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ABSTRACT
NiO nanopowders and NiO/nickel foam (NF) hybrid were synthesized by microwave hydrothermal method and the
following heating process. NiO nanopowders show the morphology of microspheres (diameter is about 3µm), which
are composed of porous nanoflakes. NiO/NF hybrid shows a porous nanoflakes array structure, the thickness of
nanoflakes is 10nm. Electrochemical measurements indicate that the maximum specific capacitance of NiO
nanopowders is about 85.4F/g at a scan rate of 5mV/s, while this value is up to 234.8F/g for NiO/NF hybrid.
Electrochemical impedance spectrum (EIS) data show that the Rs and Rct values of NiO/NF hybrid (1.9Ω and
0.25Ω) are smaller than that of the NiO nanopowders which are coated on nickel foam (3.6Ω and 0.3Ω). In
conclusion, the ultrathin porous NiO/NF is directly used as a binderfree supercapacitor electrode, which exhibited
significantly improved supercapacitor performance compared to NiO nanopowders.
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1. Introduction

Over the past decade, supercapacitors (also known as electro-
chemical capacitors) have attracted much attentiondue to high power
density, short charging time and long lifespan, etc. Supercapacitors
are of interest in energy storage applications such as uninterruptible
back-up power supplies, hybrid electronic vehicles, and renewable
energy systems.1 They’re efficient energy storage devices with
special performance that bridges the gap between conventional
capacitors and batteries. Supercapacitors can be classified into three
types based on their charge storage mechanism and electrode
materials. The one is electric double layer capacitor (EDLC), whose
electrode materials are almost carbon active materials, it’s mainly
because carbon active materials have more excellent performance
such as larger specific surface area, lower price, easier to make and
environmental friendlinees. The other is pseudocapacitor, pseudo-
capacitors store charges by redox reactions on the surface of the
electrode, whose electrode materials are almost transition metal
oxides and conductive polymer. Another is asymmetric super-
capacitor, which is the combination of the both above and it is a kind
of new energy storage device.2–4 EDLCs use reversible adsorption
of ions between the electrode and electrolyte interface to store
charges, but its low energy density limits their applications.5

Pseudocapacitors use highly reversible chemical adsorption strip-
ping or redox reactions on the surface of the electrode to store
charges.6 Transition metal oxides (TMOs) as the electrode materials
got extensively research, especially ruthenium oxide (RuO2), due to
its conductivity and specific capacitance in acidic electrolyte is
significantly higher than the other electrode materials, besides, its
stable properties can generate higher specific energy.7 Nevertheless,
the high cost and toxic nature of RuO2 has limited its practical
production and commercial applications. Hence, some other alterna-
tive electrode materials with low cost, abundant resources, non-
pollution and excellent performance, such as NiO,8,9 Co3O4

10,11 and
MnO2

12,13 have been received tremendous interests in recent studies.
NiO is one of the promising materials as electrode of super-

capacitors owning to its high theoretical capacity (2573 F/g within
0.5V), cost effectiveness and sufficiently large pseudo-capacitive

behavior, in addition, its preparation method is simple.14 NiO
nanopowders have diverse morphologies, such as nanoneedles,15,16

microspheres composed of nanoflakes, flower-like nanoparticles17–19

and hollow microspheres20–23 etc. These various morphologies
result in distinct difference in their electrochemical performance,
especially the microsphere composed of nanoflakes, which provides
much shorter pathways for electron and ion transport, improves the
diffusion of electrolyte, enhances kinetics and activity leading to
excellent electrochemical performance.24 So far, a lot of reports
have indicated NiO with different nanostructured configurations
and morphologies has their own features. For instance, Liu et al.25

