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Abstract 

Among other non-Newtonian fluid models, power-law fluid has gained much acceptance because of its some powerful 

applications such as pressure drop calculation in the drilling industry, utilization of blood flow for red cells in plasma 

and static as well as dynamic filtration. The aim is to analyze theoretically the steady three-dimensional boundary 

layer flow near the stagnation point and heat transfer of power-law ferrofluid over rotatory stretchable. The effect of 

Lorentz force on the flow and the influence of nonlinear thermal radiation upon the temperature is also incorporated. 

For this phenomenon, magnetite (𝐹𝑒3𝑂4) is considered as ferrofluid particles which are mixed with the base fluid

(water). Physically modeled partial differential equations (PDEs) are lessened to ordinary differential equations (ODEs) 

by the support of precise similarity transformation and then the shooting method is implemented to obtain the solution 

of the resultant ODEs. A comprehensive tabular comparison between present and previously existing outcomes is 

made. From an overall exploration it can be concluded that the cross-sectional flow for shear thinning and shear 

thickening is examined upon increasing the concentration of the nanoparticles and flow behaving index of power-law. 

The Lorentz force retards the flow near the disk due to which velocity components decrease. Also, the temperature 

escalates for nonlinear radiation and this escalation is more prominent for shear thinning. Furthermore, the Prandtl 

number helps in controlling the boundary layer thickness. 

Keywords: Power-law fluid, nonlinear radiation, stagnation point boundary layer flow, Lorentz force, ferrofluid, 

stretching and rotating disk, shooting method. 

List of symbols and their description 

𝑟,  𝜃∗, 𝑧 Cylindrical coordinates 𝑘∗ Mean absorption coefficient 

𝑢, 𝑣, 𝑤 Components of the velocity in 𝑟,  𝜃∗and 𝑧

directions 

𝜙 Volume fraction 

F, G, H The dimensionless components of the velocity in 

radial, azimuthal and axial directions 

μ Dynamic viscosity 
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𝑞𝑟 Radiative heat flux Ω Angular velocity 

𝑇𝑤 , 𝑇∞ Uniform surface temperature and ambient fluid 

temperature 

𝜂 Dimensionless similarity variable 

𝐶𝐹𝑟 , 𝐶𝐺𝜃∗ Coefficients of skin friction  ν Kinematic viscosity 

𝑘 Thermal conductivity 𝜃 Dimensionless temperature 

𝑀 Magnetic parameter λ  Velocity ratio parameter 

𝑁𝑢𝑟 Local Nusselt number 𝜎∗ Stefan-Boltzmann constant 

𝑅𝑒𝑟 Local Reynolds number 𝑃𝑟 Prandtl number 

𝑢𝑒 , 𝑣𝑒 Free stream velocities 𝜃𝑤 Temperature ratio 

𝐵0 Uniform magnetic field ω Rotation parameter 

T Fluid temperature 𝜏𝑟𝑧 , 𝜏𝐺𝜃∗ Radial and azimuthal shear 

stresses 

𝑐𝑝 Specific heat at constant pressure ρ Density of fluid 

n Power-law index   

Rd Radiation parameter Subscripts 

𝑞𝑤 Constant heat flux 𝑛𝑓 Nanofluid 

𝐵1, 𝐵2 , 𝐵3, 𝐵4, 𝐵5 Constant parameters 𝑓 Base fluid 

𝜎 Electrical conductivity 𝑠 Ferrofluid 

 

1. Introduction 

In the past decade, the nanofluid has been widely studied by several researchers because of its numerous industrial 

applications. The word nanofluid was initially used by Choi [1]. Many solid particles more precisely metals have 

higher effects of thermal conductivity with the comparison of base fluids, for instance, oil, water, and ethylene with a 

mixture of glycol, which are relatively having a lower effect of thermal conductivity and they termed as poor heat 

transfer fluids. To enhance the thermal conductivity of such base fluids, solid particles of the nano-sized having a 

length of 100 nm are commonly attached to them called nanofluid. Many researchers have investigated the heat 

transfer in nanofluid, for instance, Abu Nada [2], Tiwari and Das [3], and Jaluria et al. [4]. The greatest pressure, 

greatest heat, and mass transfer rates can be found in the stagnation point region.  Bachok et al. [5] was the first one 

who has considered the heat transfer with the occurrence of nanofluid and by considering three-dimensional stagnation 

point flow. They assumed Copper, Alumina, and Titania as three nano-particles and found out that copper water-based 

nanofluid under the circumstances of assisting flow has a higher rate of heat transfer. Babu and Sandeep [6] have 

considered the three-dimensional MHD slip flow of nanofluid and performed the theoretical analysis to investigate 

the convective heat and mass transfer upon a slandering sheet which is stretching. They have assumed the water and 

graphene as well as magnetite as a base fluid and nanoparticles and concluded that the heat and mass transfer rates are 

higher water-graphene nanofluid than from water-magnetite nanofluid. Mustafa et al. [7] explored the heat transfer 

with the occurrence of nonlinear thermal radiation for the MHD three-dimensional rotating flow of magnetite-water 

nanofluid. They have reflected a novel idea of nonlinear radiative heat flux due to which nonlinear energy equation in 

the temperature field is produced. Anu and Hemalatha [8] synthesized water-based magnetite nanofluids of different 
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concentrations via the co-precipitation method by studying the density and viscosity of different concentrations for 

ferrofluids at room temperature. Amini et al. [9] studied the MHD flow of magnetite-water nanofluid and heat transfer 

inside the porous medium alongside a flat sheet with the effects of the chemical reaction. Hayat et al. [10] presented 

a communication that deals with the influence of homogeneous-heterogeneous reactions in the flow which is 

composed of water-based nanofluid containing magnetite nanoparticles. Bhatti et al. [11] numerically studied the 

effects of the slip flow and thermal radiation upon the magnetic water-based nanofluid over nonlinearly stretching 

sheet inside the porous media. Later on, the nanofluid has been considered and explored by some other researchers in 

[12-14]. 

