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Simple Summary: Head and neck cancers are the sixth most common cancer in the world. The
burden of the disease has remained challenging over recent years despite the advances in treatments
of other malignancies. The very use of the word malignancy brings about a stress response in almost
all adult patients. Being told you have a tumour is not a word anyone wants to hear. We have
embarked on a study which will investigate the effect of stress pathways on head and neck cancer
patients and which signalling pathways may be involved. In the future, this will allow clinicians to
better manage patients with head and neck cancer and reduce the patients’ stress so that this does
not add to their tumour burden.

Abstract: A single head and neck Cancer (HNC) is a globally growing challenge associated with
significant morbidity and mortality. The diagnosis itself can affect the patients profoundly let alone
the complex and disfiguring treatment. The highly important functions of structures of the head and
neck such as mastication, speech, aesthetics, identity and social interactions make a cancer diagnosis
in this region even more psychologically traumatic. The emotional distress engendered as a result of
functional and social disruption is certain to negatively affect health-related quality of life (HRQoL).
The key biological responses to stressful events are moderated through the combined action of two
systems, the hypothalamus–pituitary–adrenal axis (HPA) which releases glucocorticoids and the
sympathetic nervous system (SNS) which releases catecholamines. In acute stress, these hormones
help the body to regain homeostasis; however, in chronic stress their increased levels and activation
of their receptors may aid in the progression of cancer. Despite ample evidence on the existence of
stress in patients diagnosed with HNC, studies looking at the effect of stress on the progression of
disease are scarce, compared to other cancers. This review summarises the challenges associated
with HNC that make it stressful and describes how stress signalling aids in the progression of cancer.
Growing evidence on the relationship between stress and HNC makes it paramount to focus future
research towards a better understanding of stress and its effect on head and neck cancer.

Keywords: stress; HNC; glucocorticoid signalling; β-adrenergic signalling; cancer

1. Introduction

Head and neck cancers (HNC) are a globally growing burden resulting in significant
mortality and morbidity [1]. With around 650,000 cases diagnosed every year, HNC are the
sixth most common form of cancers in the world [2]. More than 90% of the head and neck
cancers are squamous cell carcinoma (SCC) of the oral, laryngeal or oropharyngeal mucosal
surfaces [3]. More than 90% of the malignant tumours of the oral cavity are SCC, with
significantly fewer neoplasms presenting in the soft tissues and minor salivary glands [4].

HNC are stressful for patients and their caregivers from diagnosis, throughout the
course of treatment and persist in survivorship [5–7]. The involvement of surgery, radiation
and/or chemotherapy makes the treatment course even more complex and tedious for
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the patients. The overall impact is momentous, as patients struggle with the myriad of
challenges, all of which act as precursors to stress [8] (Figure 1). This review highlights
the challenges that become a source of stress and reduced quality of life (QoL) in HNC
patients. It also inspects the response of the body to stress and how the stress pathways, as
studied in other types of cancers, aid in tumour progression. Despite HNC being amongst
the most stressful cancers, the studies on its role and effect in tumour progression are still
scarce and are summarised in Table 1.

Figure 1. Summary of the challenges associated with head and neck cancers. The diagnosis itself,
complex treatment plans, functional disability in terms of speech and mastication, concerns around
body image that in turn lead to compromised social interactions, and fear of recurrence (FCR) are
some of the challenges faced by the patients with head and neck cancers (HNC). These challenges
decrease the quality of life (QoL) and increase psychological stress.

Amongst the many challenges faced by HNC patients, the diagnosis itself is considered
a serious problem, as it changes their perspective on life. One of the first works in the
literature that identified cancer as an intense emotional distress dates back to 1951 [22].
Psychiatrists have observed reactions of patients with breast, ovarian, cervical cancers and
tongue lesions. For most patients, cancer was an intense emotional distress and meant a
painful and lingering death. The patients described the news of cancer “a heavy blow to
the head”, as they looked towards the future with fearful apprehensions [23].

The head and neck region has an enormous cosmetic importance. It plays a central
role in social interactions and identity [24]. Increasing tumour size or treatment modalities
may result in disfigurement. A study suggests 41% to 71% of patients diagnosed with HNC
require surgical intervention [25]. Changes in facial appearance due to treatment or disease
can have devastating consequences for the patients, especially since the deformity is highly
visible compared with other types of cancer [26]. Patients suffer from negative emotions
and a distorted view about self [27–30]. This can also compromise the functional aspects
of eating, speech, breathing and body image [31–36]. Additionally, the stigma attached
to facial disfigurement may impact upon social and family interactions as well as work
life, leading to self-esteem issues [37–40]. As a consequence of these difficulties patients
often experience depression, social anxiety and a generalised sense of reduced quality of
life (QoL) [27,32,41,42].
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Table 1. Studies on Head and Neck Cancer Showing the Effect of Stress Hormones and Receptors.

Study Performed on Techniques Used Findings

1. Stress hormones increase cell proliferation and
regulates interleukin-6 secretion in human oral
squamous cell carcinoma cells [9].

Oral squamous cell carcinoma (OSCC) cell lines
(SCC9, SCC15, SCC25), 20 OSCC biopsies,
17 leukoplakia biopsies, 15 Normal oral mucosae.

Polymerase Chain Reaction (PCR), to determine
Interleukin-6 (IL-6) gene expression in cell lines and
tissues, (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) (MTT) to determine
cell proliferation, enzyme-linked immunosorbent
assay (ELISA) to determine the IL-6 protein levels.

Norepinephrine (NE) increased IL-6 expression and
cell proliferation in OSCC cell lines.
Pharmacological dose of cortisol decreased VEGF
and IL-6 whereas, stress dose increased VEGF and
IL-6 expressions.
Mean expression of β1 mRNA in OSCC was higher
compared to normal mucosa (p < 0.05).

2. Chronic stress promotes oral cancer growth and
angiogenesis with increased circulating
catecholamine and glucocorticoid levels in a mouse
model [10].

Oral Cancer Cell line CAL 27 implanted into mice.

Catecholamine levels were determined by High
Performance Liquid Chromatography with Mass
spectrometry (HPLC-MS/MS).
Expression of VEGF and MMP by was observed
with immunohistochemistry (IHC).
Physical restraint system was used to induce
characteristic chronic stress.

Chronic stress increased tumour size, matrix
metalloproteinases (MMP), VEGF expression, level
of plasma catecholamines, cortisone and caused
more invasive growth of oral carcinoma cells in a
mice model.

3. Association of Increased Circulating
Catecholamine and Glucocorticoid Levels with Risk
of Psychological Problems in Oral Neoplasm
Patients [11].

75 patients (49 men and 26 women) with oral
tumours were included.

Checklist 90-revised Inventory (SCL90-R) which is a
self-assessment survey of 90 questions, as well as a
demographic questionnaire were used to assess the
psychosocial status of patients.
Blood samples were taken two hours before surgery,
between approximately 9:00 and 11:00 a.m.
Catecholamine levels were determined by High
Performance Liquid Chromatography with Mass
spectrometry (HPLC-MS-MS).

Significant difference in the scores of SCL90-R
between the benign tumour and cancer patients’
groups was only seen in the dimensions of
depression (p = 0.0201) and obsessive-compulsion
(p = 0.0093)
Peripheral blood mean concentrations of
catecholamines and glucocorticoids in the oral
cancer group were higher than in the benign
tumour group (p < 0.01) (p < 0.001), respectively.
Stage I and II cancer showed comparatively low
concentrations of epinephrine and Stage III and IV
cancer showed substantially greater concentrations
of epinephrine, norepinephrine, cortisone,
hydrocortisone.

