 

furrow invagination (Figard et al. 2013; Figard et al. 2016), its persistence in dop mutants 

suggests that a mechanism is defective that would redistribute the microvilli membrane into the 

furrow. It could also suggest that the lipid composition might be affected in dop mutants due to 

a failure in a mechanism that regulates lipid transport and, thereby, lipid distribution along the 

different plasma membrane compartments. To test this possibility, high resolution analysis of 

differential lipid distribution would need to be performed to see a possible difference in specific 

lipid distributions between wild type and dop mutant embryos. 

 

 Overall follicle cell morphogenesis is not dependent on Dop function 

Previously, it was discussed that the first F-actin defect in complete loss of function dop10 mutant 

embryos appeared in cellularisation. However, Utrophin-GFP live-imaging revealed that in 50% 

of dop1/dop10 transheterozygous mutant embryos defects were visible already during syncytial 

divisions. These defects were not visible in complete loss-of-function dop10 mutants. One 

difference between hypomorphic dop1/dop10 transheterozygous mutant and dop10 germ line 

clone-derived mutant embryos that could explain an earlier defect in the hypomorphic mutant 

would be a somatic follicle cell defect caused by the dop mutation in the mother. Follicle cells 

are somatic maternal tissue that surround the germ cells in the egg chambers. They are 

responsible for the production and secretion of yolk proteins and egg shell components such as 

the vitelline membrane and the chorion (Pascucci et al. 1996). The chorion includes specific 

structures such as the dorsal appendages, which are important for gas exchange between 

embryo and environment, the operculum, which represents a weakened region at the anterior 
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of the eggshell through which the larvae can hatch, and the anterior micropyle, which functions 

as a sperm entry point during fertilisation (Horne-Badovinac & Bilder 2005). Apart from their 

importance to produce and secrete these important extra-embryonic layers, follicle cells are also 

required to mediate signalling from the oocyte in order to determine the embryonic body axes. 

Therefore, a mutation in the follicle cells impairing their function could affect later on the 

development of the germ line-derived embryo and, maybe, specifically affect cortical structures 

in the embryo that are immediately underlying the vitelline membrane and chorion. 

Hypothetically, a malformation of these extra-embryonic layers due to follicle cell defects could 

possibly affect the F-actin cytoskeleton at the cortex of the embryos in a way seen in 

hypomorphic dop1/dop10 transheterozygous mutant embryos. If the syncytial defect seen in 

these dop1/dop10 mutants is based on a defect in follicle cells, these cells must have a 

requirement of Dop function for their own function. However, induced follicle cell clones 

homozygous for dop10 did not show an overall difference in neither morphology nor microtubule 

nor F-actin network abundance or polarity compared to neighbouring wild type follicle cells. 

Thus, follicle cell formation and presumably function did not seem to depend on Dop function. 

However, a possible protein or mRNA perdurance in the mutant cells cannot be ruled out. 

Follicle clones that did not express GFP were analysed which should be homozygous for the 

dop10 allele and, therefore, unable to express a functional Dop protein themselves. However, it 

is not known how stable the Dop protein is. The cell the mutant cell derives from was 

heterozygous for dop and might have expressed the protein or dop mRNA in high abundance. 

Thereby, the mutant cell might have inherited a lot of functional Dop protein or mRNA. 

Depending on how stable the protein/mRNA is, this inherited Dop protein/mRNA might mask 

defects that could be detected in follicle cells derived from ovaries of dop mutant mothers. Two 

ways exist to test for a possible masking defect in this experiment. One would use a functional 

Drop out antibody to test for the abundance of Dop protein in the mutant follicle cells. 

Unfortunately, the antibodies against Dop generated in the past showed low specificity for the 

Dop protein and cannot be used. Another way of validating that Dop protein is not required for 
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follicle cell formation is to look at follicle cells in ovaries derived from dop1/dop10 mutant 

mothers. Here, all cells are mutant for dop. However, a problem with this experiment might be 

that there is no internal wild type control available in these ovaries and mutant follicle cells have 

to be compared with follicle cells of ovaries derived from wild type females. 

 

 Dop is required for membrane invagination during slow as well as fast phase of 

cellularisation 

dop complete loss-of-function mutant embryos derived from germ line clones showed F-actin 

defects only during cellularisation but not during syncytial divisions and the first protein 

localisation defects were seen with anti-Slam and anti-Eps15 stainings on embryos just prior to 

cellularisation. However, the most striking result obtained by the germ line clone analysis was 

the effect on membrane invagination. Previous results on dop hypomorphic mutants showed a 

defect on membrane invagination that was visible only during slow phase of cellularisation 

resulting in membrane invagination of between 20 and 25 μm by the end of cellularisation 

(Meyer et al. 2006; Hain et al. 2014). In contrast, complete loss-of-function dop10 mutants 

derived from germ line clones displayed strong defects with membrane growth of just a few μm 

by the end of the whole cellularisation process. This result clearly shows that Dop function 

directly or indirectly affects the membrane invagination process during slow as well as fast phase 

of cellularisation. However, it might be as proposed for hypomorphic mutants of dop that also 

the complete loss-of-function dop mutant only affects the slow phase of membrane 

invagination. In this case, a much stronger inhibition of slow phase might be delaying fast phase 

to an extent that gastrulation movements start before fast phase can occur. 

How Dop affects membrane invagination during cellularisation is not known. As previously 

discussed, Dop seems to be required for formation and specification of the furrow canal which 

is a prerequisite for furrow invagination (Crawford et al. 1998; Grosshans et al. 2005; Acharya et 

al. 2014). Thus, Dop could affect membrane invagination indirectly by affecting the furrow canal. 
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Additionally, data presented in this thesis obtained from hypomorphic as well as complete loss-

of-function dop mutants show a requirement for Dop function in localisation and distribution of 

Golgi and recycling endosomal vesicles. Both Golgi and recycling endosomal pathways were 

shown to be required as membrane supply and, as a result, for membrane invagination during 

cellularisation (Lecuit & Wieschaus 2000; Papoulas et al. 2005; Riggs et al. 2007; Sisson et al. 

2000; Pelissier et al. 2003; Figard et al. 2016). Thus, the impairment of both pathways could be 

the cause for the membrane invagination defect seen in dop mutants. 

Moreover, the apical membrane reservoir stored as microvilli at the beginning of cellularisation 

persists throughout cellularisation in dop mutants, which indicates that dop mutants are 

defective in a mechanism that redistributes membrane from the apical reservoir to the 

invaginating furrows (Hain et al. 2014; Figard et al. 2016; Fabrowski et al. 2013). These data also 

indicate that vesicle trafficking might be impaired in dop mutants. 

 

 Dop function is required for vesicle transport along microtubules 

Both hypomorphic and complete loss-of-function mutants for dop displayed defects in Golgi as 

well as recycling endosome localisation and distribution. However, the defects observed for 

either of these organelles were very different. Nuf (Nuclear fallout) and Rab11, two components 

of the recycling endosomal pathway, showed a tight localisation at the centrosomes and, 

therefore, the microtubule minus-ends in dop mutant embryos rather than a more dispersed 

localisation around the centrosomes and supposedly along microtubules. In contrast, Lava lamp 

(Lva) and Golgi protein 120 kDa (gp120), two markers of Golgi vesicle membranes, showed 

reduced apical and, thus, less microtubule minus-end localisation during cellularisation in dop 

mutant embryos compared to wild type. As a result, the defect observed for endosomal 

transport looks like a defect in Kinesin-dependent transport away from the centrosomes 

whereas the defect in Golgi localisation looks like a defect in Dynein-dependent transport.  
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A general defect affecting microtubules is unlikely to cause these phenotypes because overall 

microtubule formation, length and polarity seemed not to be affected in dop mutants as 

revealed by live-imaging using the plus-end binding protein EB1 fused to GFP (this thesis) and 

previous stainings against β-tubulin (Hain et al. 2014). 

 

 Proteins that could be responsible for recycling endosome localisation defects in dop 

mutants 

The Nuf and Rab11 localisation in dop mutants is more focussed to the centrosomal area and, 

therefore, the microtubule minus-ends. This might be due to a defect in transporting recycling 

endosome vesicles away from the centrosomes and to the plasma membrane for exocytosis 

which is presumably dependent on Kinesin function (Riggs et al. 2003; Riggs et al. 2007). Many 

different Kinesins fulfil distinct functions (Höök & Vallee 2006). Maybe Dop affects only a subset 

of Kinesins during cellularisation and, thereby, only a subset of Kinesin overall function. The 

mitotic Kinesin-6 (called Pav-KLP in Drosophila) is the most promising candidate of the Kinesins 

to be affected by Dop function: mutants of Pav-KLP show highly reduced membrane 

invagination, reduced F-actin at the furrow canal, misaligned and falling out nuclei as well as an 

effect on the microtubule basket structure surrounding the nuclei during cellularisation, some 

of these phenotypes resembling phenotypes in dop mutants (Sommi et al. 2010; Hain et al. 

2014). Additionally, Pav-KLP inhibition impairs Nuf distribution during syncytial divisions similar 

to how dop mutants impair Nuf and Rab11 distribution during cellularisation. The Nuf phenotype 

in Pav-KLP impaired embryos is caused by an inhibition of the microtubule plus-end transport of 

endosomal vesicles for exocytosis and possibly actin or actin regulators along astral 

microtubules to the plasma membrane. In contrast, the minus-end directed transport by Dynein 

motor proteins seems to be unimpaired in Pav-KLP impaired embryos. Antibodies against Pav-

KLP could be used to look if the localisation or maybe the concentration of this particular Kinesin 

is affected in dop mutant embryos. It might be that Dynein is required to transport different 
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cargoes to microtubule minus-ends at the centrosomes and from there Kinesin could be 

responsible to transport the cargoes to the cortex through astral microtubules. However, in this 

model the question remains why only the recycling endosomes so far showed a tight localisation 

around the centrosomes, thus, the microtubule minus-ends and other possible cargoes like e.g. 

F-actin and other furrow markers like Slam, Patj and Eps15 localise to the cortex away from 

centrosomes at the microtubule plus-ends. Their plus-end localisation speaks against a Pav-KLP 

involvement in the localisation phenotypes in dop mutants. However, possibly, different 

Kinesins are responsible for endosomal vesicle transport and the localisation of the furrow 

markers and only the Kinesin required for endosomal vesicle transport is affected by Dop. 

Apart from Kinesin, also Rab11 malfunction could lead to the observed Nuf/Rab11 phenotype. 

In contrast to the Arfophilin Nuf, Rab11 is not required for vesicle biogenesis but for targeting 

of recycling endosomal vesicles (Hickson et al. 2003; Riggs et al. 2007). Thus, it might be that 

Rab11 malfunction could lead to a recycling endosome localisation defect as seen in dop 

mutants. In case that Dop function affects Rab11 function, in dop mutants Rab11 might fail to 

target the recycling endosomal vesicles to the plasma membrane. In favour of a link between 

Dop and Rab11 function is the observation that Slam protein shows the same broadening at the 

furrow canal in rab11 mutants as observed in dop mutants (Pelissier et al. 2003; Hain et al. 2014). 

Additionally, Rab11 is required for membrane growth during cellularisation, another function it 

has in common with Dop. Maybe Rab11 function is required for a Kinesin-dependent transport 

away from the centrosomes which is counteracted by the Nuf-mediated Dynein-dependent 

transport to the centrosomes (Riggs et al. 2007). 

In addition, the Nuf and Rab11 phenotypes in dop mutants look similar to shibire/dynamin 

mutants with slightly bigger but less dispersed recycling endosomes around the centrosomes 

(Pelissier et al. 2003). Furthermore, the transmembrane protein Neurotactin (Nrt) is not inserted 

into the plasma membrane in either shibire or dop mutants. During cellularisation, Nrt is newly 

synthesised in the endoplasmic reticulum (Lecuit & Wieschaus 2000; Pelissier et al. 2003; 
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Hortsch et al. 1990). From there it is transported over the Golgi to the early endosome and over 

the recycling endosome to the plasma membrane. Afterwards, it accumulates by a yet unknown 

mechanism at the newly forming lateral membrane. In dop mutants, Nrt shows abnormal apical 

aggregations similar to shibire mutants, which could well be co-localising with Rab11/Nuf-

positive endosomes indicating that Nrt gets trapped in the recycling endosome (Pelissier et al. 

