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Thesis Abstract 

Amphibians support a diverse range of cutaneous bacteria that may contribute to innate 

immune defence through mutualistic associations. These associations, which have come 

about through the coevolution of bacteria and amphibians, are potentially capable of 

supressing infection from deadly skin pathogens such as Batrachochytrium dendrobatidis. 

Conditions experienced within ex-situ conservation programs may affect the composition of 

the cutaneous bacterial community. In particular, nutritional conditions such as the 

provision of dietary carotenoids may influence cutaneous bacterial communities and have 

immune response implications for amphibians in captivity and post-release. Carotenoids 

exhibit efficient biological antioxidant activity and are known to influence vertebrate 

immune function through enhancing proliferation and functioning of immune response 

components. Vertebrates are unable to biosynthesize carotenoids de novo and must acquire 

these compounds via dietary means. This study aims to:  1) characterise the cutaneous 

bacterial community of a captive colony of the critically endangered Southern Corroboree 

Frog (Pseudophryne corroboree), and 2) test the effect of dietary carotenoid 

supplementation on these cutaneous bacterial populations. Dietary carotenoid availability 

was manipulated throughout juvenile (tadpole) and post-metamorphic (frog) life stages. 

Bacterial culturing methods were applied to frog skin swabs and bacteria were isolated and 

identified to determine the effect of dietary carotenoid supplementation on cutaneous 

bacterial communities. As expected, the provision of dietary carotenoids significantly 

increased bacterial abundance and species richness, and also affected overall community 

composition of bacteria. These findings provide support for the hypothesis that dietary 

carotenoid supplementation can enhance the cutaneous bacteria community of 

amphibians. It is expected that carotenoid supplementation enhances the cutaneous 

bacterial community by:  1) bacteria utilising carotenoids directly for physiological functions 

and/or; 2) the provision of a more suitable microhabitat for bacteria to reside through host 

utilisation of dietary carotenoids. Outcomes of this study contribute to a body of empirical 

evidence demonstrating the benefits of developing standardised ex-situ breeding conditions 

to maximise the mutualistic properties of cutaneous bacterial communities. This knowledge 

has the potential to improve the immune capabilities of amphibians both within captivity 

and upon release, and potentially aid in the suppression of amphibian pathogens. 
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1. Introduction 

1.1. Amphibian extinction crisis and the role of ex-situ conservation programs 

Rates of amphibian species decline and extinction are unprecedented and far exceed all 

other vertebrate classes. Globally, more than 30% of amphibian species are facing extinction 

and several synergistic factors have been identified as significant causative agents (IUCN, 

2015). These factors include disease, habitat loss and degradation, introduced species and 

climate change. In addition, a prominent threat to amphibian biodiversity is the rapid 

emergence of Batrachochytrium dendrobatidis (Bd), a pathogenic fungus which colonises 

the skin of amphibians and causes the lethal disease chytridiomycosis (Holden et al., 2015; 

Lam et al., 2010). Amphibians are particularly sensitive to environmental perturbations and 

pathogen infection, a vulnerability which predominantly results from the porous structure 

of amphibian skin (Bletz et al., 2013; Kueneman et al., 2014). However, this unique skin 

structure also enables the development of beneficial components of innate immunity, 

including mutualistic interactions with cutaneous bacteria (Kueneman et al., 2014; Lauer et 

al., 2007). 

Amphibians are critical to ecosystem functioning and biodiversity, perform vital roles 

as indicator species and provide information that is of medical significance to humans 

(Rollins-Smith & Woodhams, 2011). These factors, along with a general ethical obligation to 

preserve biodiversity, underscore the necessity to help maintain amphibian species into the 

future. As a result of rapid species declines, in-situ conservation efforts alone are often 

insufficient in maintaining viable amphibian populations. Ameliorating threats in-situ is a 

complex and time consuming process which may extend beyond the timeframe of an 

amphibian species decline to extinction (Gascon, 2007). As a result, the establishment and 

implementation of ex-situ conservation programs is often necessary to ensure the 

persistence of amphibian species, as highlighted by the Amphibian Conservation Action Plan 

(ACAP)(Gascon, 2007). Ex-situ programs allow for the enhancement of population numbers 

via the exclusion of key threatening processes which have caused the species decline. 

However, these programs can fail to re-establish healthy wild populations if the key 

threatening processes are not eliminated or managed (Gascon, 2007).  

1 
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Ex-situ conservation programs often attempt to mimic conditions experienced in the 

wild so as to avoid the development of maladaptive traits, and prepare individuals for 

release back into the wild. However, these ‘wild’ conditions are not always well understood 

(Becker et al., 2014). Husbandry conditions experienced in captivity (e.g. diet) are likely to 

impact the immune response of frogs within the captive population (Antwis et al., 2014; 

Becker et al., 2014; Meyer et al., 2012; Michaels et al., 2014). However, the influence of 

various captive conditions on amphibian immune function is not well understood and thus 

warrants further investigation. Amphibian conservation research must target the 

development of standardised captive husbandry conditions which maximise the immune 

function and health of amphibians both in captivity and upon release. These efforts will help 

in the suppression of deadly pathogen infections, perhaps even B. dendrobatidis, and assist 

in re-establishing healthy wild populations (Becker et al., 2014). Amphibian skin is a major 

area of interest as it is the first line of defence against most pathogen infections (Cramp et 

al., 2014; Kueneman et al., 2014; Rollins-Smith et al., 2011). In particular, a better 

understanding of the immunity attributes of amphibian skin has been the focus of a growing 

number of studies as it plays a critical role in host susceptibility to B. dendrobatidis skin 

colonisation and subsequent infection (Becker & Harris, 2010; Bletz et al., 2013; Brucker, 

Harris, et al., 2008; Harris et al., 2009; Holden et al., 2015; Kueneman et al., 2014; Lam et al., 

2010; Lauer et al., 2007; Muletz et al., 2012; Shaw et al., 2014; Woodhams et al., 2007). 

 

1.2. The role of cutaneous bacteria in amphibian immune function 

Amphibian skin is a structurally complex, porous organ involved in a variety of vital 

physiological functions including cutaneous respiration, osmoregulation, chemical 

communication and immune defence (Kueneman et al., 2014). Mucous is a naturally 

occurring secretion associated with amphibian skin and is critical to its functioning. This 

mucous is rich in glycoproteins and mucopolysaccharides, providing a nourishing 

microhabitat in which microorganisms can reside (Bletz et al., 2013; Brizzi et al., 2002; Lauer 

et al., 2007). Microorganism-host interactions on amphibian skin include mutualistic, 

commensal and pathogenic relationships and thus play a critical role in amphibian health 

(Bletz et al., 2013; Cramp et al., 2014). Amphibian skin plays host to vital components of 
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amphibian acquired immune defence including mucosal antibodies (Kueneman et al., 2014; 

Lauer  et al., 2007). However, as demonstrated by ineffective vaccination attempts, and the 

down-regulation of immune system genes, it is evident that adaptive immune response 

mechanisms are inadequate in protecting amphibians against pathogens such as B. 

dendrobatidis (Bletz et al., 2013; Rosenblum et al., 2009; Stice & Briggs, 2010). B. 

dendrobatidis antibodies have been found within cutaneous mucous in frog species showing 

continual decline due to B. dendrobatidis (Holden et al., 2015). Therefore, components of 

the innate immune system, including cutaneous antimicrobial peptides (AMP’s), alkaloids 

and lysozymes, provide alternate pathways for the amphibian immune response (Holden et 

al., 2015; Kueneman et al., 2014; Lauer et al., 2007).  

The production of AMP’s from dermal granular glands varies across species and 

limits growth of cutaneous microbial species on amphibian skin (Holden et al., 2015). 

Amphibians support a diverse range of cutaneous bacteria, thus suggesting bacteria have 

developed defence mechanisms against AMP’s and other components of amphibian 

immune defence via bacteria-host coevolution (Bletz et al., 2013; Holden et al., 2015; Lauer 

et al., 2007). However, amphibian pathogens such as B. dendrobatidis are also resistant to 

AMP’s and alone these defences also appear inadequate in protection against infection 

(Lauer et al., 2007). Despite the ineffective nature of the innate and adaptive pathways 

discussed, many amphibian species demonstrate persistence with B. dendrobatidis whereas 

others do not. One possible explanation for this trend relates to the mutualistic properties 

of certain cutaneous bacteria (Becker et al., 2010; Lam et al., 2010; Lauer et al., 2007; 

Muletz et al., 2012; Woodhams et al., 2007).  

Cutaneous bacteria species are known to be capable of influencing host 

susceptibility to pathogenic infections and thus form an additional component of amphibian 

innate defence through beneficial mutualistic associations (Lauer et al., 2007). As such, 

cutaneous bacterial communities have become a focal point of research targeting the 

suppression of B. dendrobatidis (Becker et al., 2010; Bletz et al., 2013; Brucker, Harris, et al., 

2008; Harris et al., 2009; Holden et al., 2015; Lam et al., 2010; Lauer et al., 2007; Muletz et 

al., 2012; Shaw et al., 2014; Woodhams et al., 2007). Mutualistic cutaneous bacterial 

associations are well known in many vertebrate species, including humans, and perform a 

variety of critical roles (Gallo & Nakatsuji, 2011; Kueneman et al., 2014). For example, the 
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bacteria species Staphylococcus epidermidis prevents colonisation and overgrowth of 

pathogenic and opportunistic microbes on human skin (Gallo et al., 2011). Mechanisms by 

which beneficial bacteria provide host defence against amphibian pathogens may include 

the competition for space and other resources, alteration of the microhabitat on the skin, 

and the production of anti-fungal metabolites which are capable of inhibiting pathogen 

growth (Becker et al., 2010; Belden & Harris, 2007; Brucker, Harris, et al., 2008).  

The production of anti-fungal metabolites forms the basis of an emerging body of 

culture-based research targeting the suppression of B. dendrobatidis through probiotic 

therapy (Becker et al., 2010; Bletz et al., 2013; Brucker et al., 2008; Harris et al., 2009; Lam 

et al., 2010; Lauer et al., 2007; Muletz et al., 2012; Shaw et al., 2014; Woodhams et al., 

2007) . These compounds are capable of inhibiting the growth of B. dendrobatidis and are 

secreted by certain bacteria species. Studies have isolated bacteria species from amphibian 

skin which are capable of anti-fungal metabolite production and have shown these species 

enhance amphibian survival against B. dendrobatidis (Becker et al., 2009; Becker et al., 

2010; Brucker, Harris, et al., 2008; Lam et al., 2010). For example, a recent study in 

mountain yellow-legged frogs (Rana muscosa) and redback salamanders (Plethadon 

cinereus) found that cutaneous bacteria isolated from these species were capable of 

inhibiting the growth of B. dendrobatidis in vitro as a result of anti-fungal metabolite 

production (Becker et al., 2010).   

Targeting the fungal inhibitory properties of cutaneous bacteria is advantageous 

over typical amphibian immune response pathways given that B. dendrobatidis is expected 

to develop resistance to inhibitory mechanisms (Bletz et al., 2013). Bacteria have a much 

shorter evolutionary response time than host amphibians and thus can evolve mechanisms 

to maintain host protection as pathogens evolve (Bletz et al., 2013). This area of research 

explores the potential for inoculation of probiotic species on amphibian skin as a biological 

agent for pathogen control. Inoculating captive amphibians prior to release may potentially 

enhance post-release innate immune response and survival (Harris et al., 2009). An 

alternative method of probiotic treatment proposed is soil bio-augmentation with probiotic 

bacteria to provide an environmental reservoir of beneficial bacteria (Bletz et al., 2013; 

Muletz et al., 2012). However, prior to the introduction of probiotic preventative measures, 

thorough knowledge of species specific bacterial communities is required. Baseline data on 
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cutaneous bacteria communities of threatened amphibian species is minimal, and in 

Australia, almost non-existent (Antwis et al., 2014; Kueneman et al., 2014; Michaels et al., 

2014; Shaw et al., 2014). 

 Amphibian skin hosts a diverse bacterial community that reflects a subset from their 

habitat (Culp et al., 2007). In order to develop a comprehensive understanding of cutaneous 

bacterial community attributes, it is critical to consider the environmental factors 

influencing which bacteria form the microbial community and determine bacteria-host 

dynamics.  This will allow us to provide conditions within captivity which promote immune-

enhancing mutualistic properties of cutaneous bacterial communities. Such influential 

factors have scarcely been examined, highlighting a key limitation to amphibian 

conservation-based knowledge. The primary determining factor may be the limited 

exposure to environmental bacteria reservoirs available in captivity, however, other factors 

are also likely to play a significant role (Antwis et al., 2014; Meyer et al., 2012; Michaels et 

al., 2014). For example, Meyer et al. (2012) found that environmental temperature 

influenced skin sloughing (shedding) frequency in cane toads, which in turn influenced 

bacterial abundance. Alternatively, Antwis et al. (2014) found that nutritional conditions, in 

particular carotenoid availability, significantly influenced community composition of 

cutaneous bacteria. These outcomes suggest that captive practices can directly and 

indirectly impact cutaneous bacterial communities. However, comprehensive investigation 

into amphibian species-specific effects is yet to be explored, and, for probiotic methods to 

be effective, a better understanding of captivity influences is required.  

 

1.3. The Influence of dietary carotenoids on amphibian cutaneous bacteria 

As outlined above, captive conditions can influence amphibian immune response (Antwis et 

al., 2014; Meyer et al., 2012; Michaels et al., 2014). In particular, nutritional conditions 

provided in amphibian ex-situ conservation programs may affect the composition of the 

cutaneous bacterial community, thus having crucial innate immunity implications (see 

section 1.2.). The influence of host diet on cutaneous bacterial communities may be a result 

of bacteria utilising nutrients directly for physiological functions such as growth, or the 

provision of a more suitable microhabitat for bacteria to reside through host utilisation of 
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dietary compounds (Antwis et al., 2014; Brizzi et al., 2002; Cogdell & Frank, 1987; Kirti et al., 

2014; Liu et al., 2005).   

One aspect of amphibian nutrition expected to influence health and immune 

function is the presence of dietary carotenoids.  Carotenoids are a family of more than 600 

compounds synthesised by photosynthetic organisms including plants, fungi and bacteria 

(Svensson & Wong, 2011; Vershinin, 1999). Vertebrates are unable to biosynthesize 

carotenoids de-novo and must acquire these compounds via dietary means (Alonso‐Alvarez 

et al., 2004). Once acquired, carotenoids have been shown to exhibit efficient biological 

antioxidant activity, act as a precursor for vitamin A and influence vertebrate immune 

function (Vershinin, 1999).  The potential beneficial effects of carotenoids on vertebrate 

physiological functions  have been studied in a variety of species, including humans, birds, 

fish and amphibians (Blount & Matheson, 2006; Maiani et al., 2009; Martinez-Alvarez et al., 

2005; Ogilvy et al., 2012b). For example, a study in greenfinches (Carduelis chloris) indicated 

dietary carotenoid supplementation significantly enhanced anti-body response (Aguilera & 

Amat, 2007). Similarly, carotenoids have been shown to enhance immune function in 

vertebrates, such as mammals, through enhancing proliferation and functioning of immune 

response components (Chew & Park, 2004). Carotenoids can also have indirect benefits 

resulting from trade-offs with other physiological functions, including the redirection of 

resources to development and growth (Alonso-Alvarez et al., 2008). 

