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Pricing European options with stochastic volatility

under the minimal entropy martingale measure

Xin-Jiang HE ∗ Song-Ping ZHU †

Abstract

In this paper a closed-form pricing formula in the form of an infinite series for

European call options is derived for the Heston stochastic volatility model under a

chosen martingale measure. Given that markets with the stochastic volatility are in-

complete, there exists a number of equivalent martingale measures and consequently

investors face a problem of making a choice of appropriate measure when they price

options. The one we adopt here is the so-called minimal entropy martingale measure

shown to be related to the expected utility maximization theory [12] and the finan-

cial rationality for choosing this measure will be further illustrated in this paper. A

great advantage of our newly-derived pricing formula is that the convergence of the

solution in series form can be proved theoretically; such a proof of the convergence is

also complemented by some numerical examples to demonstrate the speed of conver-

gence. To further show the validity of our formula, a comparison of prices calculated

through the newly derived formula is made with those obtained directly from the

Monte Carlo simulation as well as those from solving the PDE (partial differential

equation) with the finite difference method.

AMS(MOS) subject classification.

∗School of Mathematics and Applied Statistics, University of Wollongong, NSW 2522, Australia.
†Corresponding author: School of Mathematics and Applied Statistics, University of Wollongong, NSW

2522, Australia

1



Keywords. Series expansion, Minimal entropy martingale measure, Expected utility max-

imization, Convergence.

1 Introduction

Although Black & Scholes [5] made a great contribution to the area of option pricing by

proposing a simple and closed-form pricing formula for European options in 1973, their

assumption for the log-returns of the underlying asset to follow a normal distribution

proves to be an over simplification in some cases (it can not capture the features like

skewness [21] and fat-tails [23] exhibited by the real market data), which may lead to the

problem of mispricing. As a result, many modifications to the Black-Scholes model have

been proposed, including one of the most well-known ways by relaxing the assumption of

the constant volatility due to the observed “volatility smile” from market data [10].

In the literature, there are mainly two kinds of non-constant volatility models, i.e. local

volatility and stochastic volatility model. Local volatility models were adopted by Dupire

[11], Derman & Kani [9] and Rubinstein [24] and the volatility in their models was defined

as a deterministic function of asset price and time. Although this kind of model appears to

have certain advantages since it may relieve some computational burden and fit well with

a given market, it was shown that local volatility model is not as flexible as the stochastic

volatility models [10] and it is even suggested in Hagan et. al [14] that the “smile dynamics”

are poorly predicted by the local volatility model. Such kind of observations have made

stochastic volatility models much more popular over local volatility models.

Stochastic volatility was first systematically studied by Scott [28] who numerically

solved the option pricing problem with Monte Carlo simulations. It was further inves-

tigated by Hull & White [17] and Stein & Stein [31]; the former proposed a series approxi-

mation solution and the latter presented a closed-form formula for European option price.

Unfortunately, their models are not satisfying since some drawbacks do exist. For example,

2



the stochastic volatility process of Hull & White model does not possess the mean-reverting

property, which is at odds with observations from many empirical studies [2], while the

volatility can not always remain positive under some parameter settings of Stein & Stein

model.

A breakthrough took place in 1993 when Heston [15] incorporated a specific model with

the stochastic volatility possessing the mean-reverting and non-negative properties and

derived a closed-form pricing formula based on the Fourier transform technique. However,

despite its great success, one should notice that the pricing formula obtained by Heston is

not the only price formula under the proposed model. This is because the market described

by the Heston model is actually incomplete as a result of introducing stochastic volatility

and thus derivative pricing is no longer independent of investors’ risk preference. Thus,

different choice of equivalent martingale measures will lead to different risk-neutral prices.

There are then two issues one may face; a) we need a reasonable principle to select an

appropriate martingale measure, and b) we need to overcome the difficulty of deriving a

closed-form pricing formula associated with the chosen martingale measure.