2003; Hain et al. 2014). Thus, Dynamin is another important factor to look at in dop mutants. 

However, it must be taken into account that Dynamin functions in several different vesicle 

formation processes in the cell. Dynamin is also required for pinching off vesicles at the trans-

Golgi network in mammalian cells, in vesicle formation at the plasma membrane and at the 

endoplasmic reticulum (van Dam & Stoorvogel 2002; McNiven 1998; Yoon et al. 1998). It needs 

to be determined whether Dop affects dynamin function at either or all of these sites of vesicle 

formation. 

To test which function of the Golgi and/or recycling endosomal pathway is impaired in dop 

mutants, it would be interesting to go back to Nrt localisation analysis. By looking in detail at the 

localisation of Nrt in dop mutant embryos and maybe by performing co-labelling with 

endoplasmic reticulum-, Golgi- and recycling endosome-markers, this could provide a hint on 

the stage of the Nrt transport process in which a defect occurs in dop mutants. If Dynamin 

function is affected at any stage of this process, an accumulation of Nrt would be expected in 

either of the subcellular organelles endoplasmic reticulum, Golgi or recycling endosome. In case 

that Rab11 function is affected, Nrt would be expected to either accumulate in a subcellular 

recycling endosome or to disperse and not being targeted to the plasma membrane. If either 

Dynein or Kinesin transport is affected, an accumulation of Nrt should be visible at either plus- 

or minus-ends of microtubules. Analysing the specific localisations of either of these proteins in 

wild type and dop mutants could provide further hints on whether their function is disturbed. 
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 Dynein as possible link between Dop and cellularisation 

Dynein-dependent transport is required for lipid clouding, Bazooka (Baz) transport and mRNA 

transport, processes which are defective in dop mutant embryos (Hain et al. 2014; Meyer et al. 

2006; Harris & Peifer 2005). In addition, Dynein impairment could also be responsible for dop 

mutant F-actin localisation defects since Dynein is required for transport of actin regulators and 

possibly F-actin itself (Cao et al. 2008; Acharya et al. 2014; Rothwell et al. 1999; Albertson et al. 

2008). Also, the defect seen in dop mutant embryos showing a reduction in the apical 

localisation of Golgi vesicles during cellularisation could be based on an impairment of Dynein-

dependent transport from the basal microtubule plus-ends in the interior of the embryo to the 

apical microtubule minus-ends near the embryo cortex. Supporting this hypothesis, previous 

evidence suggests that Golgi vesicle transport is Dynein-dependent during cellularisation 

(Papoulas et al. 2005). Moreover, Papoulas et al., 2005 observed that not only Golgi transport 

but also furrow formation are dependent on Dynein, another clear phenotype visible in dop 

mutant embryos. Thus, it is likely that Dynein transport is dependent on Dop function and that 

several phenotypes visible in dop mutants are based on a malfunction of Dynein-dependent 

transport, including the microtubule minus-end directed transport of Golgi vesicles seen in this 

thesis. 

 

 Dynein and Kinesin localisation in dop mutants 

A first attempt has been performed in this thesis to elucidate the question how Dynein and 

Kinesin are localised in dop mutants in comparison to wild type embryos. However, this 

experiment could not answer this question because the antibody staining only showed punctate 

localisations of Dynein and Kinesin heavy chains in both wild type and dop mutant embryos. No 

clear accumulations of either protein could be identified in dop mutants due to high background 

signal and maybe low protein specificity of either antibody. A weak accumulation of Dynein was 

detected in wild type embryos, co-localising with Eps15 at the furrow canal. This could indicate 
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a possible dependence of Eps15 transport on Dynein function. However, further experiments 

have to be performed using other tools to image Dynein and Kinesin in wild type and dop mutant 

embryos to determine if the localisation of either protein complex is disturbed in dop mutants. 

 

 Dynein inhibition attempts to test for Dynein requirements during cellularisation 

All dop mutant phenotypes with a clear link to Dynein function such as lipid droplet clouding as 

well as Baz and mRNA transport do not have a known direct implication for early cellularisation 

morphological processes which are also affected in dop mutants such as furrow canal formation 

and membrane invagination. Other phenotypes with link to cellularisation like recycling 

endosome localisation are unlikely to be caused by Dynein impairment in dop mutants because 

of their observed microtubule minus-end localisation. The only phenotype with clear link 

between Dynein and an important cellular process during cellularisation in dop mutants is Golgi 

transport which was shown to be required for membrane invagination (Lecuit & Wieschaus 

2000; Papoulas et al. 2005; Sisson et al. 2000). The Dynein complex function is essential for cell 

viability and it is thought to act in more transport processes than the previously described Golgi, 

Baz, mRNA and lipid droplet transport and comprises a much more global role during 

cellularisation (Gepner et al. 1996). However, not much is known about its actual function during 

the cellularisation process. 

Apart from the described phenotypic links connecting dop mutations and Dynein malfunctions, 

also biochemical analysis suggested an effect of Dop function on Dynein-dependent transport 

(Hain et al. 2014; Langlands 2012). 2D gel electrophoresis showed that Dynein intermediate 

chain phosphorylation is dependent on Dop function (Hain et al. 2014). Moreover, a SILAC 

screen identified Dynein light intermediate chain as possible (direct or indirect) phosphorylation 

target of Dop (Langlands 2012). As a further support for Dynein as functional target of Dop, 

genetic interaction studies with Dynein (short wing1) and Dynactin (Glued1) subunits showed 

enhanced dop1 phenotypes when combined with this dop mutant allele (Hain et al. 2014). 



Discussion|139 
 
To elucidate the requirement for Dynein in cellularisation, the establishment of an assay to 

inhibit Dynein function specifically during cellularisation was attempted. As previously 

mentioned, Dynein is needed for cell viability and as well for proper oocyte and embryo 

development (Gepner et al. 1996; Mische et al. 2008; Januschke et al. 2002; Robinson et al. 

1999). Thus, mutants for important Dynein subunits would impair its function too much to 

ensure embryo development up to cellularisation. Other strategies were used to find conditions 

to analyse Dynein impairment consequences specifically during cellularisation. 

 

 Dynamitin overexpression as attempt to inhibit Dynein function 

The first attempt used Dynamitin overexpression to inhibit Dynein. Dynamitin is a subunit of the 

Dynactin complex which is important for Dynein overall functions in the cell (Schroer 2004). 

Overexpression of Dynamitin was shown to result in Dynactin complex disassembly and, 

thereby, an inhibition of Dynein function (LaMonte et al. 2002; Echeverri et al. 1996; Januschke 

et al. 2002). The experiment was set up with the UAS::(human)Dynamitin construct carried by 

the father and a single or double maternal α-tubulin Gal4 driver carried by the mother. This 

experiment set-up should make use of the Gal4 protein that is provided by the mother in the 

oocyte and early embryo and which should be able to activate Dynamitin expression with the 

construct provided by the father just at the maternal-to-zygotic transition.  

The maternal-to-zygotic transition is the first phase where a bulk of zygotic genes get expressed 

which are important for further embryo development after maternally provided components 

get degraded (Tadros et al. 2007; Langley et al. 2014). It takes place just before cellularisation 

which is also the first developmental stage that relies upon zygotic gene expression (Tadros et 

al. 2007). The set-up of the cross was chosen to make sure that Dynamitin gets expressed and 

inhibits Dynein specifically during cellularisation. The aim was to avoid an expression of 

Dynamitin and inhibition of Dynein during earlier stages to not interfere with the essential 
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function of Dynein for oocyte specification and syncytial divisions (Januschke et al. 2002; 

Robinson et al. 1999).  

Unfortunately, neither expression with a single α-tubulin Gal4 driver nor expression with a 

double α-tubulin Gal4 driver showed strong defects during cellularisation or reduced overall 

embryo viability. Two possible explanations for this result are that either Dynamitin was not 

expressed using the maternal α-tubulin Gal4 driver or it did not inhibit Dynein function in the 

system. The latter explanation is unlikely due to the many studies using Dynamitin as Dynein 

inhibitor, especially, one study which uses Dynamitin as Dynein inhibitor in the Drosophila 

oocyte and, therefore, a system closely related to Drosophila embryos (Echeverri et al. 1996; 

Burkhardt et al. 1997; LaMonte et al. 2002; Januschke et al. 2002). It is more likely that Dynamitin 

was not expressed in the system or not to a sufficient level. It might be that the UAS construct 

was not accessible for the Gal4 protein at the maternal-to-zygotic transition maybe due to its 

DNA packing status. Even if the DNA was accessible during later stages of embryogenesis, the 

Gal4 protein might have been degraded by that point which would explain the overall embryo 

viability throughout embryogenesis. Even though Dynamitin in the construct was fused to a myc-

tag, the expression has not been verified. Using an antibody specific for this myc tag would 

answer if Dynamitin gets expressed in the chosen experiment set-up.  

 

 Ciliobrevin D injections as attempt to inhibit Dynein function 

A different approach to inhibit Dynein specifically during cellularisation used the Dynein 

inhibitor molecule Ciliobrevin D. Ciliobrevin D inhibits Dynein by blocking its ATP binding site 

(Firestone et al. 2012). It was used to inhibit Dynein in different cell types (murine NIH-3T3, 

Xenopus melanophores, Drosophila S2 cells, murine IMCD3 cells) as well as in mouse oocytes 

and Drosophila embryos during late embryogenesis (Hyman et al. 2009; Ye et al. 2013; Łuksza et 

al. 2013; Le Droguen et al. 2015).  
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In this experiment, Ciliobrevin D from two different sources were used. Injection of Ciliobrevin 

D donated by Jason Swedlow’s lab (Centre for Gene Regulation and Expression, Dundee) showed 

overall embryo viability and no effects on cellularisation (data not shown). Personal 

communication (Katharina Schleicher, Jason Swedlow lab) further elucidated that HeLa cells 

incubated with this specific Ciliobrevin D did also not show a Dynein inhibition effect. Thus, it 

was assumed that the Ciliobrevin from this particular source is defective. Ciliobrevin D from the 

James Chen lab was further tested. Also injection of this Ciliobrevin D did not show a significant 

defect during cellularisation and embryos were seen to develop until late embryogenesis. This 

could be due to Ciliobrevin D not being functional in early embryos. During late embryogenesis 

(stages 14 and 16), Ciliobrevin D was shown to inhibit Dynein-dependent localisation of recycling 

endosomes, as well as Baz and E-cadherin in tracheal cells (Le Droguen et al. 2015). In this paper, 

embryos were incubated for 3 hours with Ciliobrevin D before fixation. This protocol could not 

be applied to inhibit Dynein during cellularisation because the incubation time alone exceeded 

the time between egg laying and cellularisation. However, the question remains why injection 

of Ciliobrevin D could not affect Dynein function in the early embryo. Injection of a substance 

into an embryo guarantees the uptake and is an even more powerful method than incubation 

with this particular substance. Maybe the injected Ciliobrevin D was not functional in embryos 

at onset of cellularisation because it got stored away and degraded in the many yolk bodies in 

the centre of the embryo. These yolk bodies are easily accessible and plentiful at this stage of 

embryogenesis but diminish during the course of embryogenesis (Callaini et al. 1990). 

Both Ciliobrevin D- and DMSO-injected embryos displayed multipolar spindle arrays, a defect 

reported for Dynein mutant embryos (Robinson et al. 1999). This made it impossible to test for 

Ciliobrevin D effects in early embryos. Dimethyl sulfoxide (DMSO), which is widely used in cell 

biological applications, was used in this case as a solvent which is in general well-tolerated by 

cells even if it has many characteristics that can affect cells and tissues (Yu & Quinn 1994). It is 

not possible to identify if the injection of DMSO into embryos during syncytial divisions caused 
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the spindle array defects that were observed or if the injections themselves caused these 

defects. 

 

 Dynein heavy chain RNAi expression as attempt to inhibit Dynein function 

A third attempt to impair Dynein function in early embryos used RNAi (RNA interference) 

directed against Dynein heavy chain 64C transcripts. The gene encoding for Dhc64C was shown 

to be essential for Drosophila development starting from oogenesis and it gets maternally 

provided and expressed throughout embryogenesis (Gepner et al. 1996; Rasmusson et al. 1994; 

McGrail & Hays 1997). The aim of this experiment was to express RNAi against Dhc64C 

transcripts maternally, thereby inhibiting Dynein function from oogenesis onwards but finding 

a condition by which development during oogenesis and embryogenesis up to cellularisation is 

overall unimpaired, followed by looking for possible defects that occur during cellularisation due 

to Dynein impairment.  