reported that supercapacitor regarded urchin-like NiO nanoparticles
as electrode is pseudocapacitance nature, showing the maximum
specific capacitance is 290 F/g, the specific capacitance only decays
25% after 500 continuous charge-discharge cycles. Vijayakumar
et al.26 noticed that NiO nanoflakes synthesized by microwave
method at microwave radiation of 240W for 5min in a household
microwave oven (ONIDA) and then calcinated at 300°C for 60min
exhibit maximum specific capacitance of 401 F/g at current density
of 0.5mA/cm2. Ranga Rao et al.27 reported that urchin-like porous
NiO synthesized via the microwave hydrothermal method generates
more pathways for ions to improve the transmission capacity
maximum specific capacitance of 337 F/g at a scan rate of 2mV/s.
However, it is also noted that the active sites decreased due to the
introduction of a conductive agent and a polymer binder during the
electroactive powder particles coated on conductive substrates still
seriously limit their performance. In order to solve this problem, a
new concept is to grow electroactive nanostructures on conductive
substrates directly to be used as integrated electrodes for super-
capacitors.28 Therefore it will be of great significance to develop
effective and facile methods to grow electroactive materials directly
on conductive substrates for high performance supercapacitors.

There are various methods to synthesize NiO nanopowders,
such as traditional hydrothermal method,29 microwave hydrothermal
method, homogeneous precipitation30 and sol-gel method.31 Con-
trasting to traditional hydrothermal method, the microwave hydro-
thermal method32,33 has many advantages, such as fast heating,
efficient energy conservation, selective heating and environmental
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protection. In addition, this method has smaller temperature gradient
and no heating hysteresis phenomenon in the heating process.
Therefore, microwave hydrothermal method as the new facile
heating method has received tremendous interest recently.34

In this work, we have successfully prepared NiO nanopowders
and growed ultrathin porous NiO nanoflake arrays on nickel foam
into NiO/NF hybrid by microwave hydrothermal method. The
electrochemical performances of NiO nanopowders and NiO/NF
hybrid, in 6.0M KOH electrolyte, have been reported and discussed.
Moreover, a comparison was made between them to demonstrate
that NiO/NF hybrid might hold higher potential as the electrode for
high-performance energy storage devices.

2. Experimental Method

2.1 Materials synthesis
NiO/NF hybrids were synthesized by a microwave hydrothermal

method and the following heating process. All the reagents were
analytical grade and used without further purification. Deionized
water was used during all the experimental processes. Before the
synthesis, two pieces of nickel foams (2 cm © 2 cm) were washed
with deionized water and ethanol for several times. The nickel sulfate
(NiSO4·6H2O) and urea were mixed in the ratio 1:2, configured to
60mL aqueous solution and the concentration of Ni2+ ion is 0.1M.
After vigorous stirring for 30min, as-obtained transparent reaction
solution was transferred into a 100mL double-walled vessel, which
has an inner liner and a cover made of Teflon PFA and an outer high
strength sleeve. After processing the nickel foams were immersed in
the vessel. The vessel was sealed and maintained in a Microwave
Accelerated Reaction System (MARS-5, CEM Corporation, USA)
at 160°C for 30min with the ramping rate of 15°C/min. While in
the reaction solution without addition of nickel foam produced NiO
nanopowders. In order to improve the dispersion, suitable amount
of PEG-4000 was added as the surfactant in the process of NiO
nanopowders preparation. After the reaction was completed, the
nickel foams were taken out and cleaned by deionized water and
ethanol to remove the loosely products attached on the surface. The
resultant precipitates in the solution were centrifuged with deionized
water and ethanol. After that, the nickel foams and precursor
precipitates were dried at 70°C for 48 h. Then, the nickel foams
loaded with the as-grown precursors and precursor powders were
calcined at 400°C for 2 h at a heating rate of 5°C/min in nitrogen to
get the NiO/NF hybrids and NiO nanopowders.

2.2 Material Characterization
Crystallite structure of the NiO was characterized by a D8-

Advance X-ray powder diffractometer (Bruker, Germany) with
Cu KA radiation (K = 0.154056 nm). The thermal behavior of the
precursor was examined by employing thermogravimetric and
differential scanning calorimetry (TG-DSC) on a STA409-EP
comprehensive thermal analyzer (Netzsch, Germany) with a heating
ramp of 10°C/min from room temperature to 700°C in nitrogen.
Scanning electron microscopy (SEM) images were acquired on a
QUANTA FEG250 scanning electron microscope (FEI, USA) to
characterize the morphology of the samples.