4. Prognostic significance of beta-2 adrenergic
receptor in oral squamous cell carcinoma [12].

Clinicopathological data, treatment, tumour
outcome, prognosis and expression of β2-adrenergic
receptor was examined for 106 OSCC patients.

Immunohistochemistry was used to analyse the
expression of β2-adrenergic receptors and its
relation to clinicopathological variables.

Strong cytoplasmic and membranous β2-adrenergic
receptor expression was found in malignant OSCC
(72.6%).
Significant association between β2-adrenergic
receptor expression and alcohol (p = 0.021),
simultaneous use of alcohol and tobacco (p = 0.014)
and T stage (p = 0.07), was observed.

5. Expression of β2-adrenergic receptor in oral
squamous cell carcinoma [13].

65 OSCC patients with pathologically confirmed
diagnosis of OSCC.
Ten cases of adjacent normal mucosa as controls.
TCa8113—cell line from OSCC of tongue.
ACC—cell line from Salivary Adenoid Cystic
Carcinoma.

Immunohistochemistry (IHC)
Western blot
RT PCR
Migration assay
Proliferation assay.

β2 expression significantly correlated with cervical
lymph node metastasis (p = 0.001), age (0.003),
tumour size (0.001), clinical stage (0.001).
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Table 1. Cont.

Study Performed on Techniques Used Findings

6. Glucocorticoids reduce chemotherapeutic
effectiveness on OSCC cells via glucose-dependent
mechanisms [14].

Oral malignant keratinocytes: H314, H357, H400,
BICR16, BICR56.

Annexin V-FITC assay to study apoptosis.
Enzyme-linked immunosorbent assay (ELISA)—to
measure the concentration of cortisol after
adrenocorticotropic hormone (ACTH) stimulation.

Glucocorticoids had an antiapoptotic and protective
effect on OSCC against chemotherapy in a glucose
dependent manner.

7. Immunoexpression of glucocorticoid receptor
alpha (GRα) isoform and apoptotic proteins (Bcl-2
and Bax) in actinic cheilitis and lower lip squamous
cell carcinoma [15].

22 cases of actinic cheilitis (AC), 44 cases of lower
lip squamous cell carcinoma (LLSCC) (22 with
normal mucosa, 22 without normal mucosa)
The percentages of nuclear (GRα) and cytoplasmic
(GRα, Bcl-2, and Bax) staining in epithelial cells
were correlated with clinical (tumour size/extent
and clinical stage) and histopathological parameters
(risk of malignant transformation for AC and
histopathological grade of malignancy for LLSCCs).

Immunohistochemistry (IHC).

A relatively high median percentages of GRα
positive staining was observed in all cases.
A lower nuclear expression and higher cytoplasmic
expression of GRα was observed in LLSCC
specimens compared to actinic cheilitis (p < 0.05).
A higher GRα expression was observed in high
grade tumours compared to low grade tumours
(p = 0.036).

8. Circulating catecholamines are associated with
biobehavioural factors and anxiety syptoms in head
and neck cancer patients [16].

Plasma epinephrine and norepinephrine were
measured.
Psychological anxiety levels in 93 patients with
HNSCC and 32 patients with oral leukoplakia.

Plasma epinephrine and norepinephrine were
measured by High Performance Liquid
Chromatography-Electrochemical Detection
(HPLC-ED).
Psychological anxiety levels measured by Beck
Anxiety Inventory (BAI).

Significantly higher levels of plasma epinephrine
and norepinephrine were observed in OSCC
patients than in oropharyngeal and oral leukoplakia
patients.
The total BAI mean scores did not show a
significant difference among the three groups.

9. Characterisation of a Novel Oral Glucocorticoid
System and Its Possible Role in Disease [17].

Normal oral keratinocytes (NOK), normal oral
fibroblasts (NOF), normal oral mucosa (NOM) and
malignant tissue.

Western Blot, Immunohistochemistry, ELISA.

NOK and NOF synthesise cortisol in the presence of
10 nM ACTH.
NOK expressed 11-β hydroxysteroid
dehydrogenase type 1 (11-β HSD1), 11-β
hydroxysteroid dehydrogenase type 2 (11-β HSD 2),
Glucocorticoid Receptor and Mineralocorticoid
Receptor.
NOK lacked 11-β-HSD 2 showing their inability to
degrade cortisol.
11-β-HSD expression was not detected in OSCC.

10. Increased plasma and salivary cortisol levels in
patients with oral cancer and their association with
clinical stage [18].

34 oral squamous cell carcinoma (OSCC) patients,
17 oropharyngeal SCC patients, 17 oral leukoplakia
patients, 27 smokers and/or drinkers and 25
healthy volunteers.

The plasma and salivary cortisol levels of patients
with OSCC were compared with other groups by
enzyme immunoassay with a commercial kit.

OSCC patients showed significantly higher levels of
plasma (p < 0.05) and salivary (p < 0.01) cortisol
compared to all the other groups.
Patients at advanced stage of OSCC showed
significantly higher cortisol levels than those at
initial stage.
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Table 1. Cont.

Study Performed on Techniques Used Findings

11. The stress hormone Norepinephrine promotes
tumour progression through β2-adrenoreceptors in
oral cancer [19].

40 OSCC samples from patients and 20 para cancer
Normal Oral Mucosa.
SCC25 and CAL 27 cell lines.

RT-PCR
Immunohistochemistry
Cell proliferation assay CCK-8
Matrigel coated transwell assay
Colony forming assay
Sphere forming assay.

OSCC showed significantly higher β2 adrenergic
receptor expression than normal para cancer tissue.
Norepinephrine promoted proliferation, invasion
and stem cell characteristics of OSCC cell lines.

12. Stress hormones concentrations in the normal
microenvironment predict risk for chemically
induced cancer in rats [20].

Male Wistar rats

Measurement of stress hormone levels,
norepinephrine, corticosterone, ACTH and
brain-derived neurotropic factor (BDNF) in the
tongue microenvironment prior to carcinogen
induction was done by ELISA and Milliplex
Multi-Analyte Profiling method.
To induce tumours, mice were treated with
4-nitroquinoline-1-oxide.
The tongues with carcinogen induced lesions were
used to perform histochemical analysis and RT PCR.

Increased concentrations of norepinephrine and
BDNF positively correlated to OSCC occurrence
whereas decreased basal corticosterone levels were
predictive for OSCC occurrence.

13. Activation of adrenergic receptor β2 promotes
tumour progression and epithelial mesenchymal
transition in tongue squamous cell carcinoma
(2018) [21].

Tongue squamous cell carcinoma (TSCC) specimens
(n = 70) and adjacent non-cancerous tissue samples
(n = 20).
CAL 27 and SCC 15 cell lines.

Immunohistochemistry
Cell migration and invasion assay
Immunofluorescence.

