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Statistical Efficiency in Distance Sampling
Robert Graham Clark*

National Institute for Applied Statistics Research Australia (NIASRA), University of Wollongong, Wollongong,
Australia

* rclark@uow.edu.au

Abstract
Distance sampling is a technique for estimating the abundance of animals or other objects

in a region, allowing for imperfect detection. This paper evaluates the statistical efficiency of

the method when its assumptions are met, both theoretically and by simulation. The theoret-

ical component of the paper is a derivation of the asymptotic variance penalty for the dis-

tance sampling estimator arising from uncertainty about the unknown detection parameters.

This asymptotic penalty factor is tabulated for several detection functions. It is typically

at least 2 but can be much higher, particularly for steeply declining detection rates. The

asymptotic result relies on a model which makes the strong assumption that objects are uni-

formly distributed across the region. The simulation study relaxes this assumption by incor-

porating over-dispersion when generating object locations. Distance sampling and strip

transect estimators are calculated for simulated data, for a variety of overdispersion factors,

detection functions, sample sizes and strip widths. The simulation results confirm the theo-

retical asymptotic penalty in the non-overdispersed case. For a more realistic overdisper-

sion factor of 2, distance sampling estimation outperforms strip transect estimation when a

half-normal distance function is correctly assumed, confirming previous literature. When the

hazard rate model is correctly assumed, strip transect estimators have lower mean squared

error than the usual distance sampling estimator when the strip width is close enough to its

optimal value (± 75% when there are 100 detections; ± 50% when there are 200 detections).

Whether the ecologist can set the strip width sufficiently accurately will depend on the cir-

cumstances of each particular study.

1 Introduction
The number of animals in a region is often of ecological importance. This paper considers the
distance sampling approach to estimating abundance, in its usual conjunction with line tran-
sect sampling. Transect lines are laid down across a region, often parallel and equally spaced
but not necessarily so. Observers move along the transects, and record observations of animals
(or plants, or groups of animals, or other objects) and their perpendicular distances from the
transect. Empirically, more objects are detected near to transect lines than far from them in
many studies, suggesting that detectability is a decreasing function of distance. The distance
sampling methodology exploits this phenomenon, by modelling the detection rate as a function
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of distance. The number of detected objects can then be scaled to estimate the abundance N
allowing for imperfect detection. Provided the assumptions of the method are met, the maxi-
mum range can be made fairly large, thereby increasing the sample size, while avoiding or
reducing bias due to declining detection rate. Distance sampling is widely used in ecology: a
Web of Science search found 276 articles on distance sampling in ecology journals in 2014
alone. The wide range of applications includes wild horses in the Australian Alps [1], large her-
bivores in South Africa’s Kruger National Park [2] and odonata (dragonflies) in a rainforest
locality in Papua New Guinea [3]. For a detailed description of the approach, see [4].

The major assumptions of the method are

1. Detection is perfect at zero distance.

2. The detection function is of known form, with some unknown parameters requiring estima-
tion. Alternatively, model-averaging may be used provided the detection function is
assumed to be one of a known set of alternatives.

3. Animals’ distances to the nearest transect line are (at least approximately) uniformly
distributed.

It is also assumed that there is no measurement error (for example, false positive detections,
or mis-measurement of distances), that there is no movement of objects in response to the
observer which could lead to multiple chances of detection, that detection events are indepen-
dent, that there are sufficient transects for reliable estimation, and that transect lines are a good
representation of the study area. This paper will consider the conventional distance sampling
(CDS) scenario where there is only one observer. The same methodology can be used with mul-
tiple observers by pooling their detections. Mark recapture and mark recapture distance sam-
pling (MRDS) are methods which more fully use data from multiple observers by matching
their detections; MRDS, in particular, can be used to relax assumption (i). More recent
approaches combine a spatial model with the detection model (see for example [5–7] and [8]).
Spatial models allow abundances to be estimated for subregions, and can exploit spatial trends
in estimation, however inference may be sensitive to the assumed spatial model which must
therefore be carefully constructed. This paper focuses on CDS, as most applications of line
transect sampling remain single observer. The use of spatial models in distance sampling is an
important advance, but some researchers may decide that the extra effort and complication
required to develop an adequate spatial model are not warranted for some studies, particularly
when the number of detections is relatively small.

Robustness to the 3 assumptions above is explored in the literature. For example, MRDS
can be used to achieve some level of robustness to (i). Assumption (ii) is dealt with by the use
of flexible families of detection functions with two or more parameters, and the use of model
averaging. [9] argue that (iii) is approximately satisfied provided transect lines are placed ran-
domly or systematically from a random starting point. However, [10] question the uniformity
assumption and find that CDS estimators are biased in a design-based framework, that is,
under repeated random placement of transect lines. The matter remains in contention [11–13].
[11] suggest an alternative approach where the detection function is estimated from a separate
calibration study, and [14] propose estimating detection probabilities using multiple observer
data and possibly but not necessarily distance data.

A natural alternative to distance sampling is the simple scaling up of observations in a strip
about the transect. When strips are too wide, this strip transect estimator is severely negatively
biased due to non-detections, particularly of the more distant animals in the strip. When strips
are sufficiently narrow, this bias becomes negligible, but the variance of the estimated abun-
dance becomes large. Distance sampling aims to achieve lower variance by including
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observations at greater distances, while reducing bias by adjusting for non-detection. But there
is a hidden cost—the effect of unknown detection parameters on the precision of the estimated
abundance—which reverses at least some of the benefit due to wider strips. This paper illumi-
nates this cost both asymptotically and in small samples. This existence of a penalty due to
unknown detection parameters is known, but no asymptotic expression has been derived in the
literature, and the penalty has not been quantified except in a simulation of the half-normal
and negative exponential detection functions [15]. A number of authors have compared CDS
and strip transect estimators in particular applications (e.g. [1, 16]) but typically with only one
or two options for strip width. [17] also suggested strip transects as an alternative to CDS but
did not make a numerical comparison.