  Carotenoids have also been shown to perform critical physiological roles in bacteria 

species such as the protection of cells against photo-oxidative damage and against hosts’ 

reactive oxygen species within the digestive system (Cogdell et al., 1987; Fraser & Bramley, 

2004; Kirti et al., 2014; Liu et al., 2005). Similar mechanisms may operate within cutaneous 

bacterial communities as has been suggested by Antwis et al. (2014). Within amphibian 

species, carotenoids show limited influence on health directly, however, they have been 

shown to enhance yellow, orange and red colouration in amphibian skin (Bailey, 2014; 

Ogilvy et al., 2012b). This suggests that carotenoids are incorporated into amphibian skin, 

and suggests that carotenoids influence skin structure and function. Given such effects, 

dietary carotenoids may not play a direct role in improving amphibian immune function, but 

may indirectly improve innate immune function through positive interactions with 

cutaneous bacteria. This possibility warrants investigation. 
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The influence of dietary carotenoids on amphibian cutaneous communities has only 

been investigated by one study.  Recently, Antwis et al. (2014) examined the bacterial 

community associated with carotenoid-supplemented and un-supplemented red-eyed tree 

frogs (Agalychnis callidryas) and found that carotenoid supplementation significantly 

enhanced the bacterial community by increasing bacteria abundance and species richness. It 

is expected that carotenoid supplementation enhances the cutaneous bacterial community 

by:  1) bacteria utilising carotenoids directly for physiological functions or; 2) the provision 

of a more suitable microhabitat for bacteria to reside through host utilisation of dietary 

carotenoids (Antwis et al., 2014; Brizzi et al., 2002; Cogdell et al., 1987; Kirti et al., 2014; Liu 

et al., 2005).   

Concepts linking cutaneous bacteria to the amphibian immune response are typically 

based on the assumption that an enhanced bacterial community is one with high diversity 

and abundance (Becker et al., 2010; Bletz et al., 2013; Brucker, Harris, et al., 2008; Harris et 

al., 2009; Holden et al., 2015; Lam et al., 2010; Lauer et al., 2007; Muletz et al., 2012; Shaw 

et al., 2014; Woodhams et al., 2007). This assumption stems from the notion that higher 

abundance is typically associated with high species richness, and high species richness is 

associated with increased stability and productivity (Belden et al., 2007; Eisenhauer et al., 

2013; Johnson et al., 1996). The diversity-stability hypothesis and the productivity 

hypothesis form the basis of these arguments, each of which have tested a wide variety of 

ecological communities such as microbial communities (Eisenhauer et al., 2013). These 

hypotheses broadly link a more diverse community to improved stability and productivity 

respectively (Belden et al., 2007; Eisenhauer et al., 2013; Johnson et al., 1996; Matos et al., 

2005; Van Elsas et al., 2012). 

Given the cutaneous bacteria associated with amphibians previously examined differ 

vastly between species and across geographic locations, it is clear that influences may be 

species-specific and there may be no broad spectrum solution when relying on amphibian 

cutaneous bacteria to inhibit pathogen infection (Antwis et al., 2014; Kueneman et al., 2014; 

Michaels et al., 2014; Shaw et al., 2014). This warrants further investigation into the   

relationships between environmental conditions, microbial communities, immune function 

and potential probiotic therapies to remediate natural populations. Current research is 

biased towards a small number of species, including the American salamander species 
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Plethodon cinereus and Hemidactylium scutatum and the European and South American 

anuran species Rana Mucosa, Agalychnis callidryas and Rana sphenocephala (Antwis et al., 

2014; Becker et al., 2010; Brucker, Harris, et al., 2008; Harris et al., 2009; Holden et al., 

2015; Lam et al., 2010; Lauer et al., 2007; Michaels et al., 2014; Muletz et al., 2012; Shaw et 

al., 2014; Woodhams et al., 2007). Cutaneous bacteria research on Australian amphibians is 

minimal, and given the highly endemic nature of Australia’s amphibian species, it is likely 

that bacterial communities on Australian species are significantly different to those that 

have been reported previously.  Prior to the introduction of standardised husbandry 

protocols, and the implementation of probiotic preventative measures to enhance innate 

immune capabilities of amphibian species, thorough knowledge of species-specific bacterial 

communities is required.  Additionally, in the context of the captive environment, an 

understanding of specific environmental variables which promote the immune-enhancing 

mutualistic properties of cutaneous bacterial communities is required before standardised 

conditions can be implemented. 

In Australia, patterns of amphibian decline reflect the global trend with 48 species 

listed as threatened, 15 of which are critically endangered (IUCN, 2015). As listed on the 

IUCN Red List in 2002, the Southern Corroboree Frog (Pseudophryne corroboree) is one of 

Australia’s most critically endangered species and thus forms the focus of this study (Hero et 

al., 2006; IUCN, 2015). P. corroboree is known to be particularly susceptible to B. 

dendrobatidis infection and populations are now almost solely maintained in ex-situ 

breeding programs (Brannelly et al., 2015; Hunter et al., 2010; OEH, 2012). These programs 

typically consist of relatively sterile husbandry conditions due to the substantial threat of B. 

dendrobatidis infection and thus environmental reservoirs of bacteria are limited. The 

Corroboree Frog has been the focus of a long term captive breeding program but species 

decline continues (OEH, 2012). As such, the urgent acquisition of species-related knowledge, 

in particular the influence of dietary conditions,  is crucial in stimulating the success of 

captive breeding and reintroduction programs targeted at re-establishing natural 

populations of P. corroboree. The importance of captive breeding, reintroduction and the 

amelioration of environmental threats to P. corroboree is emphasised by its presence in the 

recovery objectives of the P. corroboree National Recovery Plan (OEH, 2012).  

Understanding how carotenoid availability affects anuran probiotic bacterial communities 
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may offer a potential strategy to enhance the post-release defence of individuals to deadly 

pathogens such as B. dendrobatidis. 

The present study manipulates dietary carotenoid availability throughout juvenile 

and post-metamorphic life stages and applies bacteria culturing methods to compare the 

cutaneous bacterial community of supplemented and un-supplemented frogs within a 

captive colony. It is predicted that dietary carotenoid supplementation will enhance the 

cutaneous bacterial community of captive P. corroboree, based on the assumption that an 

enhanced community is one with high levels of species richness and abundance (refer to 

section 1.2.). Outcomes of this study will contribute to a body of research targeting the 

development of standardised conditions which maximise the mutualistic properties of 

cutaneous bacterial communities, with the ultimate goal of improving the immunity of P. 

corroboree in captivity and post release.  

 

1.4. Thesis Aims: 

The aim of this study is to characterise the cutaneous bacterial community of the critically 

endangered Southern Corroboree Frog (Pseudophryne corroboree) in an ex-situ context and 

test the effect of dietary carotenoid supplementation on these cutaneous bacterial 

populations. Specifically, using the manipulation of dietary carotenoid availability 

throughout juvenile (tadpole) and post-metamorphic (frog) life stages within a captive 

colony of frogs, this project aims to: 

1) Provide baseline community composition data for cutaneous bacterial communities 

(species presence, abundance and richness) in a captive P. corroboree population. 

2) Determine if dietary carotenoid supplementation enhances abundance, species 

richness and affects overall community composition of cutaneous bacterial 

communities. 
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2. Methods: 

2.1. Study species:   

The Southern Corroboree frog (Pseudophryne corroboree) is a terrestrial anuran belonging 

to the family Myobatrichidae. This species is endemic to the sub-alpine regions of 

Kosciuszko National Park, Australia and is characterised by a distinct longitudinal black and 

yellow striped colouration pattern (Hero et al., 2006; Osbourne, 1991). This colour pattern is 

believed to indicate the presence of poisonous alkaloids to deter potential predators (Daly, 

1998; Osbourne, 1991). P. corroboree is a small species (25-30mm snout vent length) that 

typically feed on algae and organic matter as tadpoles, and on ants and other small 

invertebrates as adults (Daly, 1998; Osbourne, 1991). The natural diet of P. corroboree 

outlined above contains dietary carotenoids (Osbourne, 1991) and thus it is assumed that 

under normal circumstances, P. corroboree would receive dietary carotenoids during all life 

stages. 

Within this species’ distribution, temperatures range from a mean monthly 

temperature of 16.3°C in summer (January) and -0.1°C in the peak of winter (July) (Bureau-

of-Meteorology, 2015). Reproduction occurs in mid-late summer (January/February) 

whereby males construct terrestrial nests within sphagnum bogs, attracting female mates 

with the aid of an advertisement call. Attracted females will lay their eggs within the male’s 

nest (Osbourne, 1991). The resulting fertilised eggs remain in diapause until autumn when 

rainfall-induced hypoxia triggers hatching (Osbourne, 1991). Tadpoles remain in shallow 

pools over winter and undergo metamorphosis during the next summer season.  Adult P. 

corroboree enter a state of torpor at the onset of winter, thus undergoing slow 

development and reaching sexual maturity at 3-4 years of age (Osbourne, 1991). As listed 

on the IUCN Red List in 2002, P. corroboree is one of Australia’s most critically endangered 

species (Hero et al., 2006; IUCN, 2015). Therefore, the acquisition of species-related 

knowledge, in particular the influence of dietary conditions,  is crucial in stimulating the 

success of captive breeding and reintroduction programs targeted at re-establishing natural 

populations of P. corroboree. The importance of captive breeding, reintroduction and the 

amelioration of environmental threats to P. corroboree’s long term survival is emphasised in 

the recovery objectives of the P. corroboree National Recovery Plan 2014 (OEH, 2012). 
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2.2. Experimental animals: 

Pseudophryne corroboree eggs (n = 44) were randomly selected from a total of 128 eggs 

generated from a captive colony housed at Melbourne Zoo, Australia. Fertile eggs were the 

result of pairings between 6 males and 12 females. These eggs were maintained at 5°C for a 

3 month period on moist sphagnum moss (Sphagnum cristatum) prior to being transferred 

to the University of Wollongong on July 19th 2013. Upon arrival, eggs were flooded with 

reverse-osmosis water (R.O.) to stimulate hatching, which occurred over an 11 day period. 

Individuals were exposed to experimental dietary treatments throughout both juvenile and 

adult life-stages (refer to section 2.3.). 

 

2.3. Experimental design 

To examine the influence of dietary carotenoid supplementation on the cutaneous bacterial 

community of P. corroboree, 44 individuals were exposed to one of two dietary treatments 

with 22 individuals per treatment. Both tadpoles and frogs were randomly assigned to 

either a carotenoid-supplemented diet or a basal diet with no dietary carotenoid 

supplementation (Figure 1). In treatment 1 (hereafter referred to as ‘un-supplemented’), 

frogs (n = 22) received a basal control diet with no dietary carotenoid supplementation 

throughout all life stages. In treatment 2 (hereafter referred to as ‘carotenoid-

supplemented’), frogs (n = 22) received dietary carotenoid supplementation throughout 

juvenile and post-metamorphic life stages. Details of dietary conditions for juveniles and 

post-metamorphic individuals can be found in section 2.4. The influence of dietary 

carotenoids has been shown to be gender specific (Ogilvy & Preziosi, 2012), but this could 

not be incorporated into the present study due to the age of experimental individuals (P. 

corroboree must be at least 4 years of age to be accurately sexed. Experimental individuals = 

23 months at time of sampling) (Osborne, 1989). However, outcomes of recent research 

examining amphibian cutaneous bacteria have concluded that gender did not affect the 

influence of carotenoids on the diversity and abundance of amphibian cutaneous bacterial 

communities (Antwis et al., 2014). 
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Figure 1. Diagrammatic representation of experimental dietary treatments 

 

2.4. Frog husbandry 

2.4.1. Juvenile husbandry 

Immediately upon hatching, tadpoles (n = 44) were housed in cylindrical plastic containers 

(10.5cm H x 10cm D) containing 600ml of R.O. water. Tadpoles were maintained at 12°C 

(range = 11.4-12.9 °C) within a constant temperature room at the University of Wollongong 

Ecological Research Centre, Australia. Lighting conditions within the room consisted of 

artificial fluorescent lighting on an 11.5hr/12.5hr day-night cycle to simulate natural 

conditions (including 15mins twilight lighting at both dawn and dusk). Tadpoles also 

received 1hr/day (11:30 am-12:30pm) of UV-B light supplied by a Reptisun® 36” fluorescent 

strip bulb (Pet Pacific Pty Ltd, Sydney) suspended approximately 20cm above the tadpole 

containers to prevent developmental disorders known to be associated with UV-B deficiency 

in anurans (Lannoo, 2008). 

Un-supplemented diet 

Carotenoid-supplemented diet 
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Water fouling was prevented by a 50% water flush three times a week via an 

automated irrigation system (PIS Irrigation Systems, Australia) supplied with R.O. water 

(Sartoruis Stedim Biotech, Australia). In addition, excess food and excrement was siphoned 

from each container weekly using a syringe connected to aquarium tubing. Total ammonia 

levels (NH3 + NH4) were tested in three randomly selected containers per treatment every 

four weeks (Aqua One®, Australia) to ensure water quality remained at a healthy level. 

Ammonia levels typically ranged between 0.5-1mg L-1, well within the safe zone for aquatic 

vertebrates. The above housing conditions were chosen after consultation with aquarists in 

the Herpetology Division of Taronga Zoo, Sydney.  

Immediately after hatching, all tadpoles were fed dropwise on a basal diet of ground 

commercial fish flakes (25% san tropical, 75% flora vegetable flake; SERA®, Germany) 

suspended in 10ml of R.O. water for an average of 10±4 days due to asynchronous hatching. 

Feeding was conducted three times a week. At the commencement of the experimental 

period, tadpoles were randomly assigned to either a carotenoid-supplemented diet or a 

basal diet with no dietary carotenoid supplementation using a random numbers table.  

The un-supplemented treatment consisted of a basal diet composed of 1.0g ground 

fish flakes (25% san tropical, 75% flora vegetable flake; SERA®, Germany) suspended in 10ml 

Reverse Osmosis (R.O.) water and fed three times a week ensuring food was always 

provided ad libitum. Basal diet mixtures were frozen at -20°C in 10ml syringes and thawed 

to room temperature on feeding days. Ensuring the mixture was homogenised via shaking. 

