
                                                                    

University of Dundee

Chemical insights into the search for MAIT cells activators

Veerapen, Natacha; Hobrath, Judith; Besra, Amareeta K.; Besra, Gurdyal S.

Published in:
Molecular Immunology

DOI:
10.1016/j.molimm.2020.11.017

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Veerapen, N., Hobrath, J., Besra, A. K., & Besra, G. S. (2021). Chemical insights into the search for MAIT cells
activators. Molecular Immunology, 129, 114-120. https://doi.org/10.1016/j.molimm.2020.11.017

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 27. Apr. 2021

https://doi.org/10.1016/j.molimm.2020.11.017
https://discovery.dundee.ac.uk/en/publications/959ca74e-ad81-4658-9aaa-5e825a8ac356
https://doi.org/10.1016/j.molimm.2020.11.017


Molecular Immunology 129 (2021) 114–120

Available online 6 December 2020
0161-5890/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Chemical insights into the search for MAIT cells activators 

Natacha Veerapen a, Judith Hobrath b, Amareeta K. Besra a, Gurdyal S. Besra a,* 
a Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom 
b Drug Discovery Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom   

A R T I C L E  I N F O   

Keywords: 
MAIT activation 
MR1 upregulation 
TCR recognition 
Schiff base 
Hydrogen-Bonding 
Polar interaction 

A B S T R A C T   

Mucosal-associated invariant T cells (MAIT cells) represent a potential therapeutic target as they can tune or 
enhance immune responses. They recognise and become activated by antigens, presented by the monomorphic 
MHC-I related molecule, MR1. To assess the significance of MAIT cells in human diseases, a better understanding 
of the MAIT cell-MR1-antigen interaction is imperative. Easy access to MR1 ligands and MAIT cells activators can 
help achieve this. In this review, we summarise current literature that has identified the natural ligands and drug- 
like molecules that activate MAIT cells and provide insight into their key molecular interactions with MR1 and 
MAIT T cell receptors (TCRs). We focus on the progress made in synthesizing and isolating 5-amino-6-D-ribity-
laminouracil (5-A-RU), a key precursor in the synthesis of the known natural ligands, 5-(2-oxopropylidenea-
mino)-6-D-ribitylaminouracil(5-OP-RU) and 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil (5-OE-RU), and 
also on the stabilisation and optimisation of the latter compounds.   

1. Introduction 

Non-conventional T cells include the invariable natural killer T 
(iNKT) cells and mucosal-associated invariant T (MAIT) cells, which 
recognize non–peptide antigens, presented to them by MHC class I like 
molecules (Mohan and Unanue, 2012; Neefjes et al., 2011; Garner et al., 
2018, Ussher et al., 2014). MAIT cells are abundant in the blood, liver 
and gut mucosa of humans and somewhat less abundant in mice (Martin 
et al., 2009; Serriari et al., 2014; Tilloy et al., 1999; Treiner et al., 2003), 
where they are believed to be involved in protective immunity possibly 
through modulation of innate and adaptive immune responses (Godfrey 
et al., 2019; Kawachi et al., 2006). They can be activated by TCR signals, 
cytokine signals independent of the TCR, or by a combination of both 
(van der Merwe and Dushek, 2011, Garner et al., 2018, Usshe et al., 
2014). TCR-dependent activation occurs when the MAIT cell 
semi-invariant TCR recognizes antigens presented by the MHC-related 
protein, MR1 (Huang et al., 2005; Kjer-Nielsen et al., 2012). This re-
view will summarise the research that has identified the ligands and key 
functional groups required for MR1-dependent MAIT cell activation and 
also probe other structural changes that could modulate their stimula-
tory or inhibitory activities. 