Embryos expressing the Dhc64CGL00543 RNAi construct on the second chromosome showed an 

about 16-fold reduction in the hatching rate compared to wild type embryos This suggests that 

Dynein is impaired in these embryos to some extent and the 4.5% of embryos that hatched 

reflect a low escaper rate. As a next step it would be interesting to look for embryos that show 

an overall normal development up to cellularisation and to see if they display any defects during 

cellularisation that could be based on Dynein malfunction. Expression of Dhc64CGL00543 RNAi 

could provide an important tool to investigate Dynein-dependent processes essential for 

cellularisation. 

 

 Studies on Dlic as possible Dop target 

As previously mentioned, a SILAC screen identified Dynein light intermediate chain (Dlic), a 

subunit of the Dynein complex, as possible phosphorylation target of Dop (Langlands 2012). In 
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more detail, phosphorylation of Serine 401 (S401) in Dlic seemed to depend on Dop function. 

Therefore, it was interesting to see on one hand how Dlic functions and is localised in dop mutant 

embryos in comparison to wild type and on the other hand if impairment of the phosphorylation 

state of this particular Serine 401 could change its function and/or localisation.  

dlic is the only gene encoding a Light intermediate chain Dynein-subunit in Drosophila (Mische 

et al. 2008). Thus, this subunit can be easily modified using genetic techniques. Three different 

forms of Dlic were created and cloned to test for its overall function and the function of the 

phosphorylation state of its Serine 401. A wild type Dlic with no amino acid changes, a non-

phosphorylatable form of Dlic S401 (S401A) and a phospho-mimic form of Dlic S401 (S401D) 

were each fused to GFP and maternally expressed in wild type and dop mutant embryos. 

The localisation of the wild type DlicGFP version was highly similar in wild type and dop mutants 

both during syncytial divisions and during cellularisation. The only detectable difference 

concerned an increase in DlicGFP punctae numbers in dop mutants compared to wild type during 

cellularisation. It could not be determined what these punctate structures are. They might be 

accumulations of excessive DlicGFP protein. However, this would not explain why more of these 

structures are present in dop mutant embryos. One hypothesis is that these punctae are part of 

a Dynein-dependent transport pathway which either terminates or commences from the furrow 

canal. This hypothesis would explain why the punctae move into the interior in wild type 

embryos presumably together with the furrow canal. The presumed localisation to the furrow 

canal would suggest that the punctate structures are part of the endocytic machinery which 

localises to this structure (Lee & Harris 2014; Sokac & Wieschaus 2008a). It might be that the 

number in DlicGFP-positive punctae is increased in dop mutant embryos due to a failure of them 

to fuse with their target structure or to get transported away from the furrow canal. A more 

thorough understanding of Golgi and endosomal pathway defects in dop mutants as discussed 

earlier might help to explain the vesicular accumulation phenotype seen in this experiment. 
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Comparison of the localisation of both phospho-mutant and wild type versions of DlicGFP could 

not show any differences. Neither in wild type nor in dop mutant embryos did any of the three 

DlicGFP versions display a localisation distinct from the other versions. This suggests that the 

phosphorylation state of Serine 401 has no major impact on Dlic localisation. It also suggests 

that if any of the phenotypes visible in dop mutants are caused by a reduction in Serine 401 

phosphorylation, these phenotypes are not caused by a mislocalisation of Dlic. Still, 

phosphorylation of Serine 401 could be important for the overall function of Dlic without 

affecting its localisation. 

To test the possibility that S401 phosphorylation affects overall Dynein function, embryo 

hatching rates were determined for each DlicGFP version expressed in wild type and dop mutant 

embryos. In wild type background, the hatching rates were not significantly altered in the 

embryos expressing either of the three DlicGFP versions. However, in this context it cannot be 

excluded that effects of the DlicGFP phospho-mutant versions are masked by the functional wild 

type endogenous version being present as well.  

The dop1/dop10 mutation leads to lethality in all embryos, and the lethality was not rescued by 

expressing the wild type version of DlicGFP under maternal α-tubulin driver control. In contrast, 

expression of the phospho-mimic version of DlicGFP showed a hatching rate of embryos with a 

dop1/dop10 background that was highly significant compared to the wild type version suggesting 

that the phosphorylation of S401 is indeed important for embryo survival and that dop lethality 

is based on impaired phosphorylation of Dlic S401. The result involves as well that cellularisation 

can be rescued (at least to a certain extent) in dop mutant embryos by the phospho-mimic 

version of Dlic S401, otherwise no embryo would survive. Detailed analysis should follow now 

to elucidate which of the many different dop phenotypes during cellularisation are rescued by 

the expression of the phospho-mimic S401D Dlic version. 

Surprisingly, also expression of the non-phosphorylatable version of DlicGFP was able to rescue 

embryo lethality to a low and not statistical significant percentage. This result suggests that also 
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the non-phosphorylatable form of Dlic S401 might have a hitherto inexplicable rescue function 

in dop mutants which needs to be further investigated. 

 

 Further analysis of the rescue potential of the different Dlic S401 versions 

To rescue phenotypes of dop mutants as suggested for hatching rates in the last experiment, 

the cloned DlicGFP versions must be able to take over endogenous Dlic function in a background 

where this Dlic function is disturbed. The ability of each DlicGFP version created in this thesis to 

take over endogenous Dlic function in dlic mutants was therefore tested. However, no rescue 

could be detected with either phospho-mutant Dlic or wild type Dlic fused to GFP and expressed 

with an ubiquitin-Gal4 driver. This driver was chosen because it drives expression throughout 

Drosophila development and in all cells (Bloomington Stock Report). However, it might be that 

the rate of expression was too low to substitute for Dlic function. It could also be that the fusion 

of the GFP molecule interferes with the Dlic function. To overcome this problem a 

GGGGSGGGGSGGGGS-linker between Dlic and GFP was used to separate both proteins from 

each other. This linker was used in a previous transgenic construct fusing Dlic and GFP by Tadashi 

Uemura’s lab and the different versions of Dlic were fused to GFP by using the vector provided 

by his lab (Satoh et al. 2008). The DlicGFP construct created in Tadashi Uemura’s lab was shown 

to rescue arborisation phenotypes in neurons which were based on Dynein functional 

impairment caused by a mutation in dlic. The rescue experiment needs to be repeated using a 

different driver and using the DlicGFP construct from Tadashi Uemura’s lab as positive control. 

 

 Dop effects in view of MAST kinase functions 

Drop out is the single homologue in Drosophila of the four MAST (Microtubule-associated 

serine/threonine) kinases in human. The human MAST kinases were associated with many 

different diseases such as breast cancer, inflammatory bowel disease, rabies virulence, 
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neurodegenerative disorder, cystic fibrosis and enterotoxin-induced secretory diarrhoea 

(Robinson et al. 2011; Wang et al. 2010; Labbé et al. 2008; Labbé et al. 2012; Terrien et al. 2009; 

Terrien et al. 2012; Préhaud et al. 2010; Loh et al. 2008; Ren et al. 2013; Wang et al. 2006). The 

mentioned implications were mainly raised by proteins that were somehow involved in these 

diseases and shown to interact with either one or more of these MAST kinases. However, as 

outlined in the introduction, none of the MAST kinase interaction partners are promising 

candidates to explain the cellularisation defects visible in Drosophila dop mutants, either their 

Drosophila homologues are not expressed during cellularisation or their functions suggest 

different phenotypes. 

Previous PhD theses focussed mainly on the establishment of cell polarity during cellularisation 

that is highly affected in dop mutants. However, this study reveals that the first morphological 

defect in dop mutants occurs prior to epithelial polarity establishment already during onset of 

cellularisation and affects furrow canal formation. Proteins that are connected to this defect are 

all somehow involved in and regulated by vesicle transport (both Dynein- and Kinesin-

dependent). Vesicle transport is a fundamental process in eukaryotic cells, involving a network 

of different but connected mechanisms, and is required for different aspects of signalling 

pathways (Stenmark 2009; Seaman et al. 1996). Thus, the vesicle transport processes that are 

affected by Dop function could provide an indication on a connecting process that human MAST 

kinases may collectively regulate. This, however, assumes that Dop and human MAST kinases 

have not only related protein structures and sequences but also related functions. 

Until now, only one of the MAST kinase targets has reported direct implications in vesicular 

transport. This target is the Cystic fibrosis transmembrane conductance regulator (CFTR), a 

cAMP-activated anion channel in the plasma membranes of lung, pancreas, liver, intestine, 

sweat ducts and the reproductive system (Ren et al. 2013). A genetic screen identified MAST2 

as CFTR interaction partner and further experiments elucidated MAST2 as positive regulator for 

CFTR expression and function. These positive effects are presumably caused by a competitive 
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binding to the C-terminus of CFTR between MAST2 and the CFTR-associated ligand (CAL). The 

expression of MAST2 inhibits CAL-binding to CFTR in a dose-dependent manner and, therefore, 

prevents CAL-induced CFTR lysosomal degradation. CAL itself is a Golgi-associated protein and 

localises mainly to the trans-Golgi network and to a lower extent to lysosome membranes. An 

inhibition of Golgi transport to the plasma membrane would possibly also prevent binding of 

CAL to CFTR and have the same effects as MAST2 overexpression. However, this seems not the 

mechanism MAST2 is involved in. Instead, MAST2 binds CFTR directly and prevents CAL-binding 

this way. 

Many studies discovered effects of MAST kinase function in neuronal cells (Lumeng et al. 1999; 

Loh et al. 2008; Terrien et al. 2009; Préhaud et al. 2010; Terrien et al. 2012; Garland et al. 2008; 

Yano et al. 2003). For example, the function of MAST3 restricts neurite outgrowth and favours 

neurite retraction, possibly via an interaction with PTEN (Loh et al. 2008; Terrien et al. 2012). 

Also vesicle trafficking is important for neuronal development and function (Cameron et al. 

1993; Villarroel-Campos et al. 2016). Impaired vesicle trafficking can lead to neurodegenerative 

diseases (Schreij et al. 2016; Jain & Ganesh 2016). It might be that MAST kinase function 

somehow regulates vesicle trafficking in neurons like it is seen for Dop in Drosophila 

cellularisation. However, also in neuronal function none of the identified MAST kinase 

interaction partners give a direct hint on vesicle trafficking. It still needs to be determined if Dop 

in Drosophila cellularisation has similar functions to MAST kinases in mammals. 

 

 Cellularisation and cytokinesis 

Cellularisation is often referred to as a specialised form of cytokinesis and it can be used as 

model to elucidate new mechanisms important for conventional cytokinesis (Beronja & Tepass 

2002; Albertson et al. 2005). Cytokinesis is the process in which one cell gets divided into two 

daughter cells. 
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The clear difference between cellularisation and cytokinesis is that during Drosophila 

cellularisation a single cell gets divided into around 6000 cells and this process takes place just 

below the cortex of the cell. Moreover, the formation of cells during cellularisation does not 

involve a central constriction of the parental cell as in cytokinesis of most animal cells (Glotzer 

1997) but the invagination of cortical membrane at many thousand sites all around the cortex. 

The central constriction during cytokinesis is directed by the central spindle that occurs during 

anaphase of the cell cycle and both, F-actin and myosin are required for furrow formation 

(Giansanti et al. 2001; D’Avino et al. 2005; Cheffings et al. 2016). In contrast, during 

cellularisation division takes place in an elongated interphase and the site of furrow formation 

is thought to be determined by overlapping astral microtubules but not the central spindle (Crest 

et al. 2012). As in cytokinesis, the formation of cellularisation furrows is dependent on F-actin 

localisation, however, myosin seems not to be important for this process (Royou et al. 2004).  

Cellularisation is specifically controlled by early zygotic genes that are solely expressed during 

this particular stage and do not play a role during conventional cytokinesis. These genes provide 

one of the main factors that sets apart the process of cellularisation and conventional 

cytokinesis. Four of these early zygotic genes regulate F-actin network dynamics (He et al. 2016). 

Moreover, a switch in the activity after cellularisation from the F-actin regulator RhoGEF2 to 

another F-actin regulator, called RhoGEF Pebble, was proposed as a key mechanism inducing 

furrow formation at the central spindle during the first conventional cytokinesis (Crest et al. 