Individuals were fed 2 drops of the mixture (range = 0.0585g-0.0685g wet mass, 0.015g-

0.018g dry mass) three times a week for the first 8 weeks and then fed four drops (range = 

0.117g-0.137g wet mass, 0.03-0.036 dry mass) three times a week until metamorphosis 

occurred.  

The carotenoid-supplemented diet consisted of the basal diet described above 

supplemented with 20mg carotenoid powder (per gram of food) (Superpig; Repashy®, USA). 

Similar doses (20mg) have been identified to have significant positive effects on survival, 

development and fitness determining traits in many vertebrates, in particular the Western 

Clawed frog (Xenopus tropicalis), thus justifying the identified dosage (Ogilvy & Preziosi, 

2012).  
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2.4.2. Post-metamorphosis husbandry 

Tadpole development was assessed every two days using Gosner staging tables (Gosner, 

1960). At the onset of metamorphic climax, as represented by forelimb emergence (Gosner 

stage 42), individual containers were altered.  Metamorph containers contained a sponge 

half submerged in 150mL R.O. water to enable the small frogs to crawl from the water 

during metamorphosis. Nutritional needs during this developmental stage are met by the 

reabsorption of the tail and body tissue catabolism, thus no food was provided (Wassersug 

& Wilbur, 1974). Once tail reabsorption had occurred (Gosner stage 46), individuals were 

fed an ad libitum diet of hatchling (first instar) live crickets (Archea domestica) twice a week. 

Post-metamorphic individuals remained in their metamorph container for 60±15 days prior 

to being transferred to experimental containers. Transfer occurred two weeks prior to the 

introduction of the adult (frog) experimental diets. 

Cylindrical experimental containers (10.5cm H x 10cm D) consisted of a pebble base 

(2cm deep) overlain by approximately 5cm of sphagnum moss (S.cristatum) (Brunnings, 

Australia). A ring of small holes (1cm above the base) enabled a weekly flush of R.O. water 

(500ml) to remove excrement and uneaten food. All individuals were weighed 2 weeks prior 

to commencement of post-metamorphic experimental diets. Frog body mass did not differ 

between the two tadpole treatment groups prior to the introduction of post-metamorphic 

experimental diets (t-test: t1, 47 = 0.842, p = 0.403). 

The post-metamorphic basal diet consisted of an ad libitum diet of first instar 

crickets (Archea domestica) and adult fruit flies (Drosophila melanogaster) each provided 

once a week. Crickets were fed on granny smith apples and adult fruit flies (D.melanogaster) 

were provided with standard drosophila rearing mixture (Carolina Biological Supply 

Company, USA).  

The post-metamorphic carotenoid-supplemented diet was composed of the above 

basal diet supplemented with dietary carotenoid mixture.  This carotenoid supplementation 

consisted of gut loading crickets with carrot for 48hr prior to feeding and dusting with 1.0g 

carotenoid powder (Superpig; Rapashy®, USA). Fruit flies were fed on standard drosophila 

mixture containing an additional carotenoid mixture (ratio = 10:1 drosophila rearing 

mixture: carotenoid powder). This carotenoid supplementation provided 0.25mg g-1 of 
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carotenoids to the flies. The exact dose for frogs is unknown due to discrepancies in cricket 

and fly consumption. The carotenoid supplementation was chosen as a previous study  had 

determined that 0.25mg g-1 dietary carotenoids significantly enhanced female growth, 

reproductive success and colour in red-eyed tree frogs (Ogilvy et al., 2012b). To prevent 

calcium deficiencies, crickets fed to both treatment groups were dusted with 0.2g calcium 

powder (Repti-cal; AristoPet, Australia) once a week (Lannoo, 2008). After four weeks of the 

experimental diet, fruit flies in each treatment were replaced with a second feed of first 

instar crickets. Fruit flies were initially supplied to ensure frogs had the opportunity to 

consume prey of an appropriate size. 

 

2.5. Bacterial sample collection 

In order to examine the influence of dietary carotenoid supplementation on the cutaneous 

bacterial community of P. corroboree, captive bred frogs were selected from a captive 

population within the University of Wollongong, Australia. Frogs had been exposed to one 

of two dietary treatments (n = 22 frogs per treatment) (Section 2.4.). Bacteria samples were 

collected weekly over a three week period on the 25/05/2015 (n = 5 per treatment), 

01/06/2015 (n = 7 per treatment) and 08/06/2015 (n = 10 per treatment). There were no 

temporal effects of this sampling technique in cutaneous bacterial abundance or species 

richness observed (ANOVA: abundance: F2, 41 = 1.20, P = 0.31; species richness: F2, 41 = 0.69, 

P = 0.51).  At the commencement of the experimental period, frogs were 23 months of age 

(17-18 months post-metamorphosis). 

Frogs were removed from individual housing containers and initially weighed (to 

0.01g) and photographed (Samsung ST66 16.1 megapixel camera, Samsung Group, South 

Korea) alongside a scale bar for later image analysis (IMAGE J) to obtain snout-vent length 

measurements (0.01mm). There was no significant difference in frog weight or length 

between the supplemented and non-supplemented treatments prior to swabbing (t-test: t43 

= 1.30, P = 0.20; t43 = 0.99, P = 0.33) (n = 22 per treatment) Individuals were handled with 

separate sterile gloves (Skinshield powder free latex gloves, Livingstone International, 

Australia) and contacted surfaces were sterile to prevent cross contamination of cutaneous 

bacteria (Antwis et al., 2014; Lauer et al., 2007). Frogs were rinsed gently once with 30mL 
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sterile water to remove transient bacteria (Kueneman et al., 2014; Lauer et al., 2007; Shaw 

et al., 2014), ensuring minimal handling to prevent loss of cutaneous bacteria. 

Cutaneous bacteria samples were collected using sterile transport swabs (Copan 

Transystem® Amies agar gel medium without charcoal, Copan Diagnostics, Inc., USA) using a 

swabbing procedure adapted from Shaw et al. (2014), Flechas et al., (2012) and Antwis et al. 

(2014). Frogs were swabbed (1 swab/frog) by running the natural fibre cotton tip across 

each of the following surfaces 3 times whilst rotating: dorsal (anterior to posterior), ventral 

(anterior to posterior), lateral (left and right sides), front legs from armpit to wrist (left and 

right sides), and back legs from groin to ankle (left and right sides) (Body regions are listed in 

order of swabbing) (Figure 2).  Rotation of the swab throughout sample collection promoted 

even bacterial coverage on the swab. Labelled swabs were placed in the storage tube 

provided, which contained sterile transport media.  Swabs in their storage tube were sealed 

in zip lock bags and stored on ice for 150 ± 30mins within a small esky (storage temp = 5.5 ± 

0.6°C) while being transferred to the lab for processing. Particular care was taken to ensure 

the frogs were not harmed throughout the process and individuals were monitored post-

swabbing for 4 weeks to ensure there were no signs of distress/injury as a result of the 

swabbing procedure. 
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2.6. Bacterial culture: 

Using aseptic techniques within a biosafety cabinet (Biological Safety Cabinet Class II, Email 

Westinghouse Pty Ltd, Australia), each swab was removed from the transport media and the 

swab tip cut off into a 1.5mL sterile Eppendorf tube (Eppendorf, Germany) containing 

1000μL 0.9% sterile NaCl (Antwis et al., 2014; Nalven, 2013). Tubes containing swab tips 

were vortexed for 30 seconds to disassociate bacteria from the tip (Antwis et al., 2014). 

Swab tips were then removed from the tubes using sterile tweezers and solutions were 

vortexed for a further 5 seconds to ensure a homogenous bacterial suspension prior to 

 

Figure 2. Cutaneous bacteria swabbing protocol on P. corroboree from dorsal and ventral 

perspectives. Areas in red represent body regions swabbed for bacteria. Frogs were swabbed (1 

swab/frog) by running the natural fibre cotton tip across each of the following surfaces in 

triplicate whist rotating: dorsal (anterior to posterior), ventral (anterior to posterior), lateral 

(left and right sides), front legs from armpit to wrist (left and right sides), and back legs from 

groin to ankle (left and right sides). Body regions are listed in order of swabbing. Arrows 

represent direction of swabbing. 

Dorsal Ventral 

10mm 10mm 
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serial dilution and plating. A pilot study was performed to determine the optimum dilution 

for growth of P. corroboree cutaneous bacterial community (appendix 1). As indicated by 

this pilot study, dilutions of 101 (undiluted) and 10-1 (10 fold dilution) were most appropriate 

to obtain an intermediate amount of bacterial growth suitable for assessing bacterial 

community composition (CFU counts; Appendix 1). A 10-1 solution was prepared by 

pipetting 100μL of the initial solution into 900μL 0.9% sterile NaCl. All solutions were 

vortexed for a further 5 seconds immediately before plating. 

Each swab was plated in triplicate (1x101undiluted solution and 2x10-1 diluted 

solutions) by transferring 100μL aliquot of bacterial suspension to an LB (Luria Broth) 

nutrient agar media plate (100mm diameter) (AMRESCO®, USA) and spread evenly over the 

surface using a sterile plate spreader (Park et al., 2014). Plates were allowed to dry for 

10mins within the biosafety cabinet prior to being inverted and sealed with parafilm® 

(Bemis Company, Inc., USA). Plates were incubated at 20°C for 168±24 hours to ensure 

sufficient time for development of colony morphology and where appropriate, they were 

transferred to 4°C to prevent overgrowth of fungi prior to species isolation. An incubation 

temperature of 20°C was selected based on the outcome of a pilot study testing optimum 

incubation temperature for growth of P. corroboree cutaneous bacterial community 

(Appendix 2). This is also the summer temperature in which the captive frogs are 

maintained.  

Bacterial plate photographs were taken at 48±1, 72±1 and 96±1 hours (Samsung 

ST66 16.1 megapixel camera, Samsung Group, South Korea) with the aid of a backlight and 

including scale and label (frog ID, diet treatment, incubation time, incubation temperature 

and date) (figure 3). As indicated by the pilot study, an accurate CFU count could be 

obtained by 72hrs while maintaining maximum time efficiency (Appendix 2). Photographs 

taken at 72±1 hours were analysed using ImageJ (National Institute of Health, USA) to 

obtain total abundance counts of CFU’s (Colony Forming Units) (figure 3). The most 

appropriate plate from each triplicate was selected for analysis on the basis of total CFU 

range within 25-300 CFU (Sutton, 2011). A final result of CFU/mL was calculated using the 

dilution factor of each plate. 
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2.7. Bacteria Colony Isolation 

After incubation at 20°C for 168±24 hours, all morphologically distinct colonies within each 

set of three dilution plates were allocated an isolate ID number and transferred to a 

separate LB nutrient agar plate using standard 16 streak method to obtain pure cultures 

(Washington et al., 2006). Details of each isolate were recorded (colour, form, margin, 

texture) (Washington et al., 2006). A species richness count for each individual frog was 

determined. Isolate plates were incubated at 20°C for 168±24 hours to ensure distinct 

colony morphological characteristics were evident. Isolate plates were compared across 

individuals and morphologically distinct isolate plates were assigned a Bacteria Morphotype 

ID number. After the initial incubation period, pure culture isolate plates were transferred 

to storage at 4°C. One representative from each Morphotype ID number was then 

processed for species Identification.  

Total CFU = 42 

Figure 3. Bacteria culture plate image illustrating method for analysing plate images to 

obtain Colony Forming Unit (CFU) counts. Cross pointers represent CFU counts 

analysed using ImageJ (National Institute of Health, USA).  Total CFU represents the 

absolute number of CFU on the plate (not accounting for dilution factor of the plate). 
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2.8. Bacteria Identification 

Bacterial Species identification was conducted using API® Biomérieux 20ETM Identification 

system (Biomérieux, USA). This system consists of a series of 20 microtube tests and 7 

additional tests conducted as per manufacturer’s instructions (API® Biomérieux 20ETM, USA). 

Prior to identification, pure isolates were re-plated on LB Nutrient agar and MacKonkey agar 

using a 16 streak pattern and incubated for 24 hour at 37°C. The combination of test 

outcomes from the test strip results in the formation of a 7-9 digit code which was entered 

into apiwebTM identification software (Biomérieux, USA). This software provides an output 

giving listing the most probably species identity. API® Biomérieux 20ETM bacterial 

identification is limited to Enterobacteriaceae and non-fastidious gram-negative species and 

thus all species could not be identified. Species that could not be identified using this system 

(n = 8) were sent to Taronga Zoo for lab analysis using Matrix Assisted Laser Desorption/ 

Ionisation-Time of Flight Mass Spectrometry (MALDI-TOF) (Bruker Daltonik MALDI Biotyper, 

Bruker Biosciences, Victoria). Species that could not be identified using either system were 

assigned an unidentified species letter accompanied by a detailed morphotype description 

(appendix 3). 

 

2.9. Data analysis 

Counts of bacterial abundance (CFU) were multiplied by the dilution factor associated with 

each individual plate to obtain a standardised measure in CFU/mL of suspension solution. 

Average bacterial abundance (CFU/ml) was calculated for each treatment and analysed 

using t-test analysis in JMP 10® to determine the effect of carotenoid supplementation on 

amphibian cutaneous bacteria abundance. In order to determine the effect of carotenoid 

supplementation on amphibian cutaneous bacteria species richness, counts were compiled 

for each treatment and treatment averages were calculated. Species richness results were 

also analysed using t-test analysis in JMP 10®. Prior to this analysis, the effect of bacterial 

abundance on bacterial species richness was quantified using regression analysis. This was 

done to determine whether bacterial species richness could be assessed independently or 

whether it was positively correlated with abundance and thus simply a product of bacterial 

abundance. Outcomes of this analysis indicated that the t-test analysis described above was 
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suitable given no significant correlation between abundance and species richness 

(regression: F1, 42 = 0.0091, P = 0.9243, r2 = 0.0002). The absence of an expected positive 

correlation appeared to be attributed to the dominance of particular single species on 

plates with high CFU counts, thus an increase in CFU did not necessarily mean an increase in 

species richness.  

Prior to running the t-test models, the assumptions of analysis were tested using 

Shapiro-Wilk’s normality test and the Levene’s test for homoscedasticity. Where required, 

response variables were log-transformed to ensure data was normally distributed. This was 

only required for bacterial count data (CFU). As indicated by regression analysis using 

JMP10®, frog mass (g) did not have a significant effect on total bacterial abundance or 

bacterial species richness and thus could be excluded from subsequent analysis (regression: 

abundance: F1, 42 = 0.0120, P = 0.9133 r2 = 0.000261; species richness: F1, 42 = 1.1757, P = 

0.2839 r2 = 0.000261). Likewise, size of individual (snout-vent length in mm) was excluded 

from subsequent analysis as there was no effect of size on total bacterial abundance or 

bacterial species richness (abundance: F1, 42 = 1.2027, P = 0.2785 r2 = 0.025479; species 

richness: F1, 42 = 0.0120, P = 0.9133 r2 = 0.025479). As such, mass and size could be excluded 

from analysis models and thus t-tests were suitable as outlined above. 

