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It is possible to enhance topical drug delivery by
pretreatment of the skin with ablative fractional lasers
(AFLs). However, the parameters to use for a given AFL to
achieve the desired depth of ablation or the desired
therapeutic or cosmetic outcome are hard to predict. This
leaves open the real possibility of overapplication or un-
derapplication of laser energy to the skin. In this study,
we developed a numerical model consisting of a Monte
Carlo radiative transfer (MCRT) code coupled to a heat
transfer and tissue damage algorithm. The simulation is
designed to predict the depth effects of AFL on the
skin, verified with in vitro experiments in porcine
skin via optical coherence tomography (OCT) imaging.
Ex vivo porcine skin is irradiated with increasing energies
(50–400mJ/pixel) from a CO2 AFL. The depth of micro-
scopic treatment zones is measured and compared with
our numerical model. The data from the OCT images and
MCRT model complement each other well. Nonablative
thermal effects on surrounding tissue are also discussed.
This model, therefore, provides an initial step toward a
predictive determination of the effects of AFL on the skin.
Lasers Surg. Med. © 2020 The Authors. Lasers in Surgery
and Medicine published by Wiley Periodicals LLC
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INTRODUCTION

Ablative fractional lasers (AFLs), commonly Er:YAG
(Erbium Yttrium Aluminum Garnet—2940 nm) or CO2

(carbon dioxide−10600 nm), are widely used in both clin-
ical and cosmetic applications. These lasers can vaporize
tissue and create an array of microscopic treatment zones
(MTZ) in the skin [1–3]. The formation of these MTZs
presents a number of opportunities that may be taken
advantage of to improve treatment outcomes.
Topical drug delivery, a cornerstone in dermatological

medicine, is dependent on cutaneous drug penetration,
which influences uptake and accumulation of the drug at
the target site. However, drug penetration is typically
reduced by the presence of the stratum corneum, the
protective barrier of the skin [4]. Several studies have

shown that pre‐treatment of skin with AFL prior to topical
drug application can increase cutaneous drug uptake [5–7].
This is particularly useful not only for increasing uptake
and depth of penetration but also for allowing penetration of
larger and more hydrophilic molecules that typically cannot
pass through the stratum corneum.

Pre‐treatment with AFLs has been used in applications
of photodynamic therapy (PDT), where greater uptake of
the light‐activated drug and enhanced treatment efficacy
have been shown [8–10].

Additionally, treatment with AFLs is widely used in
aesthetic dermatology practices as this can result in im-
proved cosmetic outcomes. Thermal stimulation of the
dermis has been shown to enhance the production of col-
lagen and restructure connective tissue [1]. Traditionally,
laser skin resurfacing was carried out using continuous
wave ablation of the top layer of the skin. However, CO2

lasers, while effective, caused more severe side effects and
prolonged downtime for the patient, and while the Er:
YAG laser caused fewer side effects, this was less effective
than the CO2 laser [1,11,12]. AFLs have been developed to
provide sufficient thermal damage to the dermis while
sparing the majority of the epidermis, which provides an
acceptable balance of efficacy and side effects [2]. The key
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to safe and effective use of AFLs is the understanding of
the depth and severity of the effect on the tissue in rela-
tion to laser energy and heating.
Optical coherence tomography (OCT) is a noninvasive

optical imaging method relying on the interference of two
lasers and, when applied in dermatology, allows struc-
tural information of the skin to be reconstructed [13].
While histological analysis requires a biopsy sample, OCT
may be carried out in vivo, and these high‐resolution
images have been shown to correlate well with histo-
logical data while investigating MTZs in the skin as a
result of AFL [7,14,15]. Although OCT presents a non-
invasive characterization modality for AFL, it is still
inherently a postanalytical process.
Light‐tissue interactions may be modeled by the use of

Monte Carlo radiative transfer (MCRT) techniques
[16–18]. In this paper, we present our initial numerical
model to provide predictive capabilities for AFL skin in-
teractions and we verify our code with OCT imaging of
CO2‐induced MTZs in ex vivo porcine skin.

