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Abstract (200 words max)20

The first comprehensive use of wavelet methods to identify non-stationary time-frequency relations between21

North Atlantic ocean-atmosphere teleconnection patterns and groundwater levels is described. Long term22

hydrogeological time series from three boreholes within different aquifers across the UK are analysed to identify23

statistically-significant wavelet coherence between the North Atlantic Oscillation, East Atlantic pattern, and the24

Scandinavia pattern and monthly groundwater level time series. Wavelet coherence measures the cross-25

correlation of two time series as a function of frequency, and can be interpreted as a correlation coefficient26

value. Results indicate that there are common statistically significant periods of multiannual to decadal wavelet27

coherence between the three teleconnection indices and groundwater levels in each of the boreholes, but also28

shows that there are periods when groundwater levels at individual boreholes show distinctly different patterns29

of significant wavelet coherence with respect to the teleconnection indices. The analyses presented demonstrate30



the value of wavelet methods in identifying the synchronization of groundwater level dynamics by non-31

stationary climate variability on time scales that range from interannual to decadal or longer.32
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1. Introduction38

Effective water resource management requires an understanding of the effects of natural climate39

variability on recharge and groundwater levels, particularly in the context of increasing climate uncertainty. The40

soil, unsaturated, and saturated zones of aquifers can filter or remove much of the high-frequency signals and41

noise (Dickinson et al. 2004), producing a buffering effect which provides resilience to water resources and42

associated ecosystems under short-term climate extremes. However, recent studies (Hanson et al. 2004; 2006;43

Gurdak et al. 2007; Holman et al. 2009) have indicated that groundwater-level fluctuations are affected by44

relatively low frequency (interannual to multidecadal) atmospheric and ocean circulation systems, such as the45

North Atlantic Oscillation (NAO), which are known to affect weather and river flows (Jones and Banner 2003;46

Qian and Saunders 2003; Barker et al. 2004; Schroder and Rosbjerg 2004; Hannaford and Marsh 2008,). Milly47

et al. (2008) assert that stationarity should no longer serve as the central assumption in water-resource risk48

assessment and planning largely because of climate change and natural, low-frequency climate variability, such49

as from the NAO, Pacific Decadal Oscillation (PDO) (Mantua and Hare, 2002), or Atlantic Multidecadal50

Oscillation (AMO) (Enfield et al. 2001).51

However, little is known about the coupling between global climate oscillations and hydrogeological52

systems (Gurdak et al. 2009), which is important given the lack of skill of existing climate models to adequately53

represent large scale climate features. For example, 15 of the 18 global coupled general circulation models that54

participated in phase 2 of the Coupled Model Intercomparison Project (CMIP2) were able to simulate the NAO55

pressure dipole but were deficient in capturing observed decadal variability (Stephenson et al. 2006).56

Stephenson et al. (2006) concludes that the models’ inability to capture the observed decadal variability in NAO57

might signify a deficiency in their ability to simulate the NAO-related responses to climate change, which would58

have implications for the confidence in climate impact studies, and further strengthen the need for adaptive59

groundwater-management strategies that incorporate knowledge of interannual to multidecadal climate60



variability.. Previous studies have inferred relations between low frequency climate signals and groundwater61

levels using spectral analysis (Gurdak et al. 2007; Luque-Espinar et al. 2008; Holman et al. 2009). Although62

methods such as singular spectrum analysis can detect nonlinear oscillations in noisy time series (Ghil et al.63

2002), most spectral analysis methods assume that the underlying processes are stationary in time with64

continuous, homogeneous (i.e. constant), and periodic waves up to infinity (Boggess and Narcowich 2001).65

Many geophysical time series, such as those generated by climate and hydrologic variables, are stochastic and66

non-stationary in their behaviour, presenting many time and frequency scales of variation (Grinsted et al. 2004;67

Maraun and Kurths 2004), requiring methods that can identify localized intermittent periodicities (Boggess and68

Narcowich 2001). Thus, appropriate analytical methods are needed for hydrogeological time series analysis to69

account for non-stationarity in hydroclimatic processes.70

In this Technical Note, we describe the first comprehensive use of wavelet methods (Grinsted at al.71