A bacteria species presence/absence data set was created to allow for a comparison 

of overall bacterial community composition between dietary treatments, which was 

performed using multivariate analysis in PRIMER 7. Initially, a Bray Curtis similarity index 

and Multi-dimensional scaling (nMDS) ordination was produced to allow for a visual 

representation of similarities between each frog’s cutaneous bacterial community. This 

approach allows for a comparison of treatment-related patterns before proceeding with 

further analysis. Differences in overall community composition of cutaneous bacteria 

between treatments was analysed using PERMANOVA. SIMPER analysis was subsequently 

used to determine which bacterial species were most influential in determining differences 

between bacterial species assemblages of frogs in each diet treatment. These are 

nonparametric analyses and thus the assumption of normality need not be met. Data was 

from random, independent samples. Additionally, bacterial species assemblage data was 

compiled to produce a list of species present within the different dietary treatments. 
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3. Results: 

3.1. Effect of dietary carotenoid supplementation on total bacterial 

abundance 

A range of 370-42,100 culturable CFU/mL (MEAN ± SEM = 8,604 ± 2,276) were obtained 

from individuals receiving dietary carotenoid supplementation compared with a range of 

160-9,700 culturable CFU/mL (MEAN ± SEM 2,119 ± 526.8) from individuals fed on a 

carotenoid-free diet. Dietary carotenoid supplementation had a significant effect on total 

cutaneous bacterial abundance (CFU/mL) (t-test: t43 = 3.16412, P = 0.0014) (figure 4). 

Individuals fed on a carotenoid supplemented diet supported a significantly greater 

bacterial abundance than individuals fed on an un-supplemented diet (figure 4). 
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Figure 4. Average cutaneous bacterial abundance (Colony forming units (CFU) per mL) ± 

SEM isolated from the skin of P. corroboree fed on a carotenoid-supplemented and an 

unsupplemented diet (n = 22 per treatment). CFU/mL is equivalent to total culturable 

CFU obtained from sampling of each individual. 
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3.2. Effect of dietary carotenoid supplementation on bacterial species 

richness 

The number of bacterial species isolated per individual ranged from 7-12 species (MEAN ± 

SEM = 8.83 ± 0.32) for frogs receiving dietary carotenoid supplementation and 4-11 species 

(MEAN ± SEM = 6.79 ± 0.36) for frogs fed an un-supplemented diet (figure 5).  Dietary 

carotenoid supplementation had a significant effect on bacterial species richness (t-test:    

t43 = 4.25299, P = 0.0001) (figure 5). Individuals fed on a carotenoid-supplemented diet 

supported a greater number of cutaneous bacteria species than individuals fed on an un-

supplemented diet (figure 5). 

  

  

Figure 5. Average number of bacterial species (bacterial species richness) ± SEM isolated 

from the skin of P. corroboree fed on a carotenoid-supplemented and an un-supplemented 

diet (n = 22 per treatment).  
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3.3. Effect of dietary carotenoid supplementation on bacterial community 

composition 

There was a total of twenty-three bacterial morphotypes isolated from captive P. 

corroboree (table 1; Appendix 4). Twenty-two of these bacterial morphotypes were present 

on carotenoid-supplemented P. corroboree and twenty bacterial morphotypes were present 

on P. corroboree fed an un-supplemented diet. Nineteen of these bacterial morphotypes 

were found in both carotenoid-supplemented and un-supplemented treatments. In 

total, 83% of bacteria species were found in both treatments. Three bacteria species 

(Escherichia coli, Acinetobacter calcoaceticus and Unidentified C), were isolated from the 

skin of carotenoid-supplemented individuals but were not present on any un-supplemented 

individuals. One species, Variovorax paradoxus, was only present on the skin of un-

supplemented individuals (table 1). Five bacterial morphotypes could not be identified using 

API20E or MALDI-TOF (Appendix 3). 

Overall community composition of cutaneous bacteria (species assemblages) was 

significantly different between P. corroboree frogs fed on a carotenoid-supplemented diet 

and those fed a diet free from carotenoid supplementation (PERMANOVA: Pseudo-F1, 46 = 

3.6754, P (perm) = 0.003). However, treatment groups had a relatively low average 

dissimilarity of 48.92% and a Multi-Dimensional Scaling plot (MDS) could not appropriately 

arrange individuals on a 2D or 3D plane to depict relative similarities (stress value = 0.26, 

0.18 respectively) (figure 6). Pseudomonas luteola contributed most to species assemblage 

differences (7.53% contribution of total dissimilarity) and was more common within the 

dietary carotenoid supplementation treatment (χ²1  =  29.673, P < 0.0001). Another four 

species that were significantly more common within the dietary carotenoid 

supplementation treatment group were: Ewingella americana (%contribution = 6.76, χ²1  =  

25.259, P < 0.0001); Unidentified A (%contribution = 6.39, χ²1  =  13.032, P  =  0.0003); 

Rhodococcus erythopolis (%contribution = 6.25, χ²1  =  20.051, P < 0.0001); and Serratia 

marcescens (%contribution = 5.76, χ²1  =  33.122, P < 0.0001). No species occurred more 

commonly within the un-supplemented treatment. Stenotrophomonas maltophilia was the 

most commonly occurring species, being present on all individuals and contributing 19.53% 

to total treatment similarity. 
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Table 1: Comparison of bacteria species isolated from captive P. corroboree fed on a 

carotenoid-supplemented (n=22) diet and an un-supplemented diet (n=22). 

Family 
 

Species 

(APIWeb % match) 

Percentage occurrence of bacteria species in 
captive P. corroboree. (The number in 
brackets represents  the number frogs with 
bacteria species present) 

Carotenoid 
Supplemented Frogs 

Un-supplemented 
Frogs  

 Aeromonadaceae Aeromona hydrophila (80%) 18.2 (4) 36.4 (8) 

 Comamonadaceae Variovorax paradoxus* 59.1 (13) 45.5 (10) 

 Enterobacteriaceae  Citrobacter braakii (99.3) 40.9(9) 54.5 (12) 

Enterobacteriaceae Citrobacter freundii (99.8%) 9.1 (2) 18.2 (4) 

Enterobacteriaceae Escherichia coli (87%) 4.5 (1) 0 (0) 

 Enterobacteriaceae  Ewingella americana* 45.5 (10) 13.6 (3) 

Enterobacteriaceae Klebsiella oxytoca (99%) 36.4 (8) 27.3 (6) 

Enterobacteriaceae Klebsiella pneumoniae spp (99.9%) 18.2 (4) 4.5 (1) 

 Enterobacteriaceae  Morganella morganii (98%) 72.7 (16) 77.3 (17) 

 Enterobacteriaceae  Proteus mirabilis (89.9%) 59.1 (13) 50 (11) 

Enterobacteriaceae Serratia marcescens (96%) 4.5 (1) 9.1 (2) 

 Enterobacteriaceae  Serratia spp (92%) 90.9 (20) 54.5 (12) 

 Moraxellaceae  Acinetobacter calcoaceticus (99%) 4.5 (1) 0 (0) 

 Nocardiaceae Rhodococcus erythopolis* 45.5 (10) 18.2 (4) 

 Pasteurellaceae  Pasteurella pneumotropica (87%) 9.1 (2) 4.5 (1) 

 Pseudomonadaceae  Pseudomonas luteola (91%) 68.2 (15) 27.3 (6) 

Pseudomonadaceae Pseudomonas oryzihabitans (87.3%) 4.5 (1) 9.1 (2) 

 Xanthomonadaceae  Stenotrophomonas maltophilia (99.3%) 100 (22) 100 (22) 

  Unidentified A 54.5 (12) 31.8 (7) 

  Unidentified B 63.6 (14) 59.1 (13) 

  Unidentified C 36.4 (8) 0 (0) 

  Unidentified D 18.2 (4) 13.6 (3) 

  Unidentified E 0 (0) 31.8 (7) 

 *Species without API% Match were identified using MALDI-TOF 
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Figure 6. Multi-Dimensional Scaling (nMDS) depicting relative similarities of bacteria 

species assemblages of P. corroboree. Each point represents individual frogs and their 

associated bacteria species assemblage. Points have been arranged such that the 

distances between them represent their relative similarity (n = 22 per treatment). 
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4. Discussion 

The aim of this study was to characterise the cutaneous bacterial community of the critically 

endangered Southern Corroboree Frog (Pseudophryne corroboree) in an ex-situ context, and 

to test the effect of dietary carotenoid supplementation on these cutaneous bacterial 

populations. Dietary carotenoid availability was manipulated throughout juvenile and post-

metamorphic life stages to determine whether dietary carotenoid supplementation 

enhanced abundance, species richness and affected overall community composition of 

cutaneous bacterial communities. As predicted, the provision of dietary carotenoids was 

associated with a significantly greater abundance of cutaneous bacteria.  Carotenoid 

supplementation was also associated with a greater species richness of bacteria species on 

the skin of individual frogs. Bacterial species assemblages (community composition) differed 

significantly between individuals fed on a carotenoid-supplemented diet and individuals fed 

a diet free from carotenoids. However, despite significant differences, species assemblages 

between treatment groups were only 48.92% dissimilar, suggesting that group differences 

were relatively small. The absolute numbers of species isolated from carotenoid-

supplemented and un-supplemented treatment groups were also similar (22 and 20 

respectively), 83% of which were consistent across both treatment groups. Based on the 

assumption that an optimal bacteria community is one with high levels of species richness 

and abundance (Eisenhauer et al., 2013), the results obtained support our initial hypothesis 

that dietary carotenoid supplementation enhances the cutaneous bacterial community of 

captive P. corroboree. 

There are several possible explanations as to why carotenoid supplementation 

enhanced the cutaneous bacterial community of P. corroboree.  An increased species 

richness and abundance of bacteria on frogs from the carotenoid-supplemented treatment 

suggests the presence of carotenoids within the host’s diet improves reproduction, growth 

and/or survival capabilities of certain bacteria on the host’s skin (Antwis et al., 2014; Kirti et 

al., 2014). Such beneficial effects of carotenoids have been demonstrated in a variety of 

vertebrate species, including humans, birds, fish and amphibians (Blount et al., 2006; Maiani 

et al., 2009; Martinez-Alvarez et al., 2005; Ogilvy et al., 2012b). Carotenoids have been 

shown to be invested in a variety of vertebrate physiological functions including immunity 
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roles as antioxidants  and free-radical scavengers, as well as  in the development of 

signalling systems (colour) and visual systems (Bailey, 2014; Goodwin, 1986; McGraw & Hill, 

2006; Vershinin, 1999). For example, recent research in P. corroboree has shown that 

dietary carotenoid supplementation improves skin colouration (Bailey, 2014). However, 

within amphibian species, there is a growing body of evidence indicating that carotenoids 

are not critical for survival, growth and body condition (Butler & McGraw, 2012; Cothran et 

al., 2015; Ogilvy & Preziosi, 2012; Rahman et al., 2013). Recent research into the effects of 

dietary carotenoid supplementation on P. corroboree performance found that carotenoid 

supplementation had limited influence on foraging performance, anti-predatory behaviour, 

survival, growth rate, body size and body condition, but significantly enhanced skin 

colouration (Bailey, 2014; McInerney, 2014). Based on these findings, it appears that 

carotenoid supplementation may not play a direct   role in enhancing physiological traits of 

P. corroboree, but may improve amphibian immune function through positive effects on 

cutaneous bacteria populations (Antwis et al., 2015; Becker et al., 2010; Lam et al., 2010; 

Woodhams et al., 2007).  

Like many other species, bacteria utilise carotenoids in physiological functions, 

suggesting that the improved availability of carotenoids within the cutaneous bacterial 

species may enhance the effectiveness of these functions. For example, some bacteria 

species utilise carotenoids to protect cells against photo-oxidative damage and some are 

capable of carotenoid biosynthesis (Cogdell et al., 1987; Kirti et al., 2014; Liu et al., 2005). 

One such explanation for the trends observed in this study relates to the physiological role 

carotenoids play within bacteria. Upon ingestion by a host species, bacteria cells have been 

shown to utilise the antioxidant properties of carotenoids in order to protect themselves 

against damage by reactive oxygen species within the host (Fraser et al., 2004; Liu et al., 

2005). In recent research, bacteria species isolated from the skin and gut of two amphibian 

species (P. cinereus and R. pipiens) have been shown to be similar, indicating that these 

bacterial communities are of similar origin (Wiggins et al., 2011). Given that amphibians are 

known to periodically shed and ingest their skin (sloughing), carotenoid-mediated survival of 

bacteria within the host amphibian may play a significant role in establishing/regulating the 

cutaneous bacterial community (Antwis et al., 2015; Cramp et al., 2014; Weldon et al., 

1993). It is also likely that this mechanism is particularly important in captive frog 



29 
 

populations where there is limited access to environmental reservoirs of a wide range of 

bacteria species (Becker et al., 2014). While these mechanisms may cause the patterns 

observed in the present study, they are yet to be examined in the context of enhancing 

amphibian immune function. Therefore, future work could examine relationships between 

gut and skin bacteria within P. corroboree to assess similarities between these communities 

and examine the influence of these relationships on frog immune response, and general 

health.  

Bacterial-mucous interactions on the skin of the amphibian host provide an 

alternative explanation for why carotenoid supplementation enhances the cutaneous 

bacterial community associated with P. corroboree. Mucous is a naturally occurring 

secretion associated with amphibian skin that helps maintain the physiological functions 

associated with the skin, such as respiration and osmoregulation (Kueneman et al., 2014). 