Flow and heat transfer in the vicinity of disk rotation is one of the most prominent parts of the research studies and 

particular interests due to its enormous usage in engineering for example lubrication, turbine system, rotating parts of 

electrical devices. The examination of fluid flow motion over an infinitely rotating disk was originally debated by von 

Karman [15] who proposed the generalized similarity transformations due to which PDEs are switched to ODEs and 

handled them with the help a method named as momentum integral. But the concept of fluid flow because of disk 

rotation has taken a long time to accomplish its significance [16-18]. Irfan Mustafa et al. [19] has studies the heat 

transfer in stagnation point MHD ferrofluid over a rotatory stretchable disk by choosing three ferrofluid particles 

namely magnetite, cobalt ferrite, Mn-Zn ferrite. A non-Newtonian fluid is a type of fluid that is based upon applied 

stress and having variable viscosity. The non-Newtonian fluids which obey the properties of shear-thinning and shear-

thickening are known as power-law fluids. Mitschka [20] enhanced the transformation of von Karman to a power-law 

fluid. Mitschka and Ulbricht [21] have numerically obtained the results for disk rotation flow by shear dependent 

viscosity within the limit 0.2 ≤ 𝑛 ≤ 1.5 of the power-law index. Andersson et al. [22] re-consider the study of 

Mitschka and Ulbricht [21] and comprehended that the boundary layer thickness is increasing with the decrease in the 

power-law index 𝑛 from 2 to 0.2. Andersson and Korte [23] further succeeded in applying the MHD on power-law 

fluid and determined that shear-thinning has more influence on the magnetic field than shear-thickening. Lian-Cun et 

al. [24] has studied the power-law fluid and investigated the fully developed convective heat transfer in the vicinity 

of the circular tube with the assumption that thermal diffusivity is a function of the temperature gradient. Ming et al. 

[25] further explored the power-law fluid for steady flow and heat transfer over a rotatory disk with the assumption 

that the viscosity and thermal conductivity fulfill the similar properties of power-law In 2019 Nabil T. El-Dabe et al. 

[26] scrutinized the steady power-law MHD nanofluid flow due to uniformly rotating infinite disk. Usman et al. [27] 

made a valuable contribution to exploring the power-law fluid between two rotatory stretchable disks. Some worth 

mentioning researches on the fluid flow upon disk geometry are deliberated in [28-31]. 

Radiation is extremely effective in material, mechanical, and engineering science due to its several promising 

applications such as polymer preparation, glass generation, furnace design, and gas-cooled atomic reactors. It is further 

applicable in space innovation for the instance propulsion system, rockets and space craft’s operating at high 

temperature. The radiation which is transmitted by a body is because of the thermal agitation of particles it produces. 

Several researchers [32-37] have investigated the effects of thermal radiation upon utilizing the linearized form of the 

Rosseland flow. However, the linear radiation is not applicable for higher temperature difference as the dimensionless 

parameter which is involved in the linearization of the Rosseland flow is just the effective Prandtl number [38].  In 

the case of nonlinear radiation three parameters namely, Prandtl number, radiation parameter, and temperature ratio 

parameter are usually used to govern the problem. The nonlinear radiation is effective for a small and large temperature 
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difference of surface and ambient fluid. Researchers like Sravanthi [39], Waqas et al. [40], and Mkhatshwa et al. [41] 

made valuable contributions in exploring the effects of increasing nonlinear thermal radiation in diverse modes. 

With the occurrence of a magnetic field, the motion of an electrically conducting fluid is known as 

magnetohydrodynamics (MHD). Alfven [42] stated that when we place an electrically conducting liquid within a 

constant magnetic field, the movement of these liquids yields the electromotive force which generates the electric 

currents. A type of electromotive force induces current whereas another one trends to produce the Lorentz force. It is 

further observed that due to the magnetic field, these currents provide mechanical forces that modify the liquid’s state 

of motion. Ever since, its application has been reported by the researchers in metallurgy, MHD generators, MHD 

designed pumps, fusion reactors, and MHD flow meters.  Makinde et al. [43] has numerically explored the heat transfer 

with the effects of Lorentz force upon the MHD flow of Casson fluid over a thermally stratified melting surface. 

Animasaun et al. [44] presented the influence of applied magnetic field and Hall effects upon the flow which is 

produced from 29nm CuO-water nanofluid. Koriko et al. [45] presented the comparative study by considering the 

three-dimensional flow of nanofluid inside the thin boundary layer upon a bidirectional surface which is stretching 

linearly. Mahanthesh et al. [46] has investigated the nanofluid flow close to radially stretching disk with the occurrence 

of exponential space-based and thermal-based heat sources by deploying the effects of Coriolis and Lorentz forces. Li 

et al. [47] studied the influence of Lorentz force and anisotropic thermal conductivity concerning the magnetic field 

upon the flow and heat transfer of Ferro-nanofluid. Wakif et al. [48-49] has numerically examined the electrically 

conducting fluid over the plate geometry. 

After thoroughly gone through the literature, some studies exist on ferrofluid due to the rotatory disk. Researchers like 

Ram at el. [50-52] and Hayat et al. [53] investigated the ferrofluid with a rotating disk. Later on, Ram and Sharma 

[54-55] and Hassan et al. [56] evaluated the influence of rotation and stretching of MHD ferrofluid with the analysis 

of disk rotation respectively. But the nonlinear thermally radiated MHD stagnation point boundary layer flow of a 

power-law ferrofluid upon a rotatory stretchable disk is not demonstrated until now. So the goal of the current research 

article is to find the similarity solution of the PDEs that models from water/magnetite nanofluid flow on a stretchable 

rotatory disk subject to nonlinear thermal radiation and Lorentz force. The modeled nonlinear PDEs of motion and 

energy in the specified boundary layer are numerically tackled through the shooting method. The parametrical 

influence of non-Newtonian power-law fluid accentuated and full parametrical study is conducted. 

The graphical illustration and tables are typical answers to some unknown questions. This is true because the current 

theoretical analysis has comprehensively addressed the worth mentioning answers to some interesting research 

questions. Therefore, the following questions may help the readers to link what is known in the literature with the 

novelty of the current study: 

1. What are the effects of volume fraction parameter, the magnetic field parameter, the rotation parameter, power-

law index, temperature ratio parameter, radiation parameter and Prandtl number upon the dimensionless 

distributions of velocity and temperature? 

2. In which situation problem the effects of MHD and nonlinear thermal radiation can be utilized in the momentum 

and energy equations for steady three dimensional stagnation point flow? 

3. What are the suitable expressions of dynamic viscosity and thermal conductivity when they follow the power-law 

characteristics? 
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4. How we can apply the shooting method that is used to obtain the similarity solution of the partial differential 

equations that model water/magnetite nanofluid flow and heat transfer on stretchable rotating disk subject to 

thermal radiation and Lorentz force? 

5. How the stretchable rotatory disk is advantageous upon the skin friction factor and heat transfer rate? 

2. Physical model and formulation of the problem 

The three-dimensional incompressible stagnation point flow of power-law with the aim of ferrofluid on a rotatory 

stretchable disk is taken into consideration as displayed in Fig. 1. The assumed flow is steady and axisymmetric. The 

components of velocity  (𝑢, 𝑣, 𝑤) along with the cylindrical coordinate system (𝑟, 𝜃∗, 𝑧) are chosen. The rotation of 

disk concerning constant angular velocity Ω along 𝑧-axis has been assumed. The disk by a constant rate 𝑐 and with 

the velocity 𝑢 = 𝑐𝑟  is stretching in the radial direction. The variation due to 𝜃∗  is vanished because of the 

axisymmetric flow behavior. The externally operated uniform magnetic field which is maintaining the strength of 𝐵0 

is applied perpendicularly along the 𝑧-axis to the circulating disk. Thus, the ferrofluid becomes magnetized strongly 

it is because ferrofluids without outwardly performing magnetic field are unable to retain the effects of magnetization. 

