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Spectral flow for nonunital spectral triples

Abstract

We prove two results about nonunital index theory left open in a previous paper. The first is that the
spectral triple arising from an action of the reals on a C*-algebra with invariant trace satisfies the
hypotheses of the nonunital local index formula. The second result concerns the meaning of spectral flow
in the nonunital case. For the special case of paths arising from the odd index pairing for smooth spectral
triples in the nonunital setting, we are able to connect with earlier approaches to the analytic definition of
spectral flow.
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SPECTRAL FLOW FOR NONUNITAL SPECTRAL TRIPLES
A. L. CAREY, V. GAYRAL, J. PHILLIPS, A. RENNIE, AND F. A. SUKOCHEV

ABSTRACT. We prove two results about nonunital index theory left open by [7]. The first is
that the spectral triple arising from an action of the reals on a C*-algebra with invariant trace
satisfies the hypotheses of the nonunital local index formula. The second result concerns the
meaning of spectral flow in the nonunital case. For the special case of paths arising from the
odd index pairing for smooth spectral triples in the nonunital setting we are able to connect
with earlier approaches to the analytic definition of spectral flow.
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1. INTRODUCTION

The local index formula in noncommutative geometry originated in the paper of Connes-
Moscovici [14]. Subsequent applications have revealed that it provides a unifying viewpoint
for many formerly unrelated isolated classical theorems. It also produces a way to calculate

topological invariants for noncommutative algebras.
1
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In [7], a local index formula (generalising both [14, 18] and [10,11]) was derived for nonunital
spectral triples. Such spectral triples encompass as examples classical Dirac type operators on
noncompact manifolds as well as noncommutative examples. The local index formula of [7]
computes, in particular, a pairing of K-homology with K-theory using a generalisation of the
residue cocycle first encountered in [14]. From a conceptual point of view, this index pairing is
defined using the Kasparov product.

Recall that a nonunital spectral triple (A, H, D) is given by a nonunital x-algebra 4 acting on a
Hilbert space H, together with an unbounded self-adjoint operator D such that all commutators
[D, a] are densely defined and bounded, and a(1 + D?)~%/2 is compact for all a € A. Typically
however, (1+D?)~'/2 is not compact. In the odd case, it was shown in [7] that this K-theoretical
pairing can be realised as the index of a generalised Toeplitz operator even in the nonunital
setting. Whereas in the unital case the relationship between spectral flow and the Toeplitz
theory is not difficult (see for example the discussion in [2]) a lengthier argument is needed in
the nonunital case in order to explain the sense in which we are computing the spectral flow.
The issue is that the residue formula appears to be using a path of unbounded operators, none
of which are Fredholm. This paper provides such an argument.

We present here two main results. The first is that the index formula for generalised Toeplitz
operators in [22], arising from actions of the reals on a nonunital C*-algebra, fits into the
framework of the nonunital local index formula of [7].

The second result justifies the notion that the local index formula of [7] is computing spectral
flow. We follow an idea originating with .M. Singer [23], refined in [17], and introduce an
exact one form on a suitable affine space of perturbations of D. We then show how to write
the index of the generalised Toeplitz operator of [7] as the integral of this one form in a fashion
which provides a direct comparison with the unital formula of [9]. The idea is to reverse the
argument in [10] which goes from an integral formula for spectral flow to the resolvent cocycle
formula. Thus we start from the resolvent cocycle in the nonunital setting and derive from it a
variant of the integral formulas for spectral flow that appear in [8,9]. Our formula will apply to
certain paths of operators with unitarily equivalent endpoints and is written in terms of paths
of operators that are possibly non-Fredholm. We remark that in the unital case this formula
has had many applications and its origins lie in the ‘variation of eta’ formula that appears in
Atiyah-Patodi-Singer [1].

The issue that arises in the nonunital case is that both bounded and unbounded Kasparov
modules (and thus spectral triples for nonunital algebras) do not lead directly to the study of
Fredholm operators. Rather one needs to modify the operator that appears in the definition
of the Kasparov module in some fashion in order to obtain a Fredholm operator. This fact
is already well known in the traditional approach to Dirac type operators on non-compact
manifolds where one needs to twist the Dirac operator by special connections in order to have
a Fredholm problem. That this issue does have a sensible answer for the paths considered
here suggests that there may be broader classes of paths for which we can obtain spectral flow
formulas, however we leave these speculative issues for the future.
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The plan of the paper is as follows. In Section 2 we recall the integration and pseudodiffer-
ential operator theories (for nonunital spectral triples) of [7]. In addition, Section 2 extends
some results of [7] to identify an affine space of perturbations adapted to the above mentioned
problem of spectral flow in the nonunital case. All our constructions are done in the context of
general semifinite spectral triples, which is necessary to handle numerous examples, including
the generalised Toeplitz examples of [22].