In fact, there are several different martingale measures, such as minimal martingale

measure [25], variance-optimal measure [20, 26], minimal reverse entropy martingale mea-

sure [27] and so on. The minimal entropy martingale measure considered here is one of

them and is chosen by minimizing the relative entropy between the pricing measures and

the physical measure. A financial interpretation for choosing the minimal entropy martin-

gale measure was originally given in [12], which is related to the concept of expected utility

maximization, and will be further illustrated later in this paper showing that choosing

the minimal entropy martingale measure is equivalent to attaining the maximum expected

utility, an action axiom in finance. Unfortunately, to the best of our knowledge, only

numerical methods are applied to option pricing under this particular measure, and a

closed-form pricing formula has hitherto not been found. A great advantage of having

analytical closed-form formula in terms of option pricing is that considerable amount of
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time and effort can be spared when these formula are involved in the determination of

model parameters; a feature that none of numerical pricing approaches could match. This

is the main thrust behind our effort of searching for a closed-form solution of the Heston

stochastic volatility model under the minimal entropy martingale measure.

Entropy is a concept originated from thermodynamics [7] and it has been applied to

portfolio selection and asset pricing by a number of different authors, such as Philippatos

& Wilson [22], who were believed to be the first to apply this concept to portfolio selection

and adopted it as a measure of risk, and Buchen & Kelly [6], who estimated the distribution

of the underlying from a set of option prices with the principle of maximum entropy. In

contrast, we adopt the concept but use it in the context of pricing options in an incomplete

market. Let us consider a stochastic process S = (St)t≥0 defined on a probability space

(Ω, F , P) and adapted to the filtration F = (Ft)t≥0. The relative entropy H(Q,P ) of an

equivalent martingale measure Q for S is then defined as

H(Q,P ) =


E

[
dQ

dP
ln

(
dQ

dP

)]
, Q ≪ P,

+∞, otherwise,

where E represents the expectation operator under measure P . We denote M as the set

of martingale measures and Qe as the minimal entropy martingale measure satisfying

H(Qe, P ) = minQ∈MH(Q,P ).

It is proved by Frittelli [12] that a unique minimal entropy martingale measure equivalent

to P exists under the assumption that there is an equivalent martingale measure Q0 such

that H(Q0, P ) < +∞. Under this assumption, Hobson [16] managed to obtain an explicit

expression of the dynamics for the underlying price and the volatility under the minimal

entropy martingale measure with some particular settings. Following him, we take zero

interest rate as a leading order approximation. This is a reasonable approximation because
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the tenor of most exchange-traded options is often less than three months, which means the

risk-free interest rate (often approximated by Treasury Bill Rates) should be quite low [1],

and the changes in the value of the interest rate has little influence on option prices [30]. In

this case, although the new PDE (partial differential equation) system governing the option

price contains variable coefficients as a result of the introduction of time-dependent drift

term in the volatility process, which has made the task of finding closed-form solutions much

more difficult, we still managed to find a closed-form pricing formula in series form together

with a lower bound for the radius of convergence. In addition, two numerical examples are

provided to further demonstrate the speed of convergence of the series solution. To further

validate the newly derived pricing formula, we have also carried out additional comparison

of the results produced with the new formula and those directly obtained from solving the

PDE with the finite difference method and from solving the SDE (stochastic differential

equation) with Monte Carlo simulation.

The rest of the paper is organized as follows. In Section 2, we will provide the financial

meaning of the minimal entropy martingale measure. In Section 3, we will first briefly

introduce the model we adopt and then derive a series solution to our PDE governing the

European option price. Also, the convergence of our solution will be proved theoretically by

giving a lower bound for the radius of convergence. In Section 4, the speed of convergence

will be tested numerically, after which our formula is further verified by making comparison

with the results obtained by the finite difference method and Monte Carlo simulation.

Concluding remarks are given in the last section.

2 Financial explanation for minimal entropy martin-

gale measure

In this section, we will briefly review the relationship between minimizing the relative

entropy and maximizing the expected exponential utility, which is actually one of the most
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important areas of research on the minimal entropy martingale measure.

According to the existing literature, Frittelli [12] and Bellini & Frittelli [3] provided an

elaborate illustration about the link between the minimal entropy martingale measure and

maximum expected utility. By setting wT be the attainable terminal wealth and the utility

function be exponential, i.e.

u(x) = −e−x, (2.1)

the results were presented as

H(Q,P ) = sup
wT∈L∞:e−rTEQ(wT )≤0

u−1(EP [u(wT )]), (2.2)

which implies that the relative entropy is indeed the maximum certainty equivalent [19],

u−1(EP [u(wT )]), of attainable wealth wT with prices less than or equal to zero. Then

the characteristics of the density of the minimal entropy martingale measure were given,

showing the equivalence between maximization of the expected utility and adopting the

minimal entropy martingale measure. In addition, Delbaen et. al [8] obtained a more

generalized result, which considers a self-financing strategy and an extra contingent claim,

further demonstrating that maximizing the expected utility is equivalent to minimizing the

relative entropy with an exponential utility function specified as

u(x) = 1− e−αx, α > 0. (2.3)

Moreover, how to construct an optimal strategy for a utility optimization problem through

the dual problem of martingale measures was also documented in [33]. It should also be no-

ticed that the minimal entropy martingale measure is quite useful when pricing contingent

claims with utility indifference approaches [18, 32].