An example of the variability of CDS estimators may be found in [1], which compares strip
transect estimates with two different strip widths to CDS estimates with various detection func-
tions, and to mark-recapture and MRDS estimates of abundance. Detections of groups of wild
horses are attempted up to 200m from a helicopter traversing 91 parallel transect lines in
south-eastern Australia, resulting in 52 group detections (pooled from two observers). Table 1
here reproduces results from page 1145 of [1]. The strip transect estimates of abundance are
the number of observed groups within 50m or 200m multiplied by the total area divided by the
area lying within either 50m or 200m of a transect line, with no allowance for undercount. The
values of the Akaike Information Criterion (AIC) are also shown for each detection model.
Model averaged estimates are calculated using weights calculated from the AICs as described
in [18]. Mark recapture and MRDS results are not reproduced here as they are outside the
scope of the current paper. The CDS estimator shown in Table 1 corresponds to formula (6) in
the next section of the current paper.

Table 1 shows that the CDS abundance estimators have high coefficients of variation (CV),
with the two-parameter hazard rate model leading to a much higher CV (about 57%) than the
other detection models which are one-parameter (CVs between 19% and 25%). The model-
averaged estimator has a CV of 30%. The strip transect estimator using detections up to 200m
has much lower CV, but is much lower than the CDS estimators, suggesting that it is negatively
biased due to undetected groups. The strip transect estimator based on detections up to 50m is
more plausible. It is close to the model-averaged CDS estimator, suggesting that its bias is
small, presumably because the detection rate would decline relatively little over this shorter
range. Surprisingly, the 0–50m strip transect estimator gives similar CVs to the 0–200m
model-averaged CDS method, even though it only uses one quarter of the distance range and
44% of the detected groups. This motivated the research in the current paper on the efficiency
of CDS estimators.

Section 2 proves for the first time that the usual CDS estimator of N is also a maximum like-
lihood estimator (MLE) of N under a particular model provided the likelihood is approximated
using Stirling’s Rule. Its asymptotic variance under the model is derived using this result. The
asymptotic variance is identical to that of [19], but the use of the Stirling approximation allows

a simpler derivation. The limiting variance of N̂ is expressed as the variance when the detection
function is known multiplied by a penalty for unknown θ. This asymptotic penalty is tabulated
for various detection models. It can be substantial, and for many situations arising in practice
is between 2 and 6. Section 3 summarizes a simulation study to evaluate the small sample per-
formance of CDS estimators for various detection functions and strip transect estimators with
differing strip widths. Unlike the theoretical result in Section 2, the simulation allows for over-
dispersion in the counts of animals falling in any given range. Section 4 contains conclusions
about the magnitude of the penalty due to unknown detection parameters in CDS, and the rela-
tive performance of CDS and strip transect estimators.
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2 Theoretical results on maximum likelihood estimation of N
2.1 Notation and background
The aim is to estimate the number of objects, which may be animals, groups of animals or
other objects, in a region. Let N be the number of objects in a defined study area and n be the
number of detections made by an observer moving along predefined line transects. Observa-
tion may either be one-sided (only objects to the right, or only objects to the left, are observed)
or two-sided. Only objects with perpendicular distance up to a pre-chosen limit w from a tran-
sect line have a chance of being observed (the covered region); let Nc be the number of such
objects. Two-sided observation is the more common case, but one-sided observation is some-
times necessary, for example if the observer can only see out one side of a vehicle. It is assumed
that the probability of observing an object at perpendicular distance di from a transect line is
g (di, θ) when 0� di � w, where θ is a vector of p parameters specifying the function within a
family. It is assumed that g(0, θ) = 1 and that g is a non-increasing function of distance. The
Distance software [20], which implements both CDS and MRDS, allows four possible func-

tional forms for g(), including the half-normal model, gðdiÞ ¼ exp � d2i
y2

� �
, and the hazard rate

function, gðdiÞ ¼ 1� exp ð�ðdi=y1Þ�y2Þ. Both of these functions satisfy the shoulder condition
that g0(0) = 0, with the hazard rate model giving greater flexibility in modelling the shoulder
width (i.e. the range near 0 over which g is relatively flat). The use of “robust models”, which
have enough flexibility to model a range of typical shapes, is recommended on pages 46–49 of
[9], with the hazard rate model given as a particularly useful example.

It is also possible to include other covariates affecting the detectability of objects in the dis-
tance function, such as characteristics of the animal or plant (see [21] and [22]).

Let di, i = 1, . . ., N, be the perpendicular distances from the objects to the nearest transect
line, and let δi = 1 for observed objects and δi = 0 for the rest. Under model assumption (iii)
stated in the Introduction, di are independent and identically distributed uniform U(0,M) for
i = 1, . . ., N, whereM is the maximum possible distance from a transect line. The distribution
of di given δi = 1 is easily derived as

gcond di; θð Þ ¼ g di; θð Þ=
Z w

0

g u; θð Þdu ð1Þ

Let �gðθÞ ¼ w�1
R w

0
gðu; θÞdu be the unconditional probability of detection. (This is the proba-

bility that an animal in the covered region is detected, unconditional on its distance, denoted
by Pa in equation (2) of [23]. The notation �gðθÞ is used here to emphasise that it is the mean

Table 1. Estimates of Density (abundance/area) of Horse Groups obtained from [1]. CV is the estimated coefficient of variation of the estimate, given by
the square root of the estimated variance divided by the estimate.