Amphibian mucous can also provide a physical barrier to infection (Brizzi et al., 2002; 

Kueneman et al., 2014).  This mucous is likely to be of nutritional value to the cutaneous 

bacterial community residing on the skin, and dietary attributes of the amphibian host are 

likely to influence the production and composition of this mucous (Brizzi et al., 2002; Lauer 

et al., 2007). Very little is known about the impact of carotenoids on amphibian skin mucous 

secretions, however, effects have been observed in the glandular epithelium of amphibian 

tongues (Miller et al., 2001; Ogilvy et al., 2012b; Pessier, 2002). For example, vitamin A 

deficiencies have been associated with keratinisation of the glandular epithelium on 

amphibian tongues resulting in a reduction in mucous production, a condition called 

Hypovitaminosis A (Miller et al., 2001; Ogilvy et al., 2012b; Pessier, 2002). Given that 

carotenoids are a precursor for vitamin A, it is possible that similar mechanisms may occur 

in the glandular tissues of amphibian skin. This may result in decreased mucous production 

in individuals not receiving dietary carotenoid supplementation, thus resulting in a sub-

optimal microhabitat in which cutaneous bacteria reside. Given limited knowledge in this 

area, future research would benefit by focusing on the analysis of amphibian skin mucous to 

determine the nutritional content. This would allow for the determination of whether 

carotenoid supplementation within the host amphibian alters mucosal secretion 

composition in a way that benefits cutaneous bacteria communities. 
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The above explanations are based on the assumption that enhanced abundance and 

species richness within a community are associated with increased productivity and 

stability, as suggested by the diversity-stability hypothesis and the productivity hypothesis 

(Belden et al., 2007; Eisenhauer et al., 2013; Johnson et al., 1996). Improved productivity 

and stability has been linked to enhanced resilience to perturbations and stresses as well as 

an improved response to environmental changes, such as those experienced during the 

transfer of individuals from captivity to the wild (Belden et al., 2007; Eisenhauer et al., 2013; 

Johnson et al., 1996; Matos et al., 2005; Miller et al., 2001; Van Elsas et al., 2012) . These 

mechanisms have been shown to operate within various systems, including microbial 

communities, and thus, it may be inferred that they may also operate within amphibian 

cutaneous bacteria communities (Eisenhauer et al., 2013; Matos et al., 2005; Miller et al., 

2001; Van Elsas et al., 2012). Enhanced species richness and abundance within these 

cutaneous bacteria communities may make the frog more resilient to environmental 

changes such as those experienced after release from captivity (Antwis et al., 2014; 

Kueneman et al., 2014).  It also may make them more resilient to pathogen stresses (such as 

B. dendrobatidis) within captivity, as well as post-release (Longo et al., 2015). Therefore, 

given that carotenoid supplemented P. corroboree individuals support an enhanced 

bacterial community, this community may be more proficient at sustaining a healthy 

bacterial community throughout a variety of perturbations. In turn, this may lower 

susceptibility to pathogen infection of the host amphibian within captivity and post-release 

(Antwis et al., 2014; Becker et al., 2014; Becker et al., 2015; Bletz et al., 2013; Lam et al., 

2010; Longo et al., 2015; Shaw et al., 2014).  

A high density of bacteria is required to allow for successful cell communication, a 

process known as quorum sensing (Boyen et al., 2009; Li & Tian, 2012; Salmond et al., 1995). 

Quorum sensing is the process whereby bacteria cells produce signal molecules to allow for 

communication between cells enabling community-wide coordinated physiological 

processes/responses (e.g. antifungal metabolite production) (Boyen et al., 2009; Li & Tian, 

2012; Salmond et al., 1995). Enhanced richness of bacteria on the skin of P. corroboree is 

also likely to be associated with increased competition for limited space, and a reduced 

likelihood of the presence of a vacant ecological niche susceptible to pathogen 

establishment (Bessen et al., 2005; De Boer et al., 2005; Herbold & Moyle, 1986; 
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Wiedenbeck & Cohan, 2011). Enhanced species richness also increases the likelihood of the 

host amphibian possessing bacteria species capable of inhibiting the infection of pathogens 

such as chytrid fungus (B. dendrobatidis) (Antwis et al., 2014; Lam et al., 2010; Shaw et al., 

2014).  

Cutaneous bacteria inhibitory mechanisms have been shown in a variety of 

amphibian species and are typically an outcome of antifungal metabolite production by 

specific bacteria species (Becker et al., 2010; Brucker, Baylor, et al., 2008; Brucker, Harris, et 

al., 2008; Lam et al., 2010; Woodhams et al., 2007). For example, a recent study in redback 

salamanders (Plethadon cinereus) found that the cutaneous bacteria species 

Janthinobacterium lividum isolated from these salamanders was capable of inhibiting the 

growth of B. dendrobatidis in vitro via the production of violacein, an anti-fungal metabolite 

(Becker et al., 2009). Some frog species such as Rana spenocephala are capable of anti-

microbial peptide (AMP) production via granular skin glands, which has also been shown to 

inhibit pathogens such as B. dendrobatidis (Holden et al., 2015; Pessier, 2002). However, 

given the current decline of P. corroboree in the wild has been attributed to B. 

dendrobatidis, it is likely that P. corroboree is not capable of producing B. dendrobatidis 

inhibitory AMPS, and thus, may possibly rely on antifungal metabolite production by 

bacteria as an alternative immune strategy (Becker et al., 2010; Brucker, Baylor, et al., 2008; 

Brucker, Harris, et al., 2008; Holden et al., 2015; Hunter et al., 2010; Lam et al., 2010; 

Pessier, 2002). A recent study in P. cinereus also highlighted the importance of high bacterial 

diversity and species interactions by demonstrating that co-cultures of bacterial species 

were more proficient at inhibiting the growth of B. dendrobatidis when compared to single 

species cultures (Loudon et al., 2014). It is not yet known whether bacteria species 

identified in the present study, which occur on P. corroboree, are capable of antifungal 

metabolite production. Therefore, future research should incorporate inhibition assays 

using bacteria and pathogens such as B. dendrobatidis to develop an understanding of 

cutaneous bacteria species ability to protect against pathogens. 

The present study contributes to an emerging body of knowledge investigating the 

effects of ex situ captive conditions on amphibian cutaneous bacteria (Antwis et al., 2014; 

Becker et al., 2014; Loudon et al., 2014; Meyer et al., 2012; Michaels et al., 2014).  Previous 

studies in other frog species (Agalychnis callidryas and Atelopus zeteki) have looked at the 
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overall influence of captivity on amphibian cutaneous bacteria through bacteria community 

comparisons with wild populations and have found significant effects (Antwis et al., 2014; 

Becker et al., 2014). However, there remains a limited understanding about  the influence of 

dietary carotenoids on these cutaneous bacterial communities, with only one study  

investigating these effects (Antwis et al., 2014). Antwis et al. (2014) showed that dietary 

carotenoid supplementation enhanced cutaneous bacterial communities in A. callidryas. 

Results of the present study were consistent with Antwis et al. (2014) as they also found an 

enhanced cutaneous bacterial community associated with carotenoid-supplemented 

individuals. Despite A. callidryas being a much larger species than P. corroboree, bacterial 

species richness and abundance were similar across studies, with each study demonstrating 

higher outcomes in carotenoid-supplemented individuals. Interestingly, despite significant 

size differences, P. corroboree had substantially greater bacterial abundance, suggesting 

that it may provide a more optimal microhabitat for bacteria to reside (Antwis et al., 2014). 

However, these differences may simply be attributed to differences in sampling 

methodology such as swabbing technique, swab storage and culturing techniques. 

Nevertheless, these concordant outcomes further support the concept that dietary 

conditions experienced in captivity may affect the immunity and health of individuals while 

in captivity and post-release.  

However, it is important to note that the carotenoid supplementation results of the 

present study (and of Antwis et al. 2014) are specific to captive individuals, and thus, the 

patterns observed in wild individuals may be different. These differences are likely to be 

primarily a result of individuals having access to environmental reservoirs of bacteria in the 

wild (Becker et al., 2014). Conditions experienced in the wild are likely to fluctuate 

substantially in comparison to stable captive conditions, therefore, further work is required 

to compare cutaneous bacteria communities between wild and captive P. corroboree. This 

would allow for the evaluation of the relative importance of carotenoids to cutaneous 

bacteria in wild, captive and post-release frogs. It would also allow for the quantification of 

the overall effects of captivity on P. corroboree cutaneous bacteria, and would assist in 

characterising common communities of cutaneous bacteria. Wild P. corroboree were not 

available for this study due to there being very few animals left in the wild, but 

opportunities might present themselves in the future if reintroduction programs are 
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successful. Further comparison with other captive populations of P. corroboree would also 

be beneficial to further our understanding of the influence of different captive conditions on 

cutaneous bacteria communities, and frog immunity.  

As expected, a comparison of bacteria species found across different amphibian 

species demonstrates significant differences in community composition (Antwis et al., 2014; 

Kueneman et al., 2014; Michaels et al., 2014; Shaw et al., 2014).  However, similar groupings 

were found at family level, with grouping particularly evident in four families 

(Enterobacteriaceae, Pseudomonadaceae, Moraxellaceae and Xanthomonadaceae) (Antwis 

et al., 2014; Kueneman et al., 2014; Michaels et al., 2014; Shaw et al., 2014). Within the 

present study, three bacterial species (Escherichia coli, Acinetobacter calcoaceticus and 

Unidentified C) were isolated from carotenoid-supplemented frogs, but not un-

supplemented frogs. Pseudomonas luteola was also more commonly identified on 

carotenoid-supplemented frogs and contributed most to dietary treatment dissimilarity. 

Similarly, Antwis et al. (2014) isolated two bacteria species (Staphylococcus sp. and 

Stenotrophomonas sp.) from supplemented frogs, but not un-supplemented frogs. Taken 

together, these findings suggest that carotenoids may be particularly influential on specific 

bacterial species and may allow for growth where it would otherwise not be possible. By 

comparison, only one bacteria species (Unidentified E) was found on un-supplemented 

individuals but not supplemented individuals, suggesting that carotenoids may negatively 

impact the growth or survival of this species.  

However, these treatment-specific species occurred in low numbers of individuals, 

suggesting that their presence or absence did not have a major impact on the overall 

outcomes of this study. Nevertheless, future work would benefit from further investigating 

species-specific effects of carotenoids on bacteria, particularly if these species were found 

to be substantially beneficial to amphibian immunity (such as the ability of J. lividum to 

inhibit growth of B. dendrobatidis) (Becker et al., 2009). As emphasised by these 

comparisons, the cutaneous bacteria associated with amphibians differ vastly between 

species and across geographic locations (Antwis et al., 2014; Kueneman et al., 2014; 

Michaels et al., 2014; Shaw et al., 2014). Further evidence of spatial and temporal 

taxonomic diversity was provided in a recent study which concluded that amphibian 

cutaneous bacteria differs across species, space and life history stages (Kueneman et al., 
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2014). These differences suggest that there may not be a broad spectrum solution when 

relying on amphibian cutaneous bacteria to inhibit pathogen infection. However, in the case 

of P. corroboree, a small habitat range, and reduced genetic diversity, may allow for species-

wide solutions. 

Despite a lack of species-specific literature, bacteria species are known to have a 

variety of interactions with host species, including mutualistic, commensal and pathogenic 

relationships (Bletz et al., 2013; Cramp et al., 2014). Specific bacteria-host interactions in 

this study are not currently known. However in this particular case, there have been no 

previous signs of infection or stress within the captive P. corroboree population used in this 

study, suggesting that bacteria species present have a mutualistic/commensal relationship 

on the host amphibian, at least in their current abundance and relative proportions. 

Although it is important to note that some bacteria species may be opportunistic, thus 

tending towards pathogenic interactions following certain perturbations or density changes 

(Cramp et al., 2014). Developing an understanding of species-specific interactions between 

bacteria and P. corroboree is critical to understanding specific bacterial interaction 

mechanisms which may influence host immunity. For example, identifying the presence of 

specific bacteria species capable of antifungal metabolite production could be relevant to 

improving immunity within amphibian species such as P. corroboree (Becker et al., 2010; 

Becker et al., 2015; Brucker, Baylor, et al., 2008; Lam et al., 2010; Woodhams et al., 2007). 

Therefore, future work performing in-vitro inhibition assays of bacteria and pathogens (e.g. 

B.dendrobatidis) may allow for a targeted enhancement of bacteria species that are known 

to be beneficial to immunity in P. corroboree. This could be further enhanced by 

investigating the composition of bacterial communities in the natural habitat of P. 

corroboree to assess whether certain species are useful for enhancing host immunity. Given 

the limited availability of bacteria within captive husbandry environments, bacteria present 

in the colony may in part originate from live crickets that are bought into the captive facility 

to feed the frogs. Assuming this is the case, it could be argued that   populations of 

beneficial bacteria could also be supplemented through the intentional introduction of 

target species. This could be achieved, for instance, by using substrates such as sphagnum 

moss that are sourced from the frog’s natural range. 
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  It is also important to note that relative abundances of bacteria species can affect 

species interactions between bacteria and their host. Relative abundances within the 

bacteria community were not quantified in this study, but gathering this data in future 

studies could improve our understanding of the prevalence and effects of particular bacteria 

species on the skin of captive P. corroboree. This would also aid in the diagnosis of 

pathogenic microbial infections in captive and wild individuals. Relative abundance data 

would also allow us to better understand competition mechanisms operating within 

cutaneous communities, which potentially result in the dominance of particular species. This 

may be a potential cause for lower species richness within un-supplemented individuals.  It 

is also important to recognise that bacteria culturing methods used in the present study are  

likely to have only captured a fraction of the existing cutaneous community of P. corroboree, 

and thus may not be wholly representative of the bacterial community characterising this 

frog (Kong, 2011). Further investigation using a variety of culture techniques, aided by 

contemporary identification technology such as MALDI-TOF, may allow for a more 

comprehensive assessment of the cutaneous community.  

Despite the results of the present study being in the predicted direction, it is 

necessary to consider the possibility that the findings might be dose specific. Experimental 

individuals received a carotenoid dose of 20 mg/g as tadpoles, but it is currently unknown 

whether this dosage is biologically relevant to P. corroboree. This dose was based on a 

previous study which determined that 20 mg/g dietary carotenoids significantly enhanced 

survival, development and fitness determining traits in Xenopus tropicalis (Ogilvy & Preziosi, 

2012). Post-metamorphic carotenoid dose is not explicitly known due to discrepancies in fly 

and cricket consumption by frogs. However, a dose of 0.25 mg/g to fruit flies was based on a 

previous study which determined that a similar dose of dietary carotenoids significantly 

enhanced female growth, reproductive success and colour in A. callidryas (Ogilvy et al., 

2012a, Ogilvy et al., 2012b). Additionally, carotenoid dose has been shown to have positive 

effects at intermediate levels (Arnold et al., 2010), but potential negative (pro-oxidant) 

effects at high concentrations (Larcombe et al., 2008; Vinkler & Albrecht, 2010). Therefore it 

is important to consider that different doses may have different effects on organismal 

health. However, Antwis et al. (2014) administered a carotenoid dosage of 5.0mg/g to A. 

callidryas that was twenty times higher than Ogilvy et al. (2012b) and four times lower than 
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the present study (and Ogilvy & Preziosi, 2012). This dose was also shown to significantly 

enhance the bacteria community of amphibian skin, as was the dose in the present study. 