After the financial justification for choosing the minimal entropy martingale measure is

illustrated, we are now ready to price European call options under this particular martingale
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measure, which will be presented in the next Section.

3 Closed-form formula

In this section we will firstly specify our model under the physical measure and then

pricing dynamics will be proposed by means of measure transformation. After the model

is established, the derivation of a closed-form pricing formula for European call options is

provided based on the series expansion.

Let St be the underlying asset price and vt be the volatility, the dynamics under the

physical measure are specified as follows

dSt

St

= µvtdt+
√
vtdBt,

dvt = k(θ − vt)dt+ β
√
vtdWt,

where Bt and Wt are two standard Brownian motions with correlation ρ. It is obvious that

this market is incomplete, where a claim can not be perfectly replicated, and there exists

a set of equivalent martingale measures and correspondingly arbitrage-free prices. As a

result, we need to choose an appropriate equivalent martingale measure for pricing con-

tingent claims. Over the years, many principles have been developed, such as the minimal

martingale measure [25], under which the price of “risk premium” is zero, and variance-

optimal measure [20, 26], which is connected with quadratic utility function. The minimal

entropy martingale measure adopted in this paper is reasonable to choose according to the

utility maximization argument in Section 2. Furthermore, no one has derived a closed-form

solution under this measure. As a result, following [16], if we set

Wt = ρBt +
√
1− ρ2Ct, (3.1)

where Bt and Ct are two independent Brownian motions, the dynamics under the minimal
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entropy martingale measure Q can be obtained by the following transformation

dBQ
t = dBt + µv

√
vtdt,

dCQ
t = dCt +

1

β
√

1− ρ2
λ(τ)

√
vtdt,

where τ = T−t and λ(τ) = 2∆ tanh(∆τ+b)−k−ρβµ. Here ∆ =

√
1

4
k2 +

1

2
kρβµ+

1

4
β2µ2

and b = tanh−1(
1

2

k + βρµ

∆
). Therefore, the corresponding expression for the dynamics can

be derived as

dSt

St

=
√
vtdB

Q
t ,

dvt = [k(θ − vt)− βρµvt − λ(τ)vt]dt+ β
√
vtdW

Q
t . (3.2)

Let U(S, v, t) be the European call option price written on the underlying asset St, then

according to the Feynman-Kac theorem [29], we can easily show that U(S, v, t) satisfies

the PDE

1

2
vS2∂

2U

∂S2
+ ρσvS

∂2U

∂S∂v
+

1

2
σ2v

∂2U

∂v2
,

+ [k(θ − v)− βρµv − λ(τ)v]
∂U

∂v
+

∂U

∂t
= 0, (3.3)

with terminal condition:

U(S, v, T ) = max(S −K, 0), (3.4)

and boundary conditions:

U(0, v, t) = 0, lim
S→+∞

U(S, v, t) = S,

U(S,∞, t) = S, lim
v→0

U(S, v, t) = max(S −K, 0).

Here, the reason for the option price to be equal to the payoff function at v = 0 is illustrated
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in [34]. On the other hand, U(S, v, t) can also be equivalently calculated as

U(S, v, t) = e−r(T−t)EQ[(ST −K)+|St = S],

= SEQ[e−r(T−t)ST

S
I{ST>K}|St = S]−Ke−r(T−t)EQ[I{ST>K}|St = S].