METHODS

Porcine Skin Irradiation

Samples are cut from fresh porcine belly skin sourced
from a local butcher. The samples are cut to approximately
20× 20mm area and 5mm thick. The porcine skin is then
irradiated with increasing energies (50–400mJ/pixel, 25mJ/
pixel intervals) from a fractionated 70WCO2 (10.6 μm) laser
(Pixel CO2; Alma Lasers, Nürnberg, Germany). The Pixel
CO2 laser is a pulsed laser, which has a triangular temporal
pulse shape and a beam width of 250 μm. The AFL outputs
a 9× 9 grid of microbeams (pixels), and as power is kept
constant an increase in energy is obtained by lengthening
the exposure duration (10–1000milliseconds), thus a 50mJ
irradiation yields a pulselength ≈ 60 millisecond. The laser
was operated in “SuperPulse” mode, which yields one laser
pulse per operation. Laser irradiation is repeated on sepa-
rate fresh samples. A smoke evacuator (ACU‐EVAC‐II;
Schuco, Leavesden, UK) is used to remove laser‐generated
plumes from the air.

OCT

Phase‐sensitive OCT (PhS‐OCT) was applied to obtain
high‐resolution structural information from the irradiated
samples [19,20]. A more detailed description of the bespoke
system is described elsewhere [21,22]. Briefly, the system
produces structural images with an axial resolution of ap-
proximately 9 μm and a lateral resolution of approximately
15 μm across a 3.5mm× 3.5mm scan range.

MCRT

MCRT is the “gold‐standard” for simulating the trans-
port of light through biological tissue [23,24]. This is due to
its flexibility in modeling three‐dimensional (3D) geo-
metries, various light sources, and micro‐physics, such
as absorption, scattering, fluorescence, and polarization
[25–29]. It uses interaction probabilities and random
numbers to model the “random walk” that photons undergo

in a turbid medium. We simulate the propagation of power
packets, which represent photons with a given power, de-
rived from the incident radiant source. MCRT has been
used to model light‐tissue interactions in many different
medical and biophotonics applications [30–32]. MCRT is
used here to calculate the energy deposited by the laser,
which is then passed to the heat transport simulation. The
original MCRT code was developed for astronomy applica-
tions [27,33] and has since been adapted and validated for
use in the medical field in previous works [30,34].

The tissue medium for the MCRT and heat transport
simulations is a 3D voxel model. This allows the variation of
optical and thermal properties from voxel to voxel, making
it the ideal type of grid for modeling tissue ablation. A voxel
model also allows us to update the medium as the simu-
lation progression, allowing the modeling of a moving
ablation front. We use 160× 160× 160 voxels, representing
a tissue sample size of 0.06 cm× 0.06 cm× 0.12 cm. We as-
sume that the porcine skin is uniform, so initially, our voxel
model is uniform, and the optical properties of porcine skin
at the wavelength of interest (10.6 μm) is mainly that of
water mixed with protein [35]. Thus, we adopt an absorp-
tion coefficient of 850 cm−1. As the absorption coefficient is
large and absorption dominates at this wavelength, we
assume that no scattering takes place, thus the scattering
coefficient is 0 cm−1. As we assume the scattering coefficient
is zero, we could use an analytical method such as Beer's
law to model the propagation of photons through the tissue.
However, we use MCRT to allow simulations of different
laser wavelengths where scattering may dominate.

To calculate the energy absorbed in the porcine tissue
via the laser, we use the pathlength counter method de-
vised by Lucy [36]. The energy absorbed in voxel i, Ei

abs, is
therefore calculated as:

μ= ∑E
P

NV
si

abs

i
a i, (1)

where P is the power [W]; N is the number of photon
packets [−]; Vi is the volume of the ith voxel [m−3]; μa,i is
the absorption coefficient of the ith voxel [cm−1]; and s is
the pathlength of a packet through the ith voxel [cm].

This grid of absorbed energy per timestep is then passed to
the heat transport portion of the simulation so that the heat
diffusion in the porcine tissue can be calculated.

Heat Simulation

We solve the nonlinear heat equation using the finite
difference method in Cartesian coordinates with a heat
source q̇ [37].