Section 3 proves that there is a (semifinite) spectral triple that satisfies the hypotheses of the
local index formula, such that the index theorems of Lesch, [19], and Phillips-Raeburn [22], can
be recovered using the procedure of [7]. Indeed, the unital result of Lesch is already contained
in [10] (see also [12] for the connection to the spectral flow formula).

In the final Section 4, we prove our main result. It states that given a spectral triple (A, H, D)
satisfying the hypotheses that lead to the local index formula of 7], and a unitary u € A~ in
the minimal unitisation of A, we can compute the odd index pairing between [u] € K'(A) and
[((A,H,D)] € K1(A) using a formula analogous to those in [8,9] for spectral flow in the unital
case. We stress that the path we consider here, namely [0, 1] 3 ¢ — D + tu|D, u*], need not be
a path of unbounded Fredholm operators. Nevertheless the method we adopt may be seen to
determine, from our inital path, a related path of Fredholm operators and our formula in terms
of D computes the spectral flow of this related Fredholm path. Moreover we show that this is
also the index of the generalised Toeplitz operator PuP where P is the non-negative spectral
projection of D as would be expected given the formulations of [3,14] and [2] .

Acknowledgements AC, AR, FS acknowledge the support of the ARC, and JP acknowledges
the support of NSERC. AC also acknowledges the Alexander von Humboldt Stiftung and thanks
colleagues at the University of Miinster for support while this research was undertaken.

2. TECHNICAL PRELIMINARIES

2.1. Background material. In this preliminary section, we import notation, definitions and
results from [7]. In all that follows, D is a self-adjoint operator affiliated to a semifinite von
Neumann algebra N equipped with faithful normal semifinite trace 7, where N' C B(#), and
‘H is a separable Hilbert space,

Definition 2.1. For any positive number s > 0, we define the weight o, on N by
T € Ny = ¢i(T) = 7((1 + D)7 (1 + D*)~/*) € [0, +-0c].
As usual, we set N, = span{N,, 4} = span{(/\flf)*./\flf} C N, where
Npww ={T €N : p(T) <0} and N/ :={T €N :T*T € N, }.

With the notation as in Definition 2.1, the weights ¢y, s > 0, are faithful, normal and semifinite,
[7, Lemma 2.2]. We will also need the spaces LP(N, 7) of measurable operators T affiliated to
N with 7(|T[P) < co. With this notation, Ny = N'N LN, 7) and N> = N'N L2(N, 7). This
differs from the notation of [7].
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Definition 2.2. Retain the notation of Definition 2.1.

(i) For each p > 1 we define Bo(D, p) :==(),s, (./\/’152 ﬂ./\/15/2*>.

(ii) We set Bi(D, p) = Bo(D,p)? :=span{TS : T, S € By(D, p)}.

(iii) Set Hoo = (Nyzo dom D*. For an operator T € N such that T : Hoo — Hoo we set

S(T) = [(1+D}2.T], TeN
() In addition, if T : Hoo — Heo we define L(T), R(T) : Hoo — Hoo by

(2.1) L(T) = (1+D*~Y2[D? T], R(T):=[D? T)(1+D?* 2

(v) Define BE(D, p) := {TeN :VI=0,....k, 6 (T) € By(D,p)}. for k=0,1,2,...,00 and
qg=1,2.

The spaces Bo(D, p) and By (D, p) are Fréchet subalgbras of N (see 7] subsections 2.1 and 2.2).
The natural topology of Bs(D, p) is determined by the family of seminorms

w121 1/2
(2.2) Ou(T) = (ITI? + piam(IT1) + @pir(IT* ), n=1,2,3...,

and the topology of By (D, p) is then determined by the family of seminorms
k k
(23) Pn(T) = inf { Z QTL(TLZ) Qn(TQ,z) T = ZTI,iTQ,i}’ n = 1, 2, 3....
i=1 i=1

We equip BY(D,p) and By(D,p), k = 0,1,2,...,00, with the topology determined by the
seminorms P, ; defined by

l

Poa(T) = Pu(0'(T)), and Quu(T) := Y  Qu(¥(T)) n=1,2,..., 1=0,.. .k

l

j=0 j=0
Definition 2.3. The set of regular order-r pseudodifferential operators is

OP"(D) := (1 + D2)T/2< () dom 5”>, reR,  OP(D):=|JOP"(D).
neN reR
The set of order-r tame pseudodifferential operators associated with (H,D) and (N, T)
for p > 1 is given by
OP{(D) := (1+ D*)°B¥*(D,p), re€R,  OPy(D):=|JOP}(D).
reR