Method Detection Function AIC dDensity ð^N=AÞ (groups/km2) CV%ð^NÞ Strip Width estimated average detection probability

CDS neg. exponential 0.00 0.36 24.8 200m 0.50

CDS uniform (cosine) 0.96 0.28 18.8 200m 0.64

CDS half-normal 1.35 0.28 19.9 200m 0.64

CDS hazard rate 1.87 0.36 57.2 200m 0.50

CDS model-averaged n/a 0.33 30.3 200m 0.55

Strip n/a n/a 0.31 22.1 50m 1.00

Strip n/a n/a 0.18 16.1 200m 1.00

doi:10.1371/journal.pone.0149298.t001

Statistical Efficiency in Distance Sampling

PLOS ONE | DOI:10.1371/journal.pone.0149298 March 7, 2016 4 / 24



value of g(di; θ) over di � w.) The conditional likelihood of ds = (d1, . . ., dn)
T given n is

Ld ¼
Yn
i¼1

gcond di; θð Þ ¼
Yn
i¼1

g di; θð Þ
 ! Z w

0

g u; θð Þdu
� ��n

¼
Yn
i¼1

g di; θð Þ
 !

w�n�g θð Þ�n ð2Þ

and the corresponding conditional log-likelihood given n is

ld ¼
Xn
i¼1

log g di; θð Þ � n log �g θð Þð Þ � n logw: ð3Þ

The parameters θ can be obtained by setting the derivative of ld with respect to θ to 0. Prior to
this, it is convenient to define

h u; θð Þ ¼ @

@θ
g u; θð Þ ð4Þ

and �hðθÞ ¼ w�1
R w

0
hðu; θÞdu. Notice that h(u; θ) is a p-vector where p is the number of param-

eters in θ. The partial derivative of �gðθÞ with respect to θ is �hðθÞ, subject to regularity condi-
tions allowing the derivative operator to be taken within the integral. Setting the derivative of ld
to 0 gives the following estimating equation for θ:

0 ¼
Xn
i¼1

g di; θð Þ�1
h di; θð Þ � n�gðθÞ �1 �hðθÞ ð5Þ

The most commonly used estimator of N in CDS is:

N̂ CDS ¼
n

P�g θ̂CML

� � : ð6Þ

where P is the proportion of the area falling within perpendicular distance of w of a transect

line, and θ̂CML is the solution to Eq (5) (CML stands for conditional maximum likelihood, as
the likelihood Ld in Eq (2) is conditional on n). In CDS, the estimation of θ is model-based and
maximises the likelihood conditional on n, while the estimation of N in Eq (6) is design-based
and motivated by the fact that E½n� ¼ NP�g ðθÞ. See equation 1.4 of [9]. See also [23] for a recent
discussion of CDS and extensions. The value of P is assumed to be known, and is approximated
in practice by the total length of all transects multiplied by w (and multiplied by 2 for two-
sided observation) divided by the region’s area.

Another alternative that has been proposed is maximum likelihood estimation of N, which
is the minimum variance unbiased estimator for large samples subject to regularity conditions.
Section 7.2 of [24] derives the likelihood for N and θ. The conditional density of ds given n is
Ld in Eq (2). Under the assumed model, δi are independent Bernoulli random variables with
expected value �g ðθÞ. Hence

n � bin N; P�g θð Þð Þ: ð7Þ

Statistical Efficiency in Distance Sampling
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The likelihood is the product of the probability function of n and Ld:

L ¼ N

n

 !
fP�gðθÞgnf1� P�gðθÞgnLd ð8Þ

¼ N

n

 !
fP�gðθÞgnf1� P�gðθÞgN�n

Yn

i¼1

gðdi; θÞ
 !

w�n�g ðθÞ�n ð9Þ

¼ N

n

 !
Pnw�nf1� P�g ðθÞgN�n

Yn

i¼1

g ðdi; θÞ ð10Þ

(See equation 2.33 of [4]). L can be maximised with respect to N and θ to obtain a maximum
likelihood estimator of N. In this approach, both N and θ are treated as unknown parameters.
On pages 16–17, [4] recommend against this approach because in practice n is likely to be over-
dispersed and so to have higher variance than implied by Eq (7). For example, this would occur
if there were positive correlations between the values of di. It is worth noting that any such

overdispersion is likely to also invalidate Eq (2) and so θ̂CML and N̂ CDS to some extent, as Eq (2)
assumes that di are independent conditional on n.

When θ is known, the MLE of N is the integer part of n=ðP�gðθÞÞ (see pages 17–19 and 138
of [24]). The same reference also shows that if the factorial terms in Eq (10) are approximated
using Stirling’s rule and N is treated as a continuous parameter, the MLE is then

N̂ knowny ¼ n=ðP�g θð ÞÞ: ð11Þ

It is straightforward to derive the variance of N̂ knowny using the fact that n � binðN; P�gðθÞÞ:
var N̂ knowny

� � ¼ P�2�g θð Þ�2varðnÞ ¼ NP�1�g θð Þ�1
1� P�g θð Þð Þ ð12Þ

When θ is unknown, [19] note that the MLE of N is the integer part of n=ðP�g θ̂
� �

Þ where θ̂ is

the MLE of these parameters. The next subsection of this paper extends this result by showing

that θ̂CML and N̂ CDS maximise a Stirling approximation to the full likelihood L. This enables a

theoretical result on the large sample variance of N̂ CDS, albeit under the strong assumption Eq
(7). The simulation study in Section 3 relaxes this assumption by including overdispersion.

2.2 Derivations of the MLE and its variance based on Stirling’s
approximation
The maximum likelihood estimator of N under Stirling’s approximation for factorials is
derived in this subsection, where the likelihood L is given by Eq (10). (Note that in section
3.3.1, [9] consider maximization of Ld, not L, to estimate θ, where Ld, defined in Eq (2), is the
conditional likelihood given n). Stirling’s rule log(x!)� xlog(x) − x implies that

log
N

n

 !
¼ logfN!=n!ðN � nÞ!g ð13Þ

� N log Nð Þ � N � n log ðnÞ � nð Þ � N � nð Þ log N � nð Þ � N � nð Þf g ð14Þ

¼ N log Nð Þ � N � nð Þ log N � nð Þ � n log ðnÞ: ð15Þ

Statistical Efficiency in Distance Sampling
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There is a positive probability that n is equal to 0 or N, in which case log(n) or log(N − n) are
not defined. The limit of the right hand side of Eq (15) can easily be shown to equal 0 in these
cases, so the following refinement of Eq (15) is used:

log
N

n

 !
�

N log Nð Þ � N � nð Þ log N � nð Þ � n log ðnÞ if 0 < n < N

0 if n ¼ 0 or n ¼ N

( )
: ð16Þ

L will be maximised with respect to N and θ treating N as a continuous parameter. Stirling’s
approximation for log(x!) is very accurate even for small x as long as x is at least 2 or 3, and
both N − n and n would be well above this in practice. Theorem 1 states the MLEs and the
approximate Fisher information.