2.3 Electrode preparation and electrochemical measurement
Preparation of the working electrode as follows: the NiO

nanopowders, activated carbons and polytetrafluoroethylene (PTFE)
were mixed in a mass ratio of 80:15:5 and dispersed in ethanol to
produce the homogeneous slurry. Then the slurry was coated onto
one half of the nickel foam substrate (1 cm © 2 cm), the mass
loading of active materials is about 2mg/cm2. Relatively, the mass
loading of NiO/NF is about 1.5mg. After being dried in vacuum
drying oven at 80°C for 8 h, the as-formed electrodes loaded with
the active material were pressed to sheets. All the electrochemical

performances were performed on an Autolab CHI604D elec-
trochemical workstation. The electrochemical measurements were
carried out using a three-electrode electrochemical cell in a 6.0M
KOH, the obtained NiO powder-based electrode or hybrid array-
based electrode as the working electrode, platinum as the counter
electrode, saturated calomel electrode as the reference electrode,
respectively. The electrochemical properties of the working
electrodes were evaluated by cyclic voltammetry (CV) and
electrochemical impedance spectroscopy (EIS) in 6.0M KOH
solution. CV measurements were performed at different scan rates
in a potential window of ¹0.2V to 0.5V. EIS measurements were
recorded at open circuit potential with a frequency loop from
500 kHz to 0.01Hz. The specific capacitance was calculated from
the CV curves based on the following equation:35

C ¼ S

�V � ¯ �m ð1Þ

Where C (F/g) is specific capacitance, S (cm2) is area of CV
curve, "V (V) is working voltage, ¯ (mV/s) is scan rate, m (g) is
the mass of active materials, respectively.

3. Results and Discussion

3.1 Phase transformation
The XRD patterns of precursor of NiO are shown in Fig. 1.

It shows that XRD patterns of these precursors were all the same,
proving the same product. The diffraction peaks at 11.35°, 33.46°
and 59.98° correspond to the (003), (101) and (110) planes of A-
Ni(OH)2. The absence of any other peaks confirms the phase purity
of the Ni(OH)2. The A-Ni(OH)2 is obtained by free precipitation
from a solution reaction at 160°C. In this temperature, urea
hydrolyzes gradually and releases NH3 and CO2. The resulting
weak alkaline condition is believed to create numerous nucleation
sites for the formation of A-Ni(OH)2. The self-assembly process of
A-Ni(OH)2 was proved by monitoring the continuous morphological
evolutions of A-Ni(OH)2. With increasing reaction time, the green
precipitate was producted gradually. The related reaction formulas
can be written as follows:

COðNH2Þ2 þ H2O ! 2NH3 þ CO2 ð2Þ
Ni2þ þ 2NH3 þ 2H2O ! ¡-NiðOHÞ2# þ 2NH4þ ð3Þ

TG-DSC studies were carried out to assess the follow-up
calcination process of the as prepared A-Ni(OH)2. As depicted in
Fig. 2, the precursor undergoes a weight loss of 32% in two-step
weight loss process involving the dehydration and decomposition
of precursor. The weight loss (5%) below 300°C is ascribed to the
removal of adsorbed water and the evaporation of the intercalated
water molecules.36 The subsequent weight loss (27%) with a strong
exothermic peak at 350–580°C arises from the loss of water and

Figure 1. (Color online) XRD pattern of precursor with PEG-
4000 added (black) and none (red).
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CO2 generated by the dehydroxylation and decomposition of
precursor.37 The sharp weight loss around 380°C is an indication
of complete conversion of A-Ni(OH)2 to NiO. At higher temper-
ature, no obvious weight loss indicates that there is no additional
phase or structural change in NiO. Therefore, in order to obtain the
NiO with high purity, 400°C is chosen as the calcination temper-
ature. Figure 3 shows the XRD patterns of NiO black powders
calcined at 400°C for 120min. The diffraction peaks at 37.16°,
43.22° and 62.80° correspond to the (111), (200) and (220) indexed
to the rocksalt-type NiO, and the lattice parameters are a = 4.177¡.
The absence of any other peaks confirms the complete decom-
position of the precursor to the high purity of the NiO.