We topologise OP((D) with the family of norms
"(T) =Py ((1+D)7PT), n,leN.

n,l
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With this definition, OP"(D) and OP}(D) are Fréchet spaces, while OP’(D) and OP{(D)
are Fréchet *-algebras, and [7, Lemma 1.31] proves that OP"(D)OP} (D), OP,(D)OP" (D) C
OP;* (D). In particular, B(D,p) = OPy(D) is a two-sided *-ideal in OP°(D) = Ndom 6™.
In [7, Corollary 1.30] it is shown that J,._, OPy(D) C L1(N,7) NN = N, which is the basic
justification for the introduction of tame pseudodifferential operators in the nonunital setting.
The last ingredient from the pseudodifferential calculus is the complex one parameter group of
automorphisms on OP*(D), defined by

(2.4) o*(T) = (1+D**?T(1+D**? ~»eC, T cOP*D).

This group is strongly continuous and preserves each of the spaces OP"(D) and OP{(D), r € R
(see [7] subsection 2.4).

Next we recall the definition of spectral triple, and summability of spectral triples, from [7].
Definition 2.4. A semifinite spectral triple (A, H, D), relative to (N, T), is given by a Hilbert

space H, a x-subalgebra A C N acting on H, and a densely defined unbounded self-adjoint
operator D affiliated to N such that:

0. For alla € A, a: domD — domD;
1. da := [D,a] is densely defined and extends to a bounded operator in N for all a € A;

2. a(1+D?*)~ V2 c K(N,7) for all a € A, where (N, ) is the ideal of T compact operators in
N (the norm closure of the algebra generated by finite trace projections).

We say that (A, H,D) is even if in addition there is a Za-grading such that A is even and D
is odd. This means there is an operator v such that v = ~v*, v* = Idy, ya = a7y for alla € A
and Dy +~D = 0. Otherwise we say that (A, H,D) is odd.

A semifinite spectral triple (A, H, D), is said to be finitely summable if there exists s > 0 such
that for all a € A, a(1+D?)~*/2 € LYN, 7). In such a case, we let

p:=inf{s>0:VacA, T(|a|1/2(1 + DQ)’S/Q\all/z) < oo},
and call p the spectral dimension of (A, H, D).

It is shown in [7, Propositions 3.16, 3.17] that A C B;(D, p) is a necessary condition for (A, H, D)
to be finitely summable with spectral dimension p, and that this condition is almost sufficient
as well.

Definition 2.5. Let (A, H,D) be a semifinite spectral triple relative to (N, 7). Then we say
that (A, H, D) is smoothly summable if AU[D, A] C B*(D,p).

2.2. An affine space of perturbations. This subsection proves that the self-adjoint part of
B5°(D, p) provides an affine space of perturbations of an operator D suitable for the purpose of
studying spectral flow as an integral of a one form. We begin with some preliminary lemmas.

Lemma 2.6. For B € OP(D).,, set Dp := D + B. Then (1 + D%)%/? belongs to OP*(D) for
every s € R.
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Proof. Clearly, 1 + D% € OP?*(D). So by [7, Proposition 2.30], (1 + D%)(1 + D?)~! and (1 +
D?)~1(1 + D%) belong to OPY(D). Next, we prove that (1 4+ D%)~' € OP *(D), which is
equivalent to (1 + D%)~'(1 + D?) € OP’(D). But we already know, by writing D = Dy — B,
that (1 +D%)~'(1 +D?) € OP°(Dg) C N, so that (14 D%)"}(1 + D?) is bounded. It remains
to show that 6 ((1+ D%) ' (14 D?)) € N, for all k =1,2,.... For k = 1, we have

§((1+D3) '(1+D%) =—-(1+D3) "1+ D*)(1+D*)'6(D3)(1+ D3) (1 + D?),

which is bounded as (1+ D%)~(1 + D?) is bounded and (1 + D?)~1§(D%) € OP’(D). An easy
inductive argument shows that 6*((1 4+ D%)~'(1 + D?)) is bounded for every k € N. Taking
products, we deduce from the cases s = £1 that (1 4+ D%)" € OP**(D) for every n € Z. Take
now an arbitrary s € R and write s = n — a with n € Z and a € (0,1). Thus, it remains to
show that for such a, (1 + D%)~® belongs to OP™>%(D). For this, we use the integral formula
for fractional powers

(1+D%)™ = (sin(ma)) ™" /OOO A*(1+ A+ D3) ldA

Writing (1+A+D3) "' = (1 + A+ D) — (1 + A+ D) Y(DB + BDg)(1 + A+ D3)~!, we
arrive at