Increased expression of β-adrenergic receptor was
observed in TSCC and was associated with lymph
node metastasis and reduced overall survival.
Treatment of cells with isoproterenol induced
epithelial–mesenchymal transition (EMT) by
activating IL-6/STAT-3 SNAIL 1 pathway.
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Studies have used different screening tools to assess the relationship between QoL
and disfigurement. A systematic review by Djan in 2013 [43], considered five QoL ques-
tionnaires suitable for HNC patients. These included, University of Washington QoL
(UWQOLQ), Head and Neck Survey (HNS), Europe Organisation for Restoration and
Treatment of Cancer QoL Questionnaire Head and Neck 35 (EORTC-QOQ-H&N35), Der-
riford Appearance Scale 24 (DAS24) (DAS 59). The UWQOLQ was found to be most
appropriate for appearance issues in clinical practice, whereas DAS24 and DAS 59 were
important screening tools in understanding the effect of appearance on QoL in a research
setup. The extent of facial disfigurement was reported to be negatively associated with
psychological and social function [44,45]. Wang et al., in 2018, used questionnaires in-
cluding a Facial Disfigurement Scale, Social Support Scale and Psychosocial Adjustment
to Illness scale and reported poor psychosocial adjustment in Oral cancer patients with
severe disfigurement [46]. The study [47] employed a Functional Assessment of Cancer
Therapy-Head and Neck (FACT H&N) questionnaire and observed that disfigurement
was significantly associated with the functional dimension of patients’ QoL. It was also
reported that disfigurement was positively associated with psychological distress when
social self-efficacy was low [48].

After a diagnosis of cancer, the concern or fear that cancer may return or progress,
is also seen in patients. This is termed as the fear of recurrence (FCR) [49–51]. Early
studies reported that FCR was a prominent apprehension of all the cancer patients [52].
In patients diagnosed with breast, prostate and lung cancer, FCR was recognised as the
most commonly reported worry [53]. FCR is a frequent concern for HNC patients and is
associated with psychological stress [54,55]. The significant positive relationship between
psychological distress and FCR remained stable at the two time points of 3 and 6 months
post diagnosis [55].

Follow up appointments and somatic symptoms triggered FCR [56,57]. FCR was
elevated by deterioration of somatic symptoms and was shown to be a link between
somatic symptoms and stress [58]. FCR was also reported to be a mediator between
severity of symptoms and QoL in HNC patients. The specific symptom of pain was
significantly related to FCR [59]. Prevalence of FCR was variously reported to affect 31% to
61% patients with HNC [60,61]. A recent prospective study reported a high FCR in 52.8%
of HNC patients. Higher levels of anxiety, younger age, introversion and previous smoking
habit were significantly associated with FCR [62].

Cancer patients commonly suffer from pain. It is one of the most frightening symp-
toms of cancer [63]. The International Association for the Study of Pain defines it as “an
unpleasant sensory and emotional experience with actual or potential tissue damage” [64].
The studies in HNC have observed the prevalence of pain over different time points from
diagnosis up to the treatment completion and follow-up. Gellrich et al., 2002, reported
that 56% of HNC patients presented with pain at the time of diagnosis and 96% of these
patients had mixed neuropathic and nociceptive pain, whereas Potter et al., 2003, reported
pain as a less common symptom at diagnosis [65,66]. In another study by Ribeiro et al.,
2003, 60% of patients with oral and oropharyngeal cancers reported pain [67]. The rich
nerve supply and the presence of vital anatomical structures in the confined space of the
head and neck region make it extremely sensitive to pain [68]. HNC patients frequently
complain of pain [69,70]. A meta-analysis by Everdingen et al., in 2007, reported the
prevalence of pain in head and neck cancers to be higher compared with gastrointestinal,
lung and breast cancers [71]. The functional role of this region increases the significance
of pain for the patients [63]. In a sample of 113 oral squamous cell carcinoma patients,
37% reported spontaneous pain and 68% reported function-related pain [72]. A study by
Breivik et al., 2009, showed 86% patients with head and neck squamous cell carcinoma
(HNSCC), reported pain [69]. Studies have shown the direct association of pain with poor
quality of life [73–77].

HNC is a debilitating illness with disease challenges and complex treatment plans.
Consequently, patients have to endure a profound emotional impact due to the diagnosis
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itself, demanding treatment plans, compromised function, aesthetics and disrupted social
life. The anatomical importance and complexity of HNC requires a multi-faceted reha-
bilitation, a part of which must also address the psychological stress of these patients to
improve the overall success of treatment [6,7].

2. Response to Stress

The challenges/stressors associated with the diagnosis and treatment of cancer engen-
der emotional distress and negatively affect health-related quality of Life (HRQoL) [78].
In addition, HNC patients with depressive symptoms showed lower overall survival,
less motivation and poor response to treatment [79]. Evidence suggests that there is a
role of neuro-endocrinological markers between HRQoL, psychological stress and can-
cer survival [80–82]. The key biological responses to stressful events occur through the
combined action of two systems, i.e., the hypothalamus–pituitary–adrenal axis (HPA) and
sympathetic nervous system (SNS), both activated by the central nervous system (CNS),
(Figure 2) [83].

Figure 2. Response of the body to stress. A stressor (1), causes the central nervous system (CNS)
(2), to activate the sympathetic nervous system (SNS) (3), and hypothalamus–pituitary–adrenal
axis (HPA) (4). Sympathetic nervous system (SNS) activates adrenal medulla (5), which releases
catecholamines (6). Hypothalamus releases corticotropin-releasing hormone (CRH) (7), which causes
the pituitary gland to release adrenocorticotropic hormone (ACTH) (8). Adrenocorticotropic hormone
(ACTH) results in the release of cortisone (9), from adrenal cortex. Cortisone is activated by the
enzyme 11-β hydroxysteroid dehydrogenase type 1 (11-β HSD-1) to cortisol and 11-β hydroxysteroid
dehydrogenase type 2 (11-β HSD-2) to cortisone, in the target organs (10).
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Any stressful situation is recognised by the paraventricular nucleus of the hypotha-
lamus, that plays a role of a biological circuit, integrating human experiences with phys-
iological signalling and releasing the corticotropin-releasing hormone (CRH) [84]. CRH
acts on the pituitary gland, which then releases adrenocorticotropic hormone (ACTH)
(Figure 2). ACTH signals the adrenal cortex to release glucocorticoids. The glucocorticoids,
mainly cortisol, are released in an inactive form, cortisone and converted to the active form
cortisol and back to cortisone by the enzymes, 11-β hydroxysteroid dehydrogenase type 1
(11-β HSD-1) and 11-β hydroxysteroid dehydrogenase type 2 (11-β HSD-2), respectively,
in the target organs (Figure 2). They increase lipolysis and gluconeogenesis to increase the
available energy sources. A negative feedback system regulates production of cortisol via
the hypothalamus and pituitary gland [85].

The SNS, on the other hand, is activated by the autonomic nervous system (ANS)
(Figure 2). Once activated, it stimulates the adrenal medulla to release the catecholamines,
epinephrine and norepinephrine (Figure 2). The catecholamines exert effects on cardiovas-
cular, pulmonary, hepatic, skeletal and immune systems for quick transport of energy to
the organs [83]. As a result, homeostasis is re-established, provided the stressor falls into
the adaptive capacity [84].

Signals from the HPA and SNS shape the stress response of the body and enable it to
survive through the stressful event. However, prolonged exposure to stress can result in
the body being negatively affected by the stress hormones, a phenomenon called allostatic
load whereby the demand exceeds the adaptive capacity of an individual [86]. The stress
response may then be accompanied by changes in the defence mechanisms, metabolism
and circulation, resulting in high blood pressure, altered immunity and cytokine levels [83].
Activation of these systems over a long period of time increases the levels of glucocorticoids
and catecholamines [87–89]. Studies have shown that chronic stress, leading to increased
levels of catecholamines and glucocorticoids, plays a role in cancer progression [90].