3.2 Morphological and structural studies
The morphological and structural features of the precursors, as-

synthesized NiO nanopowders and NiO/NF hybrid are character-
ized by SEM. Figure 4a displays the image of the as-obtained
precursor with crossing stack form of nanosheets. The homogeneous
environment provided by microwave hydrothermal method makes
the secondary aggregate relatively uniform in scales. Figure 4b
displays the obtained NiO calcined at 400°C with 0.5 g PEG-4000,
which composed of many microspheres (diameter is about 3 µm)
consisted of porous nanoflakes self-assembly accumulation. The
formation mechanism of the NiO porous nanoflakes is the release
of isometric water steam and phase transition of A-Ni(OH)2 in the
process of calcination. Moreover, hydrogen bonding of PEG can
wrap up NiO surface by affinity effect preventing the coagulation
of nanometer particles, improving its dispersion and the stability of
reaction solution, and helping the NiO nanoparticles self-assemble
into porous nanoflake microspheres. In addition, within such unique
porous nanoflakes, the open and free interspaces provide more
active sites, thereby improving the utilization effect of electrode

materials. In Fig. 4c, the NiO prepared without surfactant has
irregular shape and its size is not uniform, the agglomeration is
relatively serious. From Fig. 4d, it can be seen clearly that NiO
attached on nickel foam has an array structure consisting of loose
nanoflakes with regular clear boundary and larger porosity. This
structure is beneficial to accelerate the transmission of ions and
process of charge and discharge. The binder-free electrode
architecture has the following important advantages for high-
performance supercapacitors. First, the NiO nanoflakes directly
contact with nickel foam can enhance the electrical conductivity of
the electrode and shorten the diffusion paths of the electron. Second,
the porous feature of NiO nanoflakes increases the amount of
electroactive sites and facilitates transport of the electrolyte. Third,
In the hybrid electrode, the Ni foam can act both as a buffering
matrix to accommodate the local volumetric expansion/contraction
of NiO nanoflakes upon longterm cycling, and as a conductive core
to provide efficient transport of electrons for stable Faradaic redox
reactions of the NiO. Thus, the morphological and electrochemical
changes of NiO nanoflakes induced by charge/discharge cycling are
greatly reduced, ensuring a remarkably enhanced cycling perform-
ance of the NiO/NF hybrid electrode.38

3.3 Electrochemical studies
To evaluate the potential of the NiO nanopowders and NiO/NF

hybrids acting as electrodes for supercapacitors, the electrochemical
capacitive behavior was first elucidated by the CV method. Figure 5
depicts representative CV curves of NiO nanopowders and NiO/NF
hybrids measured at different scan rates of 5mV/s, 10mV/s,
20mV/s and 50mV/s in a potential range of ¹0.2V–0.5V (vs. Hg/
HgO) in 6.0M KOH electrolyte solution. It can be seen that the CV
curves of NiO nanopowders don’t present a regular rectangle, but
present distortion of different degrees, confirming the Faradic nature
of the NiO rather than EDLC, which is an ideal rectangular shape.
The oxidation and reduction peaks of their respective anodic and
cathodic scan are not symmetric, this is due to kinetic irreversibility
of the redox process. The charge storage of NiO is expected to arise
the following redox reaction:39

NiOþ zOH� , zNiOOHþ ð1-zÞNiOþ ze� ð4Þ

Figure 2. (Color online) TG (blue) and DSC (black) curves of the
as-prepared precursors.

Figure 3. (Color online) XRD pattern of NiO nanopowders with
PEG-4000 added (black) and none (red).