2004) to analyse hydrogeological time series in order to identify statistically-significant wavelet coherence72

between North Atlantic teleconnection indices and monthly groundwater level time series in three boreholes73

within different aquifers across the UK.74

75

2. Material and methods76

2.1 Study sites77

Three boreholes, located at Ampney Crucis, New Red Lion, and Dalton Holme (Figure 1) were selected along a78

northeast-southwest transect across England, spanning two major aquifer complexes and the width of the79

country. The sites are part of the UK national borehole observation network (Marsh and Hannaford 2008) and80

are all known to be unaffected by abstraction and to fully penetrate the active aquifers at each site. The Ampney81

Crucis and New Red Lion boreholes are located in the Jurassic Limestone aquifer. Water levels at Ampney82

Crucis are confined, while those at New Red Lion at confined at high water levels and unconfined at low water83

leves. The Jurassic Limestone aquifer consists of thin limestones (the main aquifer units), interlayered with84

sandstones, ironstones, sandy-shales and shales (Allen et al. 1993). The third borehole, at Dalton Holme, is85

located in the unconfined Chalk aquifer beneath about 6 m of glacial till. The Chalk is the major aquifer in the86

UK and is a thick fractured dual porosity limestone (Price, 1993; Allen et al. 1997). Flow in both the Jurassic87

Limestone and Chalk aquifers is dominated by fracture flow, and they are both characterised by high88

transmissivities (T) are low storage coefficients (S).89

90



Monthly groundwater levels at each site are shown in Figure 2, and Table 1 summarises features of the91

groundwater hydrographs. Depth to groundwater at all three sites varies between about 10 and 20 m (Table 1).92

The hydrographs all show strong annual fluctuations between about 5 and 20 m (consistent with high93

transmissivity and low storage coefficient fractured limestone aquifers), and show more prolonged periods of94

low or high groundwater level stands in response to changes in multi seasonal trends in rainfall and recharge.95

Like many groundwater hydrographs, even when seasonality is removed from the signal, autocorrelations in96

groundwater levels of between 6 and 12 months (Table 1) are observed- the Pearson correlation co-efficient has97

been used to calculate autocorrelation at successive lags, and autocorrelations are taken to be significant at98

confidence levels of 95% or better. Average annual rainfall is similar at all three sites, being 587, 760 and 67899

mm for Ampney Crucis, New Red Lion, and Dalton Holme respectively.100

101

[Figure 1 about here]102

103

Table 1. Summary of features of the three hydrographs used in the study.104

105

Borehole Data period Mean depth to

groundwater

(m)

Mean

groundwater

level (m

aOD*)

Groundwater

level range (m

aOD)

Groundwater

fluctuation

(m)

Autocorrelation

(months)

Ampney

Crucis

12/1958 –

02/2009

8.26 101.26 97.41 - 103.25 5.84 8

New Red

Lion

03/1964 -

02/2009

19.39 14.06 3.37 - 23.35 19.98 6

Dalton Holme 01/1900 –

02/2009

17.38 17.12 10.19- 23.76 13.57 10

* aOD – above Ordnance Datum ≡ mean sea level106

107

2.2 Climate Index data108

Data for three large North Atlantic teleconnection patterns (Figure 2) have been used:109

 North Atlantic Oscillation (NAO) - the leading pattern of atmospheric variability in the North Atlantic110

region, influencing the intensity and location of the North Atlantic jet stream and storm tracks that111



bring much precipitation to Europe, is defined as the difference between the normalized sea level112

pressures over Gibraltar and SW Iceland. Strong positive phases, when a strong low pressure is113

centred near Iceland and a strong high pressure is located over the middle of the North Atlantic Ocean,114

tend to be associated with above-average precipitation over northern Europe in winter, whereas115

Northern Europe in winter is cold and dry when the pressure centres are weaker (negative phase).116

Monthly data from the Climatic Research Unit are available from 1823 to 2009 (CRU, 2010; Jones et117

al. 1997). The NAO exhibits considerable interseasonal and interannual variability, and the wintertime118

NAO also exhibits significant multi-decadal variability (Hurrell 1995). For example, the negative phase119

of the NAO dominated the circulation from the mid-1950's through the 1978/79 winter. An abrupt120

transition to recurring positive phases of the NAO occurred during the 1979/80 winter, with the121

atmosphere remaining locked into this mode through to the 1994/95 winter season, after which there122

was a return to the strong negative phase of the NAO;123

 East Atlantic (EA) pattern – the second most prominent mode of low-frequency variability over the124