2012). Thus, the differential regulation of the F-actin network seems to be the main distinction 

between both processes. 

Despite the clear differences, both conventional cytokinesis and cellularisation share the same 

distinct stages: (i) cleavage plane or furrow ingression site specification, respectively; (ii) furrow 

assembly and furrow ingression; (iii) as well as cell separation or basal closure, respectively 

(Glotzer 1997). Additionally, both processes rely on distinct dynamic regulation of the 

microtubule and F-actin cytoskeleton, and on vesicle transport and fusion. The secretory vesicle 
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pathway as well as the endocytic pathway are required for both cellularisation and cytokinesis 

(Albertson et al. 2005; Swanson & Poodry 1981). The endocytic machinery in both processes is 

localised at the furrow tips. However, its function in these processes is not completely 

understood. Further investigation of its role during cellularisation might also give important 

insight into its function during cytokinesis. 

Plant cell cytokinesis is another specialised form of cytokinesis and involves the formation of a 

so-called phragmoplast emanating from the cell centre and extending to the cortex by vesicle 

fusion in the cytoplasm (Bednarek & Falbel 2002). Such a mechanism of furrow formation has 

not been observed during cellularisation. Vesicle exocytosis at this stage of Drosophila 

embryogenesis occurs at very restricted places along the plasma membrane, first apical during 

slow phase and apico-lateral during fast phase (Lecuit & Wieschaus 2000). However, a 

mechanism involving a phragmoplast-like membrane structure might be important for the final 

step of cell separation and furrow membrane fusion during conventional cytokinesis (Albertson 

et al. 2005). 

The function of maternally provided Dop on conventional cytokinesis has not been tested 

because dop mutants are lethal prior to the first conventional cytokinesis in Drosophila embryos. 

However, elucidating its function during cellularisation could also identify its possible function 

during cytokinesis.  

 

 Conclusion 

The aim of this PhD thesis was to analyse the function of Drop out during early cellularisation in 

Drosophila embryos and to elucidate a possible mechanism by which Dop could possibly affect 

cellularisation. 

Live-imaging of the F-actin network using a Utrophin-GFP construct revealed that the first 

morphological defect occurring in dop mutants was the malformation of the furrow canal about 
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5 to 8 minutes after onset of cellularisation. In comparison with analysis of the F-actin network 

in complete loss-of-function mutants, it was shown that syncytial divisions seem to be 

unaffected by dop mutants. However, the first phenotype that was visible occurred just prior to 

cellularisation during the last telophase of syncytial cell cycle 13 and before establishment of 

the furrow canal. The phenotype showed that the localisations of both Slam protein and Eps15 

protein were affected at first in the old furrows between the nuclei at the cortex and later on in 

the new furrows. Both proteins showed broadened and punctate distribution. Figure 44 B 

illustrates this defect. F-actin in contrast localised similar to wild type at this early stage. It could 

not be determined what causes the phenotype of the broadened distribution of furrow markers. 

Further studies are needed to elucidate this question. However, it is likely that also the furrow 

canal membrane resembles a broadened shape after onset of cellularisation (Fig.44 D). 

 

Figure 44 Model for consequences of dop complete loss-of-function on vesicle trafficking, 
protein localisation and furrow formation. The earliest phenotype visible in complete loss-of-
function mutants for dop is visible during telophase of the last syncytial division in cell cycle 13. 
At this stage, Slam- and Eps15-containing vesicles fail to focus into narrow furrows surrounding 
newly established daughter nuclei (B). F-actin focussing to these furrows in the mutants is similar 
to wild type at this stage (A, B). Later during onset of cellularisation, F-actin is highly broadened 
as well as other furrow canal markers like Eps15 and Slam. The furrow canal membrane might 
be broadened as well (dashed line B, D). Dynein-dependent transport of Golgi vesicles as well as 
Kinesin-dependent transport of recycling endosomes (RE) is impaired at this stage (D in 
comparison to C). As a consequence, no membrane material is added to enable membrane 
invagination in the mutant. Broadening of the furrow canal and broadened localisation of furrow 
canal markers might be due to an impairment of endocytic transport. 
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Immediately after the furrow canal was established in wild type embryos, the membrane started 

to invaginate and to enclose the nuclei. In contrast, membrane invagination barely occurred in 

dop complete loss-of-function mutants and both slow phase as well as fast phase were shown 

to be strongly affected. 

A mechanism that could affect both protein localisation as well as membrane invagination is 

vesicle trafficking. Both Golgi as well as recycling endosomal transport were affected in 

hypomorphic as well as complete loss-of-function dop mutants as shown by Rab11-GFP live-

imaging and stainings against Nuf, gp120 and Lva. Another question remains about the 

mechanism by which these trafficking pathways are affected. The localisation of the recycling 

endosomal markers Rab11 and Nuf pointed to a functional impairment of Kinesin, whereas both 

Golgi markers Lva and gp120 pointed to a functional impairment of Dynein. Protein localisation 

studies of proteins transported by both pathways such as Neurotactin could possibly elucidate 

at which stage this transport mechanism is impaired. 

Because of previous studies that showed a possible link between Dop function and Dynein 

phosphorylation, the question arose which phenotypes of dop mutants could be explained by a 

misregulation of Dynein function during cellularisation. The detailed functions of Dynein in 

cellularisation are not well known. Therefore, different tools were tested for their ability to 

inhibit Dynein function in wild type embryos specifically during cellularisation. Only 

overexpression of RNAi directed against dynein heavy chain 64C transcripts showed a promising 

effect on embryo viability suggesting that Dynein function is indeed inhibited. Now, embryos 

need to be analysed in detail to elucidate phenotypes that Dynein impairment creates during 

cellularisation. 

Furthermore, DlicGFP constructs were created that either carried a wild type version of Dlic or 

a phospho-mutant (non-phosphorylatable or phospho-mimic) version of Dlic Serine 401, a 

proposed target of Dop. All these constructs were expressed in wild type and dop mutant 

embryos to see possible effects on protein localisation and embryo survival. It was shown that 
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neither of the constructs displayed a difference in the DlicGFP localisation during syncytial 

divisions or cellularisation, neither in wild type nor in dop mutant embryos. Only one difference 

could be detected by expressing DlicGFP (either version) in wild type and dop mutant embryos. 

During cellularisation, vesicular accumulations of unknown nature appeared in higher numbers 

in the mutant. What these accumulations are or what they are caused by could not be identified 

in the time course of this thesis. 

Hatching rate analysis revealed that the phospho-mimic version of DlicGFP was able to rescue 

the lethality of dop1/dop10 transheterozygous mutant embryos. This study suggests that 

phosphorylation of Serine 401 might have a role in passing on Dop function in this system. 

However, neither the wild type nor any of the phospho-mutant versions of DlicGFP were able to 

rescue the lethality of the larval lethal DlicG0065 allele in an experiment using ubiquitin-Gal4 as 

driver, indicating that the constructs might be unable to substitute entirely for the function of 

endogenous Dlic in dlic mutants. Further experiments have to be performed to see if this failure 

of rescue is based on low expression of the construct by a driver line that is not suitable to drive 

Dlic expression to an efficient extent. 

Detailed analysis of cellularisation in dop mutant embryos expressing phospho-mimic Dlic S401 

are a very exciting future direction in this project provided that the created DlicGFP versions can 

be proven as taking over endogenous Dlic function. Additionally, further analysis of vesicle 

trafficking pathways during cellularisation in dop mutants and description of cellularisation 

phenotypes caused by Dynein impairment using Dhc64CGL00543 RNAi as a tool provide an exciting 

base for future experiments to further elucidate Dop function during early embryogenesis. 

 

 Directions for future research 

Part of the future work will be aimed at addressing further questions that emerged while gaining 

the results of this thesis. 
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In this and previous theses, it was shown that several proteins which specifically localise to the 

furrow canal, such as Slam, Rho1, F-actin and Eps15, display a broadened localisation at this 

structure in dop mutants. This suggests that the furrow canal membrane is broadened as well. 

However, electron microscopic images suggest that no furrow canal structure is formed at all in 

dop mutant embryos (Hain et al. 2014). To finally elucidate how the furrow canal membrane is 

shaped in dop mutants, membrane markers such as the PI(3,4,5)P3-binding construct Grp1-PH-

GFP should be used to directly image the furrow canal membrane in dop mutants and to perform 

co-stainings with other furrow canal markers. This experiment might help to understand if at 

the furrow canal in dop mutants a protein is affected that links proteins to membrane (such as 

for example the protein Dah) or that restricts furrow membrane broadening (such as for 

example Bnk). 

Eps15, a Clathrin-dependent endocytosis regulator protein, showed a broadened localisation at 

the furrow canal in dop mutant embryos. This Eps15 mislocalisation is assumed to be a 

secondary defect based on broadening of a structure Eps15 is localising to. However, in this 

context the question arose if the endocytic trafficking pathway is impaired in addition to the 

exocytic Golgi and recycling endosome pathway in dop mutants. To test this possibility, other 

proteins important for the endocytic pathway such as Rab5, Amph, Dynamin or Clathrin should 

be looked at in dop mutant embryos in comparison to wild type to see if they display any 

localisation differences between both genetic conditions. 

In this thesis, dop mutants were shown to display localisation differences in comparison to wild 

type concerning their Golgi and recycling endosomal vesicles. Whereas the Golgi localisation 

defect pointed towards a defect in dynein-dependent transport, the recycling endosome 

localisation defect suggested an impairment of Kinesin-dependent transport. An attempt to 

determine Dynein and Kinesin localisation in dop mutants in comparison to wild type embryos 

was performed in this thesis using antibodies directed against the Dynein and the Kinesin heavy 

chain subunit, respectively. However, the antibody stainings were not specific enough to draw 
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any conclusions. Thus, other tools should be tested to verify Dynein and Kinesin localisations in 

dop mutant and wild type embryos. 

One other tool to test the localisation of Dynein was used in this thesis, imaging a Dynein light 

intermediate chain-GFP fusion construct in dop mutants as well as wild type background. The 

only detectable DlicGFP localisation difference between both genetic conditions was a higher 

number of punctate accumulations present in dop mutant embryos. The nature of these 

punctate structures is unknown. However, they might belong to one of the vesicular transport 

pathways and, because the punctae are more numerous in dop mutants, they could give a 

further indication for a defect in one of these pathways in dop mutants. To test this possibility, 

co-immunostainings of DlicGFP expressing embryos should be performed using antibodies 

raised against markers for the different vesicular transport pathways, such as Lva (Golgi), Nuf 

(recycling endosome), Rab5 (early endosome) and Clathrin (Clathrin-dependent endocytosis). 

Rab11-GFP imaging and Nuf stainings suggested that a Kinesin-dependent transport process of 

recycling endosome vesicles might be affected in dop mutants. One Kinesin that shows similar 

mutant phenotypes in comparison to dop mutants during cellularisation is the Kinesin Pav-KLP. 

Therefore, it would be interesting to see how this particular Kinesin is localised in dop mutant 

embryos in comparison to wild type to test if also Pav-KLP-dependent transport processes are 

affected in dop mutants. 

Additionally, to determine at which stage of the exocytic transport pathway a defect occurs in 

dop mutant embryos, a detailed analysis of Nrt protein localisation should be performed. This 

protein was shown to be transported through both, Golgi and endosomal vesicles. Thus, testing 

its localisation or possibly accumulation in a specific organelle in dop mutants could indicate a 

specific transport step that is defective in these mutants and suggest proteins important for this 

particular transport step that could be affected. 
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One of the questions tried to be addressed in this thesis was whether Dop function is required 

for somatic follicle cell morphogenesis. In the performed experiment, follicle cell clones 

homozygous mutant for dop10 were analysed in egg chambers otherwise heterozygous for the 

dop mutation. The result suggested that Dop function is not required for follicle cell 

morphogenesis. However, a Dop protein or mRNA perdurance in the cytoplasm of the analysed 

follicle clones could not be excluded. Therefore, this experiment should be repeated on egg 

chambers derived from dop1/dop10 transheterozygous mutant mothers instead of using the 

follicle cell clone technique on egg chambers derived from heterozygous dop mutant females. 