Figure 4. SEM images of the as-obtained precursor (a), the
obtained NiO calcined at 400°C with 0.5 g PEG-4000 (b), the
obtained NiO calcined at 400°C with none added PEG-4000 (c) and
the NiO/nickel foam hybrid calcined at 400°C (d).
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In the process of charging, a large number of electric charges
are stored in the electrode from Ni2+ into Ni3+; in the process of
discharging, the charged ions stored in the electrode back to the
electrolyte and release through the external circuit from Ni2+ into
Ni3+. However, the CV curves of NiO nanopowders show that
redox peaks are not obvious, indicating that the conductivity of the
supercapacitor electrode material is poor. The faster of the scan rate,
the more obvious of the redox peak; the higher of the redox
potential, the more significantly distortion of CV curves. This is
mainly because the poor conductivity of NiO leads to a decline in
large current charge and discharge capacity. While the CV curves
of NiO/NF hybrids show obvious redox peaks. As the scan rate
increases from 5mV/s to 50mV/s, CV curves change just a little,
indicating good conductivity and electrochemical stability of NiO/
NF hybrids. Based on CV curves, the specific capacitances of NiO
nanopowders are 85.4, 54.5, 33.5 and 16.8 F/g at different scan
rates of 5, 10, 20, and 50mV/s, respectively. While, the specific
capacitances of NiO/NF hybrids are 234.8, 163.9, 122.0, 90.1 F/g
at the same scan rates (Fig. 6). In conclusion, NiO/NF hybrids
have excellent rate performance than NiO nanopowders due to their
binder-free electrode structure.40,41

Figure 7 shows the Nyquist profiles of NiO nanopowder and
NiO/NF hybrid in the frequency range of 0.01–500 kHz at a bias
potential of 0.4V. The inset shows the enlarged view of high
frequency region. The impedance spectra include a slope line in the
low-frequency and one semicircle in the high frequency, but these
are not obviously in NiO nanopowders. The values of solution
resistance (Rs) intercepted at high frequency on the real axis of
these two electrodes are 3.6³ and 1.9³, respectively. Rs is the
combination of (i) ionic and electronic resistances, (ii) intrinsic
resistance of the electrode, and (iii) diffusive as well as contact
resistance at the NiO/nickel foam interface.42 In addition, the values
of charge transfer resistance (Rct) corresponded the semicircle at
high frequency region of these are 0.3³ and 0.25³, respectively.
These results may benefit from the structure of the ultrathin
porous NiO nanoflake arrays, which enhances the diffusivity of the

electrolyte, lowering the charge-transfer resistance value.43 The
smaller the charge transfer resistance, the faster the charge transfer
result in good conductivity. In conclusion, the capacitance
impedance characteristics of NiO/nickel foam hybrid are better
than the NiO nanopowders and more suitable for electrode of high-
performance supercapacitors.

4. Conclusions

In summary, NiO nanopowders were successfully synthesized
and grown directly on nickel foam (NiO/nickel foam hybrid) by
microwave hydrothermal method combined with the facile post heat
treatment. NiO nanopowders have the morphology of microspheres
with the diameter of about 3 µm, which are composed of porous
nanoflakes. While NiO is grown directly on nickel foam, a porous
nanoflakes array with the thickness of 10 nm is obtained. Benefiting
from the rational structural features, NiO/NF hybrid as the binder-
free electrode material for supercapacitors delivers the higher
specific capacitance and exhibits more excellent conductivity than
NiO nanopowders. Electrochemical studies indicate that the max-
imum specific capacitance of NiO nanopowders is about 85.4 F/g
at scan rate of 5mV/s, while this value is up to 234.8 F/g for NiO/
nickel foam hybrid. The Rs and Rct values of NiO array-based
electrode are 1.9³ and 0.25³, which are smaller than that of
the sample for NiO nanopowder-based electrodes (3.6³ and 0.3³).
In conclusion, the ultrathin porous NiO nanoflake arrays on
nickel foam with better electrochemical performance and excellent
conductivity appear to be an up-and-coming electrode material for
supercapacitors.

(a)

(b)

Figure 5. (Color online) CV curves of NiO nanopowders (a) and
NiO/nickel foam hybrids (b).

Figure 6. (Color online) the calculated specific capacitance of
nanopowders (black) and NiO/nickel foam hybrids (red) as a
function of scan rate.
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Figure 7. (Color online) EIS plots of the NiO nanopowder and
NiO/nickel foam hybrid in 6.0M KOH solution (Inset: the enlarged
view of the high frequency region).
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