ρ κ= ( ) + ˙
∂

∂
∇⋅ ∇c

T
t

T qp (2)

where ( )T x y z t, , , is the temperature as a function of space
and time, κ is the thermal conductivity, ρ is the density, cp is
the heat capacity, and q̇ is the source/sink term as a function
of time and space. As the heat equation does not have an
analytic solution in arbitrary 3D geometries, we employ a
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finite difference method (FDM) to solve it numerically. The
specific FDM we use is the simple explicit method, due to its
ease of implementation and parallelization. Applying this
scheme to Equation (2) yields

= − +− +U AT BT DT2xx i j k i j k i j k1, , , , 1, , (3)

= − +− +U AT BT DT2yy i j k i j k i j k, 1, , , , 1, (4)

= − +− +U AT BT DT2zz i j k i j k i j k, , 1 , , , , 1 (5)

ρ
= Δ ( + + ) + +

Δ
˙+T t U U U T

t
c

qi j k
N

xx yy zz i j k
N

p
l, ,

1
, , (6)

where, in the x direction (the other directions have the
same form, but are omitted for brevity):

κ

ρ
=

Δ

−

− −
A

c x2p
2

(7)

κ

ρ
=

Δ

+

+ +
B

c x2p
2

(8)

=
+

D
A B

2
(9)

κ
κ κ

=
+± ±

2
i i 1 (10)

ρ
ρ ρ

=
+

± ±

2
i i 1 (11)

=
+± ±c

c c

2p
p i p i, , 1 (12)

The κ ρ± ±, , and ±cp terms occur, due to the nonlinearity of
the heat equation, as the medium is inhomogeneous.
Thus, we solve the nonlinear heat equation by averaging
these thermal properties across the discontinuities in the
medium. Cooling of the tissue is not currently considered.
As we employ the simple explicit finite difference method,
the time step is constrained. This can lead to large com-
putational times, as the time step has to be kept small to
avoid loss of numerical precision. These large computa-
tional times are offset by parallelizing the code using the
‘halo swap’ technique [38].

Tissue Damage Simulation

The final portion of the simulation is the tissue damage
model. We split the tissue damage model into two sepa-
rate categories: physical and coagulation. The coagulation
portion accounts for all the thermal damage accrued
under 100°C, where the physical damage model accounts
for all damage above 100°C. To model coagulation
damage, we use the Arrhenius damage model, widely used
in the literature to model thermal damage [39–41].

τΩ( ) =
Δ∫t Ae d

t

tf

i

E
RT (13)

where Ω is the damage value [−]; A is the frequency factor
[s−1]; ΔE the activation energy [L mol−1]; R is the uni-
versal gas constant [Jmol−1 K−1]; T is the temperature in
kelvins, and ti and tf are the initial and final times that
the temperature is above the threshold damage temper-
ature.

The Arrhenius equation gives a number, which can be
related to the severity of the burn [42]. We adopt values of
3.1 × 1098 for A, and 6.3 × 105 for ΔE [43,40,44].

There are several proposed ablation models that ex-
plain the underlying mechanism [45–48]. To model the
ablation process, we adopt an ablation model based upon
water boiling within the tissue. Though this model is
simplistic, we find it gives good results when compared
with our experimental evidence. The physical portion of
the damage model changes the medium as the temper-
atures increases. This damage is split into two areas:
water boiling and ablation. When the temperature in a
voxel reaches 100°C, we track the energy deposited in
each voxel. As this energy is accrued, we start to boil off
the water in the voxel as a function of energy in the voxel.
As the water boils off, this changes the thermal and
optical properties of the voxel [49].

= − ⎜ ⎟
⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟W W W

Q
Q

init init
current

vapor
(14)

ρ =
+W P

1000
0.649 ro

(15)

= ( + )c W P1000 4.2 1.09p ro (16)

κ ρ= ( × + × )− −W P6.28 10 1.17 10 ro
4 4 (17)

μ μ μ= +Wa water protein (18)

where Pro is the amount of protein, and W is the amount of
water in a voxel, Qcurrent is the energy accrued in a voxel,
Qvapor is the energy required to boil off the water in a
voxel, mass M. We set Pro as 0.25 and W as 0.75. The
updated optical properties are used in the next time step
in the MCRT portion of the simulation, to ensure that
light entering the simulation is correctly modeled.

The final stage in the physical damage model is the
ablation stage. This occurs between 300°C and 500°C
[50,51,43,47]. At the ablation temperature Ta, we remove
the remaining mass in the voxel and change the optical
and thermal properties to that of the air.

Validation

We validated our numerical heat simulation against
an analytical case. We assumed that the medium
is uniform, with thermal properties all set to unity;
this gives the medium thermal properties of a metal
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comparable with copper. The medium is initially at 37°C
in an ambient medium of 0°C. We then allowed the
simulation to evolve and compared our numerical model
against the analytical case. This comparison is shown in
Figure 1.