Theorem 1 The model defined by Eqs (1) and (7) is assumed, and it is assumed that the log of
the likelihood Eq (10) can be approximated using Eq (16), leading to

l ¼ N log Nð Þ � N � nð Þ log N � nð Þ � n log ðnÞ þ n log ðPÞ � n log ðwÞ

þðN � nÞ log 1� P�g θð Þð Þ þ
Xn
i¼1

log g di; θð Þð Þ ð17Þ

Let O be an open set defining the set of feasible values of θ. If there is a unique θ̂CML satisfying

Eq (5) then it is the maximum likelihood estimator, and the MLE of N on (0,1) is N̂ CDS in
Eq (6).

Let D be a random variable with density gðdÞ= R w

0
gðuÞdu for 0� d� w, which is also the dis-

tribution of di conditional on detection. The Fisher Information of (N,θT)T is approximately
equal to

I N; θð Þ �
INN IT

Ny

INy I yy

24 35 ð18Þ

for large N, where

INN ¼ N�1 1� P�g θð Þð Þ�1P�g θð Þ ð19Þ

I yy ¼ NPw�1
R w

0
h u; θð Þh u; θð ÞTg u; θð Þ�1duþ NP�h θð Þ�h θð ÞT 1� P�g θð Þð Þ�1 ð20Þ

¼ NP�g θð Þ varD h D; θð Þ=g D; θð Þð Þ þ NP�h θð Þ�h θð ÞT�g θð Þ�1
1� P�g θð Þð Þ�1 ð21Þ

INy ¼ ð1� P�gðyÞÞ�1P�hðyÞ ð22Þ

Surprisingly, θ̂CML and N̂ CDS maximise the Stirling approximation to the full likelihood L,

even though θ̂CML was defined as the maximizer of the conditional likelihood Ld given n (not L),

and N̂ CDS was motivated by a design-based argument.
Let V be the inverse of the Fisher Information matrix in Eq (18). Subject to regularity condi-

tions, maximum likelihood estimators are asymptotically normal with expectation equal to the
true parameter values and variance-covariance matrix equal to the inverse of the Fisher Infor-
mation matrix. Unfortunately these regularity conditions do not hold here, for example condi-
tion (M3) of the Central Limit Theorem on pages 499–500 of [25] is not met, because n and ds
are dependent. Moreover, Eq (18) is only the approximate Fisher information based on a
Taylor Series expansion, whereas the usual Central Limit Theorem requires the exact Fisher

Statistical Efficiency in Distance Sampling

PLOS ONE | DOI:10.1371/journal.pone.0149298 March 7, 2016 7 / 24



information. [26] uses an alternative method of proof to derive a Central Limit Theorem for

the MLE. It is shown in this working paper that V is indeed the limiting variance of ðN̂ ; θ̂TÞT .
The proof in [26] is essentially a simplified version of the proof of the result in [19] which does
not use the Stirling approximation. Theorem 1 is an advance on the result in [19], because it

shows that N̂ CDS is the full maximum likelihood estimator (subject to the Stirling approxima-
tion), and also provides a simpler derivation of V. Theorem 1 helps explain the finding of [19]

that the difference between N̂ CDS and the exact maximum likelihood estimator (i.e. the MLE
when the Stirling approximation is not made) is small asymptotically. The theorem also sug-
gests that there is no need for the calculation of the exact MLE in practice, even when the

model assumptions are justified, since N̂ CDS maximises an excellent approximation to the full
likelihood.

It is convenient to express V in block form. We will henceforth mostly write g(u), h(u), �g

and �h for readability, rather than g(u; θ) etc. Using a standard result on the inverse of a matrix
in block form (e.g. 5.16a of [27]), V is equal to

V ¼
V11 VT

21

V21 V22

" #
ð23Þ

where

V22 ¼ I yy � INyI
�1
NNI

T
Ny

� 	�1 ¼ N�1P�1D�1�g�1

V11 ¼ I�1
yy þ I�1

yy I
T
NyV22INy

¼ N 1� P�gð ÞP�1�g�1 þ NP�1�g�3�hTD�1�h

V21 ¼ VT
21 ¼ �V22INyI

�1
NN

¼ ��g�2P�1D�1�h

9>>>>>>>>>>>=>>>>>>>>>>>;
ð24Þ

and Δ is the p by pmatrix defined by

D ¼ varD h Dð Þ=g Dð Þ½ �: ð25Þ

The limiting variance of N̂ CDS, V11 from Eq (24), is of primary interest. It can be expanded
by elementary operations as

var N̂ CDS

� � ¼ V11 ¼ var N̂ knowny

� �
F ð26Þ

where var N̂ knowny

� �
is the variance of N̂ when θ is known, as defined by Eq (12), and

F ¼ 1þ �hTD�1�h�g�2 1� P�gð Þ�1 ð27Þ

is a penalty term attributable to θ requiring estimation. The penalty F is always 1 or greater,
because Δ is a variance-covariance matrix, and so is positive semi-definite.

The coefficient of variance (CV) of N̂ CDS follows directly, noting that E½n� ¼ NP�g :

CV2 ¼ var N̂ CDS

� �
=N2 ¼ FNP�1�g�1 1� P�gð Þ=N2 ð28Þ

¼ F 1� E½n�=Nð Þ=E½n� ð29Þ
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2.3 Numerical values of the asymptotic variance for selected models
Values of Δ are obtained by rewriting Eq (25) as

D ¼ w�1
R w

0
hðuÞhðuÞTgðuÞ�1du

�g
�

�h�hT

�g 2
ð30Þ

and calculating by quadrature using the integrate function in the R Statistical Environment
[28]. Table 2 shows values of F numerically calculated for various hazard rate models. The
parameter θ2 determines the shape of the detection curve, with 1.1 giving a very narrow shoul-
der (i.e. steeply declining for small distances) and 3 giving a very wide shoulder. Hazard rate
detection models for a number of values of θ2 are illustrated in the next section. The parameter
θ1 is calculated numerically to give the specified �g in each row.