North Atlantic, derived from Rotated Principal Component Analysis (RCPA) of monthly mean125

standardized 500 mbar geopotential height anomalies (CPC, 2010). The positive phase is associated126

with above-average temperatures and precipitation over northern Europe. Monthly data from 1950 to127

2010 are available from the National Oceanic and Atmospheric Administration’s Climate Prediction128

Centre (CPC) (CPC 2010). The EA pattern exhibits very strong multi-decadal variability in the time129

series record, with the negative phase prevailing during much of 1950-1976, and the positive phase130

occurring during much of 1977-to date. The positive phase of the EA pattern was particularly strong131

and persistent during 1997-2004;132

 Scandinavia pattern - derived from a similar methodology to the EA pattern, the positive phase of the133

Scandinavia pattern is associated with below-average temperatures across western Europe and with134

above- and below average precipitation across central Europe and Scandinavia, respectively. It has135

been linked to wet UK Autumns (Blackburn and Hoskins 2001). Monthly data from 1950 to 2010 are136

available from the CPC (CPC 2010). The time series for the Scandinavia pattern exhibits relatively137

large interseasonal, interannual and interdecadal variability. For example, a negative phase of the138

pattern dominated the circulation from early 1964 through mid-1968 and from mid-1986 through early139

1993. Negative phases of the pattern have also been prominent during winter 1988/89, spring 1990, and140



winter/spring 1991/92. In contrast, positive phases of the pattern were observed during much of 1972,141

1976 and 1984.142

143

[Figure 2 about here]144

145

2.3 An Introduction to wavelet analysis146

Wavelet methods are a multi-resolution analysis used to obtain time-frequency representations of a147

continuous signal. They have the advantage over other methods (e.g. Fourier analysis) of being designed to148

model signals that have localized time features. The objective of the analysis is to decompose a signal,149

expressed as a function of the time variable t, into various frequency components using building blocks150

(Boggess and Narcowich, 2001). In wavelet analysis these building blocks are defined by wavelets. A wavelet is151

small “wave” that travels for one or more periods and can be translated forward or backward in time, as well as152

stretched and compressed by scaling, to identify low- and high frequency- periods within the signal. Once a153

wavelet is constructed it can be used to filter or compress signals. In contrast, the building blocks in Fourier154

analysis, for example, are infinite periodic combinations of sine and cosine functions that vibrate at a frequency155

of n times per 2π interval. A description of wavelet methods can be found in Meyer (1993), Nason (2008),156

Walnut (2002) or Grinsted et al. (2004), and are briefly described below.157

A wavelet is defined by a function 0(), where  is a non-dimensional time parameter, that has zero158

mean and is localised in both time and frequency space (Farge 1992; Percival and Walden 2000). For these159

assumptions to be satisfied the function needs to have the following basic properties: the integral of 0() is 0,160

0)(0 



 , and the square of 0() integrates to unity, 1)(2

0 



 . If the second equation holds then the161

function is non-zero only over a finite interval (Boggess and Narcowich, 2001) (Figure 3). There are a set of162

pre-defined and commonly used wavelets designed to have these basic properties (Carmona et al., 1998). Some163

examples are the Cauchy, Morlet, Difference of Gaussian (DOG) and the Haar wavelets.164

Wavelets are used to decompose a given signal into a sum of translation and scaling of a selected165

wavelet function (Boggess and Narcowich 2001). The selected wavelet used for the decomposition is commonly166

known as the mother wavelet function. The mother wavelet is shifted forward and backward in time, along the167

localized time index , to filter or compress signals. This process is repeated for low and high frequency168

wavelets by varying the wavelet scale (i.e. stretching and compressing the wavelet). The wavelet is normalized169

to have unit energy at all times (Grinsted et al. 2004). The convolution with a scaled and normalized mother170



wavelet of a time series (xn, n=1,...N) with uniform time steps t is known as the continuous wavelet transform171

(CWT).172

173

[Figure 3 about here]174

175

In contrast to the continuous wavelet transform which assesses the periodicities and phases of cycles within a176

single dataset, the Cross Wavelet Transform (XWT) identifies the cross wavelet power of two time series, in this177

case a teleconnection index and a groundwater level record. For two given time series, xn (n=1,...N) and yn178