Past research on the same captive P. corroboree population has indicated that the present 

dose significantly improves skin colouration but has limited effects on foraging 

performance, survival, growth rate, body size and condition of P. corroboree (Bailey, 2014; 

McInerney, 2014). Taken together, the above outcomes suggest that carotenoid 

supplementation in amphibians may have positive effects over a relatively broad range of 

dosages. Nevertheless, future work would benefit from establishing dose-response 

relationships to allow for the optimisation of carotenoid supplementation in captivity. 

Future studies would also benefit from gaining an understanding of natural carotenoid 

levels received by P. corroboree, which would allow for ecologically relevant carotenoid 

supplementation in captivity. 

In summary, this study provides empirical evidence to support the hypothesis that 

dietary carotenoid supplementation enhances the cutaneous bacteria community of P. 

corroboree. This is only the second study examining these associations in amphibians and 

therefore would be complemented by further investigation into the influence of captive 

conditions on immune function in P. corroboree and other threatened amphibians. As 

mentioned  previously, the present study was based on the assumption that an optimal 

bacteria community is one with high levels of diversity and abundance (Longo et al., 2015). 

Despite being well supported, this theory is yet to be investigated thoroughly in amphibian 

cutaneous communities. Additionally, P. corroboree is considered a critically endangered 

species by the IUCN, and thus, individuals available for this study were limited to our 

experimental population. However, present research outcomes justify further research 

incorporating other captive and wild populations to better understand dietary carotenoid 

mechanisms operating within P. corroboree cutaneous bacteria communities. Despite these 

limitations, this study provides a substantial building block for further investigation into 

optimal ex-situ conditions for maximising the mutualistic properties of cutaneous bacterial 

communities. This is critical because these captive conditions can have a direct effect on the 

immune capabilities of P. corroboree within captivity, and may also significantly influence 

immune function and survivorship post-release. 
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5. Conclusion 

This study characterised the cutaneous bacterial community of the critically endangered 

Southern Corroboree Frog (Pseudophryne corroboree) in an ex-situ context and tested the 

effect of dietary carotenoid supplementation on these cutaneous bacterial populations. 

Dietary carotenoid availability was manipulated throughout juvenile and post-metamorphic 

life stages to determine whether dietary carotenoid supplementation enhanced abundance, 

species richness and affected overall community composition of cutaneous bacterial 

communities. The provision of dietary carotenoid significantly increased abundance and 

species richness and affected overall community composition of bacteria associated with 

the skin of P. corroboree. These findings provide support for the hypothesis that dietary 

carotenoid supplementation can enhance the cutaneous bacteria community of 

amphibians. The present study provides evidence to suggest that captive conditions such as 

diet can potentially influence the immune function of amphibians in captivity and thus may 

also impact on post-release health.  

These outcomes are likely to be a result of bacterial-mucous interactions on the skin 

of the amphibian host promoting the growth, survival and reproductive capabilities of 

cutaneous bacteria. Additionally, the results obtained in the present study may be a product 

of carotenoid-enhanced survival of bacteria upon ingestion by the host as a result of 

amphibian sloughing processes. These explanations are based on the assumption that an 

optimal bacteria community is one with high levels of diversity and abundance, but this is 

yet to be confirmed for amphibian cutaneous communities. Placed in a broad context, this is 

only the second empirical study to examine the effects of dietary carotenoid 

supplementation on amphibian cutaneous bacteria. Consequently, the findings of the 

present study have helped lay the foundations for further investigation into the influence of 

captive conditions on amphibian cutaneous bacteria. Outcomes of the present study build 

upon a growing body of knowledge regarding the development of standardised ex-situ 

breeding conditions for endangered amphibians. These conditions are intended to maximise 

the mutualistic properties of cutaneous bacterial communities, thus improving the immune 

capabilities of amphibians both within captivity and upon release, and potentially leading to 

the suppression of amphibian pathogens such as B.dendrobatidis. 



38 
 

6. References 

1) Aguilera, E & Amat, JA (2007), ‘Carotenoids, immune response and the expression of 

sexual ornaments in male greenfinches (Carduelis chloris)’, Naturwissenschaften, 94, no. 11, 

pp. 895-902. 

2) Alonso-Alvarez, C, Pérez‐Rodríguez, L, Mateo, R, Chastel, O & Vinuela, J (2008), ‘The 

oxidation handicap hypothesis and the carotenoid allocation trade‐off’, Journal of 

Evolutionary Biology, 21, no. 6, pp. 1789-97. 

3) Alonso‐Alvarez, C, Bertrand, S, Devevey, G, Gaillard, M, Prost, J, Faivre, B & Sorci, G 

(2004), ‘An experimental test of the dose‐dependent effect of carotenoids and immune 

activation on sexual signals and antioxidant activity’, The American Naturalist, 164, no. 5, 

pp. 651-9. 

4) Antwis, RE, Haworth, RL, Engelmoer, DJP, Ogilvy, V, Fidgett, AL & Preziosi, RF (2014), ‘Ex 

situ Diet Influences the Bacterial Community Associated with the Skin of Red-Eyed Tree 

Frogs (Agalychnis callidryas)’, PLoS ONE, 9, no. 1, p. e85563. 

5) Antwis, RE, Preziosi, RF, Harrison, XA & Garner, TW (2015), ‘Amphibian symbiotic bacteria 

do not show a universal ability to inhibit growth of the global panzootic lineage of 

Batrachochytrium dendrobatidis’, Applied and Environmental Microbiology, 81, no. 11, pp. 

3706-11. 

6) Arnold, KE, Larcombe, SD, Ducaroir, L & Alexander, L (2010), ‘Antioxidant status, flight 

performance and sexual signalling in wild-type parrots’, Behavioral Ecology and 

Sociobiology, 64, no. 11, pp. 1857-66. 

7) Bailey, J (2014), ‘The effect of carotenoid availability at different life stages on the 

survival, growth, condition and colouration of the Southern Corroboree frog (Pseudophryne 

corroboree)’, Bachelor of Science (Honours) Thesis, University of Wollongong. 

8) Becker, MH, Brucker, RM, Schwantes, CR, Harris, RN & Minbiole, KP (2009), ‘The 

bacterially produced metabolite violacein is associated with survival of amphibians infected 

with a lethal fungus’, Applied and Environmental Microbiology, 75, no. 21, pp. 6635-8. 



39 
 

9) Becker, MH & Harris, RN (2010), ‘Cutaneous bacteria of the redback salamander prevent 

morbidity associated with a lethal disease’, PLoS ONE, 5, no. 6, p. e10957. 

10) Becker, MH, Richards-Zawacki, CL, Gratwicke, B & Belden, LK (2014), ‘The effect of 

captivity on the cutaneous bacterial community of the critically endangered Panamanian 

golden frog (Atelopus zeteki)’, Biological Conservation, 176, pp. 199-206. 

11) Becker, MH, Walke, JB, Cikanek, S, Savage, AE, Mattheus, N, Santiago, CN, Minbiole, 

KPC, Harris, RN, Belden, LK & Gratwicke, B (2015), Composition of symbiotic bacteria 

predicts survival in Panamanian golden frogs infected with a lethal fungus, Proceedings B, 

282, pp. 183-192. 

12) Belden, LK & Harris, RN (2007), ‘Infectious diseases in wildlife: the community ecology 

context’, Frontiers in Ecology and the Environment, 5, no. 10, pp. 533-539. 

13) Bessen, DE, Manoharan, A, Luo, F, Wertz, JE & Robinson, DA (2005), ‘Evolution of 

transcription regulatory genes is linked to niche specialization in the bacterial pathogen 

Streptococcus pyogenes’, Journal of Bacteriology, 187, no. 12, pp. 4163-72. 

14) Bletz, MC, Loudon, AH, Becker, MH, Bell, SC, Woodhams, DC, Minbiole, KP & Harris, RN 

(2013), ‘Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of 

effective probiotics and strategies for their selection and use’, Ecology letters, 16, no. 6, pp. 

807-20. 

15) Blount, JD & Matheson, SM (2006), ‘Effects of carotenoid supply on escape flight 

responses in zebra finches, Taeniopygia guttata’, Animal Behaviour, 72, no. 3, pp. 595-601. 

16) Boyen, F, Eeckhaut, V, Van Immerseel, F, Pasmans, F, Ducatelle, R & Haesebrouck, F 

(2009), ‘Quorum sensing in veterinary pathogens: mechanisms, clinical importance and 

future perspectives’, Veterinary microbiology, 135, no. 3, pp. 187-95. 

17) Brannelly, LA, Skerratt, LF & Berger, L (2015), ‘Treatment trial of clinically ill Corroboree 

Frogs with chytridiomycosis with two triazole antifungals and electrolyte therapy’, 

Veterinary Research Communications, 39, no. 3, pp. 179-87. 



40 
 

18) Brizzi, R, Delfino, G & Pellegrini, R (2002), ‘Specialized mucous glands and their possible 

adaptive role in the males of some species of Rana (Amphibia, Anura)’, Journal of 

Morphology, 254, no. 3, pp. 328-41. 

19) Brucker, RM, Baylor, CM, Walters, RL, Lauer, A, Harris, RN & Minbiole, KP (2008), ‘The 

identification of 2, 4-diacetylphloroglucinol as an antifungal metabolite produced by 

cutaneous bacteria of the salamander Plethodon cinereus’, Journal of Chemical Ecology, 34, 

no. 1, pp. 39-43. 

20) Brucker, RM, Harris, RN, Schwantes, CR, Gallaher, TN, Flaherty, DC, Lam, BA & Minbiole, 

KP (2008), ‘Amphibian chemical defense: antifungal metabolites of the microsymbiont 

Janthinobacterium lividum on the salamander Plethodon cinereus’, Journal of Chemical 

Ecology, 34, no. 11, pp. 1422-9. 

21) Bureau of Meteorology (2015), 'Observations for Khancoban', viewed 10/5/2015, 

http://www.bom.gov.au/places/nsw/selwyn/observations/khancoban/. 

22) Butler, MW & McGraw, KJ (2012), ‘Differential effects of early-and late-life access to 

carotenoids on adult immune function and ornamentation in mallard ducks (Anas 

platyrhynchos)’PLOS one, 7, no. 5, pp. 1-10. 

23) Chew, BP & Park, JS (2004), ‘Carotenoid action on the immune response’, The Journal of 

Nutrition, 134, no. 1, pp. 257S-61S. 

24) Cogdell, RJ & Frank, HA (1987), ‘How carotenoids function in photosynthetic bacteria’, 

Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics, 895, no. 2, pp. 63-79. 

25) Cothran, RD, Gervasi, SS, Murray, C, French, BJ, Bradley, PW, Urbina, J, Blaustein, AR & 

Relyea, RA (2015), ‘Carotenoids and amphibians: effects on life history and susceptibility to 

the infectious pathogen, Batrachochytrium dendrobatidis’, Conservation Physiology, 3, no. 

1, p. cov005. 

26) Cramp, RL, McPhee, RK, Meyer, EA, Ohmer, ME & Franklin, CE (2014), ‘First line of 

defence: the role of sloughing in the regulation of cutaneous microbes in frogs’, 

Conservation Physiology, 2, no. 1, p. cou012. 

http://www.bom.gov.au/places/nsw/selwyn/observations/khancoban/


41 
 

27) Culp, CE, Falkinham III, JO & Belden, LK (2007), ‘Identification of the natural bacterial 

microflora on the skin of eastern newts, bullfrog tadpoles and redback salamanders’, 

Herpetologica, 63, no. 1, pp. 66-71. 

28) Daly, JW (1998), ‘Thirty years of discovering arthropod alkaloids in amphibian skin’, 

Journal of Natural Products, 61, no. 1, pp. 162-72. 

29) De Boer, W, Folman, LB, Summerbell, RC & Boddy, L (2005), ‘Living in a fungal world: 

impact of fungi on soil bacterial niche development’, FEMS microbiology reviews, 29, no. 4, 

pp. 795-811. 

30) Eisenhauer, N, Schulz, W, Scheu, S & Jousset, A (2013), ‘Niche dimensionality links 

biodiversity and invasibility of microbial communities’, Functional Ecology, 27, no. 1, pp. 

282-8. 

31) Fraser, PD & Bramley, PM (2004), ‘The biosynthesis and nutritional uses of carotenoids’, 

Progress in lipid research, 43, no. 3, pp. 228-65. 

32) Gallo, RL & Nakatsuji, T (2011), ‘Microbial symbiosis with the innate immune defense 

system of the skin’, Journal of Investigative Dermatology, 131, no. 10, pp. 1974-80. 

33) Gascon, C (2007), 'Amphibian conservation action plan: proceedings IUCN/SSC 

Amphibian Conservation Summit', IUCN. 

34) Goodwin, TW (1986), ‘Metabolism, Nutrition, and Function of Carotenoids’, Annual 

Review of Nutrition, 6, no. 1, pp. 273-97. 

35) Gosner, KL (1960), ‘A simplified table for staging anuran embryos and larvae with notes 

on identification’, Herpetologica, pp. 183-90. 

36) Harris, RN, Brucker, RM, Walke, JB, Becker, MH, Schwantes, CR, Flaherty, DC, Lam, BA, 

Woodhams, DC, Briggs, CJ, Vredenburg, VT & Minbiole, KPC (2009), ‘Skin microbes on frogs 

prevent morbidity and mortality caused by a lethal skin fungus’, ISME J, 3, no. 7, pp. 818-24. 

37) Herbold, B & Moyle, PB (1986), ‘Introduced species and vacant niches’, American 

Naturalist, pp. 751-60. 



42 
 

38) Hero, J-M, Morrison, C, Gillespie, G, Roberts, JD, Newell, D, McDonald, K, Lemckert, F, 

Mahony, M, Osborne, W & Hines, H (2006), ‘Overview of the conservation status of 

Australian frogs’, Pacific Conservation Biology, 12, no. 4, pp. 313-20. 

39) Holden, WM, Reinert, LK, Hanlon, SM, Parris, MJ & Rollins-Smith, LA (2015), 

‘Development of antimicrobial peptide defenses of southern leopard frogs, Rana 

sphenocephala, against the pathogenic chytrid fungus, Batrachochytrium dendrobatidis’, 

Developmental & Comparative Immunology, 48, no. 1, pp. 65-75. 

40) Hunter, DA, Speare, R, Marantelli, G, Mendez, D, Pietsch, R & Osborne, W (2010), 

‘Presence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in threatened 

corroboree frog populations in the Australian Alps’, Diseases of Aquatic Organisms, 92, no. 

2-3, pp. 209-16. 

41) IUCN 2015, Amphibians on the IUCN Red List-Geographic Patterns, viewed 10/09/2015 

2015, http://www.iucnredlist.org/initiatives/amphibians/analysis/geographic-patterns. 