2. MR1-dependent MAIT cell activation 

The monomorphic MHC-related 1 (MR1) protein belongs to the 
family of non-classical MHC-I proteins (MHC-Ib) and consists of three 
main domains: the α1 and α2 domains, which create the antigen (Ag) 
binding cleft, known as the A’ pocket and the α3 domain, which in-
teracts with β-2-microglobulin (β2m) (Hashimoto et al., 1995; Kjer--
Nielsen et al., 2012). MR1 is expressed extensively in various tissues and 
cell types in mammals where it also tends to display a high degree of 
conservation (Treiner et al., 2003; Yamaguchi et al., 1997). Despite its 
abundance at the transcript level, MR1 protein expression is not prev-
alent on the cell surface (Harriff et al., 2016; Huang et al., 2008). Rather, 
MR1 exists in a ligand receptive unfolded conformation as an immature 
protein in the endoplasmic reticulum (ER) and its egression to the cell 
surface is facilitated when small molecules bind in its A’ pocket 
(McWilliam et al., 2016). The bound ligand or antigen triggers a 
conformational change and causes the MR1 protein to refold. The 
MR1/antigen complex then moves to the surface of the 
antigen-presenting cell (APC) where the ligand is presented to MAIT 
cells, before the molecules are internalized and degraded in the endo-
cyctic pathway (Huang et al., 2008; Kjer-Nielsen et al., 2012; 2013; 
Miley et al., 2003). 

Abbreviations: iNKT, Invariable natural killer T; MAIT, mucosal-associated invariant T; MR1, monomorphic MHC-related 1; APC, antigen-presenting cell; 5-OP- 
RU, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil; 5-OE-RU, 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil. 
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2.1. Natural MR1 ligands: inhibitors and activators of MAIT cells 

The exact nature of the molecules, capable of both binding to MR1 
and stimulating MAIT cells, remained elusive until recently. In 2010, 
two groups reported that MAIT cells were activated in a MR1-dependent 
manner by certain bacteria and yeasts but not viruses (Gold et al., 2010; 
Le Bourhis et al., 2010). This was followed by the identification of me-
tabolites that were responsible for activation or inhibition of MAIT cells, 
derived from vitamin B2 and B9 biosynthetic pathways (Kjer-Nielsen 
et al., 2012). The first ligand, identified was attributed to 6-formylpterin 
(6-FP) (Fig. 1a), which is a degradation product of folic acid. The crystal 
structure of the MR1− 6-FP complex showed that 6-FP was sequestered 
deep within the binding groove of MR1 (the A’ pocket) and, importantly, 

was also covalently bonded to MR1 through a Schiff base linkage be-
tween its carbonyl group and the side chain ε-amine of lysine 43 of MR1 
(Kjer-Nielsen et al., 2012). It was postulated that the formation of this 
covalent bond allowed MR1 to refold, egress from the ER and translocate 
to the cell surface. The acylated form of 6-FP (Ac-6-FP) also showed the 
same MR1 up-regulating properties (Eckle et al., 2014). However, 
neither compound was able to stimulate MAIT cells due to a lack of 
interaction with the MAIT cells’ TCRs. Instead, they were found to 
inhibit the activation of MAIT cells by competitively binding to MR1 
(Eckle et al., 2014). 

A second ligand capable of stimulating MAIT cells was also identified 
and believed to be 6-hydroxymethyl-8-D-ribityl-lumazine (rRL- 
6− CH2OH) (Fig.1b), which was later synthesized along with the related 

Fig. 1. MR1 ligands. (a) Pterins, MAIT Cell Inhibitors; (b) Lumazines, MAIT cell activators; (c) Formation of vitamin B metabolites 5-OP-RU and 5-OE-RU through 
interactions with glyoxal and methylglyoxal; (d) Important interactions between 5-OP-RU, MR1 and MAIT TCR; (e) Drug-like MAIT cell inhibitors; (f) Drug-like MAIT 
cell activators. 
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ribityl lumazines; 7-hydroxy-6-methyl-8-D-ribityllumazine (RL-6-Me- 
7− OH) and 6, 7-dimethyl-8-D-ribityllumazine (RL-6, 7-diMe) (Fig.1b), 
to test their MAIT stimulatory properties (Kjer-Nielsen et al., 2012; Patel 
et al., 2013). All three synthetic lumazines were found to activate MAIT 
cells, with rRL-6− CH2OH being the more potent activator (Kjer-Nielsen 
et al., 2012; Patel et al., 2013). Analysis of the MAIT 
TCR–MR1–RL-6-Me-7− OH complex allowed Kjer-Nielsen and col-
leagues to establish that RL-6-Me-7− OH is able to activate MAIT cells 
through direct interaction of its ribityl chain with the MAIT TCR and 
that therefore both rRL-6− CH2OH and RL-6, 7-diMe can activate MAIT 
cells in a similar manner. However, while RL-6, 7-diMe is a known in-
termediate in the riboflavin synthetic pathway, the origin of the potent 
activator rRL-6− CH2OH was unexplained. After further investigation, it 
was shown that the molecule responsible for strongly stimulating MAIT 
cells was actually pyrimidine-5-(2-oxopropylideneamino)-6--
D-ribitylaminouracil (5-OP-RU) (Fig.1c), which exhibited the same m/z 
value of 329.11 as rRL-6− CH2OH (Corbett et al., 2014). Another py-
rimidine, 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil (5-OE-RU) 
(Fig.1c), was also identified and shown to activate MAIT cells, albeit to a 
slightly lesser extent (Corbett et al., 2014). 