In case that Dop function turns out to be required for follicle cell morphogenesis, this result 

could explain the F-actin syncytial division defect seen in embryos derived from dop1/dop10 

mutant females that was not present in germ line clone-derived dop10 homozygous mutant 

embryos. 

 

In addition to future work that should be performed to answer questions which emerged in the 

course of this thesis, also pending questions should be addressed by experiments using tools 

developed or tested in this thesis. 

One of these experiments tries to determine the requirement of Dynein during cellularisation. 

In this thesis, the expression of an RNAi construct directed against the heavy chain subunit of 

Dynein was found as possible tool to address this Dynein requirement. The future work will focus 

on the detailed analysis of cellularisation in embryos expressing the Dhc64CGL00543 RNAi construct 

and that develop normally up to cellularisation. Embryos should be fixed and stained for markers 

important for cellularisation like Slam and F-actin, as well as vesicle trafficking markers such as 

Lva (Golgi) and Nuf (recycling endosome). Additionally, membrane growth should be monitored 

in these embryos by bright field imaging on living embryos. Thus, these experiments will cover 

processes that are known to be affected in dop mutants and elucidate which of the dop defects 

could be based on dynein impairment. 
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In this thesis, it was shown that the expression of the phospho-mimic S401D Dlic version can 

rescue lethality of dop mutant embryos. Detailed analysis of these embryos should follow now 

to elucidate which of the many different dop phenotypes during cellularisation are rescued by 

the expression of the phospho-mimic S401D Dlic version. Embryos should be fixed and stained 

for markers of processes important for cellularisation, first of all Slam protein which shows a 

clear and distinct localisation defect from the beginning of cellularisation in dop mutants. 

In connection to further phospho-mimic S401D Dlic rescue analysis in dop mutants, the rescue 

experiment addressing the capabilities of the phospho-mutant versions of Dlic to substitute for 

endogenous Dlic function has to be repeated using a different driver and using the DlicGFP 

construct from Tadashi Uemura’s lab as positive control. This experiment should verify that the 

synthesised versions of Dlic fused to GFP are able to take over endogenous Dlic function during 

cellularisation in a background where this Dlic function might be impaired, as proposed for dop 

mutants.  

  



References|157 
 

5. References 

Acharya, S. et al., 2014. Function and dynamics of slam in furrow formation in early Drosophila 
embryo. Developmental biology, 386(2), pp.371–84. 

Addinall, S.G. et al., 2001. Phosphorylation by cdc2-CyclinB1 kinase releases cytoplasmic dynein 
from membranes. The Journal of biological chemistry, 276(19), pp.15939–44. 

Adey, N.B. et al., 2000. Threonine Phosphorylation of the MMAC1 / PTEN PDZ Binding Domain 
Both Inhibits and Stimulates PDZ Binding Advances in Brief Inhibits and Stimulates PDZ 
Binding. Cancer Research, 60(1), pp.35–37. 

Afshar, K., Stuart, B. & Wasserman, S.A., 2000. Functional analysis of the Drosophila Diaphanous 
FH protein in early embryonic development. Development, 127(9), pp.1887–1897. 

Albertson, R. et al., 2008. Vesicles and actin are targeted to the cleavage furrow via furrow 
microtubules and the central spindle. The Journal of cell biology, 181(5), pp.777–90. 

Albertson, R., Riggs, B. & Sullivan, W., 2005. Membrane traffic: a driving force in cytokinesis. 
Trends in cell biology, 15(2), pp.92–101. 

Arencibia, J.M. et al., 2013. AGC protein kinases: from structural mechanism of regulation to 
allosteric drug development for the treatment of human diseases. Biochimica et biophysica 
acta, 1834(7), pp.1302–21. 

Baum, B., Li, W. & Perrimon, N., 2000. A cyclase-associated protein regulates actin and cell 
polarity during Drosophila oogenesis and in yeast. Current Biology, 10(16), pp.964–973. 

Bednarek, S.Y. & Falbel, T.G., 2002. Membrane trafficking during plant cytokinesis. Traffic 
(Copenhagen, Denmark), 3(9), pp.621–629. 

Benmerah, A. et al., 1998. Ap-2/Eps15 interaction is required for receptor-mediated 
endocytosis. Journal of Cell Biology, 140(5), pp.1055–1062. 

Benmerah, A. et al., 1999. Inhibition of clathrin-coated pit assembly by an Eps15 mutant. Journal 
of cell science, 112(9), pp.1303–1311. 

Beronja, S. & Tepass, U., 2002. Cellular Morphogenesis : slow-as-molasses Accelerates Polarized 
Membrane Growth. Developmental Cell, 2(4), pp.382–384. 

Berrueta, L. et al., 1998. The adenomatous polyposis coli-binding protein EB1 is associated with 
cytoplasmic and spindle microtubules. Proceedings of the National Academy of Sciences of 
the United States of America, 95(18), pp.10596–10601. 

Bettencourt-Dias, M. et al., 2004. Genome-wide survey of protein kinases required for cell cycle 
progression. Nature, 432(7020), pp.980–7. 

Bischof, J. et al., 2007. An optimized transgenesis system for Drosophila using germ-line-specific 
phiC31 integrases. Proceedings of the National Academy of Sciences of the United States of 
America, 104(9), pp.3312–7. 

Blair, S.S., 2003. Genetic mosaic techniques for studying Drosophila development. Development 
(Cambridge, England), 130(21), pp.5065–72. 

Brand, A.H. & Perrimon, N., 1993. Targeted gene expression as a means of altering cell fates and 
generating dominant phenotypes. Development, 118(2), pp.401–415. 



References|158 
 
Brandt, A. et al., 2006. Developmental control of nuclear size and shape by Kugelkern and 

Kurzkern. Current biology : CB, 16(6), pp.543–52. 

Brill, J.A. et al., 2000. A phospholipid kinase regulates actin organization and intercellular bridge 
formation during germline cytokinesis. Development, 127(17), pp.3855–3864. 

Bullock, S.L. et al., 2006. Guidance of Bidirectional Motor Complexes by mRNA Cargoes through 
Control of Dynein Number and Activity. Current Biology, 16(14), pp.1447–1452. 

Burgess, R.W., Deitcher, D.L. & Schwarz, T.L., 1997. The synaptic protein syntaxin1 is required 
for cellularization of Drosophila embryos. Journal of Cell Biology, 138(4), pp.861–875. 

Burkel, B.M., von Dassow, G. & Bement, W.M., 2007. Versatile fluorescent probes for actin 
filaments based on the actin-binding domain of utrophin. Cell motility and the 
cytoskeleton, 64(11), pp.822–32. 

Burkhardt, J.K. et al., 1997. Overexpression of the dynamitin (p50) subunit of the dynactin 
complex disrupts dynein-dependent maintenance of membrane organelle distribution. The 
Journal of cell biology, 139(2), pp.469–84. 

Callaini, G., Dallai, R. & Riparbelli, M.G., 1990. Behaviour of yolk nuclei during early 
embryogenesis in Drosophila melanogaster. Bolletino di zoologia, 57(3), pp.215–220. 

Cameron, P., Mundigl, O. & De Camilli, P., 1993. Traffic of synaptic vesicle proteins in polarized 
and nonpolarized cells. Journal of cell science, 17, pp.93–100. 

Cao, J. et al., 2008. Nuf, a Rab11 effector, maintains cytokinetic furrow integrity by promoting 
local actin polymerization. The Journal of cell biology, 182(2), pp.301–13. 

Carbone, R. et al., 1997. eps15 and eps15R Are Essential Components of the Endocytic Pathway. 
Cancer research, 57, pp.5498–5504. 

Cheffings, T.H., Burroughs, N.J. & Balasubramanian, M.K., 2016. Actomyosin Ring Formation and 
Tension Generation in Eukaryotic Cytokinesis. Current Biology, 26(15), pp.R719–R737. 

Chou, T. & Perrimon, N., 1996. The Autosomal FLP-DFS Technique for Generating Germline 
Mosaics. Genetics, 144, pp.1673–1679. 

Clark, I.E., Jan, L.Y. & Jan, Y.N., 1997. Reciprocal localization of Nod and kinesin fusion proteins 
indicates microtubule polarity in the Drosophila oocyte, epithelium, neuron and muscle. 
Development (Cambridge, England), 124(2), pp.461–70. 

Crawford, J.M. et al., 1998. Cellularization in Drosophila melanogaster is disrupted by the 
inhibition of rho activity and the activation of Cdc42 function. Developmental biology, 
204(1), pp.151–164. 

Crest, J., Concha-Moore, K. & Sullivan, W., 2012. RhoGEF and Positioning of Rappaport-like 
Furrows in the Early Drosophila Embryo. Current Biology, 22(21), pp.2037–2041. 

D’Avino, P.P., Savoian, M.S. & Glover, D.M., 2005. Cleavage furrow formation and ingression 
during animal cytokinesis: a microtubule legacy. Journal of cell science, 118(8), pp.1549–
58. 

van Dam, E.M. & Stoorvogel, W., 2002. Dynamin-dependent Transferrin Receptor Recycling by 
Endosome-derived Clathrin-coated Vesicles. Molecular biology of the cell, 13(6), pp.169–
182. 

Dasgupta, U. et al., 2009. Ceramide kinase regulates phospholipase C and phosphatidylinositol 



References|159 
 

4, 5, bisphosphate in phototransduction. Proceedings of the National Academy of Sciences 
of the United States of America, 106(47), pp.20063–20068. 

Dell, K.R., Turck, C.W. & Vale, R.D., 2000. Mitotic phosphorylation of the dynein light 
intermediate chain is mediated by cdc2 kinase. Traffic (Copenhagen, Denmark), 1(1), 
pp.38–44. 

Dix, C.I. et al., 2013. Lissencephaly-1 promotes the recruitment of dynein and dynactin to 
transported mRNAs. The Journal of cell biology, 202(3), pp.479–94. 

Doerflinger, H. et al., 2003. The role of PAR-1 in regulating the polarised microtubule 
cytoskeleton in the Drosophila follicular epithelium. Development (Cambridge, England), 
130(17), pp.3965–3975. 

Le Droguen, P.-M. et al., 2015. Microtubule-dependent apical restriction of recycling endosomes 
sustains adherens junctions during morphogenesis of the Drosophila tracheal system. 
Development, 142(2), pp.363–374. 

Echeverri, C.J. et al., 1996. Molecular characterization of the 50-kD subunit of dynactin reveals 
function for the complex in chromosome alignment and spindle organization during 
mitosis. Journal of Cell Biology, 132(4), pp.617–633. 

Edgar, B.A., O’Dell, G.M. & Schubiger, G., 1987. Cytoarchitecture and the patterning of fushi-
tarazu expression in the Drosophila blastoderm. Genes and Development, 1, pp.1226–
1237. 

Eitzen, G., 2003. Actin remodeling to facilitate membrane fusion. Biochimica et Biophysica Acta, 
1641(2-3), pp.175–181. 

Fabrowski, P. et al., 2013. Tubular endocytosis drives remodelling of the apical surface during 
epithelial morphogenesis in Drosophila. Nature communications, 4(2244). 

Field, C.M. et al., 2005. Characterization of anillin mutants reveals essential roles in septin 
localization and plasma membrane integrity. Development (Cambridge, England), 132(12), 
pp.2849–2860. 

Figard, L. et al., 2016. Membrane Supply and Demand Regulates F-Actin in a Cell Surface 
Reservoir. Developmental Cell, 37(3), pp.267–278. 

Figard, L. et al., 2013. The Plasma Membrane Flattens Out to Fuel Cell-Surface Growth during 
Drosophila Cellularization. Developmental cell, 27(6), pp.1–8. 

Figard, L. & Sokac, A.M., 2014. A membrane reservoir at the cell surface: unfolding the plasma 
membrane to fuel cell shape change. Bioarchitecture, 4(2), pp.39–46. 

Firestone, A.J. et al., 2012. Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic 
dynein. Nature, 484(7392), pp.125–9. 

Foe, V.E. & Alberts, B.M., 1983. Studies of nuclear and cytoplasmic behaviour during the five 
mitotic cycles that precede gastrulation in Drosophila embryogenesis. Journal of cell 
science, 61, pp.31–70. 

Foe, V.E., Field, C.M. & Odell, G.M., 2000. Microtubules and mitotic cycle phase modulate 
spatiotemporal distributions of F-actin and myosin II in Drosophila syncytial blastoderm 
embryos. Development (Cambridge, England), 127(9), pp.1767–87. 