Table 2 shows that F increases as θ2 decreases, i.e. as the shoulder becomes narrower. For a
given �g , F decreases as the coverage rate P increases. This is because increasing P improves the

precision of N̂ CDS, but it improves the precision of N̂ knowny even faster. For a given P, F decreases
as �g increases when θ2 � 2 (narrow shoulder), but increases as �g increases when θ2 > 2. A pos-
sible reason is that when θ2 is small and �g is large, the detection function is near 1 for much of
its range but then decreases precipitously. The fact that it remains near 1 for much of the range

may mean that N̂ is relatively insensitive to θ̂ . In contrast, when θ2 > 2 and �g is large, the

detection function declines more smoothly, so that N̂ CDS is more sensitive to θ̂ .
Values of �g of 0.1, 0.3 or 0.6, P = 0.3 and θ2 � 1.25 are probably the most representative of

studies in practice. F varies from 1.9 to 5.6 in this subset of Table 2.
Table 3 shows similar results for half-normal detection models. The values of F are gener-

ally much closer to 1 than in Table 2, varying from 1.5 to 1.9 in the subset of the table where
�g 2 f0:1; 0:3; 0:6g and P = 0.3. F increases with P, as in Table 2. F increases with �g for fixed P,
similar to the wide-shouldered results in Table 2 where θ2 > 2.

3 Simulation study

3.1 Design of the simulation study
Generation of distances di for i = 1, . . ., N. Distance data are simulated for abundances N

such that the expected numbers of detections are E[n] = 50, 100, 200, . . ., 1000, and the fraction
of the area covered is P = 0.1. 10,000 simulations are used in every case.

Distances di are generated both with and without overdispersion. In the latter case, di are
independent U(0, 10) random variables. The maximum range of observation is set to w = 1, so
that objects are only eligible for detection when di � 1, and so the probability of any given
object falling within the covered area is P = 0.1. One implication of this model is that the num-
ber of objects n(v) with distance falling into any given interval of length v within [0, 10] is dis-
tributed as n(v)*bin(N, vP), and hence E[n(v)] = NvP and var[n(v)] = NvP(1 − vP). For
example, Nc is a special case of n(v) with v = 1. The assumption of independent uniform dis-
tances has been criticised because in practice n(v) is often observed to be overdispersed, with
variance greater than NvP(1 − vP).

Overdispersed di are generated by firstly replacing the U(0, 10) distribution by the discrete
approximation with probability 0.001 at each of 1000 evenly spaced values between 0 and 10.
The probability that di falls in any given interval would then be 0.001 in the non-overdispersed
case. Overdispersed di are assumed to be discrete random variables with the same set of possi-
ble values, with probability ϕk for value k = 1, . . ., 1000. The vector ϕ is simulated as coming
from a Dirichlet distribution with vector parameter equal to 0.001α 11000 where 11000 is a vec-
tor containing 1000 values all equal to 1, and α is a parameter which controls the variance of ϕ.
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When α!1, ϕ is equal to 11000/1000 with probability 1, resulting in the non-overdispersed

case. For 0< α<1, ϕ are random variables each lying between 0 and 1, with
P1000

k¼1 �k¼1. The
parameters ϕ are generated anew for each simulation, and {di:i = 1, . . ., N} are then generated
as independent discrete random variables with probabilities ϕ at each of the 1000 evenly spaced
values between 0 and 10.

The overdispersed di have the property that n(v) is beta-binomial distributed with parame-
ters N, αPv, and α(1 − Pv). (This follows from the properties of the Dirichlet-multinomial and
beta-binomial distributions—see for example [29].) The expected value of n(v) is then NvP as
before, but the variance is inflated to var[n(v)] = cNvP(1 − vP) where c = (α + N)/(α + 1) is an
overdispersion factor. Values of α corresponding to c = 1, 2 and 3 are used.

The above process is a discrete approximation of a Dirichlet process with base distribution
given by U(0, 10). Dirichlet processes are widely used as prior distributions for distribution
functions (e.g. chapter 23 of [30]). This also makes them suitable to simulate overdispersed

Table 2. Asymptotic penalty (F) for the hazard rate model for selected values of the coverage rate P, the shape parameter (θ2) and the mean detec-
tion rate g . The largest distance for which detection is attempted isw = 1 in all cases.

P g θ2

1.1 1.25 1.5 2 2.5 3

0.1 0.3 6.60 5.28 3.99 2.79 2.25 1.94

0.3 0.3 6.97 5.56 4.19 2.91 2.33 2.00

0.6 0.3 7.63 6.06 4.54 3.12 2.47 2.11

0.9 0.3 8.44 6.68 4.97 3.38 2.65 2.25

0.1 0.6 5.03 4.25 3.43 2.59 2.17 1.92

0.3 0.6 5.62 4.72 3.78 2.82 2.34 2.05

0.6 0.6 6.92 5.77 4.56 3.33 2.71 2.34

0.9 0.6 9.23 7.63 5.96 4.24 3.38 2.87

0.1 0.9 3.28 2.93 2.54 2.09 1.85 1.70

0.3 0.9 3.85 3.41 2.91 2.36 2.06 1.87

0.6 0.9 5.52 4.82 4.04 3.16 2.69 2.39

0.9 0.9 11.94 10.25 8.35 6.24 5.08 4.35

doi:10.1371/journal.pone.0149298.t002

Table 3. Asymptotic penalty (F) for the half-normal model for selected values of the coverage rate P
and the mean detection rate g . The largest distance for which detection is attempted isw = 1 in all cases.

P g Penalty (F)

0.1 0.3 1.52

0.3 0.3 1.55

0.6 0.3 1.61

0.9 0.3 1.69

0.1 0.6 1.78

0.3 0.6 1.90

0.6 0.6 2.15

0.9 0.6 2.60

0.1 0.9 2.23

0.3 0.9 2.54

0.6 0.9 3.44

0.9 0.9 6.90

doi:10.1371/journal.pone.0149298.t003
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data, particularly as the resulting di have the property that the number of distances falling in
any interval is overdispersed to the same degree.