To seek a solution in an affine form later, we can let U(S, v, t) take the form of

U(S, v, t) = SP1(x, v, t)−Ke−r(T−t)P2(x, v, t). (3.5)

Substituting Equation (3.5) into (3.3) and applying transformation of x = ln(S) yield the

following PDE

1

2
v
∂2Pj

∂x2
+ ρσv

∂2Pj

∂x∂v
+

1

2
σ2v

∂2Pj

∂v2
+ ljv

∂Pj

∂x
,

+ [k(θ − v)− βρµv − λ(τ)v +mjv]
∂Pj

∂v
+

∂Pj

∂t
= 0, (3.6)

for j = 1, 2, where l1 =
1

2
, l2 = −1

2
,m1 = ρσ,m2 = 0. Now the terminal conditions for Pj

become

Pj(x, v, T ; ln[K]) = I{x≥ln[K]}.

Let us denote y = ln[K] and assume that fj(x, v, t;ϕ) be the conditional characteristic

function of xT , i.e.

fj(x, v, t;ϕ) = EQ[eiϕxT |xt = x, vt = v]. (3.7)

It is not difficult to deduce that fj(x, v, t;ϕ) satisfies the same PDE as Pj(x, v, t; y) and

thus we obtain

1

2
v
∂2fj
∂x2

+ ρσv
∂2fj
∂x∂v

+
1

2
σ2v

∂2fj
∂v2

+ ljv
∂fj
∂x

,

+ [k(θ − v)− βρµv − λ(τ)v +mjv]
∂fj
∂v

+
∂fj
∂t

= 0, (3.8)

9



with known terminal condition fj(x, v, T ;ϕ) = eiϕx. Considering the results in [15], it is

natural for us to assume that there exists an affine structure solution to PDE (3.8) as

fj = eC(τ ;ϕ)+D(τ ;ϕ)v+iϕx. (3.9)

Hereafter, i denotes the imaginary unit. Therefore, by substituting (3.9) into (3.8), we can

obtain the following equation after some calculation

{1
2
σ2D2+[iρσϕ−k+mj−βρµ−λ(τ)]D+(ljiϕ−

1

2
ϕ2)−D

′
(τ)}v+[kθD−C

′
(τ)] = 0, (3.10)

which implies that the coefficients of vn should be set to be zero for every n respectively

since v is arbitrary. As a result, we have the following two ODEs (ordinary differential

equations)

D
′
(τ) =

1

2
σ2D2 + [iρσϕ− k +mj − βρµ− λ(τ)]D + (ljiϕ− 1

2
ϕ2), (3.11)

C
′
(τ) = kθD, (3.12)

with initial condition C(0) = D(0) = 0. It is obvious that if we can derive the solution

of D(τ ;ϕ), then C(τ ;ϕ) will be obtained straightforwardly by direct integration. As a

result, what we need to do is to focus on D(τ ;ϕ). Actually, it should be noticed that ODE

(3.11) is actually a Riccati Equation with variable coefficients, which brings extra burden

in finding a closed-form solution for it.

We set q0 = ljiϕ − 1

2
ϕ2, q1 = iρσϕ − k + mj − βρµ − λ(τ) and q2 =

1

2
σ2. After this

crucial change of the variables, it is easy to find that q1 can be further simplified as

q1 = iρσϕ+mj − 2∆ tanh(∆τ + b).

By applying the transformation of D = − u
′

q2u
, the Riccati equation becomes a second-order
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linear ODE with variable coefficients as

u
′′ − q1u

′
+ q0q2u = 0, (3.13)

with u
′
(0) = 0. Although this kind of ODE can be easily solved when its coefficients are

all constant, it still poses an obstacle when its coefficients are a function of the variable τ

as the case we end up with in (3.13). By setting

u =
∞∑
n=0

anτ
n, (3.14)

we obtain

u
′

=
∞∑
n=0

(n+ 1)an+1τ
n,

u
′′

=
∞∑
n=0

(n+ 1)(n+ 2)an+2τ
n. (3.15)

What we need to do now is to expand tanh(∆τ + b) as a series with respect to τ . However,

the coefficients of the series would be very complicated and the property of convergence

can hardly be studied as far as the Taylor series for tanh(x) is concerned, which is a major

reason for us to seek alternative ways.

Since ex can be expanded as

ex =
∞∑
n=0

xn

n!
, (3.16)

and the RHS (right hand side) of Equation (3.16) is a power series, whose radius of con-

vergence for any given x can be calculated as

lim
n→∞

∣∣∣∣ 1
n!
xn

1
(n+1)!

xn+1

∣∣∣∣ = lim
n→∞

∣∣n+ 1

x

∣∣ = +∞, (3.17)
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we rewrite tanh(x) as

tanh(x) =
e2x − 1

e2x + 1
, (3.18)

since Equation (3.17) means that Equation (3.16) holds for any x. As a result, ODE (3.13)

can be rearranged as

(e2b ·e2∆τ +1)u
′′− [(iρσϕ+mj−2∆)e2be2∆τ +(iρσϕ+mj+2∆)]u

′
+(e2b ·e2∆τ +1)q0q2u = 0.