Frescas, D. et al., 2006. The secretory membrane system in the Drosophila syncytial blastoderm 



References|160 
 

embryo exists as functionally compartmentalized units around individual nuclei. Journal of 
Cell Biology, 173(2), pp.219–230. 

Fullilove, S.L. & Jacobson, A.G., 1971. Nuclear elongation and cytokinesis in Drosophila montana. 
Developmental Biology, 26(4), pp.560–577. 

Galewsky, S. & Schulz, R.A., 1992. Drop out: a third chromosome maternal-effect locus required 
for formation of the Drosophila cellular blastoderm. Molecular reproduction and 
development, 32(4), pp.331–8. 

Garland, P. et al., 2008. Expression of the MAST family of serine/threonine kinases. Brain 
research, 1195, pp.12–9. 

Gepner, J. et al., 1996. Cytoplasmic Dynein Function Is Essential in Drosophila melanogaster. 
Genetics, 142(3), pp.865–878. 

Giansanti, M.G. et al., 2001. Drosophila male meiosis as a model system for the study of 
cytokinesis in animal cells. Cell structure and function, 26(6), pp.609–17. 

Glotzer, M., 2004. Cleavage furrow positioning. Journal of Cell Biology, 164(3), pp.347–351. 

Glotzer, M., 1997. Cytokinesis. Current Biology, 7(5), pp.274–276. 

Golic, K.G. & Lindquist, S., 1989. The FLP recombinase of yeast catalyzes site-specific 
recombination in the Drosophila genome. Cell, 59(3), pp.499–509. 

Golic, M.M. et al., 1997. FLP-mediated DNA mobilization to specific target sites in Drosophila 
chromosomes. Nucleic acids research, 25(18), pp.3665–71. 

Gross, S.P. et al., 2000. Dynein-mediated cargo transport in vivo: A switch controls travel 
distance. Journal of Cell Biology, 148(5), pp.945–955. 

Grosshans, J. et al., 2005. RhoGEF2 and the formin Dia control the formation of the furrow canal 
by directed actin assembly during Drosophila cellularisation. Development (Cambridge, 
England), 132(5), pp.1009–20. 

Hain, D., 2010. Genetic and molecular analysis of drop out, the single homolog of the vertebrate 
MAST kinases in Drosophila melanogaster. University of Dundee. 

Hain, D. et al., 2010. Natural variation of the amino-terminal glutamine-rich domain in 
Drosophila argonaute2 is not associated with developmental defects. PloS one, 5(12), 
pp.1–14. 

Hain, D. et al., 2014. The Drosophila MAST kinase Drop out is required to initiate membrane 
compartmentalisation during cellularisation and regulates dynein-based transport. 
Development, 141(10), pp.2119–2130. 

Hampoelz, B. et al., 2011. Microtubule-induced nuclear envelope fluctuations control chromatin 
dynamics in Drosophila embryos. Development, 138(16), pp.3377–3386. 

Hanks, S.K. & Hunter, T., 1995. The eukaryotic protein kinase superfamily : kinase (catalytic) 
domain structure and classification. The FASEB Journal, 9, pp.576–596. 

Hanks, S.K., Quinn, A.M. & Hunter, T., 1988. The protein kinase family: conserved features and 
deduced phylogeny of the catalytic domains. Science Translational Medicine, 241(4861), 
pp.42–52. 

Harris, T.J.C. & Peifer, M., 2004. Adherens junction-dependent and -independent steps in the 



References|161 
 

establishment of epithelial cell polarity in Drosophila. The Journal of cell biology, 167(1), 
pp.135–47. 

Harris, T.J.C. & Peifer, M., 2005. The positioning and segregation of apical cues during epithelial 
polarity establishment in Drosophila. The Journal of cell biology, 170(5), pp.813–23. 

Harrison, D.A. & Perrimon, N., 1993. Simple and efficient generation of marked clones in 
Drosophila. Current Biology, 3(7), pp.424–433. 

Hayashi, S. et al., 1997. A Drosophila homolog of the tumor suppressor gene adenomatous 
polyposis coli down-regulates -catenin but its zygotic expression is not essential for the 
regulation of Armadillo. Proceedings of the National Academy of Sciences of the United 
States of America, 94(1), pp.242–247. 

Hays, T.S. et al., 1994. A cytoplasmic dynein motor in Drosophila: identification and localization 
during embryogenesis. Journal of cell science, 107(6), pp.1557–69. 

He, B., Martin, A. & Wieschaus, E., 2016. Flow-dependent myosin recruitment during Drosophila 
cellularization requires zygotic dunk activity. Development, 143(13), pp.2417–2430. 

Heck, M.M.S. et al., 1993. The Kinesin-like Protein KLP6IF Is Essential for Mitosis in Drosophila 
Margarete. Journal of Cell Biology, 123(3), pp.665–679. 

Hickson, G.R.X. et al., 2003. Arfophilins Are Dual Arf/Rab 11 Binding Proteins That Regulate 
Recycling Endosome Distribution and Are Related to Drosophila Nuclear Fallout. Molecular 
biology of the cell, 14(July), pp.2908–2920. 

Höök, P. & Vallee, R.B., 2006. The dynein family at a glance. Journal of cell science, 119(21), 
pp.4369–71. 

Horne-Badovinac, S. & Bilder, D., 2005. Mass transit: Epithelial morphogenesis in the Drosophila 
egg chamber. Developmental Dynamics, 232(3), pp.559–574. 

Hortsch, M. et al., 1990. Drosophila neurotactin , a surface glycoprotein with homology to serine 
esterases, is dynamically expressed during embryogenesis. Development, 110(4), pp.1327–
1340. 

Hunter, C. & Wieschaus, E., 2000. Regulated expression of nullo is required for the formation of 
distinct apical and basal adherens junctions in the Drosophila blastoderm. Journal of Cell 
Biology, 150(2), pp.391–401. 

Hyman, J.M. et al., 2009. Small-molecule inhibitors reveal multiple strategies for Hedgehog 
pathway blockade. Proceedings of the National Academy of Sciences of the United States 
of America, 106(33), pp.14132–7. 

Ikeda, K. et al., 2011. CK1 activates minus-end-directed transport of membrane organelles along 
microtubules. Molecular biology of the cell, 22(8), pp.1321–9. 

Jain, N. & Ganesh, S., 2016. Emerging nexus between RAB GTPases, autophagy and 
neurodegeneration. Autophagy, 12(5), pp.900–904. 

Januschke, J. et al., 2002. Polar transport in the Drosophila oocyte requires Dynein and Kinesin I 
cooperation. Current biology, 12(23), pp.1971–81. 

Johnson, L.N. et al., 1998. The structural basis for substrate recognition and control by protein 
kinases. FEBS Letters, 430(1-2), pp.1–11. 

Kardon, J.R. & Vale, R.D., 2009. Regulators of the cytoplasmic dynein motor. Nature reviews. 



References|162 
 

Molecular cell biology, 10(12), pp.854–865. 

Karess, R.E. et al., 1991. The Regulatory Light Chain of Nonmuscle Myosin Is Encoded by 
spaghetti-squash, a Gene Required for Cytokinesis in Drosophila. Cell, 65, pp.1177–1189. 

Karki, S. & Holzbaur, E.L.F., 1999. Cytoplasmic dynein and dynactin in cell division and 
intracellular transport. Current Opinion in Cell Biology, 11, pp.45–53. 

Koh, T.-W. et al., 2007. Eps15 and Dap160 control synaptic vesicle membrane retrieval and 
synapse development. The Journal of cell biology, 178(2), pp.309–22. 

Labbé, C. et al., 2012. Genome-wide Expression Profiling Implicates a MAST3-Regulated Gene 
Set in Colonic Mucosal Inflammation of Ulcerative Colitis Patients. Inflamm Bowel Dis., 
18(6), pp.1072–1080. 

Labbé, C. et al., 2008. MAST3: a novel IBD risk factor that modulates TLR4 signaling. Genes and 
immunity, 9(7), pp.602–12. 

LaMonte, B.H. et al., 2002. Disruption of dynein/dynactin inhibits axonal transport in motor 
neurons causing late-onset progressive degeneration. Neuron, 34(5), pp.715–27. 

Langlands, A., 2012. Identifying targets of the MAST kinase Drop out through genetic and 
proteomic analysis in Drosophila melanogaster. University of Dundee. 

Langley, A.R. et al., 2014. New insights into the maternal to zygotic transition. Development, 
141(20), pp.3834–3841. 

Lecuit, T., 2004. Junctions and vesicular trafficking during Drosophila cellularization. Journal of 
cell science, 117(16), pp.3427–33. 

Lecuit, T., Samanta, R. & Wieschaus, E., 2002. slam encodes a developmental regulator of 
polarized membrane growth during cleavage of the Drosophila embryo. Developmental 
cell, 2(4), pp.425–36. 

Lecuit, T. & Wieschaus, E., 2000. Polarized Insertion of New Membrane from a Cytoplasmic 
Reservoir during Cleavage of the Drosophila Embryo. The Journal of cell biology, 150(4), 
pp.849–860. 

Lee, D.M. & Harris, T.J.C., 2013. An Arf-GEF regulates antagonism between endocytosis and the 
cytoskeleton for Drosophila blastoderm development. Current Biology, 23(21), pp.2110–
20. 

Lee, D.M. & Harris, T.J.C., 2014. Coordinating the cytoskeleton and endocytosis for regulated 
plasma membrane growth in the early Drosophila embryo. Bioarchitecture, 4(2), pp.68–74. 

Liu, J. et al., 2014. Stepping stone: a cytohesin adaptor for membrane cytoskeleton restraint in 
the syncytial Drosophila embryo. Molecular Biology of the Cell, 26(4), pp.711–725. 

Lo, P., Hawrot, H. & Georgiou, M., 2012. Apicobasal polarity and its role in cancer progression. 
BioMolecular Concepts, 3(6), pp.505–521. 

Logan, M.R. & Mandato, C.A., 2006. Regulation of the actin cytoskeleton by PIP2 in cytokinesis. 
Biology of the cell / under the auspices of the European Cell Biology Organization, 98(6), 
pp.377–388. 

Loh, S.H.Y. et al., 2008. Identification of new kinase clusters required for neurite outgrowth and 
retraction by a loss-of-function RNA interference screen. Cell death and differentiation, 
15(2), pp.283–98. 



References|163 
 
Łuksza, M. et al., 2013. Rebuilding MTOCs upon centriole loss during mouse oogenesis. 

Developmental Biology, 382(1), pp.48–56. 

Lumeng, C. et al., 1999. Interactions between beta 2-syntrophin and a family of microtubule-
associated serine/threonine kinases. Nature neuroscience, 2(7), pp.611–7. 

Mahoney, P.A. et al., 1991. The fat tumor suppressor gene in Drosophila encodes a novel 
member of the cadherin gene superfamily. Cell, 67(5), pp.853–868. 

Majumdar, A., Ramagiri, S. & Rikhy, R., 2006. Drosophila homologue of Eps15 is essential for 
synaptic vesicle recycling. Experimental Cell Research, 312, pp.2288–2298. 

Manning, G. et al., 2002. The Protein Kinase Complement of the Human Genome. Science 
Translational Medicine, 298(5600), pp.1912–1934. 

De Matteis, M.A. & Luini, A., 2008. Exiting the Golgi complex. Nature reviews. Molecular cell 
biology, 9(4), pp.273–284. 

Mavor, L.M. et al., 2016. Rab8 directs furrow ingression and membrane addition during 
epithelial formation in Drosophila melanogaster. Development, 143(5), pp.892–903. 

Mavrakis, M. et al., 2014. Septins promote F-actin ring formation by crosslinking actin filaments 
into curved bundles. Nature cell biology, 16, pp.322–334. 

Mavrakis, M., Rikhy, R. & Lippincott-Schwartz, J., 2009a. Cells within a cell: Insights into cellular 
architecture and polarization from the organization of the early fly embryo. 
Communicative & Integrative Biology, 2(4), pp.313–314. 

Mavrakis, M., Rikhy, R. & Lippincott-Schwartz, J., 2009b. Plasma Membrane Polarity and 
Compartmentalization are Established Before Cellularization in the Fly Embryo. Dev Cell, 
16(1), pp.93–104. 