RESULTS

Two‐dimensional and 3D OCT scans of the MTZs as a
result of CO2 laser irradiation are shown in Figure 2. The
holes are spaced out in a 9 × 9 grid. However, to ensure
high resolution of the reconstructed images, the scan was

Fig. 1. Comparison between the analytical solution and numerical method over a range of times.

Fig. 2. (A) Porcine skin sample after laser treatment. (B) Cross‐sectional structure image. Red
circle region is the hole left after irradiation. The vertical and horizontal scale bars are 200 and
500 μm, respectively. (C) 3D reconstructed the structural image of porcine skin after AFL
treatment. 3D, three‐dimensional; AFL, ablative fractional laser.
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conducted over a limited field of view under rotation of the
galvo‐mirror. As a result, nine MTZs (three per sample)
were analyzed for each laser energy. OCT was able to
resolve structural information to a depth of approximately
500 μm, sufficient to characterize the MTZs.
Figure 3 shows the increasing trend of MTZ depth with

increasing laser energy (50–400mJ/pixel). MTZ depth and
surrounding crater lip were seen to increase visually with
increasing energy. Visually, the MTZs take a less well‐
defined shape at very high energies (400mJ/pixel). From
the OCT images, four parameters are determined in order
to characterize MTZs: depth of MTZ channel, width
of MTZ channel, vertical expansion of crater lip, and

horizontal expansion of crater lip (Fig. 2). In comparing
the results obtained from OCT imaging and from our
MCRT methods, the depth of MTZ channels is used as the
comparative metric as crater lips are currently not mod-
eled in the MCRT simulation.

As the porcine tissue was kept on ice prior to the ex-
periment, we assumed that the temperature throughout
the tissue was 5°C. Due to computational constraints,
some approximations to the experimental setup have to be
made. The porcine skin was a large thin slice of the top-
most layers of the skin. However, the area of interest is
around the MTZs. Therefore, in our numerical model, we
only model the volume around one MTZ. To ensure this is

Fig. 3. Simulation of 70W CO2 ablative laser, with a tophat beam profile. Crater depths as a
function of pixel beam energy for various Ta's.

A

B

Fig. 4. Full simulation of all 81 ablation craters. (A) shows side view. (B) top‐down view.
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a valid approach to take, i.e thermal damage does not
overlap with other MTZs, one full simulation of the
81‐pixel beams was carried out. Figure 4 shows the results
of this simulation, and clearly shows that the MTZs do not
interfere with one another such that only simulating one
MTZ is a valid approach. We, therefore, modeled a volume of
0.06 cm× 0.06 cm× 0.18 cm, using 1603 voxels.
The depth of MTZ for each laser energy is shown in

Figure 3 alongside depth values obtained from the numer-
ical model. As the literature does not have a consensus on
the exact temperature that the skin ablates at, we modeled
over the range of temperatures found in the literature. As
shown in Figure 3, the ablation temperature that best fits
the model is approximately 500°C. We also simulated
the thermal damage around the MTZs, with an example
of the thermal damage around an MTZ, as shown in
Figure 5. The thermal damage shown in Figure 5 falls
within the previously found thermal damage [52].
As the numerical model is very flexible, we can also

change parameters that may require different equipment
or new experiments to be carried out. To illustrate this, we
varied several laser and tissue parameters from the ex-
periment. The first parameter we varied was the beam
profile of the laser. As the laser has an unknown beam
profile, we trialed a tophat and Gaussian beam profile. We
found that the tophat beam profile best fits the ex-
perimental data. The results of this trial are shown in
Figures 3 and 6. The laser beam profile is not likely to be a
tophat beam, but some hybrid of Gaussian/tophat beam.
The second parameter we varied was the temporal pulse
profile of the laser. The Pixel CO2 laser has a triangular
pulse profile, so we trialed Gaussian and a tophat profile.
The results are shown in Figure 7. The final parameter we
varied was the initial temperature of the porcine tissue.
Originally, we assumed that the tissue was at ≈ ∘5 C, so we
evaluated the model for a range of temperatures from 0°C
to 25°C with the results illustrated in Figure 8.

DISCUSSION

While clinical studies exist demonstrating and charac-
terizing the effects of AFLs on the skin for enhanced drug
delivery and improved therapeutic and cosmetic outcomes, a
method of predicting laser response has until now has not
been created. Our numerical model shows a good match to
the experimental OCT data, based on MTZ depth when an
ablation temperature of 500°C is adopted. This is within the
parameters set out in the literature for human skin. How-
ever, as ex vivo porcine skin was used in this work, in vivo
parameters for human skin may vary.