(n=1,...N), the Cross Wavelet Transform XY
nW is calculated as:179

)()()( * sWsWsW Y
n

X
n

XY
n  Eq. 1180

where )(sW X
n is the CWT of time series xn and )(* sW Y

n is the complex conjugate of )(sW Y
n , the CWT of181

time series yn.182

When written in the polar form, the Cross Wavelet Spectrum can be decomposed into the amplitude or183

cross-wavelet power )(sW XY
n and the phase n(s) (which indicates the delay between the two signals at time t184

and scale s) as follows:185

)()()( snXY
n

XY
n

nesWsW  Eq. 2186

187

The Cross Wavelet Spectrum, although very useful to detect the phase spectrum, can potentially lead to188

misleading results as it is just the product of two non-normalized wavelet spectrums (Maraun and Kurths 2004).189

This can lead to significant cross wavelet spectrum being identified even when there is no relationship between190

the two time series. The Wavelet Coherence (WTC) avoids this problem by normalizing to the single wavelet191

power spectrum and is calculated as follows:192

  5.0* )()(

)(

sWsW

sW
WTC

Y
n

X
n

XY
n Eq. 3193

where the notation corresponds to that in equation 1.194

195

The wavelet coherence ranges from 0 to 1 and measures the cross-correlation of two time series as a196

function of frequency (Torrence and Compo 1997) i.e. local correlation between the time series in time-197



frequency space. It can be interpreted as a correlation coefficient; the closer the value is to 1 the more correlated198

are the two series. Statistically significant wavelet coherences were identified using a point wise test. The test is199

implemented using Monte Carlo methods (Grinsted et al. 2004). A total of 1,000 realizations with the same first200

order autoregressive (AR1) process coefficients as the two input data sets are generated using Monte Carlo201

techniques. The wavelet coherence is then calculated for each of these realizations and the significance level is202

calculated for each scale.203

The power spectrum always has some degree of error at the beginning and end of the analysed signal204

because of the finite-length of the underlying data. Torrence and Compo (1997) propose the calculation of a205

cone of influence (COI) which determines the region of the wavelet spectrum where these edge effects need to206

be excluded.207

208

2.4 Methodology209

The analysis has been carried out in Matlab using the script developed by Grinsted et al. (2004) which210

can be found at http://www.pol.ac.uk/home/research/waveletcoherence/. The methodology has been divided into211

the three main steps described below:212

 Step 1. Detection of outliers: time series were scanned for outliers using descriptive statistics and box-plots.213

 Step 2. Wavelet analysis for a single time series: the continuous wavelet transform was estimated for each214

of the groundwater series, as well as the selected North Atlantic teleconnection indices. In this study we have215

used the Morlet wavelet (equation 4 and Figure 3) because it provides a good balance between time and216

frequency localization (Grinsted et al., 2004).217

2

0 2
1

4/1
0 )(


 ee i Eq. 4218

where 0 is the dimensionless frequency and  is the dimensionless time. In this study 0 = 6.219

The power spectrum was calculated for frequency bands from 2 months up to 32 years. Each band occupies220

a bandwidth that is twice as wide as the previous band and half as wide as the next one. The spectrum was221

then estimated for a total of twelve sub-frequencies within each band. Plots of continuous wavelets222

transforms were visually inspected to identify those years where areas of high (>0.5) wavelet spectrum were223

present.224



 Step 3. Wavelet analysis of two autocorrelated time series: the cross-wavelet spectrum and the wavelet225

coherence were estimated for the combinations of time series of groundwater levels and North Atlantic226

teleconnection indices. The spectrums were estimated for the same frequency bands and sub-bands as those227

used for the CWT. The COI of the CWT, the XWT and the WTC has been set to identify those wavelet228

power spectrums that have a drop of e-2 of the value at the edge (Torrence and Compo 1997). The relative229

lag between time series was inspected using the phase arrows. Arrows pointing right indicate that the two230

time series are in phase. Arrows pointing left show when the time series are in anti-phase and arrows231

pointing down or up show that one time series is leading the other by 90 degrees.232

233

3. Results234

Although the methodological steps described above (CWT on individual time series, XWT between pairs of235

time series and Wavelet Coherence on the XWT to identify statistically significant relationships between pairs)236

were necessarily followed, we focus our presentation of results and discussion on the Wavelet Coherence237

(WTC) which provides the robust outcomes of interest to the reader, although the CWT are shown in Figure 4238

for the 6 time series. As described above, there are three main elements within WTC plots (Figure 5):239