Simulation of detection process. Objects are detected with probability g(di; θ) when
di� w = 1 for each i, with detection independent across objects. Two families of detection func-
tions are used: the hazard rate and the half-normal. Both are among those proposed in [9]. The
two-parameter hazard rate function meets the requirement specified on page 41 of [9] of being
a flexible model, giving some robustness to mis-specified detection function; in particular, it
allows the shoulder to be narrow or wide. The half-normal detection function is less flexible,
but is also often used, and would generally be easier to fit from data as it has only one
parameter. Fig 1 shows the 4 particular distance functions used: hazard rate (hr) functions

gðdi; θÞ ¼ 1� e�ðdi=y1Þ�y2 with θ = (0.405, 1.25), θ = (0.448, 2) and θ = (0.484, 3) corresponding
to a very narrow, narrow, and wide shoulder respectively; and a half-normal (hn) function

gðdi; θÞ ¼ 1� e�ðdi=yÞ2=2 with θ = 0.502. This gives a variety of shapes of the detection function,
with all 4 having the same average detection rate of �gðθÞ ¼ 0:6. This means that the number of
detections is approximately n � P�gðθÞN ¼ 0:06N . The values of g(w) for all three functions
are at least 0.11, and all but the wide hazard rate function are at least 0.14, roughly in line with
the rule of thumb for choice of w on page 16 of [9]. The figure also shows the asymptotic pen-
alty F due to unknown θ for each detection function. The penalty ranges from 2 to 5.4.

Estimators of abundance. The CDS estimator N̂ CDS defined in Eq (6) is calculated using
the hazard rate model and the half-normal model. The CDS estimator assuming known θ,
defined in Eq (11), is also calculated. This last option is of course unrealistic in practice, but is
included to show the impact of uncertainty about θ.

An estimate of N is also calculated using the strip transect estimator N̂ ST ¼ n=P. This is
unbiased under the binomial model n* bin(N, P), which incorrectly assumes perfect detection
up to distance w. The strip transect estimator is also applied to restricted datasets using only

those distances up to a range of w0 = 0.01, 0.02, . . ., 1, with N̂ STðw0Þ ¼ n½d � w0�=ðPw0=wÞ.
Each simulation corresponds to a single detection function, and a single value of E[n] and of

c. 10,000 populations of distances and detections are generated in each simulation. All compu-
tations are carried out in the R statistical environment version 3.0.1 [28]. The Distance
package [31] is not used because of occasional non-convergence (this would generally not be

an issue in practice, but is a problem in a large simulation). The estimator θ̂CML is calculated by
maximising ld from Eq (3) using the optim function, using the Nelder-Mead method for the
two-parameter hazard rate function and the Brent method for the one-parameter half-normal
function. The complete simulation requires approximately 14 hours on a Macbook Pro with a
2.7GHz Intel Core i7 processor and 16GB of RAM. The code to conduct the simulation and
produce the figures and tables is in S1 Code.

The aim of the simulation is to estimate the penalty factor due to unknown detection
parameters for finite sample sizes, and to compare the mean squared errors (MSEs) of line
transect and strip transect estimators in different scenarios. The focus of the paper is on vari-
ances and mean squared errors of abundance estimators, so variance estimators and confidence
interval coverage are not reported on.

3.2 Simulation results for the asymptotic penalty
Fig 2 shows how the simulation estimates of F converge to the asymptotic values as n and N
increase, for c = 1. For the hazard rate with very narrow shoulder and the halfnormal model,
the asymptotic approximation is good even for E[n] = 100. For the other two models, the small
sample penalties are higher than the asymptotic value for E[n] = 100, but converge to the
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asymptote as E[n] increases. The results provide a computational confirmation of the deriva-
tion of F in Section 3. Fig 3 shows the simulation estimates of F when the overdispersion
parameter c is 2. No asymptotic result for F is available in this case. The values of F are 0.1–0.7
higher than when c = 1.

3.3 Simulation MSEs of CDS and strip transect estimators

Fig 4 compares the simulation MSEs of N̂ CDS, and N̂ ST with varying strip width, when E[n] = 50.

The 3 horizontal red lines in each plot are the MSEs of N̂ CDS, which make use of all detections
up to distance w = 1. The 3 lines are for overdispersion values of c = 1, 2 and 3. The 3 blue curves

show the MSEs of N̂ ST for c = 1, 2 and 3, with strip widths of 0.01, 0.02, . . ., 1. Fig 4(a) shows
MSEs for the half-normal detection function. Fig 4(b), 4(c) and 4(d) are results for the hazard
rate models with very narrow, narrow and wide shoulders, respectively.

The format of Fig 4 is loosely based on Figure 1 in [15]. [15] compared CDS and strip tran-
sect estimators for the half-normal and negative exponential detection functions (both one
parameter families) for n = 40, 60 and 100, and c = 1, 2 and 3. Here we extend these results to
the two-parameter hazard rate function, and we simulate over-dispersed distances correspond-
ing to c = 1, 2 and 3, rather than using the approximate formula in [15] to convert results when
c = 1 to other values of c.

Figs 5, 6 and 7 are of the same format as Fig 4 and show results when E[n] is 100, 200 and
400 respectively.

For the half-normal function, Figs 4–7 replicate the finding of [15] that CDS dominates
strip transect estimators, with the former having lower MSE for almost all values of c, E[n] and
strip width.

Fig 1. Detection Functions used to Generate Simulated Data. The variance penalty factors F from Eq (26) due to unknown θ are also shown.

doi:10.1371/journal.pone.0149298.g001
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For the hazard rate function, the picture is quite different, presumably because of the larger
value of the penalty (F) due to unknown detection parameters for this model. [15] argue that
c = 2 is the most practically relevant scenario out of c = 1, 2 and 3, so we concentrate on this
case. For this value of c, and for the narrow shoulder detection function (panel (c) of each fig-

ure), N̂ ST has lower MSE than N̂ CDS when the strip width is 0.1 and above (when E[n] = 50),
between 0.15 and 0.71 (when E[n] = 100), 0.19 and 0.54 (when E[n] = 200) and 0.21 and 0.45
(when E[n] = 400). The optimal strip widths are 0.47, 0.42, 0.38 and 0.35 for E[n] equal to 50,
100, 200 and 400, respectively.