The inducible magnetic field is treated as negligible by the hypothesis of Reynolds number having small magnetic 

effects. The gradient of pressure (𝜕𝑝 𝜕𝑧⁄ = 0)  is vanished in the 𝑧-direction with the help of derivation of the 

boundary layer which is proposed by Andersson et al. [22]. Also, Karman’s similarity transformation implies 

that (𝜕𝑝 𝜕𝑟⁄ = 0), which means the pressure is treated as constant throughout the boundary layer. Furthermore, the 

velocity which is exterior to the boundary layer can be specified as a potential flow that is 𝑢𝑒 = 𝑎𝑟. The constant 

temperature 𝑇𝑤  is kept at the surface of the disk rotation and the fluid which is flowing outside of the boundary layer 

is placed at an ambient uniform temperature 𝑇∞ with 𝑇𝑤 > 𝑇∞. 

 

 
Fig 1. The flow geometry of power-law fluid towards the disk rotation about the stagnation point zone. 
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Table 1 

The thermophysical properties of the particles of the base fluid and ferrofluid [19]. 

Properties Water 𝑭𝒆𝟑𝑶𝟒 

𝒄𝒑(𝑱/𝑲𝒈𝑲 4179 670 

𝝆(𝑲𝒈/𝒎𝟑 997.1 5180 

𝜿(𝑾/𝒎𝑲) 0.613 9.7 

𝝈(𝑺/𝒎) 0.05 2.5 × 103 

 

Table 1 illustrates the thermophysical properties of pure water as a base fluid and Ferrite  

𝐹𝑒3𝑂4 as a ferrofluid particle. The governing continuity, momentum, and energy equations within the boundary layer 

of the proposed problem in the form of cylindrical co-ordinates can respectively be expressed as [27] 

0
u u w

r r z
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Bu v u du u
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Where (𝑢, 𝑣, 𝑤) denotes the components of the velocity alongside cylindrical co-ordinates (𝑟, 𝜃∗, 𝑧), 𝑢𝑒  be the free 

stream velocity, 𝜌𝑛𝑓 is the effective density and 𝜎𝑛𝑓 be an electrical conductivity of the nanofluid, 𝐵0 is said to be the 

force of the uniformly applied magnetic field, (𝜌𝑐𝑝)
𝑛𝑓

 stated as the specific heat at the constant rate of the pressure 

of the nanofluid.  

Lian-Cun et al. [24] has chosen the dynamic viscosity 𝜇 and thermal conductivity 𝑘 as follows: 

1 1

,  

n n
u T

K k K
r r



 
    

        
 (5) 

In which 𝐾 is the positive constant. 

Ming et al. [25] assumed the dynamic viscosity 𝜇 and thermal conductivity 𝑘 are of the following types: 

   1 2 1 2
2 2 2 2

0 0,  

n n

u v u v

z z z z
   

 

                
             

                

 (6) 

Where 𝜇0 and 𝑘0 are the constants. 

Upon utilizing [24-25] the dynamic viscosity 𝜇 and thermal conductivity 𝑘 in the presence of nanofluid particles are 

delineated as: 
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   1 2 1 2
2 2 2 2

,  

n n

nf nf

u v u v

z z z z
   

 

                
             

                

 (7) 

In which 𝜇𝑛𝑓 indicates the dynamic viscosity, 𝑘𝑛𝑓 denotes the thermal conductivity and 𝑇 represents the temperature 

of the nanofluid respectively and 𝑛 shows the power-law index.  

The simplified form for radiative heat flux in terms of approximation of Rosseland can be stated as  

* 4 * 3

* *

4 16
,

3 3
r

T T T
q

k z k z

  
   

 
 (8) 

Where 𝜎∗ is the constant of Stefan-Boltzmann and 𝑘∗ is the coefficient of mean absorption. The relationships 

for 𝜌𝑛𝑓 , 𝜇𝑛𝑓 ,  𝜎𝑛𝑓 , (𝜌𝑐𝑝)
𝑛𝑓

 and 𝑘𝑛𝑓 are defined as follows: 

The relationships for effective density  𝜌𝑛𝑓  and capacitance of heat of the nanofluid is chosen the same as in [19]: 

 1nf f       (9) 

      1p p pnf f s
c c c        (10) 

The dynamic viscosity for the nanofluid is taken as [19] 
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The effective thermal and electrical thermal conductivities of the nanofluid are [19]; 
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Here, 𝜇𝑓 be the dynamic viscosity for base fluid and 𝜙 elucidates the volume fraction of nanoparticles. The other 

quantities like 𝜌𝑓 and 𝜌𝑠, 𝜎𝑓  and 𝜎𝑠, (𝜌𝑐𝑝)
𝑓

 and (𝜌𝑐𝑝)
𝑠
, 𝑘𝑓 and 𝑘𝑠 are the densities, electrical conductivities, specific 

heats, thermal conductivities of the base, and nanofluid respectively. 

The desired boundary conditions for the proposed phenomenon are given by 

,   ,   0,   ,   at  0,wu cr v r w T T z       (14) 

,   0,  ,   at  ,e eu u ar v v T T z        (15) 
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Introducing the suitable similarity transformation for the present fluid flow problem as follows Usman et al. [27]. 
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Upon using (16) into (1-4), the resulting system of ODEs can be written as 

1
2

1

n
H F F

n



   


 (17) 

   
 

   
1 2

2 22 2 2 2 3

1 1

1

1

nn B B
F G H F F F F G M F

n B B
  

                  
 (18) 

   
 

 
1 2

2 22 3

1 1

1
2

1

nn B B
FG H F G G F G MG

n B B


               
 (19) 

      
 

 
1 23 2 25

4

1 1
1 1 1

1 Pr

n
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n B
H F Rd F G

n B
    

                   
 (20) 

Where, 𝜂 is the dimensionless similarity variable , 𝐹, 𝐺 𝑎𝑛𝑑  𝐻  be dimensionless velocity components in radial, 

azimuthal and axial directions, 𝜃 is the dimensionless temperature, ʹ represents the derivative w. r. t. 𝜂 and 𝜈𝑓 is the 

base fluid kinematic viscosity. 

The other parameters which help the fluid flow to govern can be classified in the following fashion. 

 

 1 2 3 4 5,  ,  ,  ,  
pnf nf nf nf nf

f f f fp f

c k
B B B B B

kc
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 2 * 3
0

*

16
 ,  ,  Pr= ,  ,  

3

p ff f w
w

f f

cBa T T
M Rd

c c k kk T

  
 






     (22) 

Where 𝐵1, 𝐵2, 𝐵3 , 𝐵4 𝑎𝑛𝑑 𝐵5 are the constant parameters, 𝜆 is the velocity ratio parameter, 𝑀 is the magnetic 

parameter, 𝑃𝑟 represents the Prandtl number, 𝑅𝑑 is the parameter of the radiation and 𝜃𝑤 indicates the ratio of the 

temperature. 