1. the times and periodicities of statistically significant wavelet coherences at the 5 % significance level,240

as indicated by the areas within the bold black lines;241

2. the phase relationship between the spectra which is portrayed by the direction of the arrows, and;242

3. the cone of influence (COI) showing the (paler shaded) region of the wavelet spectrum where edge243

effects due to the finite-length nature of the underlying data cannot be ignored.244

245

Figure 5 shows that the distribution of significant coherence is relatively consistent for a given pattern across all246

three borehole sites, which is consistent with the regional influence of these large scale patterns - for example,247

periodicities of around 2.6 and 5 years are observed with the Scandinavia Pattern and the NAO, respectively, at248

the three boreholes. However, at a given site the distribution of significant coherence in time and periodicity249

varies fundamentally between the three teleconnection indices, as might be expected from the differing dynamic250

behaviours of the indices (Figures 2 and 4) and the likely sensitivities of the boreholes to the propagation of the251

climate signal to the groundwater levels due to their different geographical locations (with respect to relative252

proximity to continental Europe and the Atlantic Ocean) and hydrogeological systems (confined to unconfined).253



Figure 5 therefore shows that there are common statistically significant episodes of multiannual to decadal254

wavelet coherence between the three teleconnection indices and groundwater levels in three different boreholes255

(and different aquifers), but also that there are periods where groundwater levels at individual boreholes show256

distinctly different patterns of significant wavelet coherence with respect to the teleconnection indices. For257

example, Figure 5 shows that:258

 There are statistically significant episodes of wavelet coherence at multiannual periodicities of around259

2.5, 3, 5, 10.5 and 19 years that are common across the three boreholes (with the exception of the 19260

year periodicity for which the New Red Lion record is too short);261

 The timing of the statistically significant episodes of wavelet coherence differs between the boreholes.262

For example, the Scandinavia Pattern coherence with an approximately 2.5 year periodicity lasts until263

around 1970 in New Red Lion and Ampney Crucis but extends to 1975 in Dalton Holme; whilst the264

coherence with an approximately ~3.5 year periodicity starts in 1995 in Red Lion and Dalton Holme,265

but not at Ampney Crucis. Similarly, the significant wavelet coherence at Ampney Crucis with NAO266

at about 5 years between 1975 and 1992 isn’t observed at either of the other two sites at this time, but267

appears to occur from about 1992 onwards;268

 Most of the statistically significant wavelet coherence are in-phase (arrows pointing to the right), with269

the exception of the Scandinavia Pattern periodicity at around 3.5 years and the North Atlantic270

Oscillation periodicity at around 19 years.271

 There is evidence of phase differences in the wavelet coherence between the teleconnection indices and272

the groundwater levels in the boreholes. For example, at the 1 year periodicity (i.e. annual recharge),273

the arrows indicating the phase difference are mostly horizontal at Ampney Crucis indicating an in-274

phase relationship between the groundwater level and the teleconnection indices, which is consistent275

with rapid recharge due to the shallower and fractured nature of the unsaturated zone. In contrast, the276

arrows have a greater vertical component at Dalton Holme, indicating a greater lag between the277

groundwater level and the teleconnection indices. This is consistent with the longer autocorrelation in278

Table 1, slower recharge through the unsaturated zone of the chalk and the borehole’s location away279

from the aquifer outcrop.280

281

As would be expected, there is little consistent wavelet coherence apparent at any of the boreholes for282

periodicities of less than 1 year, demonstrating that these large scale teleconnection indices are not the drivers of283



short-term (seasonal) variability in groundwater level dynamics, which are driven by local patterns of284

precipitation and evapotranspiration.285

[Figure 4 and 5 about here]286

287

288

4. Discussion and Conclusions289

The previous use of wavelet methods in understanding groundwater dynamics has been limited – for290

example, Slimani et al. (2009) used CWT on groundwater levels but did not test for significance, whilst291