2.1.1. MAIT cell activation by 5-OP-RU 
The α-ketoimine adducts 5-OP-RU and 5-OE-RU are formed when 5- 

amino-6-D-ribitylaminouracil (5-A-RU), a key intermediate in microbial 
and fungal riboflavin biosynthesis, reacts with α-dicarbonyl compounds, 
such as glyoxal and methylglyoxal (Fig.1c), formed from mammalian 
glycolysis or bacterial metabolism (Corbett et al., 2014; Mak et al., 
2017). Both adducts activate MAIT cells more potently than the luma-
zines because their carbonyl moiety forms a Schiff base with lysine 43 of 
MR1 in the binding groove, alike to 6-FP (Corbett et al., 2014). The 
formation of this intermolecular covalent bond allows the upregulation 
of MR1 and subsequent presentation to the MAIT TCR. Crystal structures 
(Patel et al., 2013; Corbett et al., 2014; Gherardin et al., 2016; Keller 
et al.;, 2017; Mak et al., 2017) of the bound pyrimidines in complex with 
MR1 have shown that the ribityl chains 5-OP-RU and 5-OE-RU are 
presented to the MAIT TCR for binding. 5-OP-RU orients itself within the 
MR1 A’ pocket through a network of intermolecular polar contacts, 
which include hydrogen bonding interactions between its 5′ − OH group 
and Tyr152 with the Gln153 of MR1 and between the 2′− OH group and 
the Tyr95α of the MAIT TCR (Fig.1d). Additionally, Tyr95α of the MAIT 
TCR also forms hydrogen-bonding interactions with Tyr152 from MR1. 
This hydrogen-bonding network between Tyr95α, Tyr152 and 5-OP-RU 
is conserved among all published ternary structures of TRAV1− 2+
MAIT TCRs in complex with MR1 presenting 5-OP-RU and has been 
coined as the ‘interaction triad’ by Awad et al. (2020). Other in-
teractions of interest are the water-mediated hydrogen bonding between 
both the 5′ − OH and 4′− OH of 5-OP-RU and G98β of the MAIT TCR 
(Awad et al., 2020). 

2.2. Drug and drug-like MR1 ligands, inhibitors and activators of MAIT 
cells 

A combination of in silico screening of various chemical libraries for 
molecules containing structural motifs reminescent of 6-FP and 5-OP-RU 
and in vitro functional assays revealed that other non-microbial ligands 
were able to bind to MR1 and either inhibit or activate MAIT cells (Keller 
et al., 2017). Among these ligands are 3-formylsalicylic acid (3-F-SA), 
5-formylsalicylic acid (5-F-SA) and 2-hydroxy-1-naphthaldehyde 
(2− OH-1-NA) (Fig. 1e), which are able to upregulate MR1 and inhibit 
the activation of MAIT cells to the same extent as Ac-6-FP. The MAIT 
activating ligands, include the aromatic molecules diclofenac (DCF) and 
its analogues 4‘− OH-DCF and 5− OH-DCF, along with DB-12 and DB-19 
(Fig. 1f). Though less potent than 5-OP-RU, they exhibited 
non-negligible MAIT stimulatory properties comparable to or surpassing 
those of RL-6-Me-7− OH and RL-6, 7-diMe. Interestingly, despite binding 
in the MR1 binding cleft, none of the activating drug like molecules 

induced detectable up-regulation of cell surface MR1 (Keller et al., 
2017). Nonetheless, these results highlighted the plasticity of the MR1 
binding cleft towards other small molecules. 