(3.19)

According to Equation (3.16) we know that

e2∆τ =
∞∑
n=0

cnτ
n, (3.20)

where cn =
1

n!
(2∆)n. Therefore, applying Equation (3.15) and (3.20) into (3.19) yields

(e2b
∞∑
n=0

cnτ
n + 1)

∞∑
n=0

(n+ 1)(n+ 2)an+2τ
n + (e2b

∞∑
n=0

cnτ
n + 1)q0q2

∞∑
n=0

anτ
n,

−[(iρσϕ+mj − 2∆)e2b
∞∑
n=0

cnτ
n + (iρσϕ+mj + 2∆)]

∞∑
n=0

(n+ 1)an+1τ
n = 0. (3.21)

As Equation (3.21) should hold for any τ , the coefficients of {τ k,∀k ≥ 0} should be equal

to zero and thus we have

(k + 1)(k + 2)ak+2 + e2b
k∑

i=0

[(k − i+ 2)(k − i+ 1)ak−i+2ci] + I2 − I1 = 0, (3.22)

for k ≥ 0, where

I1 = {(iρσϕ+mj − 2∆)e2b
k∑

i=0

[(k − i+ 1)ak−i+1ci] + (iρσϕ+mj + 2∆)(k + 1)ak+1} = 0,

I2 = e2bq0q2

k∑
i=0

(ak−ici) + q0q2ak.
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As a result, {ak+2, k ≥ 0} can be easily obtained once {an, n = 0, 1, 2, .., k + 1} according

to the following equation derived from Equation (3.22)

ak+2 =
I1 − I2 − e2b

∑k
i=1[(k − i+ 1)(k − i+ 2)ak−i+2ci]

(e2b + 1)(k + 2)(k + 1)
, k ≥ 0. (3.23)

One may think that D(τ ;ϕ) has been solved by now. However, we only have a1 = 0

from u
′
(0) = D(0) = 0, which keeps {ak+2, k ≥ 0} still unknown without the value of a0.

Fortunately, D(τ ;ϕ) takes the form as

D(τ) = − 1

q2
·
∑∞

n=0(n+ 1)an+1τ
n∑∞

n=0 anτ
n

, (3.24)

which means that we do not have to derive an since D(τ) can be further represented by

D(τ) = − 1

q2
·
∑∞

n=0(n+ 1)an+1

a0
τn∑∞

n=0
an
a0
τn

. (3.25)

It should be noticed that if we define

âk =
ak
a0

, k ≥ 0, (3.26)

all {âk, k ≥ 0} can be immediately derived due to the expression

âk+2 =
Î1 − Î2 − e2b

∑k
i=1[(k − i+ 1)(k − i+ 2)âk−i+2ci]

(e2b + 1)(k + 2)(k + 1)
, k ≥ 0, (3.27)

with â0 = 1, â1 = 0. Here, Î1 and Î2 can be respectively expressed as

Î1 = {(iρσϕ+mj − 2∆)e2b
k∑

i=0

[(k − i+ 1)âk−i+1ci] + (iρσϕ+mj + 2∆)(k + 1)âk+1},

Î2 = e2bq0q2

k∑
i=0

(âk−ici) + q0q2âk.
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Therefore, we have finally arrived at the desired result with

D(τ) = − 1

q2
·
∑∞

n=0(n+ 1)ân+1τ
n∑∞

n=0 ânτ
n

, (3.28)

according to Equation (3.25). As for C(τ ;ϕ), it is calculated from

C(τ) =

∫ τ

0

kθD(t)dt. (3.29)

since D(τ ;ϕ) has been worked out. As stated previously, fj is the conditional characteristic

function of xT , thus Pj can be derived according to the Gil-Pelaez Theorem [13] once fj is

obtained as follows

Pj =
1

2
+

1

π

∫ +∞

0

Re

[
e−iϕ ln[K]fj

iϕ

]
dϕ. (3.30)

By now a formula in series expansion for the price of European call options is derived and

can be calculated by Equation (3.5).