Mazumdar, A. & Mazumdar, M., 2002. How one becomes many: blastoderm cellularization in 
Drosophila melanogaster. Bioessays, 24, pp.1012–1022. 

McGill, M.A., Mckinley, R.F.A. & Harris, T.J.C., 2009. Independent cadherin–catenin and Bazooka 
clusters interact to assemble adherens junctions. Journal of Cell Biology, 185(5), pp.787–
796. 

McGrail, M. & Hays, T.S., 1997. The microtubule motor cytoplasmic dynein is required for spindle 
orientation during germline cell divisions and oocyte differentiation in Drosophila. 
Development, 124(12), pp.2409–19. 

McNiven, M.A., 1998. Dynamin: A molecular motor with pinchase action. Cell, 94(2), pp.151–
154. 

Mellman, I. & Nelson, W.J., 2008. Coordinated protein sorting, targeting and distribution in 
polarized cells. Nat Rev Mol Cell Biol, 9(11), pp.833–845. 

Meyer, W.J. et al., 2006. Overlapping functions of Argonaute proteins in patterning and 
morphogenesis of Drosophila embryos. PLoS genetics, 2(8), pp.1224–39. 

Mische, S. et al., 2008. Dynein Light Intermediate Chain : An Essential Subunit That Contributes 
to Spindle Checkpoint Inactivation. Molecular biology of the cell, 19, pp.4918–4929. 

Moores, C.A., Keep, N.H. & Kendrick-Jones, J., 2000. Structure of the utrophin actin-binding 
domain bound to F-actin reveals binding by an induced fit mechanism. Journal of molecular 
biology, 297(2), pp.465–80. 



References|164 
 
Morrison, D.K., Murakami, M.S. & Cleghon, V., 2000. Protein kinases and phosphatases in the 

drosophila genome [In Process Citation]. J Cell Biol, 150(2), pp.F57–62. 

Müller, H.-A.J., 2003. Epithelial Polarity in Flies: More Than Just Crumbs. Developmental cell, 4, 
pp.1–3. 

Müller, H.-A.J., 2000. Genetic Control of Epithelial Cell Polarity: Lessons From Drosophila. 
Developmental Dynamics, 218, pp.52–67. 

Müller, H.-A.J., 2001. Of mice, frogs and flies: generation of membrane asymmetries in early 
development. Development, growth & differentiation, 43(4), pp.327–42. 

Müller, H.-A.J. & Wieschaus, E., 1996. armadillo, bazooka, and stardust are critical for early 
stages in formation of the zonula adherens and maintenance of the polarized blastoderm 
epithelium in Drosophila. The Journal of cell biology, 134(1), pp.149–63. 

Murthy, M. et al., 2010. Sec5, a member of the exocyst complex, mediates Drosophila embryo 
cellularization. Development, 137(16), pp.2773–2783. 

Ni, J.-Q. et al., 2011. A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nature 
methods, 8(5), pp.405–7. 

Okazaki, N. et al., 2002. Protocadherin LKC, a new candidate for a tumor suppressor of colon 
and liver cancers, its association with contact inhibition of cell proliferation. 
Carcinogenesis, 23(7), pp.1139–1148. 

Padash Barmchi, M., Rogers, S. & Häcker, U., 2005. DRhoGEF2 regulates actin organization and 
contractility in the Drosophila blastoderm embryo. jcb, 168(4), pp.575–585. 

Papoulas, O., Hays, T.S. & Sisson, J.C., 2005. The golgin Lava lamp mediates dynein-based Golgi 
movements during Drosophila cellularization. Nature cell biology, 7(6), pp.612–8. 

Pascucci, T. et al., 1996. Eggshell Assembly in Drosophila: Processing and Localization of Vitelline 
Membrane and Chorion Proteins. Developmental Biology, 177(2), pp.590–598. 

Pearce, L.R., Komander, D. & Alessi, D.R., 2010. The nuts and bolts of AGC protein kinases. 
Nature reviews. Molecular cell biology, 11(1), pp.9–22. 

Pelissier, A., Chauvin, J.-P. & Lecuit, T., 2003. Trafficking through Rab11 Endosomes Is Required 
for Cellularization during Drosophila Embryogenesis. Current Biology, 13(21), pp.1848–
1857. 

Peter, A. et al., 2002. Mapping and identification of essential gene functions on the X 
chromosome of Drosophila. EMBO Rep, 3(1), pp.34–38. 

Postner, M.A., Miller, K.G. & Wieschaus, E.F., 1992. Maternal Effect Mutations of the sponge 
Locus Affect Actin Cytoskeletal Rearrangements in Drosophila melanogaster Embryos. The 
Journal of cell biology, 119(5), pp.1205–1218. 

Préhaud, C. et al., 2010. Attenuation of rabies virulence: takeover by the cytoplasmic domain of 
its envelope protein. Science signaling, 3(105), pp.1–10. 

Raff, J.W. & Glover, D.M., 1989. Centrosomes, and not nuclei, initiate pole cell formation in 
Drosophila embryos. Cell, 57(4), pp.611–9. 

Rasmusson, K. et al., 1994. A family of dynein genes in Drosophila melanogaster. Molecular 
biology of the cell, 5(1), pp.45–55. 



References|165 
 
Rauzi, M., Lenne, P.-F. & Lecuit, T., 2010. Planar polarized actomyosin contractile flows control 

epithelial junction remodelling. Nature, 468(7327), pp.1110–4. 

Ren, A. et al., 2013. MAST205 competes with cystic fibrosis transmembrane conductance 
regulator (CFTR)-associated ligand for binding to CFTR to regulate CFTR-mediated fluid 
transport. The Journal of biological chemistry, 288(17), pp.12325–34. 

Reversi, A. et al., 2014. Plasma membrane phosphoinositide balance regulates cell shape during 
Drosophila embryo morphogenesis. The Journal of cell biology, 205(3), pp.395–408. 

Riggs, B. et al., 2003. Actin cytoskeleton remodeling during early Drosophila furrow formation 
requires recycling endosomal components Nuclear-fallout and Rab11. The Journal of cell 
biology, 163(1), pp.143–154. 

Riggs, B. et al., 2007. The Concentration of Nuf, a Rab11 Effector, at the Microtubule-organizing 
Center Is Cell Cycle–regulated, Dynein-dependent, and Coincides with Furrow Formation. 
Molecular biology of the cell, 18, pp.3313–3322. 

Ripoche, J. et al., 1994. Location of Golgi membranes with reference to dividing nuclei in 
syncytial Drosophila embryos. Proceedings of the National Academy of Sciences of the 
United States of America, 91, pp.1878–1882. 

Robinson, D.R. et al., 2011. Functionally recurrent rearrangements of the MAST kinase and 
Notch gene families in breast cancer. Nature medicine, 17(12), pp.1646–51. 

Robinson, J.T. et al., 1999. Cytoplasmic Dynein Is Required for the Nuclear Attachment and 
Migration of Centrosomes during Mitosis in Drosophila. jcb, 146(3), pp.597–608. 

Rolls, M.M. et al., 2007. Polarity and intracellular compartmentalization of Drosophila neurons. 
Neural development, 2(7). 

Rothwell, W.F. et al., 1998. Nuclear-fallout, a Drosophila protein that cycles from the cytoplasm 
to the centrosomes, regulates cortical microfilament organization. Development, 125, 
pp.1295–1303. 

Rothwell, W.F. et al., 1999. The Drosophila centrosomal protein Nuf is required for recruiting 
Dah, a membrane associated protein, to furrows in the early embryo. Journal of cell 
science, 112, pp.2885–2893. 

Roxrud, I. et al., 2008. An endosomally localized isoform of Eps15 interacts with Hrs to mediate 
degradation of epidermal growth factor receptor. Journal of Cell Biology, 180(6), pp.1205–
1218. 

Royou, A. et al., 2004. Reassessing the Role and Dynamics of Nonmuscle Myosin II during Furrow 
Formation in Early Drosophila Embryos. Molecular biology of the cell, 15, pp.838–850. 

Runnegar, M.T., Wei, X. & Hamm-alvarez, S.F., 1999. Increased protein phosphorylation of 
cytoplasmic dynein results in impaired motor function. Biochemical Journal, 342, pp.1–6. 

Salcini, A.E. et al., 1999. Epidermal growth factor receptor pathway substrate 15, Eps15. 
International Journal of Biochemistry and Cell Biology, 31(3), pp.805–809. 

Satoh, D. et al., 2008. Spatial control of branching within dendritic arbors by dynein-dependent 
transport of Rab5-endosomes. Nature cell biology, 10(10), pp.1164–1171. 

Savio, M.G. et al., 2016. USP9X Controls EGFR Fate by Deubiquitinating the Endocytic Adaptor 
Eps15. Current Biology, 26, pp.1–11. 



References|166 
 
Schejter, E.D. & Wieschaus, E., 1993a. bottleneck acts as a regulator of the microfilament 

network governing cellularization of the Drosophila embryo. Cell, 75(2), pp.373–85. 

Schejter, E.D. & Wieschaus, E., 1993b. FUNCTIONAL ELEMENTS OF THE CYTOSKELETON IN THE 
EARLY DROSOPHILA EMBRYO. Annu. Rev. Cell Biol., 9, pp.67–99. 

Schreij, A.M.A., Fon, E.A. & McPherson, P.S., 2016. Endocytic membrane trafficking and 
neurodegenerative disease. Cellular and Molecular Life Sciences, 73(8), pp.1529–1545. 

Schroer, T.A., 2004. Dynactin. Annual Review of Cell and Developmental Biology, 20(1), pp.759–
779. 

Seaman, M.N.J., Burd, C.G. & Emr, S.D., 1996. Receptor signaling and the regulation of endocytic 
membrane transport. Current Opinion In Cell Biology, 8(4), pp.549–556. 

Sharp, D.J. et al., 2000. Functional coordination of three mitotic motors in Drosophila embryos. 
Molecular biology of the cell, 11, pp.241–253. 

Sharp, D.J. & Rath, U., 2009. Mitosis: KLP61F Goes Wee! Current Biology, 19(19), pp.R899–R901. 

Sigismund, S. et al., 2005. Clathrin-independent endocytosis of ubiquitinated cargos. 
Proceedings of the National Academy of Sciences of the United States of America, 102(8), 
pp.2760–2765. 

Sisson, J.C. et al., 2000. Lava Lamp, a Novel Peripheral Golgi Protein, Is Required for Drosophila 
melanogaster Cellularization. The Journal of cell biology, 151(4), pp.905–917. 

Sokac, A.M. & Wieschaus, E., 2008a. Local Actin-Dependent Endocytosis Is Zygotically Controlled 
to Initiate Drosophila Cellularization. Developmental Cell, 14(5), pp.775–786. 

Sokac, A.M. & Wieschaus, E., 2008b. Zygotically controlled F-actin establishes cortical 
compartments to stabilize furrows during Drosophila cellularization. Journal of cell science, 
121(11), pp.1815–24. 

Sommi, P. et al., 2010. A mitotic kinesin-6, Pav-KLP, mediates interdependent cortical 
reorganization and spindle dynamics in Drosophila embryos. Journal of Cell Science, 
123(11), pp.1862–1872. 

Sotelo, N.S. et al., 2012. A functional network of the tumor suppressors APC, hDlg, and PTEN, 
that relies on recognition of specific PDZ-domains. Journal of Cellular Biochemistry, 113(8), 
pp.2661–2670. 

Stanley, H., Botas, J. & Malhotra, V., 1997. The mechanism of Golgi segregation during mitosis is 
cell type-specific. Proceedings of the National Academy of Sciences of the United States of 
America, 94(26), pp.14467–70. 

Stein, J.A. et al., 2002. Slow as molasses is required for polarized membrane growth and germ 
cell migration in Drosophila. Development, 129(16), pp.3925–34. 

von Stein, W. et al., 2005. Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN 
reveals a link between the PAR/aPKC complex and phosphoinositide signaling. 
Development (Cambridge, England), 132(7), pp.1675–86. 

Stenmark, H., 2009. Rab GTPases as coordinators of vesicle traffic. Nature reviews. Molecular 
cell biology, 10(8), pp.513–525. 

Su, J. et al., 2013. The BAR domain of amphiphysin is required for cleavage furrow tip–tubule 
formation during cellularization in Drosophila embryos. Molecular biology of the cell, 24, 



References|167 
 

pp.1444–1453. 