3. Synthetic tools used to probe the ligand-MR1-MAIT TCR 
interactions 

To date, 5-OP-RU remains the most potent MAIT cell activator 
because of its ability to both up-regulate MR1 and interact with the 
MAIT TCR (Patel et al., 2013; Corbett et al., 2014; Gherardin et al., 2016; 
Keller et al.;, 2017; Mak et al., 2017). During infection, 5-OP-RU and 
related compounds are thought to act locally and rapidly. However, 
5-OP-RU is an unstable compound and not isolable. Pharmacological 
agents require storage and the chemical stability necessary to act on a 
systemic basis, so overcoming the chemical instability of natural com-
pounds has emerged as a major problem in the field. Consequently, most 
of the research, including synthetic efforts, has focused on 5-OP-RU, in 
order to: (1) facilitate its synthesis and increase its stability; and (2) 
improve its stimulatory activities by identifying the specific interactions 
essential for MR1 binding and upregulation and recognition by the MAIT 
TCR. The next section summarises the work carried out to address some 
of these key issues. 

3.1. Chemical synthesis and stabilisation of 5-ARU 

5-OP-RU and several other analogues are derived from the bench-
mark scaffold 5-A-RU. 5-A-RU is relatively unstable, being prone to 
oxidation and degradation by light (Cushman et al., 1991.; Cushman 
et al., 2001). We, along with others, have reported that 5-A-RU is more 
stable when the 5-amino group is trapped in the ammonium chloride 
form (Li et al., 2018; Lange et al., 2020; Salio et al., 2020). The most 
common methodology for preparing 5-A-RU involves a nucleophilic 
aromatic substitution reaction between ribitylamine and either 6-chlor-
opyrimidine-2,4-dione or the more reactive nitrouracil (Fig. 2a, Scheme 
1) (Al-Hassan et al., 1980; Cushman et al., 1991, 1997; Cushman et al., 
2001; Romisch et al., 2002; Talukdar et al., 2012; Philmus et al., 2015; Li 
et al., 2018; Lange et al., 2020; Salio et al., 2020). The main differences 
between the reported syntheses in the literature relate to the yields of 
formation and the appearance of the isolated 5-A-RU.HCl salt. Typically, 
the coupling reaction between ribityl amine and the chlorinated nitro-
uracil in basic conditions is higher yielding than with 6-chloropyrimi-
dine-2,4-dione. With regards to the appearance, Li et al. (2018) 
reported isolating a red tar after purification and isolation. We have 
isolated 5-A-RU.HCl both as a pink solid and as an off white solid (Salio 
et al., 2020). We observed that the pink colour caused the compound to 
fluoresce making it unsuitable for use in certain immunological-based 
experiments, such as the preparation of MR1-loaded tetramers. Other 
groups (Li et al., 2018; Constantinides et al., 2019) have reported the 
successful preparation of MR1-loaded tetramers with the colored 
5-A-RU. 

As reported, the HCl form of 5-A-RU is more stable as a solid (Li et al., 
2018; Lange et al., 2020; Salio et al., 2020), but in solution it still 
gradually degrades upon standing with or without exposure to light, 
going from colourless to pink and finally yellow. These observations 
were corroborated by Lange et al. (2020) who recently shed some light 
on the nature of the degradation products. They followed the degrada-
tion of an aqueous solution of 5-A-RU by LCMS and suggested that the 
latter is first oxidised to an azaquinone, which subsequently undergoes 
hydrolysis (Fig.2b, Scheme 2). Minimising manipulations in the purifi-
cation stage in the synthesis of 5-A-RU is crucial for retarding the 
degradation process. We found that using the stable protected form of 
5-A-RU removes the need for lengthy purification in the final depro-
tection step, as the side-products (toluene and tertiary-butylsilyl 
alcohol) are volatile and can easily be removed under reduced pres-
sure to afford pure 5-A-RU (Fig.2, Scheme 1). 