The reduced boundary conditions are 

       0 1,   0 ,   0 0,   0 1F G H      (23) 

     ,   0,    0,F G        (24) 

The 𝜔 =
Ω

𝑐
 here refers to the parameter of rotation.  
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3. Physical Quantities 

3.1 Surface Drag Forces 

The surface drag forces or radial and azimuthal directions skin friction coefficients can be expressed with the relations 

as in [27]; 

   
2 2

,  ,rz z
Fr G

f f

C C
cr cr







 



   (25) 

The terms here 𝜏𝑟𝑧, 𝜏𝜃∗𝑧 denotes shear stresses in radial and azimuthal directions and 𝑞𝑤  is the constant heat flux, these 

are given by 

0 00

1 1
, , rz z

z zz

u w u v w v

z r z z r z
     

 
 

 

                           
                         

                          

 (26) 

By using the transformation (16), the (26) will take a new form as  

           
1 11 1

2 2 2 21 12 2
2 2Re 0 0 0 ,  Re 0 0 0 ,

n n

n n
r Fr r G

C A F G F C A F G G
 

 

                 (27) 

3.2 Heat Transfer Rates 

The mathematical relation of heat transfer rates or local Nusselt number 𝑁𝑢𝑟 for the present flow is [27] 

 
,w

r

W

rq
Nu

k T T




 (28) 

Where,  𝑞𝑤  is the heat flux and is given by 

     3
0 0

1 1 1 .w r ww
z z

T T
q k q Rd k

z z
 

 

    
              

 (29) 

The non-dimensional form is 

      
1

3
1Re 1 1 1 0 0 .n

r r wNu Rd   


       
 

 (30) 

In which 𝑅𝑒𝑟 =
𝑟2𝑐2−𝑛

𝜈𝑓
 be the local Reynolds number. 

4. Shooting Method 

The numerical technique adopted here is a shooting method for finding the solution of highly nonlinear ODEs (17-20) 

subject to the boundary conditions (23-24). The solution scheme for the shooting method is based on the following 

steps. 

The proposed BVP w.r.t. boundary conditions can be transformed into the first order IVP by defining the derivatives 

as 
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1 2 3 4 5 6 7,  ,  ,  ,  ,  ,  .y F y F y G y G y H y y           (31) 

This implies that (17-20) reduces to a system of IVP in terms of seven interconnected first-order equations using seven 

functions i.e. 𝑦𝑁  (𝑁 = 1,2, … ,7). 
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The boundary conditions reduce to 
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y y a y y a y y y a

y y y





      

     
 (33) 

Here 𝑦2(0) = 𝑎1, 𝑦4(0) = 𝑎2 and 𝑦7(0) = 𝑎3  are the missing initial conditions that can be obtained subject to 

𝑦1(∞) = 𝜆, 𝑦3(∞) = 0 and 𝑦2(∞) = 0 for instance by setting the values of the parameters as 𝑛 = 𝑃𝑟 = 𝜃𝑤 = 1, 𝑀 =

2, 𝜆 = 𝜙 =  𝑅𝑑 = 0, 𝜔 = 5 with step-size 0.01.The obtained missing initial conditions (𝐹′(0), −𝐺′(0), −𝜃′(0)) are 

𝑎1 = 1.9030, 𝑎2 = 11.1405, 𝑎3 = 0.9803 by the Newton-Raphson iterative method the computed values are in 

relatively good agreements with [19] and [57]. Whereas, if we set 𝑛 = 1.3, 𝑀 = 𝐿 = 𝜙 = 𝑅𝑑 = 0, 𝑃𝑟 = 1, 𝜃𝑤 =

1, 𝑤 = 1, then with the Newton-Raphson method the values 𝑎1 = 0.5215, 𝑎2 = 0.6033, 𝑎3 = 0.3892 are achieved 

for missing initial conditions (𝐹′(0), −𝐺′(0), −𝜃′(0)) where an excellent validity trend can be observed as mentioned 

in [22], [25], [26], and [27].  
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5. Convergence Analysis 

Shooting is the most used numerical method because it is extremely effective in solving the complex differential 

systems of ODEs like the equations (32). It can also be employed because of its low computational cost and high level 

of accuracy as one can predict from the tables 2-10. 

Table 2: Tabular comparison for 𝐹′(0) when 𝑛 = 𝜃𝑤 = 𝑃𝑟 = 1, 𝑀 = 0 = Φ = 𝑅𝑑 = 𝑎 𝑐⁄ = 0. 

𝝎 𝑭′(𝟎) 

Present Ref. [19] Ref. [57] 

M=0                             0 -1.1737 −1.1737 −1.1737 

                                 1 -0.9483 −0.9483 −0.9483 

                                 2 -0.3262 −0.3263 −0.3262 

                                 5 3.1937 3.1937 3.1937 

                               10 12.7206 12.7206 12.7209 

                               20 40.9056 40.9056 40.9057 

M=2                         0 1.8305 −1.8305 −1.8305 

                                 1 -1.6634 −1.6635 −1.6634 

                                 2 -1.1753 −1.1754 −1.1753 

                                 5 1.8930 1.8928 1.8929 

                               10 10.8334 10.8329 10.8334 

                               20 38.1880 38.1857 38.1880 

Table 3: Tabular comparison for 𝐺′(0), when 𝑛 = 𝜃𝑤 = 𝑃𝑟 = 1, 𝑀 = 0 = Φ = 𝑅𝑑 = 𝑎 𝑐⁄ = 0. 

𝝎 −𝑮′(𝟎) 

Present Ref. [19] Ref. [57] 

M=0                             0 0.0000 0.0000 0.0000 

                                 1 1.4870 1.4870 1.4870 

                                 2 3.1278 3.1278 3.1278 

                                 5 9.2535 9.2536 9.2535 

                               10 22.9132 22.9139 22.9134 

                               20 60.0126 59.6895 60.0129 

M=2                         0 0.0000 0.0000 0.0000 

                                 1 2.0239 2.0239 2.0239 

                                 2 4.1135 4.1135 4.1135 

                                 5 11.1405 11.1407 11.1406 

                               10 25.7225 25.7231 25.7225 

                               20 64.0603 64.0635 64.0604 

Table 4: Tabular comparison for 𝜃′(0) , when 𝑛 = 𝜃𝑤 = 𝑃𝑟 = 1, 𝑀 = 0 = Φ = 𝑅𝑑 = 𝑎 𝑐⁄ = 0. 