Once a series solution is obtained, it is natural for us to consider its convergence.

Although the convoluted and recursive structure of Equation (3.27) posed an obstacle

when we tried to prove its convergence theoretically, we finally figured out an alternative

way. In fact, the series solution is introduced when we seek solutions to ODE (3.13) and

thus our final formula will converge if this series solution converges. Therefore, we provide

the radius of convergence for the series solution in the following proposition.

Proposition 3.1 The series solution u =
∞∑
n=0

anτ
n will always converge if

τ ≤ 1

∆

√
b2 +

π2

4
. (3.31)

Proof. According to one existing theory that the radius of convergence of the series

solution to a second order linear ODE near an ordinary point is at least as large as the

distance from the ordinary point to the nearest singularity of the ODE [4], all we need to

14



do for our model is to find the nearest singularity to zero of (3.13). Now if we let

F1(τ) = (iρσϕ+mj)(e
2(∆τ+b) + 1)− 2∆(e2(∆τ+b) − 1),

F2(τ) = e2(∆τ+b) + 1,

it is not difficult to verify that F1(τ) and F2(τ) are both analytic in the entire complex

domain. Furthermore, as we notice that q1 equals F1(τ)/F2(τ) and q0q2 is a constant, all

singularities can be obtained when we set F2(τ) = 0 and are specified as follows

τk = − b

∆
+ i

(2k + 1)π

2∆
, k = 0, 1, 2... (3.32)

Therefore, the nearest singularity to zero is − b

∆
+ i

π

2∆
and it is actually a simple pole.

This implies that the radius of convergence is at least
1

∆

√
b2 +

π2

4
, which has completed

the proof.

Except the radius of convergence, the speed of convergence is also an important factor

for the series solution and should be examined. Moreover, we will further check the validity

of our pricing formula by comparing European option prices calculated by pricing formula

(3.5) with those obtained directly from the SDE (3.2) controlling the dynamics with Monte

Carlo simulation and from the PDE (3.3) governing the option price with finite difference

methods to further demonstrate the speed of convergence and accuracy. These two issues

will be shown in the next Section.

4 Numerical examples and discussions

In this section, two different examples will be given respectively to show the convergence

and the validity of our pricing formula. Of course, the parameters used are chosen under

the restriction (3.31).
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As shown from the derivation process in Section 3 that the obtained pricing formula

(3.5) can be expressed as

U(S, t, v) = lim
n→∞

G(S, t, v;n), (4.1)

where n represents the number of terms we use in calculating the option price, the conver-

gence of our formula can be shown if there exists N and K ∈ (0, 1) such that when n > N ,

the following is valid

|G(S, t, v;n+ 2)−G(S, t, v;n+ 1)| ≤ K|G(S, t, v;n+ 1)−G(S, t, v;n)|, (4.2)

according to the compression conditions for sequences. As a result, when G(S, t, v;n +

1)−G(S, t, v;n) ̸= 0, the following is the only one that need to be considered to check the

convergence of the solution

lim
n→∞

∣∣∣∣G(S, t, v;n+ 2)−G(S, t, v;n+ 1)

G(S, t, v;n+ 1)−G(S, t, v;n)

∣∣∣∣ = 0. (4.3)

In contrast, when G(S, t, v;n+1)−G(S, t, v;n) = 0 holds for all n > N , the solution should

be regarded as converged. In the following, the values of G(S, t, v;n) are all calculated in

the order of 10−16.
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(a) Value of G(S, t, v;n+1)−G(S, t, v;n), 3 ≤ n ≤
49.
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Figure 1: Convergence of pur price in the first example. Parameters are ρ = −0.5, k =
2, θ = 0.1, β = 0.1, u = 4, τ = 0.5, v = 0.1, K = 100.
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As is shown in Fig 1(a), the value of G(S, t, v;n + 1) − G(S, t, v;n) decreases rapidly

when n increases and it becomes zero when n reaches 8, independent of whether the option

is “in the money”, “at the money” or “out of money”. Moreover, it should be noted that

the speed of convergence for “in the money” option is slower than that for “out of money”

option. To exhibit the convergence of the series solution more clearly, Fig 1(b) displays two

option prices corresponding to the cases with 15 terms and 16 terms of the series solution

picked respectively when S is set to be 100. What we can observe first is that the calculated

option price is a monotonic increasing function of time to expiration. Furthermore, two

different curves are pictured with a difference of 10−5 order, which can be tolerated when

operating in financial markets and thus the 15-term price can be regarded as the converged

option price.
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(a) Our price vs finite difference method price.
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(b) Our price vs Monte Carlo price.