Previous work has shown that OCT is a suitable technique
for imagingMTZs and has been validated against histological
measurements [14]. The benefits of a noninvasive imaging
modality are apparent, particularly in imaging MTZ for-
mation in vivo. Dark shadows are observed below the MTZs
in the OCT images in Figure 2. These are thought to be a
result of the change in optical properties of the coagulated
tissue [53] at the surfaces of the MTZ, perhaps reflecting or
scattering more light away and resulting in a “blind spot” on
the OCT image. However, it is shown in Figure 5 that non-
ablative levels of laser energy are deposited in these deeper
tissues, resulting in heating, so while there are likely still
biological effects taking place, OCT is perhaps unable to re-
solve any information in this area.

MTZ depth has been shown to correlate with drug up-
take [54,55]. Assuming that the MTZ is filled with the
topical formulation of a chosen drug, it then affects a
shorter drug‐target distance [56]. Therefore, knowing
where the target is located in the skin, it would be pos-
sible to predict the required energy density from a given
AFL to create MTZs of sufficient depth, while avoiding
excess laser exposure and hence excess side effects
associated with AFLs. Increasing the MTZ density, by
decreasing the spacing between MTZs, also increases
drug uptake. While not the primary focus of this work,
simulating all 81 MTZs from the laser output was shown

Fig. 5. Figure shows thermal damage around the microscopic treatment zones. White is ablated
tissue, and purple is normal healthy tissue.
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in Figure 4, and therefore it would be perfectly feasible to
further investigate effects associated with MTZ density
using our approach.
It is possible to model the diffusion of drugs or other

topical formulations through the skin [57]. Previous au-
thors have also successfully combined drug diffusion
models with MCRT simulations [58]. Thus, as a future
avenue of work, we could combine a drug diffusion model
with our predictive ablation model to quantify the effect
that laser ablation has on drug diffusion.
From Figures 3 and 6 it is seen that using a Gaussian

beam profile will result in a shallower MTZ depth than
that of a tophat profile when the same energy densities
are simulated. This is due to the distribution of power in
the Gaussian beam compared with that of the circular
beam. Additionally, our MCRT results suggest that a

Gaussian temporal pulse profile may create shallower
MTZs than a triangular or tophat profile, as shown in
Figure 7. This can be explained by the fact that the
Gaussian pulse delivers energy over a longer time pe-
riod, thus letting more heat diffuse away from the MTZ,
yielding shallower MTZs in comparison with a trian-
gular or tophat temporal pulse. This is a useful in-
formation as it reinforces the need to look beyond
simply what power settings a laser is used at, and
demonstrates the power of our MCRT model in directly
comparing specific variables.

Aside from simply determining the depth of the MTZs,
this MCRT model offers the ability to investigate sur-
rounding nonablative heat transfer in the tissue. This is
evident in Figure 5. It is known that thermal stimulation
of the dermis induces collagen production and hence the

Fig. 6. Simulation of 70W CO2 ablative laser with a Gaussian beam profile. Crater depths as a
function of pixel beam energy for various Ta's.

Fig. 7. Comparison of different temporal pulse profiles effects on ablation depth.
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appeal in the context of aesthetic dermatology [59,60].
Alongside understanding what temperatures the dermis
may be subject to during irradiation with AFLs, specific
temperature‐dependent biological mechanisms may then
be further probed.

CONCLUSIONS

We have demonstrated an MCRT model that is able to
predict the depth of MTZ formation as a result of AFLs on ex
vivo porcine skin, verified via OCT. The authors believe this
is the first time the techniques used in this study have been
used to predict laser tissue ablation depth. This paves the
way for studies comparing the predictions made by the
MCRT model and OCT imaging of in vivo human skin fol-
lowing AFL treatment. Beyond the depth of the MTZs with
changing laser parameters, the model may also give in-
formation on the nondestructive heat distribution as a result
of laser exposure. This predictive information is invaluable in
terms of providing important information on temperature‐
dependent mechanisms in the surrounding tissues. Also, in
the provision of information to help inform optimization of
AFL treatment parameters to attain the desired clinical or
aesthetic outcomes, while minimizing adverse effects.
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