𝝎 −𝜽′(𝟎) 

Present Ref. [19] Ref. [57] 

M=0                             0 0.8520 0.8520 0.8520 

                                 1 0.8757 0.8757 0.8757 

                                 2 0.9304 0.9304 0.9304 

                                 5 1.1291 1.1292 1.1291 

                               10 1.4260 1.4260 1.4259 

                               20 1.8944 1.8743 1.8944 

M=2                         0 0.7261 0.7261 0.7261 

                                 1 0.7422 0.7422 0.7422 

                                 2 0.7854 0.7854 0.7854 

                                 5 0.9803 0.9803 0.9803 

                               10 1.2993 1.2993 1.2992 

                               20 1.7973 1.7974 1.7973 
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Table 5: Comparison of 𝐹′(0), when 𝑀 = 𝐿 = 𝜙 = 𝑅𝑑 = 0, 𝑃𝑟 = 1, 𝜃𝑤 = 1, 𝑤 = 1. 

𝒏 𝑭′(𝟎) 

Present Ref. [22] Ref. [25] Ref. [26] Ref. [27] 

2.5 0.5623 - 0.56236 - 0.5624 

2.2 0.5531 - 0.55319 - 0.5532 

2.0 0.5467 0.547 0.54676 - 0.5468 

1.7 0.5366 0.537 0.53664 - 0.5366 

1.5 0.5291 0.529 0.52919 0.526405 0.5292 

1.3 0.5215 0.522 0.52150 0.519894 0.5215 

1.1 0.5140 0.514 - 0.513389 - 

1.0 0.5102 0.510 0.51021 0.510232 0.5102 

0.9 0.5067 0.507 - 0.507189 - 

0.8 0.5037 0.504 0.50381 0.504218 0.5038 

0.6 0.5012 0.501 - 0.497596 - 

0.5 0.5006 0.501 0.50058 0.493192 0.5006 

0.2 0.5328 0.532 - - - 

Table 6: Comparison of −𝐺′(0), when 𝑀 = 𝐿 = 𝜙 = 𝑅𝑑 = 0, 𝑃𝑟 = 1, 𝜃𝑤 = 1, 𝑤 = 1. 

𝒏 −𝑮′(𝟎) 

Present Ref. [22] Ref. [25] Ref. [26] Ref. [27] 

2.5 0.6096 - 0.60967 - 0.6096 

2.2 0.6075 - 0.60566 - 0.6057 

2.0 0.6033 0.603 0.60327 - 0.6033 

1.7 0.6009 0.600 0.60091 - 0.6009 

1.5 0.6010 0.601 0.60099 0.613704 0.6010 

1.3 0.6033 0.603 0.60346 0.612860 0.6035 

1.1 0.6105 0.610 - 0.614173 - 

1.0 0.6159 0.616 0.61591 0.615921 0.6159 

0.9 0.6237 0.624 - 0.618427 - 

0.8 0.6348 0.636 0.63608 0.621449 0.6361 

0.6 0.6740 0.676 - 0.628137 - 

0.5 0.7080 0.712 0.71322 0.632581 0.7130 

0.2 1.0320 1.032 - - - 

Table 7: Comparison of −𝐻(∞), when 𝑀 = 𝐿 = 𝜙 = 𝑅𝑑 = 0, 𝑃𝑟 = 1, 𝜃𝑤 = 1, 𝑤 = 1. 

𝒏 −𝑯′(∞) 

Present Ref. [22] Ref. [25] Ref. [26] Ref. [27] 

2.5 0.5425 - 0.54200 - 0.5425 

2.2 0.5655 - 0.56553 - 0.5655 

2.0 0.5877 0.586 0.58765 - 0.5877 

1.7 0.6366 0.633 0.63662 - 0.6366 

1.5 0.6783 0.676 0.67828 0.663515 0.6783 

1.3 0.7359 0.735 0.73591 0.724913 0.7359 

1.1 0.8101 0.822 - 0.817372 - 

1.0 0.8823 0.883 0.88230 0.884473 0.8823 

0.9 0.9694 0.969 - 0.975412 - 

0.8 1.0594 1.089 1.05929 1.093999 1.0593 

0.6 1.3641 1.364 - 1.360137 - 

0.5 1.5437 1.539 1.54389 1.464609 1.5438 

0.2 1.7788 - - - - 
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Table 8: Comparison of the 𝜃′(0), when 𝑀 = 𝐿 = 𝜙 = 𝑅𝑑 = 0, 𝑃𝑟 = 1, 𝜃𝑤 = 1, 𝑤 = 1. 

𝒏 𝜽′(𝟎) 

Present Ref. [25] Ref. [27] 

2.5 0.3998 0.39980 0.3996 

2.2 0.3966 0.39655 0.3965 

2.0 0.3939 0.39392 0.3939 

1.7 0.3896 0.38970 0.3897 

1.5 0.3884 0.38859 0.3886 

1.3 0.3892 0.38910 0.3891 

1.1 0.3922 -  

1.0 0.3963 0.39632 0.3963 

0.9 0.4024 - - 

0.8 0.4114 0.41108 0.4111 

0.6 0.4501 - - 

0.5 0.4793 0.47917 0.4791 

0.2 0.8226 - - 

It can be noticed that the results in tables 2-4 are in good agreement with Ref. [19] and Ref. [57] respectively. Similarly, 

tables 5-8 are extracted for velocity components and temperature profile to show the validation of code and our 

numerically approached technique more precisely by setting parameters as 𝑀 = 𝐿 = 𝜙 = 𝑅𝑑 = 0, 𝑃𝑟 = 1, 𝜃𝑤 =

1, 𝑤 = 1 for various values of the power-law index 𝑛 and an excellent level of accuracy can be observed with those 

which are illustrated in [22], [25], [26] and [27] respectively. 

Table 9: Comparison for Skin friction coefficients when 𝑛 = 1, 𝐿 = 𝜙 = 0, 𝑅𝑑 = 1, 𝑃𝑟 = 1, 𝜃𝑤 = 1, 𝑤 = 1. 