2.1. Adrenergic Signalling Pathway

The adrenergic pathway mediates the sympathetic nervous system-induced fight and
flight stress responses. It functions through adrenergic receptors and the neurotransmitters—
epinephrine (adrenaline) and norepinephrine (noradrenaline) [91]. The receptors involved
include α-adrenergic and β-adrenergic receptors [92]. These receptors belong to a family
of G-protein-coupled receptors, which consist of seven transmembrane spanning domains,
three intracellular and three extracellular loops, one extracellular N-terminal domain and one
intracellular C-terminal domain. The α-adrenergic receptors show affinity for norepinephrine
(noradrenaline), while the β-adrenergic receptor shows affinity for epinephrine (adrenaline) [93].
The sub-types of β-adrenergic receptors are β1, β2, β3. These three types of β-adrenergic
receptors are found on multiple sites of tumour growth and metastasis, such as brain, liver,
lungs, breast, ovary, prostate, lymphoid, bone marrow and vasculature [91,94].

The interaction of catecholamines with their receptors can activate multiple signal
transduction pathways involved in survival and apoptosis. Even in non-stressed states,
they are involved in the regulation of blood pressure and heart rate [93]. The binding of
epinephrine (adrenaline) and norepinephrine (noradrenaline) to β-adrenergic receptors
results in the activation of G guanine nucleotide binding protein leading to the stimulation
of adenylyl cyclase synthesis of cyclic AMP [94], (Figure 3). The cyclic AMP, in turn, is
involved in the regulation of multiple cellular processes through Protein Kinase A (PKA)
and Exchange Protein Directly Activated by cyclic AMP (EPAC)—the two major effector
systems (Figure 3), [91,95,96].

PKA, activated by cyclic AMP, results in the phosphorylation of transcription factors
(Figure 3) [94,97–99]. PKA is involved in the regulation of various cellular processes such
as growth, metabolism, differentiation, morphology, neurotransmission and gene tran-
scription [91]. It also phosphorylates β-arrestin receptor kinase (BARK), which results in
β-arrestin inhibition of β-adrenergic signalling and activation of Src (Figure 3) [99]. Src
activates Focal Adhesion Kinase (FAK) which increases cytoskeletal rearrangements and
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cell motility [94]. Cyclic AMP (cAMP)-PKA activated by stress hormones also leads to
increased proliferation and angiogenesis via PI3K/AKT/mTOR/P70S6K/HIF1α pathway.
In cervical cancer cells, PKA dephosphorylates Yes-Associated Protein (YAP). The translo-
cation of dephosphorylated YAP into the nucleus leads to inhibition of apoptosis [100],
(Figure 3).

Figure 3. Adrenergic signalling pathway and mechanisms. The binding of Epinephrine (E) and Norepinephrine (N)
to β-adrenergic receptors (β-ADR) results in Gαs-mediated activation of adenylyl cyclase (1,2). This causes a transient
influx of cyclic AMP (cAMP) (3). cAMP activates the two effector pathways, Protein Kinase A (PKA) and exchange
protein directly activated by cyclic AMP (EPAC) (4). PKA phosphorylates Bcl-2 associated agonist of cell death (BAD)
which makes the cells resistant to apoptosis and anoikis (5). It also phosphorylates β-adrenergic receptor kinase (BARK)
which recruits β-arrestin, further phosphorylating Src and Focal Adhesion Kinase (FAK), resulting in cell motility (6).
In cervical cancer cells, sustained adrenergic signalling that results in PKA activation causes inhibition of the tumour
suppressive Hippo Yap pathway. PKA targets the tumour suppressor Neurofibromin 2 (NF-2), as a result of which the
downstream phosphorylation of mammalian Ste20-like kinases 1

2 (MST1/2; homologs of Drososphila Hippo (Hpo)), large
tumour suppressor 1

2 (LATS 1
2 ; homologs of Drosophila Warts (Wts)) and Yes-Associated Protein (YAP) is inhibited. The

dephosphorylated YAP translocates into the nucleus and inhibits apoptosis (7). β-adrenergic receptors activated by stress
lead to cAMP-PKA/AKT/mTOR/P70S6K/HIFα pathway-dependent proliferation and angiogenesis (8). EPAC leads to the
activation of BRAF-MAPK signalling pathway (9). The transcription factors STAT3, CREB, ETS, AP1 are phosphorylated by
PKA as well as by EPAC (10) which upregulate the expression of vascular endothelial growth factor (VEGF), interleukin
(IL)-6, IL-8, matrix metalloproteinases (MMPs), SNAI-2 involved in angiogenesis and invasion. Adapted from [91,94,96,100].

The second major effector is EPAC, (Figure 3) [95]. EPAC activates RAS (Rat Sarcoma)-
like guanine triphosphatase RAP1A, which in turn stimulates B-RAF, MAP/ERK1/2 and
ERK1/2 with effects on cell growth and proliferation [96], while PKA predominantly
exerts effects on inflammation, angiogenesis and invasion, EPAC results in changes in cell
morphology and motility [94].

2.2. Glucocorticoid Receptor Signalling

Our everyday functioning is dependent on several physiological processes. These
processes such as metabolism [101], immune defence [102], growth and development [103],
mood stability [104,105], essentially all involve the role of GC.
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A brief look at the historical journey of GC, highlights the names of Han Selye and
Phillip Hench. Selye focused on glucocorticoids from a stress point of view and was the first
to discover that cortisol released from the adrenal cortex participated in the stress response.
He also demonstrated that glucocorticoids exert strong anti-inflammatory effects [106]. At
the same time, Hench, while treating his Rheumatoid Arthritis (RA) patients, observed
that a substance X appeared, during jaundice and pregnancy, that resulted in a cure of RA.
Hench and Kendle later discovered that this substance was cortisol and received a Nobel
prize for isolating and identifying the structure of glucocorticoids [107]. Since then, the
synthetic form of cortisol, dexamethasone has been widely celebrated as a wonder drug in
a wide array of diseases. However, the deregulated levels of cortisol in the body, as well as
the exogenous dexamethasone, act as a double-edged sword in cancer, suppressing some
forms and progressing others.

Glucocorticoids mediate their actions through the glucocorticoid receptor (GR), a
ligand-inducible transcription factor [108,109]. The glucocorticoid receptors are the fun-
damental directors in events that follow stress exposure. They are crucial for the stress re-
sponse, as well as in the treatment of autoimmune, inflammatory and allergic diseases [110].

The human glucocorticoid receptor (hGR) gene called NR3C1 is found on chromosome
5q31.32 (Figure 4). It consists of nine exons and spans 160 kbs. Alternative splicing of the
hGR gene in exon 9, results in two receptor isoforms GRα and β, (Figure 5) which differ
at the ends of their C-termini [111]. GRα contains 50 additional amino acids in its ligand-
binding domain (LBD) with a molecular weight of 97 kDa and GRβ containing 15 amino
acids with a molecular weight of 94 kDa, (Figure 5) [112]. GRα-specific sequences enable
its binding to glucocorticoids and the recruitment of coregulator by AF-2 [111]. GRβ does
not bind the glucocorticoids, however it can bind the receptor antagonist, mifepristone.
Grβ is known to be a dominant-negative regulator of GRα. Genome-wide analysis showed
that hGRβ can alter the activity of genes controlled by GRα [113]. GRs are expressed in
malignancies and the intensity of their expression differs according to the tissue.