42) Johnson, KH, Vogt, KA, Clark, HJ, Schmitz, OJ & Vogt, DJ (1996), ‘Biodiversity and the 

productivity and stability of ecosystems’, Trends in Ecology & Evolution, 11, no. 9, pp. 372-7. 

43) Kirti, K, Amita, S, Priti, S, Mukesh Kumar, A & Jyoti, S (2014), ‘Colorful World of 

Microbes: Carotenoids and Their Applications’, Advances in Biology, 2014, p. 13. 

44) Kong, HH (2011), ‘Skin microbiome: genomics-based insights into the diversity and role 

of skin microbes’, Trends in Molecular Medicine, 17, no. 6, pp. 320-8. 

45) Kueneman, JG, Parfrey, LW, Woodhams, DC, Archer, HM, Knight, R & McKenzie, VJ 

(2014), ‘The amphibian skin‐associated microbiome across species, space and life history 

stages’, Molecular Ecology, 23, no. 6, pp. 1238-50. 

46) Lam, BA, Walke, JB, Vredenburg, VT & Harris, RN (2010), ‘Proportion of individuals with 

anti-Batrachochytrium dendrobatidis skin bacteria is associated with population persistence 

in the frog Rana muscosa’, Biological Conservation, 143, no. 2, pp. 529-31. 

47) Lannoo, MJ (2008), 'Malformed frogs: the collapse of aquatic ecosystems', University of 

California Press, Berkely. 

http://www.iucnredlist.org/initiatives/amphibians/analysis/geographic-patterns


43 
 

48) Larcombe, S, Tregaskes, C, Coffey, J, Stevenson, A, Alexander, L & Arnold, K (2008), ‘The 

effects of short-term antioxidant supplementation on oxidative stress and flight 

performance in adult budgerigars Melopsittacus undulatus’, Journal of Experimental 

Biology, 211, no. 17, pp. 2859-64. 

49) Lauer, A, Simon, MA, Banning, JL, André, E, Duncan, K & Harris, RN (2007), ‘Common 

Cutaneous Bacteria from the Eastern Red-Backed Salamander Can Inhibit Pathogenic Fungi’, 

Copeia, 2007, no. 3, pp. 630-40. 

51) Lauer, A, Simon, MA, Banning, JL, Lam, BA & Harris, RN (2007), ‘Diversity of cutaneous 

bacteria with antifungal activity isolated from female four-toed salamanders’, ISME J, 2, no. 

2, pp. 145-57. 

52) Li, Y-H & Tian, X (2012), ‘Quorum sensing and bacterial social interactions in biofilms’, 

Sensors, 12, no. 3, pp. 2519-38. 

53) Liu, GY, Essex, A, Buchanan, JT, Datta, V, Hoffman, HM, Bastian, JF, Fierer, J & Nizet, V 

(2005), ‘Staphylococcus aureus golden pigment impairs neutrophil killing and promotes 

virulence through its antioxidant activity’, The Journal of Experimental Medicine, 202, no. 2, 

pp. 209-15. 

54) Longo, AV, Savage, AE, Hewson, I & Zamudio, KR (2015), ‘Seasonal and ontogenetic 

variation of skin microbial communities and relationships to natural disease dynamics in 

declining amphibians’, Royal Society Open Science, 2, no. 7, p. 140377. 

55) Loudon, AH, Holland, JA, Umile, TP, Burzynski, EA, Minbiole, KP & Harris, RN (2014), 

‘Interactions between amphibians' symbiotic bacteria cause the production of emergent 

anti-fungal metabolites’, Frontiers in Microbiology, 5, pp. 1-8. 

56) Maiani, G, Periago Castón, MJ, Catasta, G, Toti, E, Cambrodón, IG, Bysted, A, Granado‐

Lorencio, F, Olmedilla‐Alonso, B, Knuthsen, P & Valoti, M (2009), ‘Carotenoids: actual 

knowledge on food sources, intakes, stability and bioavailability and their protective role in 

humans’, Molecular Nutrition & Food Research, 53, no. S2, pp. S194-S218. 

57) Martinez-Alvarez, RM, Morales, AE & Sanz, A (2005), ‘Antioxidant defenses in fish: biotic 

and abiotic factors’, Reviews in Fish Biology and Fisheries, 15, no. 1-2, pp. 75-88. 



44 
 

58) Matos, A, Kerkhof, L & Garland, J (2005), ‘Effects of microbial community diversity on 

the survival of Pseudomonas aeruginosa in the wheat rhizosphere’, Microbial Ecology, 49, 

no. 2, pp. 257-64. 

59) McGraw, K & Hill, G (2006), ‘Mechanics of carotenoid-based coloration’, Bird Coloration, 

1, pp. 177-242. 

60) McInerney, E (2014), ‘The influence of carotenoid supplementation at different life-

stages on the foraging performance and antipredatory behaviour of the Southern 

Corroboree Frog (Pseudophryne corroboree)’, Honours thesis, University of Wollongong. 

61) Meyer, EA, Cramp, RL, Bernal, MH & Franklin, CE (2012), ‘Changes in cutaneous 

microbial abundance with sloughing: possible implications for infection and disease in 

amphibians’, Diseases of Aquatic Organisms, 101, no. 3, pp. 235-42. 

62) Michaels, CJ, Antwis, RE & Preziosi, RF (2014), ‘Impact of plant cover on fitness and 

behavioural traits of captive red-eyed tree frogs (Agalychnis callidryas)’, PLoS ONE, 9, no. 4. 

63) Miller, EA, Green, SL, Otto, GM & Bouley, DM (2001), ‘Suspected hypovitaminosis A in a 

colony of captive green anoles (Anolis carolinensis)’, Journal of the American Association for 

Laboratory Animal Science, 40, no. 2, pp. 18-20. 

64) Muletz, CR, Myers, JM, Domangue, RJ, Herrick, JB & Harris, RN (2012), ‘Soil 

bioaugmentation with amphibian cutaneous bacteria protects amphibian hosts from 

infection by Batrachochytrium dendrobatidis’, Biological Conservation, 152, pp. 119-26. 

65) Nalven, S (2013), ‘Investigating the Role of Epibiotic Bacteria in Defense Against 

Chytridiomycosis in the Green Frog, Lithobates clamitans’ Honours Thesis, Colby College. 

66) OEH (NSW) (2012), National Recovery Plan for the Southern Corroboree Frog 

Pseudophryne corroboree and Northern Corroboree Frog Pseudophryne pengilleyi, Office of 

Environment and Heritage. 

67) Ogilvy, V, Fidgett, AL & Preziosi, RF (2012a), ‘Differences in carotenoid accumulation 

among three feeder‐cricket species: implications for carotenoid delivery to captive 

insectivores’, Zoo Biology, 31, no. 4, pp. 470-8. 



45 
 

68) Ogilvy, V & Preziosi, R (2012), ‘Can carotenoids mediate the potentially harmful effects 

of ultraviolet light in Silurana (Xenopus) tropicalis larvae?’, Journal of Animal Physiology and 

Animal Nutrition, 96, no. 4, pp. 693-9. 

69) Ogilvy, V, Preziosi, R & Fidgett, A (2012b), ‘A brighter future for frogs? The influence of 

carotenoids on the health, development and reproductive success of the red‐eye tree frog’, 

Animal Conservation, 15, no. 5, pp. 480-8. 

70) Osborne, W (1989), ‘Distribution, Relative Abundance and Conservation Status of 

Corroboree Frogs, Pseudophrne corroboree Moore (Anura, Myobatrachidae)’, Wildlife 

Research, 16, no. 5, pp. 537-47. 

71) Osbourne, WS (1991), 'The biology and management of the corroboree frog 

(Pseudophryne corroboree)', Office of Environment and Heritage, Australia. 

72) Pessier, AP 2002, ‘An overview of amphibian skin disease’, Seminars in Avian and Exotic 

Pet Medicine, vol. 11, pp. 162-74. 

73) Rahman, MM, Kelley, JL & Evans, JP (2013), ‘Condition‐dependent expression of pre‐and 

postcopulatory sexual traits in guppies’, Ecology and Evolution, 3, no. 7, pp. 2197-213. 

74) Rollins-Smith, L & Woodhams, DC (2011), ‘amphibian immunity’, Ecoimmunology, p. 92. 

75) Rosenblum, EB, Poorten, TJ, Settles, M, Murdoch, GK, Robert, J, Maddox, N & Eisen, MB 

(2009), ‘Genome-wide transcriptional response of Silurana (Xenopus) tropicalis to infection 

with the deadly chytrid fungus’, PLoS ONE, 4, no. 8, p. e6494. 

76) Salmond, G, Bycroft, B, Stewart, G & Williams, P (1995), ‘The bacterial ‘enigma’: cracking 

the code of cell–cell communication’, Molecular Microbiology, 16, no. 4, pp. 615-24. 

77) Shaw, SD, Berger, L, Bell, S, Dodd, S, James, TY, Skerratt, LF, Bishop, PJ & Speare, R 

(2014), ‘baseline cutaneous bacteria of free-living new zealand native frogs (leiopelma 

archeyi and leiopelma hochstetteri) and implications for their role in defense against the 

amphibian chytrid (batrachochytrium dendrobatidis)’, Journal of Wildlife Diseases, 50, no. 4, 

pp. 723-32. 



46 
 

78) Stice, MJ & Briggs, CJ (2010), ‘Immunization is ineffective at preventing infection and 

mortality due to the amphibian chytrid fungus Batrachochytrium dendrobatidis’, Journal of 

Wildlife Diseases, 46, no. 1, pp. 70-7. 

79) Svensson, PA & Wong, B (2011), ‘Carotenoid-based signals in behavioural ecology: a 

review’, Behaviour, 148, no. 2, pp. 131-89. 

80) Van Elsas, JD, Chiurazzi, M, Mallon, CA, Elhottovā, D, Krištůfek, V & Salles, JF (2012), 

‘Microbial diversity determines the invasion of soil by a bacterial pathogen’, Proceedings of 

the National Academy of Sciences, 109, no. 4, pp. 1159-64. 

81) Vershinin, A (1999), ‘Biological functions of carotenoids‐diversity and evolution’, 

Biofactors, 10, no. 2‐3, pp. 99-104. 

82) Vinkler, M & Albrecht, T (2010), ‘Carotenoid maintenance handicap and the physiology 

of carotenoid-based signalisation of health’, Naturwissenschaften, 97, no. 1, pp. 19-28. 

83) Wassersug, RJ & Wilbur, HM (1974), ‘Evolution of Anuran Life Cycles’, Science, 185, no. 

4148, pp. 377-8. 

84) Weldon, PJ, Demeter, BJ & Rosscoe, R (1993), ‘A survey of shed skin-eating 

(dermatophagy) in amphibians and reptiles’, Journal of Herpetology, pp. 219-28. 

85) Wiedenbeck, J & Cohan, FM (2011), ‘Origins of bacterial diversity through horizontal 

genetic transfer and adaptation to new ecological niches’, FEMS microbiology reviews, 35, 

no. 5, pp. 957-76. 

86) Wiggins, PJ, Smith, JM, Harris, RN & Minbiole, KP (2011), ‘Gut of red-backed 

salamanders (Plethodon cinereus) may serve as a reservoir for an antifungal cutaneous 

bacterium’, Journal of Herpetology, 45, no. 3, pp. 329-32. 

87) Woodhams, DC, Vredenburg, VT, Simon, M-A, Billheimer, D, Shakhtour, B, Shyr, Y, 

Briggs, CJ, Rollins-Smith, LA & Harris, RN (2007), ‘Symbiotic bacteria contribute to innate 

immune defenses of the threatened mountain yellow-legged frog, Rana muscosa’, Biological 

Conservation, 138, no. 3–4, pp. 390-8. 

 



47 
 

7. Appendices 

7.1. Appendix 1: Determination of appropriate dilution for bacterial 

suspension 

 

i) Aim 

A preliminary study was conducted to determine the optimum bacterial suspension dilution 

for growth and accurate quantification of P. corroboree cutaneous bacterial community. 

 

ii) Methods 

Sample Collection 

Captive bred frogs were selected from a captive population within the University of 

Wollongong, Australia in April 2015. Frogs were selected from two dietary treatment 

groups: treatment 1 receiving carotenoid supplementation as juveniles and fed on a basal 

diet with no dietary carotenoid supplementation as adults (n = 12); and treatment 2 

receiving a basal diet with no dietary carotenoid supplementation as juveniles and dietary 

carotenoid supplementation as adults (n = 12). Due to limited individuals available from the 

captive population for the main experiment, the treatment groups used in pilot experiments 

differ to those of the main experiment. However, given the preliminary purpose of this pilot 

experimentation, these additional treatment groups were a sufficient proxy for main 

experiment treatment groups. 

Frogs were removed from individual housing containers) rinsed once with 30mL R.O. 

(Reverse Osmosis) water to remove transient bacteria, ensuring minimal handling to 

prevent loss of cutaneous bacteria. Individuals were handled with separate sterile gloves 

(Skinshield powder free latex gloves, Livingstone International, Australia) and contacted 

surfaces were sterile to prevent cross contamination of cutaneous bacteria (Antwis et al., 

2014; Lauer, Simon, Banning, Lam, et al., 2007). 
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Cutaneous bacteria samples were collected using sterile collection swabs 

(Livingstone International Pty Ltd, Australia) using a swabbing procedure adapted from 

Shaw et al., 2014, Flechas et al., 2012 and Antwis et.al 2014. Frogs were swabbed 

(1swab/frog) following the same protocol as described in section 2.5. Swabs were placed in 

the designated storage tube and individual frog details were recorded (Frog ID number, 

Dietary treatment and Date of sample collection). Swabs were sealed in zip lock bags and 

stored at 20°C within a small esky while being transferred to the lab for processing (storage 

time = 10 hours). Particular care was taken to ensure the frogs were not harmed throughout 

the process and individuals were monitored post-swabbing for 4 weeks to ensure there 

were no signs of distress/injury as a result of the swabbing procedure. 

Bacterial Culture 

Using aseptic technique within a biosafety cabinet (Biological Safety Cabinet Class II, Email 

Westinghouse Pty Ltd, Australia), each swab was removed from the transport media and the 

swab tip cut off into a 1.5mL sterile Eppendorf tube (Eppendorf, Germany) containing 

1000μL 0.9% sterile NaCl (Antwis et al., 2014; Nalven, 2013). Tubes containing swab tips 

were vortexed for 30 seconds to disassociate bacteria from the tip (Antwis et al., 2014). 

Swab tips were then removed from the tubes using sterile tweezers and solutions were 

vortexed for a further 5 seconds to ensure a homogenous bacterial suspension prior to 

serial dilution and plating. A serial dilution was performed to produce 4 bacterial 

suspensions per swab: 101 undiluted solution; 10-1; 10-10; 10-100 (total suspension volume =   

1000μL). All solutions were vortexed for a further 5 seconds immediately before plating. 