Henderson et al. (2009) used CWT and XWT to identify sub-daily to daily tidal pumping of submarine292

groundwater. This is the first such study of groundwater dynamics to use both cross wavelet spectrum and293

wavelet coherence to assess the non-stationary relationships between climatic indices and groundwater level294

oscillations. Figure 5 demonstrates that the methods provide initial evidence for both common responses in295

groundwater levels across aquifer types and different regions of the UK to large-scale climate oscillations such296

as the NAO.297

The wavelet coherence in Figure 5 also shows that non-stationary responses in groundwater levels to298

climate variability are apparent, such that the wavelet coherence at a particular periodicity for any one299

teleconnection index is variable, with periods of statistically significant coherence being followed by periods of300

low coherence. This may relate to the observed variability in the indices - for example, the winter NAO was301

mostly high during the first three decades of the 20th century, followed by a period of variable but generally low302

index values until the 1970’s, after which the index increased to the high values measured in the early 1990s303

(Osborn, 2006). Alternatively, or in addition, the variability in coherence may relate to the individual climate304

oscillations of different periodicities within the indices combining to form constructive and destructive305

interference patterns, a process that was suggested by Hanson et al. (2004) and Holman et al. (2009). However,306

further wavelet methodological development is required to enable wavelet analysis techniques to quantify the307

way in which different periodicities within the climate oscillations combine in order to improve our308

understanding of long-term controls on aquifer system function.309

The relation between low frequency climatic signals and groundwater levels will be complex, given the310

lags introduced to the lower frequency signals as they pass through the soil zone and through the unsaturated311

and saturated zones of aquifers (Gurdak et al. 2007). The filtering and lagging of climate signals, indicated by312

the differential directions of the vectors for a given periodicity between the boreholes within the wavelet313



coherence plots, might be expected to be a function of hydrogeological factors such as the hydraulic314

characteristics of the soil zone and aquifer system and the thickness of the unsaturated zone. Thus, large-scale315

climate oscillations, such as the NAO, are likely to affect recharge rates and mechanisms in aquifers across the316

UK, which is a response that has previously been identified in the High Plains aquifer of the United States317

(Gurdak et al. 2007). Additional factors related to the aquifer (Slimani et al. 2009) or observation point318

(borehole) may also be important such as its proximity to rivers, for example if river stage locally influences319

groundwater levels where there is good groundwater-surface water connection (Luque-Espinar et al. 2008).320

Although the water levels at the three boreholes used in this study are not affected by abstraction, the321

spatiotemporal patterns of groundwater abstraction in other more heavily exploited aquifers may present a322

substantial complexity in identifying and interpreting the effects of climate variability and change on323

groundwater levels (Gurdak et al. 2007).324

The analyses presented have demonstrated the value of wavelet methods in identifying the325

synchronization of groundwater level dynamics by climate variability at multiannual, decadal, or longer time326

scales. That wavelet methods can show that groundwater level dynamics in spatially disparate and327

hydrogeologically separate aquifers are entrained by environmental correlation, with teleconnections between328

recurrent and persistent climatic patterns over large parts of the Earth’s surface, is of great societal importance329

in the context of climate change (Post and Forchammer 2002) and reinforces the need for hydrogeologists to330

make increasing use of such methods which do not assume stationarity.331

332
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Figure captions423



424

Figure 1: Location of the boreholes and aquifers425



426

Figure 2: Positive (red) and negative (blue) phases of the standardised seasonal teleconnection indices and427

monthly groundwater levels [NAO data from the Climatic Research Unit; other climate data from the Climate428

Prediction Centre]429



430

Figure 3: Real (dashed line) and imaginary (solid line) parts of the Morlet wavelet with =6.431
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432

Figure 4: Continuous wavelet transform spectra of groundwater levels (at New Red Lion, Ampney Crucis and433

Dalton Holme) and Scandinavia Pattern, East Atlantic Pattern and the North Atlantic Oscillation teleconnection434

indices (from top to bottom: [note that the timescale and hence range of periodicity for the CWT spectrum at435

Dalton Holme and NAO are much longer than the other eight plots as there are much longer historic data sets436

for NAO and groundwater levels at this site].437



438

Figure 5: Wavelet coherence between groundwater levels at New Red Lion, Crucis Ampney and Dalton Holme439

and North Atlantic teleconnection indices of the (upper row) East Atlantic Pattern, (middle row) Scandinavia440

Pattern and the (lower row) North Atlantic Oscillation [note that the thick black lines are the 5% significance441

level, and the pale area denotes the cone of influence. The vectors indicate the phase difference between the442

data- a horizontal arrow pointing from left to right signifies in phase and an arrow pointing vertically upward443

means the groundwater level series lags the teleconnection index by 90o (i.e., the phase angle is 270o)]444

445