The human GR (hGR) is composed of three major domains, each with a specific
function. The N-terminal domain (NTD), composed of the first 421 amino acids, possesses
a major transactivation domain termed, Activation Factor-1 (AF-1). AF-1 which is a
transcription factor plays a critical role in the regulationof the receptor by acting as a site
of communication between the NTD and coactivators, chromatin modulators and basal
transcription factors, such as RNA polymerase II and TATA binding protein [114,115].

The DNA-binding domain (DBD) consists of amino acid residues from 420 to 480.
This domain is essential for the binding of GRα to the specific DNA sequences, Gluco-
corticoid Receptor Elements (GRE), through the two C4-type zinc fingers [116,117]. The
DBD also contains the amino acids for GR homo-dimerisation [118]. In addition, it also
contains the nuclear localisation domain (NLS1) [119,120]. The ligand-binding domain
(LBD) of the hGRα consists of amino acid residues 481 to 777. This domain is comprised
of 12 helices that contain a hydrophobic pocket and form a ligand-binding site, which
binds the glucocorticoids and therefore plays a critical role in the ligand-induced activation
of GRα [121]. Ligand binding results in a conformational change through these helices
in the LBD. The new conformation closes the ligand-binding pocket and enables GRα to
interact with importin in the nucleus, members of the transcription initiation complexes
and transcription factors that are essential for the ligand-dependent activation of GRα [109].
Another nuclear localisation domain (NLS 2) is also found on the LBD and acts only as a
weak localisation signal [119].

Prior to ligand binding, GR is found in the cytoplasm bound to a GR chaperone com-
plex (Figure 6). The chaperone complex consists of the heat shock proteins (Hsp 70, Hsp 90,
Hsp 40) and p23 immunophilin, which maintain the inactive form of GR and enable the
ligand-binding domain to identify the ligand and block the nuclear localisation sequence
(NLS), inhibiting its translocation into the nucleus [122]. HSP 40 and immunophilin p23,
also play an essential role in the association of different proteins in the complex and GR mat-
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uration [123]. GR goes through post-translational modifications such as phosphorylation,
acetylation, SUMOylation and ubiquitination that effect its action [124].

Figure 4. The human glucocorticoid receptor (hGR) gene. The hGR gene, called NR3C1 is located on
chromosome 5 (5q31.32) and spans 160kb.

Upon classical ligand binding, the NLS is exposed and the GC-GR complex translo-
cates into the nuclear pore and the accessory proteins are transferred back into the cyto-
plasm via importin [126]. Studies in breast cancer show ligand–receptor binding causes
a conformational change in the structure and GRα is phosphorylated at serine 211 by
p38 MAPK. This leads to dissociation of the inhibitory proteins and exposes the NLS
and dimerisation domain (DD). GR alpha dimerises and translocates into the nucleus
via the nuclear pore [127]. Ten serine residues have been identified as phosphorylation
targets. These include S45, S113, S141, S203, S211, S226, S236, S267, S404, S134 and T8
and some of them are associated with inhibition of GC signalling [112,128]. A recent
study on Triple-Negative Breast Cancer (TNBC) also showed that TGFβ promoted ligand-
independent, p38 MAPK—induced S134 GR phosphorylation, which resulted in migration
and invasion [129].
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Figure 5. Glucocorticoid receptor α and β isoforms. Alternative splicing of the human glucocorticoid receptor gene (hGR) in
exon 9, results in two receptor isoforms GRα and β, which differ at the ends of their C-termini by the number of amino acids
in the ligand-binding domain (LBD). The three major domains of the hGR are N-terminal domain (NTD), DNA-binding
domain (DBD) and ligand-binding domain (LBD). The N-terminal domain contains a major transactivation domain called
Activation Factor-1 (AF-1), critical for the transcriptional activation of the receptor. DNA-binding domain (DBD) contains
amino acids responsible for GR homodimerisation. The LBD consists of the ligand-binding site. GRα contains 50 additional
amino acids in its ligand-binding domain (LBD) with a molecular weight of 97 kDa and GRβ contains 15 amino acids with a
molecular weight of 94 kDa. Of the two isoforms, only GRα binds to the glucocorticoids. Adapted from [109].

Figure 6. Genomic and non-genomic glucocorticoid signalling. Hypothalamic–pituitary–adrenal axis (HPA) releases
glucocorticoids (GC) in response to stress (1). GC binding to cytosolic glucocorticoid receptor (GR) results in the dissociation
of heat shock proteins (Hsp 90, Hsp 40, Hsp 70) and brings a conformational change leading to the phosphorylation and
dimerisation of GR. (2,3). The GC-GR complex translocates into the nucleus (4), where it may result in transcriptional
upregulation by direct DNA binding to positive glucocorticoid response elements (GRE) and down-regulation by binding
to negative glucocorticoid response elements (nGRE) (5) or indirect DNA binding via transcriptional factors (TF) (6). The
rapidly occurring non genomic mechanisms take place through the membranous glucocorticoid receptor (mGR) (7) that
activate the proliferative signalling pathways, and cause inhibition of apoptosis by translocation of GR to mitochondria (8).
Adapted from [125].

Translocation of the GC-GR complex in the nucleus generates genomic effects resulting
in either activation or repression of gene transcription [109]. Activation or repression can
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occur through direct DNA binding or through indirect DNA binding (Figure 6) [130]. The
ligand-bound GR can directly bind to the positive GRE (GRE) or negative GRE (nGRE)
to bring about activation or repression of transcription, respectively [130]. The binding
of the GC-GR complex to GRE, followed by GRE dimerisation, leads to recruitment of
cofactors, such as CBP, P300 and histone acetyl transferases (HAT), resulting in gene
expression [110]. The binding of GR to nGRE prevents the interaction of transcription
factors with promoter DNA and results in gene silencing. Prolactin, neuronal serotonin
receptor, corticoid-releasing hormone and vasoactive intestinal peptide are examples of
genes that contain nGRE.

Few inflammatory genes repressed by GC are identified to contain these GREs [131].
It is the concentration of GC that governs which GREs will be occupied by the GC-GR
complex. The tissue-specific effects of GC could be the result of chromatin accessibility and
GRE’s distinct sensitivity [132]. Gene activation and repression by GR can also take place
independently of direct DNA binding, through interaction with other transcription factors
such as NFk B, TGF β, MAPK and STAT [127]. GR location, protein–protein interaction
(PPI) and sensitivity to GC, affect the GC efficacy. GC-GR effects are dependent on tissue
and cell type and may also differ according to the host condition [110,119].

Increasing evidence indicates activity through non-genomic signalling mechanisms as
well, resulting in rapid cellular responses that occur over a few seconds to minutes (Figure 6).
These do not involve changes in gene expression, but activation of signal transduction
pathways. These mechanisms occur via membrane-bound GR (mGR) and cytoplasmic
GR [133,134].

Membrane-bound GR is reported to activate p42 MAPK signalling protein [135]. In
skin cancer, it inhibits the PI3K-AKT pathway [136], whereas in the heart, GR activates the
PI3K-AKT pathway. In the last decade, research studies have looked at the effect and the
mechanism by which this receptor and its ligand, cortisol, play a role in cancer. Where
certain cancers describe cortisol as a culprit of metastasis and resistance to treatment, others
are suggestive of its suppressor properties in the disease [137].

3. Stress Hormones (Glucocorticoids and Catecholamines) and Their Effect on the
Biology of Cancer

Cancer development is a multistep process including initiation, promotion and pro-
gression, where due to oncogenic mutations, normal cells become malignant [138,139].
Multiple signalling pathways are involved in cell growth, expansion and proliferation.
Oncogenic mutations disturb the normal functioning of these signalling pathways, leading
to abnormally growing cells and their resistance to apoptosis [140,141].