 

𝑴 𝑹𝒆𝒓

𝟏
𝒏+𝟏𝑪𝑭𝒓 𝑹𝒆𝒓

𝟏
𝒏+𝟏𝑪𝑮𝜽∗ 

Present Nabil T. [26] Present Nabil T. [26] 

0 0.5102 0.510232 -0.6159 − 0.615921 

0.5 0.3851 0.385132 -0.8487 − 0.848723 

1 0.3092 0.309257 -1.0691 − 1.069053 

2 0.2305 0.230559 -1.4421 − 1.442094 

4 0.1657 0.165703 -2.0103 − 2.010266 

Slp -0.07755  -0.34397  

Table 10: Comparison of local Nusselt number when 𝑛 = 1, 𝑀 = 1, 𝐿 = 𝜙 = 0, 𝜃𝑤 = 1, 𝑤 = 1 

 

𝑹𝒅 

𝑷𝒓 = 𝟎. 𝟕𝟐 𝑷 = 𝟏 𝑷 = 𝟕 

𝑅𝑒𝑟

−
1

𝑛+1𝑁𝑢𝑟 𝑅𝑒𝑟

−
1

𝑛+1𝑁𝑢𝑟 𝑅𝑒𝑟

−
1

𝑛+1𝑁𝑢𝑟 

Present Nabil T. [26] Present Nabil T. [26] Present Nabil T. [26] 

1 0.1562 0.1562525 0.1701  0.1701405 0.4559 0.4450890 

3 0.1780 0.1780635 0.1995 0.1995045 0.6541 0.6541676 

5 0.1858 0.1858858 0.2100 0.2100101 0.7328 0.7328291 

10 0.1932 0.1932714 0.2199 0.2199356 0.8084 0.8084313 

𝟏𝟎𝟗 0.2025 0.2025129 0.2323 0.2323802 0.9045 0.9045440 

Moreover, the skin friction in radial as well as in azimuthal directions and local Nusselt number for various values of 

the parameter of magnetic field 𝑀 and radiation parameter 𝑅𝑑 together with some particular values of Prandtl’s 

number 𝑃𝑟 are pondered in tables 9-10. The calculated values are correct up to 4 decimal places in comparison with 

that of [26]. Hence it can be observed that the shooting method is extremely effective for finding the solution to such 

types of highly nonlinear fluid flow problems. Also upon using the slope of the linear regression through data points 

as suggested by [58-60], it is worth remarking that the skin friction in radial direction decreases with higher Lorentz 

force at the rate of −0.07755. The outcome of the slope of the linear regression through data points shows that the skin 
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friction in radial azimuthal directions decreases with the parameter associated with the Lorentz force at the higher rate 

of −0.34397. Hence it is worth mentioning that the shooting method is extremely effective for finding the solution of 

such highly nonlinear fluid flow problems with a significant converging rate. 

6. Results and discussion 

In this portion of the analysis, the effects of several types of promising parameters are analyzed on the power-law 

ferrofluid in the presence of nonlinear thermally radiated MHD stagnation point flow on a rotatory stretchable disk 

and some physical quantities are also deliberated. The tabular comparison and graphical demonstration of outcomes 

is reflected with the aim of radial and azimuthal velocity components, temperature field, the radial and azimuthal 

directions skin friction coefficients, and local Nusselt number alongside the non-dimensional parameters that is 

volume fraction parameter 𝜙, the parameter of magnetic field 𝑀, the rotation parameter 𝜔, index of power-law 𝑛, 

the ratio of temperature 𝜃𝑤,  radiation parameter 𝑅𝑑, and Prandtl number 𝑃𝑟. A thorough discussion is constituted for 

Newtonian 𝑛 = 1 and non-Newtonian which incorporates the shear-thinning 𝑛 < 1 and shear-thickening 𝑛 > 1 fluid. 

4.1 Influence of volume fraction 𝝓 

The influence of the parameter of volume fraction 𝜙  on the radial 𝐹 as well as azimuthal 𝐺 velocities and temperature 

𝜃 fields are depicted in figures 2-4 by assuming ferrite (𝐹𝑒3𝑂4) as ferrofluid particle which is composed of water as 

a base fluid and setting the other involved parameters as 𝑃𝑟 = 7, M = 3, L = 1.5, Rd = 2, θ𝑤 = 1.3, ω = 0.5. Figure 

2 shows the increasing behaviors for Newtonian and non-Newtonian fluids along the dimensionless similarity 

variable 𝜂. When the Ferro-particle magnetite is not operative (𝑖. 𝑒. 𝜙 = 0)  the value of radial velocity is maximum 

inside the boundary layer and with the rise in the parameter of volume fraction, it decreases for Newtonian and non-

Newtonian fluids. Physically, it is because the viscosity of ferrofluid enhances as  𝜙 increases due to which the 

momentum diffusivity increases in the boundary layer. Also, an increase in the power-law index 𝑛  the radial velocity, 

and the thickness of the boundary layer decreases. The upshots of the parameter of volume fraction on the azimuthal 

velocity in figure 3 shows an opposite trend as that of radial velocity in figure 2. Figure 4 indicates the temperature 

and the thermal thickness of the boundary layer are increasing by heightening the parameter of volume fraction along 

the similarity variable 𝜂. The temperature for shear-thinning 𝑛 < 1 increased dramatically with that of Newtonian 

𝑛 = 1 and shear-thickening 𝑛 > 1 fluid where the minor effects are noticed. 

  
Fig. 2. Upshots of ϕ on radial velocity when 𝑃𝑟 =

7, 𝑀 = 3, 𝜆 = 1.5, 𝑅𝑑 = 2, 𝜃𝑤 = 1.3, 𝜔 = 0.5. 
Fig. 3. Upshots of ϕ on azimuthal velocity when 𝑃𝑟 =

7, 𝑀 = 3,   𝜆 = 1.5, 𝑅𝑑 = 2, 𝜃𝑤 = 1.3, 𝜔 = 0.5. 
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Fig. 4. Upshots of ϕ on temperature when 𝑃𝑟 =
7, 𝑀 = 3, 𝜆 = 1.5, 𝑅𝑑 = 2, 𝜃𝑤 = 1.3, 𝜔 = 0.5. 

Fig. 5. Upshots of 𝑀 on radial velocity when 𝑃𝑟 =
7, 𝜙 = 0.05, 𝜆 = 1.5, 𝑅𝑑 = 2, 𝜃𝑤 = 1.3, 𝜔 = 0.5. 

  
Fig. 6. Effect of 𝑀 upon azimuthal velocity while Pr =

7, ϕ = 0.05, λ = 1.5, Rd = 2, θw = 1.3, ω = 0.5. 
Fig. 7. Effect of 𝑀 upon temperature while 𝑃𝑟 =

7, 𝜙 = 0.05, 𝜆 = 1.5, 𝑅𝑑 = 2, 𝜃𝑤 = 1.3, 𝜔 = 0.5. 

4.2 Influence of Magnetic parameter 𝑴 

Figures 5-7 display that the escalation in magnetic parameter 𝑀 causes a reduction in the radial 𝐹 and azimuthal 

𝐺 velocities respectively, where the motion of axially rotating disk is drawn towards the surroundings of the surface 

for the compensation of radial outflow. It is obvious that raising the power-law index 𝑛 the thickness of the boundary 

layer turned thinner. By the implementation of the magnetic field which refers to the similar effects of reducing the 

velocity with the consideration of various values of 𝑛 which are stated for shear-thinning (𝑛 < 1), Newtonian 𝑛 =

1 and shear-thickening 𝑛 > 1 fluids. Physically it is expressed as, the existence of Lorentz force which occurs due to 

the magnetic field that retards the flow near the disk. It can be reckoned that the boundary layer is thinner. Figure 7 

signifies an increasing trend of temperature 𝜃 with the increasing magnetic parameter 𝑀 for Newtonian and shear-

thinning fluids. In the case of shear-thickening, the temperature is decreasing. Hence, the temperature inside the 

boundary layer reduces for shear-thickening fluids with a higher magnetic field. 