Figure 2: Comparison of our price with those obtained by other numerical methods in the
first example. Parameters are ρ = −0.5, k = 2, θ = 0.1, β = 0.1, u = 4, v = 0.1, K = 100.

What we can see in Fig 2(a) is the relative difference between our price calculated by 20

terms in the series solution and FDM (finite difference method) price, which is calculated

by the explicit scheme. We try to make the results of comparison more convincing by

setting S = 90, 100, 110 respectively. The maximum difference shown in this sub-figure is

less than 1.8%, which could certainly be accepted in real markets. Fig 2(b) further show

that our price is quite accurate since there are only no more than 0.8% difference when our

price is compared with Monte Carlo price, which is calculated with 500,000 simulations.

When these two sub-figures are viewed together, it should be noticed that prices for “out of
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money” option exhibit higher relative difference than those for options in other positions as

expected since prices are smaller for “out of money” call options. On the other hand, as for

the speed of calculation, it only takes 2.77 seconds to work out a converged 15-term price

with the closed-form solution, while it costs 639.66 seconds for Monte Carlo simulation and

909.21 seconds for finite different method with the same set of parameters. This implies

that working with our closed-form formula can be really time-saving compared with those

numerical methods.

Since only one example given by the same set of parameters may not be sufficient to lead

to reliable conclusions, another example is chosen. The values of parameters are selected

to be quite different from those in the first example to show that it converges for a wide

range of parameters as long as the parameters are chosen within the radius of convergence

(3.31). As a result, we again calculate the value of |G(S, t, v;n + 1) − G(S, t, v;n)| when

n increases from 13 to 49, which is shown in Fig 3(a). It is obvious that our price still

converges in either moneyness of options, although the converging rate is slower than that

in the first example. It should also be noticed that the converging speed for “in the money”

options is slowest. Fig 3(b) is the one showing how close it is for the price of 25-team and

26-term picked in the series of our solution. Apparently, the order of difference is again

only 10−5, which means that prices of more than 25 terms can be seen as converged.
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(a) Value of G(S, t, v;n+1)−G(S, t, v;n), 13 ≤ n ≤
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Figure 3: Convergence of pur price in the second example. Parameters are ρ = 0.5, k =
5, θ = 0.01, β = 0.05, u = 0.8, v = 0.2, τ = 0.5, K = 100.
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Comparison with prices obtained through other numerical methods for this case is also

given in Fig 4. This time the relative difference between our price and FDM price is

narrowed down to maximum 1.2% while the distance between our price and Monte Carlo

price is still less than 0.8%. Besides, one can still observe that option prices calculated by

the closed-form pricing formula have lower relative difference with those obtained through

both of the numerical methods when the initial underlying price is no less than the strike

price. It should be pointed out that although 25 terms are needed for a converged price,

the time it consumes to figure out one price in this case is still very low, at about 4.72

seconds, which is less than
1

120
of the time that the two numerical methods require. This

can significantly raise the efficiency of option pricing in real markets.
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(a) Our price vs finite difference method price.
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(b) Our price vs Monte Carlo price.

Figure 4: Comparison of our price with those obtained by other numerical methods in the
second example. Parameters are ρ = 0.5, k = 5, θ = 0.01, β = 0.05, u = 0.8, v = 0.2, K =
100.

5 Conclusion

In this paper, a closed-form pricing formula for European options is obtained under the

minimal entropy martingale measure in the Heston stochastic volatility model with several

particular settings. This is a reasonable choice since the specific equivalent martingale mea-

sure can be connected with the principle of maximum expected utility. A great advantage

of our newly-derived pricing formula is that the convergence of the solution in series form
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can be proved theoretically; such a proof of the convergence has also been complemented

by some numerical examples to demonstrate the speed of convergence. Our numerical

evidence has further substantiated that the series solution indeed converges very rapidly;

when the relative differences with respect to FDM prices and MC prices are maintained

to be no more than 1.8% and 0.8% respectively, the computational cost associated with

adopting the closed-form solution is less than 1% of those associated with purely numerical

methods such as the FDM and MC methods.
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