The progression of cells from normal to a neoplastic state requires acquisition of traits
collectively termed “hallmarks of cancer”. These include, proliferative signalling, evasion of
growth suppressors, resistance to cell death, replicative immortality, angiogenesis, invasion
and metastasis [140]. These characteristics are not acquired by the tumour cells alone,
rather they are the outcome of interaction between the tumour cells and the normal cells of
the host which constitute the tumour microenvironment [142].

Research has highlighted the role of catecholamines and glucocorticoids in almost
every facet of the multistep process of cancer [143]. However, studies on the effect of
stress in head and neck cancer are still scarce in comparison to other cancers and these are
presented in Table 1. Recent studies have explored that resilience in head and neck cancer
patients may help alleviate the symptoms of anxiety and it was positively associated with
hope and optimism [144].

3.1. Role of Stress Hormones in Cell Proliferation

Cells proliferate as a result of signals from various signalling pathways and their
growth is dependent on the net balance between positive and negative signals [142].
Studies have shown increased levels of circulating catecholamines and glucocorticoids in
response to stress, resulting in pro-tumuorigenic activities [11,145]. A study reported in-
creased proliferation of gastric cancer cells in response to epinephrine and norepinephrine



Cancers 2021, 13, 163 14 of 29

at 10 µM, however the proliferation effects were insignificant at higher doses. It was also
observed that stressed mice showed remarkably high tumour weight and reduced physical
activity. The effect on proliferation was blocked by the β-adrenergic blocker, propranolol.
Propranolol also blocked the tumour cell growth by arresting cells in the G1/S phase and
also inhibited ERK1/2-JNK-MAPK pathway, suggesting its role in growth and prolifer-
ation of gastric cancer cells. The expression of β2-adrenergic receptors on gastric cancer
tissues was higher than normal samples and activation of these receptors was related to
increased malignancy of gastric cancer [146]. Nicotine also interacts with β2-adrenergic
receptors and activates the downstream COX 2 pathway, which can cause cell proliferation
in gastric carcinoma and colon cancer [147,148]. Studies in breast cancer have also shown
that catecholamines can cause increased tumour growth and proliferation [149,150]. Over-
expression of β-adrenergic receptors has also been reported in breast cancer [151]. Patients
with stage 1 breast cancer showed a significant reduction in Ki-67-based breast tumour
proliferation in response to β blockers [152]. Proliferative effects of adrenaline were also
reported in colon cancer [153]. Epinephrine and norepinephrine increased proliferation
in vitro, as well as increasing tumour growth in vivo through activation of ERK1/2 by
adrenergic signalling [154]. Lung tumour cell proliferation was enhanced by β-AR agonist
isoproterenol and blocked by propranolol [96]. Studies on oral squamous cell carcinoma
(OSCC) cell lines showed norepinephrine increased the proliferation of cells. OSCC cells
and biopsies expressed β1- and β2-adrenergic receptors [9]. An oesophageal squamous
cell carcinoma cell line also showed the expression of β1- and β2-adrenergic receptors.
Stimulation by epinephrine resulted in cell proliferation. It also increased ERK 1

2 phospho-
rylation and expression of COX-2, Cyclin D1, Cyclin E2, CDK 4, CDK 6, VEGF and VEGF
receptor in a β-adrenergic, MAPK/ERK and COX 2-dependent manner [155]. Higher β2
receptor expression was related to lymph node metastasis [13]. Another study showed that
a strong β2-adrenergic receptor expression in oral cancer was linked to a higher overall
survival [12]. β3-adrenergic receptors found in high concentrations in melanoma were
also found to be crucial in proliferation of melanoma cells via nitric oxide signalling [156].
In contrast, studies also show the inhibitory effect of the β2-adrenergic agonist on breast
cancer by blocking the Raf1/Mek1/Erk1/2 pathway [157,158]. This suggests that the effect
of stress hormones may vary according to the tumour type, cell line, receptor expression
and selectivity of the β-blocker [159].

The role of cortisol in tumour cell proliferation has been observed in many cancer
types. Cortisol induced a two-fold proliferation in human mammary carcinoma cell lines,
suggesting that cortisol concentrations in the body may cause growth of breast cancer [160].
In contrast, an anti-proliferative effect of dexamethasone was observed in the MCF-7 cell
line [161] and the 3AO human ovarian cancer cell line [162].

Dexamethasone enhanced proliferation and metabolic activity in the cell lines from
lung carcinoma (CALU-6), mammary carcinoma (MCF-7, MDA MB-231), Ewing’s sarcoma
(CADO), rhabdomyosarcoma (RH30), glioblastoma (A172, U118), neuroblastoma (SHEP).
Addition of mifepristone (RU486) blocked dexamethasone-induced proliferation. Cell lines
that did not express GR, did not undergo proliferation. Dexamethasone also resulted in
phosphorylation of AKT and P38 MAPK in the MCF-7 cell line, as well as their downstream
effectors GSK-3 and HSP 27. Inhibition of AKT and MAPK blocked the dexamethasone-
induced proliferation [163]. Dexamethasone-activated GR induced the transcription of
Serum/Glucocorticoid Regulated Kinase 1 (SGK) in a rat mammary tumour cell line. SGK
protected the cells against apoptosis [164]. SGK plays a role in proliferation, migration,
growth and survival and is downstream of PI3K signalling [165]. Studies have shown
the role of SGK in tumour development and cell survival [166,167]. SGK was found
to be over-expressed in nasopharyngeal carcinoma and blocking SGK suppressed cell
proliferation and migration [168]. A study showed upregulated SGK, as a result of increased
glucocorticoids, increased the expression of MDM2 which in turn decreased p53 [169]. On
the contrary, annexin-1, a glucocorticoid-induced protein with inhibitory effects on cell
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proliferation showed reduced expression in nasopharyngeal carcinoma in comparison to
that in normal tissue [170].

3.2. Role of Stress Hormones in Angiogenesis

Angiogenesis is a characteristic hallmark of cancer and an important feature in its
progression [140]. In pathological disturbances, such as cancer, the angiogenic signalling
pathways remain switched on, thus aiding tumour growth [171]. The inducers of angiogene-
sis include members of the vascular endothelial growth factor (VEGF) family, angiopoietins,
transforming growth factors (TGF), platelet-derived growth factors (PDGF), tumour necro-
sis factor alpha (TNF-α), interleukins and members of the fibroblast growth factor family
(FGF), insulin-like growth factor and hypoxia inducing growth factor (HIF1), [94,171,172].
Tumours from stressed animals showed increased expression of VEGF, matrix metallopro-
teinase (MMP)2 and MMP9. β-adrenergic activation of cAMP-PKA resulted in increased
tumour growth and angiogenesis [146]. Surgical stress also increased micro vessel density
and VEGF expression, which was blocked by propranolol [173]. Clinical studies showed de-
creased serum levels of VEGF correlated with increased social support in ovarian carcinoma
patients [174]. Decreased levels of IL-6 also correlated with increased social support [175].
β-adrenergic signalling also upregulated VEGF expression in human prostate cancer cell
lines [176]. Another study reported adrenaline and noradrenaline-mediated inhibition of
apoptosis in prostate cancer models but found no increase in angiogenesis [177]. However,
angiogenesis was seen in different prostate cancer models [178], which showed that stress-
activated β-adrenergic signalling and its downstream effector CREB, promoted histone
deacetylases (HDAC), which inhibited the expression of TSP1 (an inhibitor of angiogene-
sis). Chronic stress increased expression of VEGF, MMP-2, MMP-9, in animal models of
lung cancer [179]. Activation of β2 receptors on endothelial cells and tumour-associated
macrophages (TAM), increased VEGF and angiogenesis, which was inhibited by the use of
propranolol [96,180,181]. β3 receptor expression in human melanoma increased tumour
aggressiveness, angiogenesis and promoted malignancy [182]. Blocking β3 adrenoreceptor
in neuroblastoma cells led to reduction in tumour growth [183]. Epinephrine and nore-
pinephrine also upregulated the expression of IL-6, VEGF, MMP-2 and MMP-9 in oral
cancer cell lines, mouse models, nasopharyngeal call lines and human melanoma cell
lines [9,10,184,185]. Norepinephrine and epinephrine also directly activate STAT, which
promotes angiogenesis, cell survival and proliferation [186].