4.3 Influence of rotation parameter 𝝎 

Figures 8-9 are drawn to show the effects of the rotation parameter 𝜔 upon radial as well as azimuthal velocities and 

temperature field. Figure 8 implies that the radial velocity escalates and by the rise in the parameter of rotation 𝜔 the 

thickness of the momentum boundary layer declines. Physically it can be interpreted as the particles of the ferrofluid 

are driven towards the radial direction because of the presence of centrifugal force due to which velocity increases. 

The increment in 𝜔 enhances the azimuthal component in figure 9 where the effects for shear-thickening fluid are 

more prominent.  
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Fig. 8. Effect of 𝜔 on radial velocity while 𝑃𝑟 =
7, 𝜙 = 0.05, 𝜆 = 1.5, 𝑅𝑑 = 2, 𝑀 = 3, 𝜃𝑤 = 1.3. 

Fig. 9. Effect of 𝜔 on azimuthal velocity while 𝑃𝑟 =
7, 𝜙 = 0.05, 𝜆 = 1.5, 𝑅𝑑 = 2, 𝑀 = 3, 𝜃𝑤 = 1.3. 

  
Fig. 10. Upshots of 𝑛 on radial velocity when 𝑃𝑟 =

7, 𝜙 = 0.05, 𝜆 = 1.5, 𝑅𝑑 = 2, 𝑀 = 3, 𝜃𝑤 = 1.3,   𝜔 =
0.5.   

Fig. 11. Upshots of 𝑛 on azimuthal velocity while 

𝑃𝑟 = 7, 𝜙 = 0.05, 𝜆 = 1.5, 𝑅𝑑 = 2, 𝑀 = 3, 𝜃𝑤 =
1.3,   𝜔 = 0.5.   

  
Fig. 12. Upshots of 𝑛 on temperature when 𝑃𝑟 =

7, 𝜙 = 0.05, 𝜆 = 1.5, 𝑅𝑑 = 2, 𝑀 = 3, 𝜃𝑤 = 1.3,   𝜔 =
0.5.   

Fig. 13. Upshots of 𝜃𝑤 on temperature field when 𝑃𝑟 =
7, 𝜙 = 0.05, 𝜆 = 1.5, 𝑅𝑑 = 2, 𝑀 = 3,   𝜔 = 0.5.   

4.4 Influence of power-law index 𝒏 

To show the influence of power-law index 𝑛 upon the profiles of velocity and temperature figures 10-12 are drawn 

against the similarity variable 𝜂  by setting other parameters as  𝑃𝑟 = 7, 𝜙 = 0.05, 𝜆 = 1.5, 𝑅𝑑 = 2, 𝑀 = 3, 𝜃𝑤 =

1.3,   𝜔 = 0.5. A cross-sectional type of flow is examined for the non-dimensional profiles of velocity and temperature. 

Also, the radial velocity in figure 10 is increasing near the wall whereas this trend gets reversed away from the wall. 

The azimuthal velocity in figure 11 is describing the opposite behavior from radial velocity in figure 11. A similar 

type of effect can be observed for the temperature field in figure 12. Hence, the thickness of the layer of boundary 
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declines by the upsurge in 𝑛. So, it can be concluded that the thickness of the boundary layer is thinner for shear-

thickening and thicker for shear-thinning fluids. It is because of the increase in 𝑛 which causes resistance near the disk. 

4.5 Influence of linear and non-linear radiation 

The effects of linear θ𝑤 = 1 and nonlinear radiations θ𝑤 > 1 on temperature 𝜃 profile for Newtonian 𝑛 = 1 and non-

Newtonian fluids (𝑛 < 1, 𝑛 > 1)  by scaling other quantities as 𝑃𝑟 = 7, 𝜙 = 0.05, 𝜆 = 1.5, 𝑅𝑑 = 2, 𝑀 = 3, 𝜃𝑤 =

1.3, 𝜔 = 0.5 against 𝜂 are analyzed in figure 13. Figure 13 differentiates the influence of linear and nonlinear radiation 

on temperature. It can be noted that with the enhancement in the temperature ration parameter θ𝑤  which states the 

comparison between the larger wall temperature to that of ambient and consequently the temperature inflates.  The 

effects of linear and nonlinear radiation are more distinguish for shear-thickening fluid 𝑛 > 1 in comparison with 

Newtonian 𝑛 = 1 and shear-thinning fluids 𝑛 < 1. Nonlinear radiation increased the temperature of the fluid greatly. 

It can be concluded that the thickness of the boundary layer is increasing by the rise in θ𝑤  but it reduces by increasing 

the 𝑛. 

  
Fig. 14. Influence of 𝑅𝑑 on temperature field when 

𝑃𝑟 = 7, 𝜙 = 0.05, 𝜆 = 1.5, 𝑀 = 3, 𝜃𝑤 = 1.3, 𝜔 =
0.5.   

Fig. 15. Effect of 𝑃𝑟 on temperature field while ϕ =
0.05, λ = 1.5, M = 3, Rd = 2, θ𝑤 = 1.3, ω = 0.5.   

  
Fig. 16 Skin friction in the radial direction 

corresponding to 𝜙 when𝑀 = 0, 3, 6 𝜔 = 0.5, 𝜆 =
1.5, 𝑃𝑟 = 7, 𝑅𝑑 = 2, 𝜃𝑤 = 1.3. 

Fig. 17 Skin friction in the azimuthal direction 

corresponding to 𝜙 when 𝑀 = 0, 3, 6 𝜔 = 0.5, 𝜆 =
1.5, 𝑃𝑟 = 7, 𝑅𝑑 = 2, 𝜃𝑤 = 1.3. 

4.6 Influence of thermal radiation 

Figure 14 asserted the upshots of the radiation parameter 𝑅𝑑 upon the temperature 𝜃  for Newtonian and non-

Newtonian fluids along the similarity variable 𝜂 by assigning the values to the other involved quantities as 𝑃𝑟 =

7, 𝜙 = 0.05, 𝜆 = 1.5, 𝑅𝑑 = 2, 𝑀 = 3,   𝜔 = 0.5. After the examination of figure 14, it can be predicted that the 
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behavior of the 𝜃 elevates. It can be physically expressed as by escalation within the radiation parameter the coefficient 

of mean absorption declines which delivers further heat towards the fluid because of which temperature enhances 

within the boundary layer. Hence, on enhancing 𝑅𝑑 the boundary layer thickness is larger for shear-thinning fluid 𝑛 <

1 than from shear-thickening fluid 𝑛 > 1. 