Despite the progress made in isolating 5-A-RU, it remains that 5-A- 
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RU used in biological and immunological studies has to be handled 
carefully. In light of the information at hand, it is recommended to 
prepare a solution of 5-A-RU in degassed solvent, to exclude oxygen, and 
wherever possible to use non-protic solvents to limit hydrolysis and 
maintain the reproducibility of 5-A-RU activity between experiments. 
However, the total exclusion of oxygen is difficult for in vivo experiments 
because of the presence of dissolved oxygen in blood or tissues. To 
address this issue, Lange et al. (2020) designed and synthesised a stable 
form of 5-A-RU, which can be cleaved to generate 5-A-RU intracellu-
larly. To this effect, the authors introduced a carbamate group (vali-
ne-citrulline-p-aminobenzyl carbamate) on the 5-amino group of 
5-A-RU, which upon enzymatic cleavage by proteases, such as 

cathepsin B (Dubowchik et al., 2002), generates 5-A-RU intracellularly. 
The carbamate group, being electron withdrawing, also offers the 
benefit of stabilising the uracil ring towards oxidation and hence facil-
itating storage. The stable pro-drug 5-A-RU (Fig.2c) was found to induce 
higher levels of MAIT cell activation than 5-A-RU alone in MAIT cell 
cultures and in the lung. Of note, the authors commented on the altered 
mode of presentation of the 5-A-RU pro-drug, where the antigen 
MR1-loading possibly occurs through access to MR1 in recycling endo-
somes. This is based on the fact that the pro-drug requires prior cleavage 
from the enzymes mainly present in the endo-lysomal compartments to 
release 5-A-RU. This endosomal MR1 loading differs from the predom-
inant ER loading observed with 5-A-RU and 5-OP-RU (Harriff et al., 

Fig. 2. Synthetic route to 5-A-RU and degradation products. (a) Scheme 1: Synthesis of 5-A-RU; (b) Scheme 2: Proposed degradation pathway of 5-A-RU; (c) 5-A-RU 
pro-drug. 
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2016; McWilliam et al., 2016). These recent findings will likely instigate 
further investigations into how ER and endosomal loading pathways of 
MR1 affect MAIT cell responses and also encourage other chemical 
modifications on 5-A-RU to explore MAIT cell biology in vivo. 

3.2. Increasing the stability of 5-OP-RU 

5-OP-RU is a fleeting intermediate (t1/2 = 2 h at 37 ◦C, pH 6.8, or 
14 h at 15 ◦C, pH 6.8) as it is prone to both cyclisation and hydrolysis of 
its imine functionality in mildly acidic medium (Fig. 3a) (Corbett et al., 
2014). The aromaticity of the bicyclic lumazine product conveys ther-
modynamic stability and is the driving force behind cyclisation. Initial 
attempts by Mak et al. (2017) at stabilising 5-OP-RU included adding 
steric bulk to the amino group at C-6 to discourage cyclisation (Fig. 3b). 
However, the effect of the methyl substituent is two-fold; steric and 
electronic. The increased nucleophilicity of the nitrogen, imparted by 
the positive inductive effect of the methyl group, made the additional 
steric bulk inconsequential, resulting in those compounds being less 

stable than the parent compound 5-OP-RU and still prone to cyclisation 
(Mak et al., 2017). A screening of various substituents, such as tertiary 
butyl and phenyl, with both positive and negative inductive effects and 
different sizes, would be useful to determine the optimum balance be-
tween electronic and steric effects and would aid in finding a stable open 
chain form of 5-OP-RU. 

Mak et al. (2017) were more successful when they replaced the 
nucleophilic nitrogen substituent on the ring at position 6 with a 
non-nucleophilic carbon (Fig. 3c) as ring cyclisation onto the carbonyl 
moiety was no longer possible. These analogues, which also lacked the 
imine functionality at C-5, were found to be resistant to hydrolysis and 
have longer half-lives. Hence, both compounds were able to achieve 
sustained MR1 upregulation, with JYM72 being superior to Ac-6-FP 
(Mak et al., 2017). However, only JYM72 was able to activate MAIT 
cells through interaction of its ribityl chain with the MAIT TCR. 