A study found deregulated gene expression in adrenergic and GC stress pathways
in men with lethal and non-lethal tumours of the prostate. The glucocorticoid signalling
pathway showed a strong association with lethal tumours. It was also associated with cell
proliferation, angiogenesis and perineural invasion [187]. Other studies have also shown
suppression of angiogenic factors in response to GC treatment [188]. Cortisol-activated
GR in mouse mammary tumour cells caused DNA damage and increased the levels of
reactive nitrogen species (RNS). Cortisol also upregulated VEGF and TWIST 1 expression,
promoting angiogenesis and invasiveness [189]. On the contrary, studies have also re-
ported that GCs downregulate angiogenesis in prostate cancer [188], bladder cancer [190],
glioblastoma [191], melanoma [192], lung cancer [193,194]. In a study, dexamethasone
downregulated the expression of MMP, inhibiting the invasive characteristics of a pancre-
atic cancer cell line [195]. In pancreatic ductal adenocarcinoma cell lines, dexamethasone
concentrations, similar to those found in plasma-induced epithelial–mesenchymal tran-
sition (EMT), activated RAS/JNK signalling, increased TGF beta, vimentin and SOX-2
expression [196]. Dexamethasone also promoted tumour progression of melanoma cells in
mouse models by increasing the activity of Rho-associated kinases (Rock1/2). Inhibiting
Rock1/2 blocked the metastatic effects of GC [197].

3.3. Role of Stress Hormones in Invasion and Migration

Metastasis is a vital step in cancer progression and a leading cause of death [198].
Invasion and metastasis involve a series of cell biological changes that include local in-
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vasion, intravasation by cancer cells into nearby blood and lymphatic vessels, escape of
cells into distant tissues (extravasation), formation of small nodules (micro-metastasis)
and their growth into macroscopic tumours [140]. Studies have highlighted the impact of
β-adrenergic signalling on invasion and metastasis [199–204] and its blockade by use of
beta blockers [9,96,205,206]. A recent study showed β-adrenergic receptor-driven metas-
tasis in breast cancer cell lines. Norepinephrine treatment increased the invasive ability
of cells, which also showed the upregulation of the pro-metastatic gene, LYPD3 [207].
Another study showed stress hormones decreased the deformability of breast cancer cells,
making them stiffer and more invasive [208]. The increased expression of MMP2 and
MMP9 due to β-adrenergic signalling, also increased tissue invasion [10,184,186,204]. In
OSCC, the expression of β2-adrenergic receptors was correlated with cervical lymph node
metastasis and norepinephrine-induced migration of cell lines [19]. Stress hormones also
induced EMT in lung cancer [209], ovarian cancer [210], prostate cancer [211] and gastric
cancer [212].

3.4. Role of Stress Hormones in Cell Survival

Evasion of cell death processes such as apoptosis, necrosis and autophagy are essential
for the progression of malignant tumours and for metastatic spread [140]. Ovarian cancer
cells showed resistance to anoikis, when exposed to epinephrine or norepinephrine [213].
In ovarian cancer patients, stress behaviour was related to higher levels of phosphorylated
FAK Y397, which correlated with high mortality. Another anti-apoptotic mechanism of
epinephrine involved cAMP-dependent phosphorylation and inactivation of pro-apoptotic
protein BAD. Upon phosphorylation, BAD releases Bcl-2 and B-cell lymphoma-extra-large
(Bcl-xL), thereby inhibiting the apoptotic process [214]. A study on mouse models of
prostate cancer showed that stress hormones inhibited apoptosis in PI3K inhibitor-treated
mice. These effects were mediated by the ADRB/PKA/BAD anti-apoptotic signalling
pathway [179]. Norepinephrine induced the β-adrenergic/PKA activation of YAP-1, regu-
lating the Hippo-YAP1 pathway resulting in anoikis resistance and tumour progression in
cervical cancer cells (Figure 3) [100].

Cortisol also stimulated the growth of prostate cancer cells by activating the androgen
receptor in the absence of androgens [215]. The stress hormone pathway induced the
proliferation of metastatic colon cancer cells by upregulating the expression of CDK1 [216].
CDK1 promotes G1-S transition. A dysregulation of CDK is associated with prolifer-
ation activity in tumours [141]. Several mechanisms have been identified behind the
pro-apoptotic actions of glucocorticoids. Both endogenous and exogenous glucocorticoids
had anti-apoptotic effects on human ovarian carcinoma cells lines by up regulation of the
anti-apoptotic protein CIAP 2 and CL100 [217]. Glucocorticoids induced the expression of
ciAP2 in lung cancer cells, leukaemia T cells and glioblastoma cells [218]. The anti-apoptotic
protein Bcl-x was upregulated by glucocorticoids in fibrosarcoma [219]. Astrocytoma cells
were also protected from apoptosis by glucocorticoid-mediated upregulation of Bcl-x anti-
apoptotic protein [220]. In a study on human cervix and lung carcinoma, dexamethasone
down-regulated cisplatin-induced expression of cell death receptor pathway components
such as CD95-L, TRAIL, FADD and CASPASE-8 in carcinomas, as opposed to the pro-
apoptotic actions in lymphoid carcinomas [221]. The apoptotic signalling is GR mediated,
since the use of RU486, blocked the anti-apoptotic actions of DEX. Glucocorticoids also
activated the PI3K/AKT pathway causing inactivation of pro-apoptotic molecules, for
example, caspases [222]. Cortisol concentrations that depict physiological levels of 10nM
caused increased secretion of IL-6 and proliferation of OSCC cell lines [9]. Dexamethasone
increased the resistance of hepatocellular and colorectal tumours to cytotoxic therapy [223].
Dexamethasone also enhanced the growth of breast cancer, melanoma, neuroblastoma
and cervical cancer cell lines treated with 5-Fluorouracil or cisplatin [224]. A recent study
showed GC increased the GR-dependent expression of TEA Domain Transcription Factor
4 (TEAD 4). High TEAD 4 expression correlated with cancer cell survival, metastasis
and poor survival of breast cancer patients [225]. In thyroid cancer cells, dexametha-
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sone blocked TRAIL-induced apoptosis and upregulated the anti-apoptotic protein Bcl-xl,
protecting the cancer cells. The use of mifepristone reversed this effect, suggesting the
apoptosis blockade is mediated by the glucocorticoid receptor [226]. A decreased urinary
concentration of glucocorticoids was found in thyroid cancer patients in comparison to
normal controls [227].