Swanson, M.M. & Poodry, C. a, 1981. The shibire mutant of Drosophila: A probe for the study of 
embryonic development. Dev. Biol., 84, pp.465–470. 

Tadros, W., Westwood, J.T. & Lipshitz, H.D., 2007. The Mother-to-Child Transition. 
Developmental Cell, 12(6), pp.847–849. 

Takei, K. et al., 1999. Functional partnership between amphiphysin and dynamin in clathrin-
mediated endocytosis. Nature cell biology, 1(1), pp.33–39. 

Terrien, E. et al., 2009. 1H, 13C and 15N resonance assignments of the PDZ of microtubule-
associated serine/threonine kinase 205 (MAST205) in complex with the C-terminal motif 
from the rabies virus glycoprotein. Biomolecular NMR Assignments, 3(1), pp.45–48. 

Terrien, E. et al., 2012. Interference with the PTEN-MAST2 Interaction by a Viral Protein Leads 
to Cellular Relocalization of PTEN. Science signaling, 5(237), pp.1–12. 

Theurkauf, W.E., 1994. Through the bottleneck. Current Biology, 4(1), pp.76–78. 

Tinsley, J.M. et al., 1994. Increasing complexity of the dystrophin-associated protein complex. 
Proceedings of the National Academy of Sciences of the United States of America, 91(18), 
pp.8307–13. 

Tirnauer, J.S. et al., 1999. Yeast Bim1p promotes the G1-specific dynamics of microtubules. 
Journal of Cell Biology, 145(5), pp.993–1007. 

Tram, U., Riggs, B. & Sullivan, W., 2002. Cleavage and Gastrulation in Drosophila Embryos. 
Encyclopedia of life science, 10, pp.1–7. 

Ullrich, O. et al., 1996. Rab11 Regulates Recycling through the Pericentriolar Recycling 
Endosome. The Journal of cell biology, 135(4), pp.913–924. 

Vaizel-Ohayon, D. & Schejter, E.D., 1999. Mutations in centrosomin reveal requirements for 
centrosomal function during early Drosophila embryogenesis. Current Biology, 9(16), 
pp.889–898. 

Vale, R.D., 2003. The Molecular Motor Toolbox for Intracellular Transport. Cell, 112(4), pp.467–
480. 

Valiente, M. et al., 2005. Binding of PTEN to specific PDZ domains contributes to PTEN protein 
stability and phosphorylation by microtubule-associated serine/threonine kinases. The 
Journal of biological chemistry, 280(32), pp.28936–43. 

Vaughan, P.S., Leszyk, J.D. & Vaughan, K.T., 2001. Cytoplasmic dynein intermediate chain 
phosphorylation regulates binding to dynactin. The Journal of biological chemistry, 
276(28), pp.26171–9. 

Villarroel-Campos, D., Bronfman, F.C. & Gonzalez-Billault, C., 2016. Rab GTPase signaling in 
neurite outgrowth and axon specification. Cytoskeleton (Hoboken, N.J.), 00(Stage 5), pp.1–
10. 

Walden, P.D. & Cowan, N.J., 1993. A Novel 205-Kilodalton Testis-Specific Serine/Threonine 
Protein Kinase Associated with Microtubules of the Spermatid Manchette. Mol. Cell. Biol., 
13(12), pp.7625–7635. 

Wang, D. et al., 2006. Coexpression of MAST205 inhibits the activity of Na+/H+ exchanger NHE3. 
American journal of physiology. Renal physiology, 290(2), pp.F428–37. 



References|168 
 
Wang, X. et al., 2010. Association of Genetic Variation in Mitotic Kinases with Breast Cancer Risk. 

Breast cancer research and treatment, 119(2), pp.453–462. 

Warn, R.M. & Robert-Nicoud, M., 1990. F-actin organization during the cellularization of the 
Drosophila embryo as revealed with a confocal laser scanning microscope. Journal of cell 
science, 96(1), pp.35–42. 

Waterhouse, A.M. et al., 2009. Jalview Version 2-A multiple sequence alignment editor and 
analysis workbench. Bioinformatics, 25(9), pp.1189–1191. 

Webb, R.L., Zhou, M.-N. & McCartney, B.M., 2009. A novel role for an APC2-Diaphanous complex 
in regulating actin organization in Drosophila. Development, 136(8), pp.1283–1293. 

Welte, M.A., 2015. As the fat flies: The dynamic lipid droplets of Drosophila embryos. Biochimica 
et Biophysica Acta, 1851(9), pp.1156–1185. 

Wenzl, C. et al., 2010. Localization of RhoGEF2 during Drosophila cellularization is 
developmentally controlled by Slam. Mechanisms of development, 127(7-8), pp.371–84. 

Whitney, A.J. et al., 1995. Cytoplasmic coat proteins involved in endosome function. Cell, 83(5), 
pp.703–713. 

Whyte, J. et al., 2008. Phosphorylation regulates targeting of cytoplasmic dynein to kinetochores 
during mitosis. The Journal of cell biology, 183(5), pp.819–34. 

Wilkie, G.S. & Davis, I., 2001. Drosophila wingless and pair-rule transcripts localize apically by 
dynein-mediated transport of RNA particles. Cell, 105(2), pp.209–219. 

Winkler, F. et al., 2015. Fluctuation Analysis of Centrosomes Reveals a Cortical Function of 
Kinesin-1. Biophysical Journal, 109(5), pp.856–868. 

Wong, R. et al., 2007. Phospholipase C and myosin light chain kinase inhibition define a common 
step in actin regulation during cytokinesis. BMC cell biology, 8(15). 

Wong, R. et al., 2005. PIP2 hydrolysis and calcium release are required for cytokinesis in 
Drosophila spermatocytes. Current Biology, 15(15), pp.1401–1406. 

Xi, X. et al., 2014. Expression pattern of class i phosphoinositide 3-kinase and distribution of its 
product, phosphatidylinositol-3,4,5-trisphosphate, during Drosophila embryogenesis. 
Gene Expression Patterns, 15(2), pp.88–95. 

Xiong, H. et al., 2004. Interaction of TRAF6 with MAST205 regulates NF-kappaB activation and 
MAST205 stability. The Journal of biological chemistry, 279(42), pp.43675–83. 

Yan, S. et al., 2013. The F-BAR protein Cip4/Toca-1 antagonizes the formin Diaphanous in 
membrane stabilization and compartmentalization. Journal of cell science, 126(8), 
pp.1796–805. 

Yang, Z., Vadlamudi, R.K. & Kumar, R., 2005. Dynein light chain 1 phosphorylation controls 
macropinocytosis. The Journal of biological chemistry, 280(1), pp.654–9. 

Yano, R. et al., 2003. SAST124, a novel splice variant of syntrophin-associated serine/threonine 
kinase (SAST), is specifically localized in the restricted brain regions. Neuroscience, 117(2), 
pp.373–381. 

Ye, F. et al., 2013. Single molecule imaging reveals a major role for diffusion in the exploration 
of ciliary space by signaling receptors. eLife, 2, pp.1–16. 



References|169 
 
Yoon, Y. et al., 1998. A novel dynamin-like protein associates with cytoplasmic vesicles and 

tubules of the endoplasmic reticulum in mammalian cells. Journal of Cell Biology, 140(4), 
pp.779–793. 

Yu, Z.W. & Quinn, P.J., 1994. Dimethyl sulphoxide: a review of its applications in cell biology. 
Bioscience reports, 14(6), pp.259–281. 

Zallen, J.A. et al., 2002. SCAR is a primary regulator of Arp2/3-dependent morphological events 
in Drosophila. Journal of Cell Biology, 156(4), pp.689–701. 

Zhang, C.X. et al., 2000. Discontinuous actin hexagon, a protein essential for cortical furrow 
formation in Drosophila, is membrane associated and hyperphosphorylated. Molecular 
biology of the cell, 11, pp.1011–1022. 

Zhang, C.X. et al., 1996. Isolation and characterization of a Drosophila gene essential for early 
embryonic development and formation of cortical cleavage furrows. The Journal of Cell 
Biology, 134(4), pp.923–34. 

Zhou, H. et al., 2004. Microtubule-Associated Serine/Threonine Kinase-205 kDa and Fc γ 
Receptor Control IL-12 p40 Synthesis and NF- B Activation. The Journal of Immunology, 
172(4), pp.2559–2568. 

Zuellig, R.A. et al., 2011. Tissue Expression and Actin Binding of a Novel N-Terminal Utrophin 
Isoform. Journal of Biomedicine and Biotechnology, pp.1–18. 

 

  



Appendix|170 
 

6. Appendix 

Dynamitin maternal overexpression egg phenotypes 

To test if the fly stock carrying a UAS::(human)Dynamitin (Dmn) effector is clean, eggs deriving 

from females carrying this effector and a maternal α-tubulin Gal4 driver were analysed for dorsal 

appendage abnormalities (Fig.S1). 

 
Figure S1 Eggs with a maternal overexpression of Dynamitin show a range of polarity and 
dorsal appendages defects. Eggs were collected from female flies carrying an α-tubulin Gal4 
driver and a UAS::Dmn effector. 

Eggs expressing Dynamitin maternally (Fig.S1) show a range of polarity and appendages defects 

that resemble the phenotypes reported in Januschke et al. (Januschke et al. 2002). In this 

publication, UAS::Dmn was driven also under the control of a maternal α-tubulin Gal4 driver. 

These data show that the fly stock is still intact and able to overexpress Dmn in the presence of 

Gal4. 
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Injection of Ciliobrevin D with Dextran-FITC 

A molecule that can be used to visualise injections is FITC (Fluorescein isothiocyanate) coupled 

to Dextran. To test if this molecule is suitable to verify Ciliobrevin D injections, co-injections of 

Ciliobrevin D and Dextran-FITC in a 1:1 concentration were performed (Fig.S2). 

 

Figure S2 Injection of embryos can be verified by Fluorescein isothiocyanate molecules 
coupled to dextran. Embryos uninjected (A) or injected with Ciliobrevin D and Dextran-FITC (B) 
imaged with bright field (A, B) and GFP fluorescence filter channel imaging Dextran-FITC (A’, B’). 

Imaging of uninjected and Dextran-FITC injected embryos with a GFP filter displayed a clear 

intensity difference between uninjected and injected embryos (Fig.S2 A‘, B‘). Injected embryos 

show a gradient of fluorescence being strongest at the site of injection (posterior pole; right) 

(Fig.S2 B‘). In contrast, uninjected embryos do not show fluorescence using the GFP filter (Fig.S2 

A‘). These data show that Dextran-FITC molecules are suitable to verify injections into early 

embryos in this system. 
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DlicGFP intensities 

 

Figure S3 DlicGFP intensities vary strongly between embryos of the same genetic background 
expressing one and the same DlicGFP construct. Shown are examples of embryos expressing 
either phospho-mutant versions of Dlic S401 in either dop1/dop10 mutant (D-F) or wild type (A-
C) background during S-phase of syncytial cycle 13. Note the high intensity level differences 
between embryos expressing the same construct. 
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DlicGFP punctate accumulations 

 

Figure S4 High variations can be seen in the number and intensity of punctate accumulations 
in embryos of the same genetic background expressing one and the same DlicGFP construct. 
Shown are examples of embryos expressing either phospho-mutant versions of Dlic S401 in 
either dop1/dop10 mutant (D-F) or wild type (A-C) background during cellularisation. The 
presented z-levels have been chosen which show most and strongest signal accumulations of 
DlicGFP in each embryo. Note the high variation of numbers and intensities of the punctate 
structures between embryos expressing the same DlicGFP construct. 

High variations in number and intensity levels of punctate accumulations in embryos expressing 

the same DlicGFP construct (Fig.S4) might be due to the small size of the accumulations and the 

comparatively low z-resolution (0.5 µm) due to the imaging settings. It is possible that not in 

every case the z-level with the most and brightest accumulations has been imaged.  
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DlicGFP nuclear drop-out phenotypes 

 

Figure S5 Nuclear drop-out can be seen in embryos with genetic dop mutant background 
expressing either of the DlicGFP constructs. Shown are examples of embryos expressing either 
phospho-mutant versions of Dlic S401 in either dop1/dop10 mutant (D-F) or wild type (A-C) 
background during cellularisation. The presented z-levels have been chosen which show the 
nuclear drop-out phenotype. 