N̂ CDS performs better relative to N̂ ST than the above when the hazard rate function has a
wide shoulder, and worse than the above when the shoulder is very narrow.

TheMSEs of both N̂ CDS and N̂ ST increase as c increases, particularly N̂ ST . So when c increases,

MSE½N̂ CDS�=MSE½N̂ ST � decreases slightly.
Simulations were also carried out with values of P other than 0.1. Results for P equal to 0.2,

0.25, 0.3 and 0.5, with E[n] = 100, are in S1, S2, S3 and S4 Figs, respectively. A comparison of

Fig 2. Variance of MLE ofNwhen θ is unknown relative to when it is known, for various sample sizes based on simulation, and asymptotically
from Eq (26), where P = 0.1, c = 1 and g ¼ 0:6.

doi:10.1371/journal.pone.0149298.g002
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these figures to Fig 4 shows that mean squared errors decrease slightly as P increases. The rela-
tive performance of the different methods for the various c and w is insensitive to P.

4 Conclusions
To achieve a given coefficient of variation CV for the line transect estimator, the required
expected sample size is

E½n� ¼ N�1 þ CV2F�1ð Þ�1 ð31Þ

(follows from rearranging Eq (29)). When n is much smaller than N, this simplifies to

E½n� ¼ F=CV2: ð32Þ

The factor F is the inflation due to unknown detection function parameters. Asymptotic values
of F are made available here for the first time (see Tables 2 and 3), albeit under a strong simpli-
fying assumption that counts are binomially distributed. The asymptotic values of F for
typical hazard rate models are between 2 and 6. Simulation confirms the accuracy of the
asymptotic result when there is no overdispersion, and shows that F is larger in the presence of

Fig 3. Variance of MLE ofNwhen θ is unknown relative to when it is known, for various sample sizes based on simulation, and asymptotically
from Eq (26), where P = 0.1, c = 2 and g ¼ 0:6.

doi:10.1371/journal.pone.0149298.g003
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overdispersion. The R package distance.sample.size[32] calculates F and required
sample size using the methods described in the current paper.

Note that the inflation factor F does not apply if g is modelled using mark-recapture data as
suggested by [14].

Fig 4. Relative root mean squared errors (RRMSE) (%) of CDS and strip transect estimators estimators (strip widths ranging from 0 to 1) ofN, for 4
detection functions, with E[n] = 50, P = 0.1 and g ¼ 0:6.

doi:10.1371/journal.pone.0149298.g004

Statistical Efficiency in Distance Sampling

PLOS ONE | DOI:10.1371/journal.pone.0149298 March 7, 2016 15 / 24



The results on F help to explain the relative mean squared errors of strip and CDS estima-
tors in the simulation. When the number of detections n is sufficiently large (e.g. 400), CDS
outperforms strip transect estimation unless the strip width is moderately close to its optimal
value (within about ± 25%). This is because variances of estimated abundances are then

Fig 5. Relative root mean squared errors (RRMSE) (%) of CDS and strip transect estimators estimators (strip widths ranging from 0 to 1) ofN, for 4
detection functions, with E[n] = 100, P = 0.1 and g ¼ 0:6.

doi:10.1371/journal.pone.0149298.g005
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relatively small, so that bias considerations are paramount. For smaller n, the variance of the
CDS estimator becomes more dominant, partly due to the penalty F. As a result, when the
overdispersion factor is 2 and the hazard rate model applies, we find that strip transects give
lower mean squared error (MSE) than CDS when:

Fig 6. Relative root mean squared errors (RRMSE) (%) of CDS and strip transect estimators estimators (strip widths ranging from 0 to 1) ofN, for 4
detection functions, with E[n] = 200, P = 0.1 and g ¼ 0:6.

doi:10.1371/journal.pone.0149298.g006
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• n = 50 and the strip width is 0.1 or higher (with an optimal width of about 0.4), where a
width of 1 corresponds to a typical detection range for distance sampling;

• n = 100 and the strip width is between 0.2 and 0.7, i.e. within about ± 75% of its optimal
value of 0.42; or

Fig 7. Relative root mean squared errors (RRMSE) (%) of CDS and strip transect estimators estimators (strip widths ranging from 0 to 1) ofN, for 4
detection functions, with E[n] = 400, P = 0.1 and g ¼ 0:6.

doi:10.1371/journal.pone.0149298.g007
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• n = 200 and the strip width is within about 50% of its optimal value.

A Dirichlet process approach was able to generate non-uniform detections resulting in over-
dispersion factors of 1, 2 and 3. This approach has not been used in simulations in statistical
ecology to the author’s knowledge. It would be applicable to any simulation where overdisper-
sion or robustness relative to an assumed spatial model is of interest.

The simulation settings are more favourable to CDS than to strip transect estimators. In
particular, it is assumed that the functional form used in CDS estimation matches the true
detection function. This assumption will never be perfectly justified in reality, and its failure
will impact on the performance of CDS estimators to some extent. Model selection or model
averaging are often used to try to identify the correct model, but uncertainty about the model
form will inflate variances and potentially lead to some bias as well. In contrast, strip transect
estimators do not require a specification of the detection function. Of course, the properties of
strip transect estimators depend on the mean detection rate in the strip, but beyond that there
is no particular impact of one functional form rather than another. The simulations with c = 1
are also favourable to both CDS and strip transects as they mean that distances are independent
and uniformly distributed. This is relaxed to some extent by the overdispersed simulations
with c equal to 2 and 3, however the Dirichlet process used is still centred on the uniform distri-
bution. When there is a more severe departure from uniformity, CDS estimators will be biased,
and strip transect estimators will also be affected to some degree.

The choice of methodology for assessing abundance, as well as the determination of
required sample size, should be informed by consideration of all relevant biases and by the
likely achievable precision. The results in this paper will help in this process, by providing a
sample size formula reflecting the penalty due to unknown detection parameters, theoretical
and simulation results on the size of this penalty, and a comparison of the mean squared errors
of strip and line transect estimators in a wide-ranging simulation.