3.5. Role of Stress Hormones in DNA Damage

Studies have shown the role of stress hormones in DNA damage and altered repair by
production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) [228,229].
A study on breast cancer showed that norepinephrine or cortisol increased the levels of
ROS and RNS resulting in DNA damage. This was blocked by antagonists. An increase in
inducible nitric oxide synthase (iNOS), was also observed in cortisol-treated cells. Cortisol-
induced iNOS and DNA damage was reduced by using iNOS inhibitors [189,230]. DNA
methylation has been linked to radiation resistance. A HNSCC radiation-resistant cell line,
rSCC, showed a significant increase in DNA methylation compared to a radiation-sensitive
cell line. Ingenuity pathway analysis in the same study showed glucocorticoid signalling
as one of the top canonical pathways associated with radiation resistance [231].

Studies have also investigated the expression of GR in different tumours. In breast
cancer tissue over-expression of GR in malignant epithelium compared to normal and
lactational epithelium was found [232]. TNBC tumours expressed elevated expression of
GR in 40% tumours [233]. Increased expression of the glucocorticoid receptor is associated
with resistance to chemotherapy, metastasis [234] and shortened disease-free survival [235].
In another study, GR stromal expression directly correlated with tumour grade [236].
In ovarian cancer, high expression of GR was found in high grade and advanced stage
tumours [237] and was associated with decreased survival in these patients. This was
independent of BRCA status [238]. In prostate cancer, GR expression was reduced in
primary prostate cancer, but restored in metastatic cancer [239]. On the contrary, increased
nuclear expression of GR was linked to good prognosis and small tumour size, in a study
on breast cancer [240]. In prostate cancer, GR expression was decreased in tumours. In
cell lines, GC decreased proliferation, upregulated p21, p27, downregulated cyclin D1 and
C-Myc phosphorylation [241]. In a recent study on the expression of GR in salivary duct
carcinoma (SDC), a high GR expression was significantly associated with low five-year
survival. A GR antagonist, mifepristone, decreased cell proliferation and cell survival in
GR over-expressing cells [242]. Studies have shown tumour suppressor effects of GR in
skin [243,244]. In a mouse model of skin cancer, increased expression of GR, decreased
Akt activity and acted as a tumour suppressor by interference with NFkβ [136,245]. In
non-melanoma skin cancer, the enzyme 11β HSD-2 which converts the active form of
cortisol to the inactive form, cortisone, was seen to be upregulated and inhibition of this
enzyme diminished tumourigenesis [246]. On the contrary, as summarised in Table 1, the
enzyme 11-β HSD-2 was undetected in OSCC [18].

3.6. Role of Stress Hormones in Immunity

Immune dysregulation as a result of psychological stress has earned significant atten-
tion [247]. The prolonged activation of neuroendocrine pathways, due to chronic stress
affect the immune system and aid in the survival and growth of tumour cells. The im-
mune cells B lymphocytes, T lymphocytes and NK cells have a vital role in providing
immunity against tumours. They regulate the immune responses, indirectly, by releasing
cytokines and antibodies that recruit other immune cells or by directly killing the cancer
cells [87,248–250]. Activation of SNS and HPA suppresses the immune functions of T
cells [86,251–253].

Altering the actions of immune cells is one of the primary ways in which chronic
stress promotes cancer development [87]. The early evidence for the role of chronic stress
comes from studies that observed that increased cortisol levels reduced the number of
lymphocytes [254–258].
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Both B and T lymphocytes have a vital role in immune responses against cancer.
They either directly kill cancer cells or produce cytokines and antibodies that assist in
recruiting other immune cells to do so. Studies in mice have shown a correlation between
stress and decreased T cell mediated immunosurveillance in tumours [259,260]. Elevated
β-adrenergic signalling resulted in suppressed proliferation and cytolytic properties of
CD8 + T cells and caused lymphoma progression in a mouse model [261]. A recent study
found that a lower increase in GR sensitivity of the immune cells was associated with
increased fatigue in patients with head and cancer [262].

4. Stress Measurement

The complex aetiology of stress and its varied reactions in different people, makes
it difficult to find a gold standard for stress measurement. Studies so far have used
stress assessment scales that employ questionnaires, which are a subjective tool to report
measures of wellbeing or illbeing [263,264]. These include Perceived Stress Scale (PSS) [265],
Depression Anxiety and Stress Scale (DSS) [266], Ryff Psychological Wellbeing Scales [267],
and Satisfaction with Life Scale (SwLS) [268]. On the other hand, the physiological measures
of stress use urine and blood samples to measures the levels of cortisol and other stress
hormones [227]. Salivary samples have also been used to give a measure of cortisol [18].
However, in recent years, the traditional samples of blood, urine and saliva are thought
to provide only an acute measure of cortisol as opposed to the long-term exposure and
therefore analysis of hair cortisol concentration (HCC), has appeared as an important
measurement of the biomarker cortisol, which allows the investigation of a long-term
cortisol exposure. It is also non-invasive and less burdensome for the patients, in contrast to
urine, blood and saliva [269,270]. Studies have found inconclusive results when assessing
the relationship between stress questionnaire responses and HCC. For some studies a
positive association is seen whereas for others, a negative association is observed. This is
explained by the recall bias associated with the questionnaires [271]. Many studies have
used HCC as a measure of stress in war hit areas, pregnancies, academic settings and work
environments [272–277]. However, cancer studies have not used this method so far.

5. Conclusions

The phrase “Healthy mind in a healthy body” comes from archaic times when the
ancient Greeks understood the need for harmony between the mind, body and spirit in
order to maintain a good physical and mental health. Stress is an integral part of our
lives and becomes inescapable with the diagnosis of a serious illness, such as cancer. Over
the last two decades, the activity in science has risen to understand the effect of stress on
initiation and progression of cancer. Whereas some forms of cancer such as breast, prostate,
lung and ovarian have seen the role of stress hormones more thoroughly characterised,
oral cancer still lags behind despite being amongst the most stressful cancers [278,279].

The challenges faced by the HNC patients support the need for increased attention and
more elaborate research on the mechanisms through which stress can progress the disease.
When it comes to the aetiology of HNC, factors such as alcohol, tobacco and viral infections
remain prominent. The role of stress in progression is considered only to be limited to
encourage behaviours that lead to increased alcohol and smoking whereas the evidence
reviewed here shows that stress hormones, along with dampening the activity of immune
system, directly affect all facets of the hallmarks of cancer. This makes it paramount
for future studies to carry out more in-depth research on stress signalling in HNC. The
challenge this area of research presents is in the understanding and interpretation of stress,
since the same stressful experience can generate a different stress response in different
people. However, this makes it even more important to understand the psychological
health of cancer patients, as the same level of disease may be progressing at different rates
due to different stress levels.

To date, in attempting to determine the relationship between stress and cancer, many
studies have used stress-based questionnaires and blood or salivary samples to measure
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stress hormones. The challenge with blood and salivary samples is that they provide only
a short-term measure of stress. Recent stress studies have utilised hair to give a long-term
measure of the stress hormone cortisol. However, cancer studies have not made use of
this yet. Part of our group’s studies will be to utilise our cohort of patients in terms of
questionnaires, cortisol level in hair, biopsy and cell culture studies to investigate this.

Large scale further research studies in HNC are required to better understand and
measure stress and also to intensify research on the underlying molecular mechanisms
through which stress influences HNC. This would help understand the relationship be-
tween stress and cancer, which could be used to minimise the spread of the disease. The
incorporation of a multidisciplinary rehabilitation, with a psychological intervention may
aid patients in the significant challenges they face associated with HNC, may improve
Quality of Life and serve to slow down progression of disease.
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