Fig. 3. (a) Reactions of 5-OP-RU; Rib, ribityl tail; (b) Non-Stabilised 5-OP-RU analogues; (c) Stabilised 5-OP-RU analogues; (d) and (e) 5-OP-RU analogues with 
modified ribityl chains; (f) Proposed modified molecules for optimum MAIT TCR interaction; (g) Induced Fit docked poses of DB-12 (A) and DB-19 (B). Residues in 
close proximity of the ligands are shown with dark green colored carbons; carbon atoms in docked hits are colored light brown. 
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3.3. Modification of the ribityl chain of 5-OP-RU for MAIT TCR 
interaction studies 

The ribityl chain of 5-OP-RU is essential for MAIT activation through 
direct TCR contacts (Kjer-Nielsen et al., 2012; Corbett et al., 2014; Awad 
et al., 2020). However, 5-OP-RU only contributes 0.6 % of the 
MR1-ligand complex for MAIT TCR binding via hydrogen bonding in-
teractions between its 2′− OH and the CDR3α loop of TRAV1− 2+ and a 
water-mediated interaction between its 4′− OH and 5′ − OH group and 
the CDR3β (Awad et al., 2020). Two groups (Awad et al., 2020; Bra-
ganza et al., 2019, 2020) have investigated how 5-OP-RU achieves MAIT 
activation and evaluated which interactions with the MAIT TCR are 
crucial by modifying the ribityl chain of 5-OP-RU. The authors of these 
studies (Awad et al., 2020; Braganza et al., 2019, 2020) independently 
synthesised a series of monodeoxy (D-5-OP-RU) (Fig. 3d) and mono-
hydroxylated analogues of 5-OP-RU (OH-alkyl-5-OP-U) (Fig.3e) and 
assessed the compounds based on the following criteria: their stability, 
ability to upregulate MR1, and finally, capacity to stimulate MAIT cells. 
Because modifications were on the ribityl chain, both series of com-
pounds were as unstable as 5-OP-RU, irrespective of where the deoxy-
genation was introduced in the ribityl chain. The main differences were 
in terms of MR1 upregulation and intrinsic MAIT activation. Both the 
D-5-OP-RU and the OH-alkyl-5-OPU series of compounds demonstrated 
that the modifications at the 2′- and 3′− OH positions of the ribityl 
moiety resulted in less potent MAIT cell activation, while modifications 
at the 4′− OH and 5′− OH had negligible impact on MAIT cell activation. 
The formation of a direct hydrogen bond with Tyr95α of the MAIT TCR 
was prevented in 2′-D-5-OP-RU while it was maintained in 3′-D-5- OPRU, 
2′–− OH-ethyl-5-OP-U and 3′ − OH-propyl-5-OP-U. However, in the 
latter compounds, any direct or water-mediated interaction between the 
ribityl chain and Tyr152 from MR1 was absent. Therefore, it seems that 
for optimum MAIT cell activation, the interaction triad of hydrogen 
bonding between MAIT TCR Tyr95α, MR1 Tyr152 and ligand (Awad 
et al., 2020) is essential. 

While it was previously recognised that the ribityl chain is not 
necessary for potent MR1 upregulation, as evidenced by 6-Ac-FP and 
other compounds (Corbett et al., 2014), Awad et al. (2020) observed 
that as the number of strong interactions (e.g. hydrogen bonding in-
teractions) between the ligand and the residues in the MR1 binding cleft 
increased, the cell surface MR1 upregulation decreased. This was 
exemplified by the monohydroxylated analogues (OH-alkyl-5-OP-U, 
Fig. 3d), which upregulated MR1 to a larger extent than the mono-
deoxygenated analogues (D-5-OP-RU, Fig. 3e). In summary, these latest 
findings indicate that the hydroxyl groups on the ribityl chain are 
essential for TCR recognition but that MR1 upregulation is favoured by 
weaker Van der Waals forces with the aromatic residues within the cleft 
over stronger hydrogen bonding interactions. 