Each dilution per swab was plated by transferring 100μL aliquot of bacterial 

suspension to an LB (Luria Broth) nutrient agar media plate (100mm diameter) (AMRESCO®, 

USA) and spread evenly over the surface using a sterile plate spreader. One randomised 

additional plate was prepared per frog.  Plates were allowed to dry for 10 minutes within 

hood prior to being inverted and sealed with parafilm® (Bemis Company, Inc., USA). Plates 

were incubated at 20°C (as determined by a pilot study-Appendix 2) and checked every 24±1 

hours. Photographs were taken once growth had occurred with the aid of a backlight, 

including scale and appropriate label (frog ID, diet treatment, incubation time, incubation 

temperature and date). Photographs were analysed using ImageJ (National Institute of 
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Health, USA)) to obtain total abundance counts of CFU’s (Colony Forming Units). Monitoring 

of growth was concluded once CFU numbers were consistent over three consecutive days, 

growth became too extensive or fungi obscured bacteria colonies.  

Data analysis 

Average bacterial abundance for each serial dilution was quantified and compared against 

all dilutions using an Analysis of Variance (ANOVA) model. Post-hoc Tukey’s HSD analysis 

were used to determine differences between treatments. Prior to running the model, the 

assumptions of analysis were tested using Shapiro-Wilk’s normality test and the Levene’s 

test for homoscedasticity. No data transformations were required. Optimal bacterial growth 

was selected on the basis of total CFU range within 25-300 CFU (Sutton, 2011). Statistical 

analysis to determine optimal dilution was not possible. 

 

iii) Results 

Bacterial abundance was significantly different between dilution factors (ANOVA: F3,20  =  

12.6255, p = 0.0001). The 101 undiluted solution ranged from 23 CFU/plate to 280 CFU/plate 

(MEAN ± SEM = 142.17±37.50). The 10-1 dilution ranged from 2 CFU/plate to 47 CFU/plate 

(MEAN ± SEM = 24.167±7.10). The 10-2 and 10-3 dilutions had negligible bacterial growth 

(MEAN ± SEM = 2±0.86, 0.167±0.167). Accurate CFU counts are achieved where 25-300 CFU 

grow per plate (Sutton, 2011), average CFU counts were within this range at dilutions of 101 

and 10-1 (Figure 7). 
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iv) Conclusions 

Optimal bacterial growth occurred on both the 101 and 10-1dilution bacterial solutions. 

Given that bacterial CFU is highly variable and accurate counts can only be obtained within a 

specific range (25-300 CFU), each main experiment frog swab should be plated in replicate 

using both of these solutions. This will ensure that variability in bacterial growth will not 

prevent this study from obtaining accurate and viable CFU counts. 
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Figure 7. Average bacterial abundance (colony forming units (CFU) per mL) ± SEM 

isolated from the skin of P. corroboree across four dilution factors. CFU counts are 

considered sufficiently accurate between 25-300 units (Sutton, 2011). CFU/mL is 

equivalent to total culturable CFU obtained from sampling of each individual. 

Letters (A, B) represent outcome of a post-hoc Tukey’s HSD test. 
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7.2. Appendix 2: Determination of incubation temperature and time 

 

i) Aim 

A preliminary study was conducted to determine the optimum incubation temperature for 

growth of P. corroboree cutaneous bacterial community.  This study also provides 

preliminary information to determine the most appropriate incubation time for the 

cutaneous bacterial community. 

 

ii) Methods 

Sample Collection 

Captive bred frogs were selected from a captive population within the University of 

Wollongong, Australia in April 2015. Frogs were selected from 2 dietary treatment groups: 

treatment 1 receiving carotenoid supplementation as juveniles and fed on a basal diet with 

no dietary carotenoid supplementation as adults (n = 12); and treatment 2 receiving a basal 

diet with no dietary carotenoid supplementation as juveniles and dietary carotenoid 

supplementation as adults (n = 12). Due to limited individuals available from the captive 

population for the main experiment, the treatment groups used in pilot experiments differ 

to those of the main experiment. However, given the preliminary purpose of this pilot 

experimentation, these additional treatment groups were a sufficient proxy for main 

experiment treatment groups.  

Frogs were removed from individual housing containers and rinsed once with 30mL 

R.O. (Reverse Osmosis) water to remove transient bacteria, ensuring minimal handling to 

prevent loss of cutaneous bacteria (Kueneman et al., 2014; Lauer et al., 2007; Shaw et al., 

2014). Individuals were handled with separate sterile gloves (Skinshield powder free latex 

gloves, Livingstone International, Australia) and contacted surfaces were sterile to prevent 

cross contamination of cutaneous bacteria (Antwis et al., 2014; Lauer et al., 2007). 

Cutaneous bacteria samples were collected via sterile collection swabs (Livingstone 

International Pty Ltd, Australia) using a swabbing procedure adapted from Shaw et al., 2014, 
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Flechas et al., 2012 and Antwis et.al 2014. Frogs were swabbed (1swab/frog) following the 

same protocol as described in section 2.5.1. Swabs were placed in the designated storage 

tube and individual frog details were recorded (Frog ID number, Dietary treatment and Date 

of sample collection). Swabs were sealed in zip lock bags and stored at 20°C within a small 

esky while being transferred to the lab for processing (storage time  =  10 hours). Particular 

care was taken to ensure the frogs were not harmed throughout the process and individuals 

were monitored post-swabbing for four weeks to ensure there were no signs of 

distress/injury as a result of the swabbing procedure. 

Bacterial Culture 

Each swab was plated separately on LB (Luria Broth) nutrient agar media plate (100mm 

diameter) (AMRESCO®, USA) by streaking the swab directly across the agar surface 10 times 

in a broad zig-zag pattern. Plates were then inverted and sealed with parafilm® (Bemis 

Company, Inc., USA) prior to being randomly assigned to one of four temperature 

treatments 5°C, 10°C, 20°C and 30°C. Three frogs from each dietary treatment were 

assigned to each temperature category. Plates were checked every 24±1 hours and 

photographs were taken once growth had occurred with the aid of a backlight, including 

scale and appropriate label (frog ID, diet treatment, incubation time, incubation 

temperature and date). Every 24 hours, total bacterial abundance (CFU/streak) and bacterial 

species richness was quantified. Monitoring of growth was concluded once CFU numbers 

were consistent over three consecutive days, growth became too extensive or fungi 

obscured bacteria colonies. Peak bacterial growth was recorded and used for subsequent 

comparative analysis (occurred on various days for different temperature treatments–refer 

to figure 10). Optimum incubation temperature was selected based on a combination of 

three factors: 

1) High bacterial abundance 

2) High bacterial diversity (species richness) 

3) Time efficiency of bacterial growth 
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Data Analysis 

At optimal bacterial growth, average bacterial abundance (per swab) for each temperature 

treatment was quantified and compared against each temperature treatment using an 

Analysis of Variance (ANOVA) model.  Average bacterial species richness for each 

temperature treatment was quantified and comparison amongst groups was also done 

using an ANOVA model. Post-hoc Tukey’s HSD analyses were used to determine differences 

between treatments. Prior to running the models, the assumptions of analysis were tested 

using Shapiro-Wilk’s normality test and the Levene’s test for homoscedasticity. No data 

transformations were required. Differences between groups were statistically analysed (as 

above) but selection of optimal temperature treatment was performed on the basis of 

highest abundance and diversity measurements. 

 Average bacterial growth for each temperature treatment was quantified but this 

data could not be statistically assessed. However, this data was used for a direct comparison 

of average bacterial growth for each temperature treatment as a function of time so as to 

allow for the selection of an incubation temperature which promoted maximum growth in a 

time efficient manner. 

 

 

iii) Results 

Total cutaneous bacterial abundance differed between incubation temperature treatments 

(ANOVA: F3,20  =  3.9804, p  =  0.0225; figure 8). The 10oC and 20oC temperature treatments 

promoted significantly more bacterial growth (CFU/streak) (MEAN ±SEM  =  118.33±34.96, 

90.83±28.51, respectively) than the 5oC temperature treatment (MEAN ± SEM  =  

44.83±21.35). A lack of bacterial CFU growth was observed in the 30oC temperature 

treatment due to an overgrowth of fungi-like species and biofilm species.  
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Figure 8. The effect of incubation temperature (T = 5, 10, 20 & 30 oC) on bacterial 

abundance (Colony forming units (CFU) per streak) ± SEM of the culturable 

cutaneous bacterial community of P. corroboree (n = 6 frogs per treatment) at 72 

hours. Letters (A, B, C) represent outcome of post-hoc Tukey’s HSD test. CFU per 

streak is equivalent to CFU obtained from each individual. 

 

 

 

 

 

 

 

 

Bacterial species richness differed between incubation temperature treatments 

(ANOVA: F3,20 = 10.7011, p = 0.0002; figure 9). The 5oC, 10oC and 20oC temperature 

treatments supported a higher species diversity (MEAN ±SEM = 2.33±0.49, 2.33±0.61 and 

3.5±0.43 respectively) than the 30oC (MEAN ±SEM = 1.33±0.21). A lack of bacterial growth 

was observed in the 30oC temperature treatment due to an overgrowth of fungi-like species 

and biofilm species. Average bacterial species richness was highest at 20oC (MEAN ± SEM =   

3.50 ± 0.43), above all other incubation temperature treatments (5, 10 & 30oC), however 

this was only statistically significant compared to the 30oC temperature treatment (Tukey’s 

HSD, p<0.05; Figure 9).  There were no significant differences between the three lowest 

incubation temps (5, 10 & 30oC), but species richness in all of these treatment s was higher 

than at 30oC. 
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Figure 9. The effect of incubation temperature (T = 5, 10, 20 &30oC) on 

bacterial species richness ± SEM of the culturable cutaneous bacterial 

community of P. corroboree (n = 6 per treatment). Letters (A, B, C) represent 

outcome of post-hoc Tukey’s HSD test.  

 

 

 

 

 

 

 

Across the four temperature treatments, time until initial bacterial growth ranged 

from 24-168 hours (figure 10). Time until initial growth was inversely proportional to 

incubation temperature. Within the 5oC incubation temperature treatment, initial growth 

was present at 168 hours and stable CFU counts were obtained at 216hrs (figure 10a). 

Within the 10oC incubation temperature treatment, initial growth was present at 96 hours 

and stable CFU counts were obtained by 144 hours (figure 10b). At an incubation 

temperature of 20oC, initial growth was present at 48 hours and stable CFU counts were 

obtained by 144 hours (figure 10c). While in the 30oC temperature treatment, overgrowth 

of fungi and biofilm species were present at 24 hours (figure 10d). 
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Figure 10. Cutaneous bacterial growth (colony forming units (CFU) per swab) 

±SEM over time obtained from the skin of P. corroboree frogs across four 

incubation temperature treatments (a = 5oC, b = 10oC, c = 20oC and d = 30oC) (n 

= 6 frogs per treatment). CFU per streak is equivalent to CFU obtained from each 

individual. 

 

 

 

 

 

 

 

iv) Conclusion 

The conclusions of this study involve the best combination of three interacting factors: 

1) High bacterial abundance: both the 10oC and 20oC incubation temperature 

treatments showed high levels of bacterial growth. 

2) High bacterial species richness: The 5oC, 10oC and 20oC incubation temperature 

treatments showed significantly higher levels of bacterial species richness, with the 

20oC having the highest average species richness.  
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3) The 20oC incubation temperature treatment demonstrated best time efficiency with 

consistent growth occurring at 72 hours onwards. 

Therefore, the 20oC was selected as the optimal incubation temperature for most 

representative growth of P. corroboree cutaneous bacterial community. This was further 

confirmed as the appropriate temperature given that the frogs were also maintained at 

20oC. As such, 72 hours was selected as the most appropriate incubation time to obtain 

accurate quantification of bacterial growth. 
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7.4. Appendix 3: Unidentified bacteria species descriptions 

 

Unidentified A: 

Small gram-positive rod, yellow colour, raised/convex colonies with entire margins, catalase 

positive 

Unidentified B:  

Small gram-positive rod, cream colour, convex/raised colonies with entire margin, catalase 

positive 

Unidentified C:  

Gram negative-rod, cream colour, glossy appearance, oxidase positive 

Unidentified D: 

Small gram-positive rod, cream colour, convex colonies with entire margins, catalase 

positive 

Unidentified E:  

Gram-negative rod, yellow/ cream colour, convex colonies with entire margins, oxidase 

positive



 
 

7.3. Appendix 4: Bacteria species assemblages of individual frogs 

Table 2. Cutaneous bacteria species assemblages of carotenoid-supplemented (n =22) and un-supplemented (n = 22) P. corroboree frogs 

Cutaneous Bacteria 
Species 

Carotenoid-Supplemented Frogs (ID number below) Un-supplemented Frogs (ID number below) 
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Acinetobacter calcoaceticus                   x                          

Aeromona hydrophila    x x          x x       x   x    x  x    x  x  x   x  

Citrobacter braakii  x  x  x   x  x x  x      x  x  x x x x    x  x x    x x  x x  x  

Citrobacter freundii                 x   x    x       x    x       x   

Escherichia coli         x                                    

Ewingella americana x x    x    x  x   x  x x  x  x            x     x x     

Klebsiella oxytoca      x   x x x      x   x x x     x   x       x x x   x   

Klebsiella pneumoniae sp  x   x       x  x                   x            

Morganella morganii x x x x   x x x  x  x  x x x x x x x  x   x  x x x x x x x x x x x x x x x   

Pasteurella pneumotropica      x      x                x                 

Proteus mirabilis x x   x x  x x x x  x x      x x x     x x  x  x  x  x  x  x x x  x 

Pseudomonas luteola x x x x x x x   x x   x  x  x x x  x x  x x               x x x  
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Pseudomonas oryzihabitans    x                             x   x          

Rhodococcus erythopolis x  x  x  x      x  x x x x    x        x x  x     x       

Serratia marcescens              x           x                x    

Serratia sp. x x x x x x x x  x x x x x x x x x x x  x  x x   x x    x x  x x   x x  x x 

Stenotrophomonas maltophilia x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 

Variovorax paradoxus x  x x  x x x  x  x    x x x  x  x  x x  x  x x x x  x       x   x 

Unidentified A x  x x  x x  x x  x   x  x x  x         x x  x  x x     x    x 

Unidentified B x x  x  x x  x x x x x x    x x  x  x  x x x x x  x x x  x x    x x    

Unidentified C x  x x x   x x      x   x                           

Unidentified D            x        x x x        x  x            x 

Unidentified E                             x   x  x x   x  x    x 
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