4.7 Influence of Prandtl number 

The upshots of Prandtl number 𝑃𝑟 upon temperature field 𝜃 are accentuated in figure 15. It can be witnessed that upon 

rising the Prandtl number it causes a reduction in the behavior of temperature because the Prandtl number associates 

the momentum and thermal diffusivities and by the enhancement in Prandtl number implies deduction within the 

thermal diffusivity because of this reason temperature decayed. The boundary layer reduces by escalating the Prandtl 

number for Newtonian and non-Newtonian fluids. The depletion in the boundary layer can be noticed slightly higher 

for shear-thickening fluid (𝑛 > 1) than shear-thinning fluid (𝑛 < 1). 

4.8 Skin friction and local Nusselt number against volume fraction  

The skin friction in radial 𝑅𝑒𝑟

1

𝑛+1𝐶𝐹𝑟  as well as in azimuthal 𝑅𝑒𝑟

1

𝑛+1𝐶𝐺𝜃∗  directions and local Nusselt number 

𝑅𝑒𝑟

−
1

𝑛+1𝑁𝑢𝑟 versus the parameter of volume fraction 𝜙 using different values of magnetic parameter 𝑀 for Newtonian 

and non-Newtonian fluids are elucidated in the figures 16-18 under the consideration of magnetite (𝐹𝑒3𝑂4)  as a 

ferrofluid particle and water as based fluid. Figure 16 explains that skin friction escalates in a radial direction. The 

concept behind this is that an increase in the parameter 𝜙 causes higher viscosity for ferrofluids which further enhances 

the concentration of magnetic nanoparticles within the base fluid. The influence of skin friction for shear-thinning 

fluid 𝑛 < 1 is noticeable with the elevation in the magnetic parameter 𝑀 in a comparison with Newtonian 𝑛 = 1 and 

shear-thickening fluids 𝑛 > 1. The consequences of skin friction in azimuthal direction elucidate the opposite trend 

to that which is described in figure 17. Figure 18 is reflecting two opposite behaviors for Nusselt number which is 

escalating along with the parameter of volume fraction 𝜙 for shear-thinning fluid 𝑛 < 1 with the escalating magnetic 

parameter 𝑀, but with the rise in 𝑛 the minor influences can be noticed for Newtonian fluid 𝑛 = 1 also for shear-

thinning fluid 𝑛 > 1 the trend is decreasing. 

  
Fig. 18 Local Nusselt number corresponding to 

𝜙 when 𝑀 = 0, 3, 6 𝜔 = 0.5, 𝜆 = 1.5, 𝑃𝑟 = 7, 𝑅𝑑 =
2, 𝜃𝑤 = 1.3. 

Fig. 19 Skin friction in the radial direction 

corresponding to 𝑀 when 𝜙 = 0, 0.05, 0.1, 𝜔 =
0.5, 𝜆 = 1.5, 𝑃𝑟 = 7, 𝑅𝑑 = 2, 𝜃𝑤 = 1.3. 
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Fig. 20 Skin friction in the azimuthal direction 

corresponding to 𝑀 when 𝜙 = 0, 0.05, 0.1, 𝜔 =
0.5, 𝜆 = 1.5, 𝑃𝑟 = 7, 𝑅𝑑 = 2, 𝜃𝑤 = 1.3. 

Fig. 21 Local Nusselt number against 𝑀 when 𝜙 =
0, 0.05, 0.1, 𝜔 = 0.5, 𝜆 = 1.5, 𝑃𝑟 = 7, 𝑅𝑑 = 2, 𝜃𝑤 =

1.3. 

 
Fig. 23 Local Nusselt number against 𝑅𝑑 when 𝜃𝑤 = 1, 1.3, 1.5, 𝜔 = 0.5, 𝑀 = 3, 𝜙 = 0.05, 𝜆 = 1.5, 𝑃𝑟 = 7. 

4.9 Skin friction and local Nusselt number against the magnetic parameter 

Figures 19-21 explains the behavior of skin friction in radial 𝑅𝑒𝑟

1

𝑛+1𝐶𝐹𝑟  as well as in azimuthal 𝑅𝑒𝑟

1

𝑛+1𝐶𝐺𝜃∗   directions 

and local Nusselt number 𝑅𝑒𝑟

−
1

𝑛+1𝑁𝑢𝑟  against the magnetic parameter 𝑀 by boosting the parameter of volume fraction 

𝜙 for Newtonian and non-Newtonian fluids. The skin friction in figure 19 is increasing along 𝑀 with the escalation 

in 𝜙. The larger effects can be regarded for shear-thinning fluid than Newtonian and shear-thickening fluids. From 

figures 20 and 21 a decreasing trend can be perceived for skin friction in the azimuthal direction and local Nusselt 

number by the rise in 𝜙 in the case of Newtonian and non-Newtonian fluids. 

4.10 Local Nusselt number against the radiation parameter 

The local Nusselt number 𝑅𝑒𝑟

−
1

𝑛+1𝑁𝑢𝑟 against the radiation parameter 𝑅𝑑 in the case of linear 𝜃𝑤 = 1 and nonlinear 

𝜃𝑤 > 1 radiations for Newtonian and non-Newtonian fluids by fixing the parameters as 𝜔 = 0.5, 𝑀 = 3, 𝜙 = 0.05,

𝜆 = 1.5, 𝑃𝑟 = 7 is plotted in figure 22. It can be demonstrated that the influence of radiation causes an increase in the 

behavior of 𝑅𝑒𝑟

−
1

𝑛+1𝑁𝑢𝑟  and this increase for nonlinear radiation is greater in comparison with that of linear radiation. 

The shear-thinning for linear and nonlinear radiation is larger from shear-thickening. 
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7. Conclusions 

The steady three-dimensional flow of power-law fluid near the stagnation point and heat transfer within the boundary 

layer is investigated. A similarity solution of the water/magnetite nanofluid modeled partial differential equations 

subject to thermal radiation and Lorentz force over stretchable rotating disks is obtained. The influence of several 

emerging quantities upon the non-dimensional distributions of velocity and temperature for Newtonian and non-

Newtonian shear-thinning and shear-thickening fluids are debated briefly in tabular and graphical forms. The 

physically interesting quantities are also determined and the effects are analyzed. From overall perspectives and 

explorations the following consequences can be drawn: 

 Upon increasing the concentration of nano-particles the velocity components are in a similar trend. 

 The rise in 𝑀 causes the existence of Lorentz force which decreases the velocity components. 

 The velocity components increase as the disk rotation rate increases. 

 A cross-sectional flow is noticed for velocity and temperature profiles when the power-law index increases. 

  Nonlinear radiation escalates the temperature than from linear radiation 

 Temperature is augmenting for radiation parameters but decays for Prandtl number. 

 The skin frictions coefficients are in opposite behavior along 𝜙 for diverse 𝑀. 

 The local Nusselt number plummets against 𝑀 for various 𝜙 but augments along 𝑅𝑑 for different 𝜃𝑤. 
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