4. Future directions 

All the present data indicates that the ideal MR1 ligand, suitable for 
MAIT activation, should fit into the aromatic cradle with limited polar 
interactions in the MR1 binding cleft and possess a flexible chain capable 
of interacting with MAIT TCR Tyr95α. It has also been established that 
the Schiff base formation between the carbonyl moiety of the ligand and 
Lys 43 of MR1 and the ensuing conformational change is the trigger that 
causes MR1 to “mature” (McWilliam et al., 2016). However, the pres-
ence of a carbonyl group in a ligand does not necessarily translate into 
MR1 cell surface expression (Keller et al., 2017). The egression of MR1 
to the cell surface seems to be hindered by strong interactions, such as 
hydrogen bonding (Awad et al., 2020). This might explain why the less 
polar ligands, such as the ribityl-less compounds (e.g Ac-6-FP), and the 
monohydroxylated 5-OP-U compounds exhibit higher percentages of 
MR1 upregulation than their highly hydroxylated counterparts (e.g 
5-OP-RU and the monodeoxygenated 5-OP-RU) (Awad et al., 2020; 
Braganza et al., 2019, 2020). 

JYM72 is a more stable analogue of 5-OP-RU and demonstrates that 
modifications on the uracil ring at C5 and C6 are well tolerated (Mak 
et al., 2017). However, relative to 5-OP-RU, JYM72 is slightly less 
activating. This was attributed by Awad et al. (2020) to the extra flex-
ibility of the C–C bond compared to the C–N bond, which affects the 
orientation of the ribityl chain for TCR recognition. A C–O bond is 
shorter than a C–C bond and slightly less flexible. Derivatives of 
JYM72, such as molecule 1 (Fig. 3f), are therefore worth investigating. 
Both Stocker’s and Rossjohn’s groups observed that the progressive 
removal of hydroxyl groups from 5-OP-RU induced less and less acti-
vation of MAIT cell and eventually converted the agonists into antago-
nists (Awad et al., 2020; Braganza et al., 2020). It would be interesting to 
see if it is possible to convert inhibitors, such as 3-FSA, into activators by 
introducing hydroxylated moieties. The simple, stable small aldehydes 
3-F-SA and 5-F-SA strongly upregulate MR1 surface cell expression, but 
fail to stimulate MAIT cells, because they lack a ribityl chain. Replacing 
the carboxylic acid group with a hydroxylated alkyl chain such as the 
compound in Fig. 3f, mimicking the ribityl chain, is another option to 
explore. 

Despite identifying drug-like MAIT activating molecules (Keller 
et al., 2017), little effort has been dedicated to modifying and optimising 
these molecules. Characteristically, the drug- like molecules differ from 
5-OP-RU by inducing limited or no upregulation of MR1 because of their 
inability to form a Schiff base with MR1. Since, upregulation of MR1 
contributes to better activation of MAIT cells, it might be useful to 
introduce functionalities in these ligands that allow them to strongly 
bind, either permanently or temporarily, to Lys 43. 

We recently identified DB-12 and DB-19 as weakly activating com-
pounds (Salio et al., 2020). To understand the structure-activity rela-
tionship of DB-12 and DB-19, we re-docked them, using 2− OH-1-NA 
(5U16) and 5-OP-RU (2 L J) respectively as references for comparison 
(Fig. 3g). DB-12 interacts efficiently in the MR1 binding cleft through 
two hydrogen bonding interactions with R9, and an interaction with 
S24, though no favourable contacts are formed with K43. Hydrogen 
bonding with K43 is possible for example, if the quinazoline ring were 
replaced by pyrido[3,2-d]pyrimidine. DB-12 forms hydrogen bonds with 
Gly98 (TCRβ chain) and Y152, with interactions mediated through the 
same water molecule. Replacement of the 3-methyl by a polar substit-
uent may lead to additional hydrogen bonding interactions with the all 
important, Tyr95α. DB-19 contains a propanoyl-serine amide group that 
can form extensive interactions in the ribityl region. This group is longer 
than ribitylamine, and extends further, outside of the 2 L J occupied 
region of the binding site, where it forms interactions with M72, E149 
and E99 (TCRβ). In the MR1 cleft DB-19 only forms the key π-stacking 
interaction with Y7 and a hydrogen bond with R9. For more efficient 
binding, the benzene ring within the quinoxaline may be replaced by 
heterocycles or polar substituents may be introduced. Substituents may 
potentially form interactions with R9, S24, T34 or K43. 

The search for new, optimised MR1 ligands and MAIT cell activators 
continues. However, armed with the continuous emerging information, 
finding one with the right balance between upregulation of MR1 and 
interaction with MAIT TCR is within reach. 
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