Appendix: Proof of Theorem 1
Applying Eq (15), we approximate l = log(L) by

l � N log Nð Þ � N � nð Þ log N � nð Þ � n log ðnÞ þ N � nð Þ log 1� P�g θð Þð Þ

þn log ðPÞ � n log ðwÞ þ
Xn
i¼1

log g di; θð Þ ð33Þ

The next step is to differentiate l to obtain the score function:

@l
@N

¼ N � N�1 þ 1 � log Nð Þ � N � nð Þ � N � nð Þ�1 � log N � nð Þ þ log 1� P�g θð Þð Þ ð34Þ

¼ log Nð Þ � log N � nð Þ þ log 1� P�g θð Þð Þ ð35Þ

@l
@θ

¼
Xn
i¼1

g di; θð Þ�1
h di; θð Þ � N � nð Þ 1� P�g θð Þð Þ�1P�h θð Þ ð36Þ

The MLE is obtained by setting Eqs (35) and (36) to 0. Firstly, set Eq (35) to 0 and expo-
nentiate both sides:

1 ¼ N̂ N̂ � n
� ��1

1� P�g θ̂
� �� �

ð37Þ
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which leads directly to

N̂ ¼ n= P�g θ̂
� �n o

: ð38Þ

Setting Eq (36) to 0, and then substituting for N̂ from Eq (38) gives an estimating equation for
θ:

0 ¼
Xn
i¼1

g di; θð Þ�1
h di; θð Þ � N̂ � n

� �
1� P�g θð Þð Þ�1P�h θð Þ ð39Þ

¼
Xn
i¼1

g di; θð Þ�1
h di; θð Þ � nP�1�g θð Þ�1 � n

� �
1� P�g θð Þð Þ�1P�h θð Þ ð40Þ

¼
Xn
i¼1

g di; θð Þ�1
h di; θð Þ � nP�1�g θð Þ�1

1� P�g θð Þð Þ 1� P�g θð Þð Þ�1P�h θð Þ ð41Þ

¼
Xn
i¼1

g di; θð Þ�1
h di; θð Þ � n�g θð Þ�1�h θð Þ ð42Þ

Results Eqs (38) and (42) give the Theorem result on the maximum likelihood estimators of
N and θ.

The Fisher Information is given by the variance of the score vector, the elements of which
are given by Eqs (35) and (36). It can be written as

I N; θð Þ ¼
INN IT

Ny

INy I yy

24 35 ¼
var @l=@Nð Þ cov @l=@N; @l=@θð ÞT

cov @l=@N; @l=@θð Þ var @l=@θð Þ

24 35: ð43Þ

The block elements of I are easily derived. Some preliminary notes:

1. Let D be a random variable with density gðd; θÞ= R w0 gðu; θÞdu for 0� d� w.

2. The distances di follow the same distribution as D, conditional on n.

3. Eðgðdi; θÞ�1hðdi; θÞjnÞ ¼
R w
0 gðd; θÞ�1hðd; θÞgðd; θÞdd= R w0 gðu; θÞdu ¼ �hðθÞ=�gðθÞ:
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For the remainder of the proof, I will write g(u), h(u), �g and �h for readability, rather than
g(u; θ) etc. Using (a), (b) and (c), we obtain:

I yy ¼ var @l=@θð Þ ¼ E var @l=@θjnð Þf g þ var E @l=@θjnð Þf g ð44Þ

¼ E nvar h Dð Þ=g Dð Þð Þð Þ þ var n�h�g�1 � N � nð Þ 1� P�gð Þ�1P�h
� 	 ð45Þ

¼ E½n�var hðDÞ=gðDÞð Þ þ var n�h�g�1 1� P�gð Þ�1
1� P�g þ P�gð Þ þ const:

� 	
ð46Þ

¼ E½n�var hðDÞ=gðDÞð Þ þ var n�h�g�1 1� P�gð Þ�1� 	 ð47Þ

¼ NP�gvar hðDÞ=gðDÞð Þ þ var nð Þ�h�hT�g�2 1� P�gð Þ�2 ð48Þ

¼ NP�gvar hðDÞ=gðDÞð Þ þ NP�g 1� P�gð Þ�h�hT�g�2 1� P�gð Þ�2 ð49Þ

¼ NP�gvar hðDÞ=gðDÞð Þ þ NP�h�hT�g�1 1� P�gð Þ�1 ð50Þ

INy ¼ cov @l=@N; @l=@θð Þ ð51Þ

¼ Ecov @l=@N; @l=@θjnð Þ þ cov E @l=@Njnð Þ;E @l=@θjnð Þf g ð52Þ

¼ 0� cov log N � nð Þ; n�g�1�h þ n 1� �gð Þ�1�h
� 	 ð53Þ

¼ ��g�1 1� �gð Þ�1�hcov log N � nð Þ; nf g ð54Þ

As N!1 n!p
NP�g , so the right hand side of Eq (54) can be approximated using a first order

Taylor Series of n about E½n� ¼ NP�g :

INy � ��g�1 1� P�gð Þ�1P�h�
cov log N � NP�gð Þ � N � NP�gð Þ�1 n� NP�gð Þ; n� 	 ð55Þ

¼ �g�1 1� P�gð Þ�1�hN�1 1� P�gð Þ�1varðnÞ ð56Þ

¼ �g�1 1� P�gð Þ�2�hN�1NP�g 1� NP�gð Þ ð57Þ

¼ 1� P�gð Þ�1P�h ð58Þ

The top-left element of I , INN , can also be approximated by a first order Taylor Series about
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n ¼ N�g :

INN ¼ var @l=@Nð Þ ¼ var log N � nð Þð Þ ð59Þ

� var � log N � NP�gð Þ þ N � NP�gð Þ�1 n� NP�gð Þ� 	 ð60Þ

¼ N�2 1� P�gð Þ�2varðnÞ ð61Þ

¼ N�2 1� P�gð Þ�2NP�g 1� P�gð Þ ð62Þ

¼ N�1 1� P�gð Þ�1P�g ð63Þ
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