1+D?)*(14+D%) ™ = Idy— L A" (14+DH*(14+ +D?*) (DB+BDg) (1+X+D%) td .
B ) B
0

We estimate the integrand in operator norm using
[(L+D*)*(L+A+D*)'"DB(L+ A+ D) < |BII(1+ A)*/**
[(L+D)*(1+A+D*)'BDs(1+ A+ D) < || BII(1+ ),

showing the norm-convergence of the integral. Writing next,

! / NS (14 A+ D)) dA
0

sin(ma)

0((1+DE) ™) =

_ 1 / A1+ A+ DL) L (8(B)Dy + Dud(B)) (1 + A+ D2)d,
0

sin(ma)

we obtain the estimate
|(1+D*)*((1+D3)~)||

< Coy /OO A1+ D)1+ A+ D) (9(B)Dp + Dpd(B)) (1 + A+ Dp) || dA

0
S 2Ca,y||5(B)|| / )\_a<]_ _|_ A)_3/2+ad>\’
0

which converges since o € (0,1). On the basis of this, an easy recursive argument shows that
(14 D?)*6%((1 + D%)~*) is bounded for any k € N. This completes the proof. O

We then deduce an immediate corollary.
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Corollary 2.7. Let B € OP°(D)y,. Then (1 + D%)*(1 + D?)~* is bounded for every s € R.

We have next our first preliminary result concerning affine spaces of perturbations.

Proposition 2.8. Let B € OP°(D)y, and p > 1. Then we have By(Dp,p) = Ba(D,p) (resp.
Bi(Dg,p) = Bi(D,p)) with equivalent Q,,-seminorms (resp. Py,-seminorms). In particular,
Ey =D+ By(D,p) (resp. & := D+ By(D,p)) is an affine sub-space of OP'(D), whose Fréchet
topology is independent of the base-point.

Proof. Let T € Ny and s > 0. We have by Corollary 2.7
7((1+DE)~T(1 + D) /%)
=7((1+Dy) (1 4+ D*)**(1 + D*)~**T(1+ D*)*/*(1 + D*)*/*(1 + D})~*/*)
< (1 +D* (1 + DE)~*|* 7((1 + D?)~**T(1 + D*)~*/*).
Similarly, we obtain
T((L+ DY) T (1 + D)) < (1 +DE) (1 +D?) /4| (1 + D) ~*/*T(1 + Dg)~*/*).
Thus, the weights ¢4 defined with D or with Dp are equivalent. Substituting s = p + 4/n and
comparing with the definition of the norms ©Q,, and P, completes the proof. [l

To state an analogous result in the smooth case, namely when we use B5° and Bf°, we will
compare the operators L given in (2.1), associated with D and Dg. We arrive now at the main
technical result.

Proposition 2.9. Let B € OP%(D),,. Then OP"(Dy) = OP’(D) and B*(Dg, p) =: OPY(Dp) =

OPY(D) := B(D, p) with equivalent topologies. In particular, D+ OP°(D) is an affine Fréchet
sub-space of OP*(D), whose topology is independent of the base-point.

Proof. We need first to prove that Npeydom 6% = Npendom 6% where 65(:) := [(1 + D3)V2, ).
Using Ngendom 6% = Nipenydom LE, see [10] for a proof, we see that we equivalently need to
prove that Ngeydom LF = Npenydom LY where Ly is the linear operator defined in (2.1) with
Dp instead of D. For this, we observe the relation

D% —D?=DB+ BD + B> = (1+D*)V*D(1 +D*'?B+ ¢ Y(B)D(1+ D?)~/?) + B?,
where o is the one-parameter complex group of automorphisms (for D) given in (2.4). Defining
the transformation T : B + D(1 + D?)"Y2B+0~1(B)D(1 4+ D?)~'/2 4 B2, we see that T maps

OP’(D) to itself (and similarly for OP)(D) = B(D,p)). Moreover, we have the following
relations between the maps L and Lp:

Lp(-) = (1+DE) 21 +D*)2(L() + ]) (1+D3%)~Y25()T(B),
(2.5) L(-) = (1+D*)2(1+DE)"*(Ls(:) B),"]) — (1 + D) 255()T(B),

By Lemma 2.6, we have that (1 + D%)~Y2(1 + D2)1/2 and (14 D?)~/2(1 + D%)'/2 belong to
OP%(D) and by the replacement (D, B) +— (Dg, —B), they also belong to OPO(DB) Now, the
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first equation of 2.5 shows that B belongs to the domain of Lg. By an iterative use of this
equation, we deduce that B € Nyeydom L% = OP°(Dp). Last, writing D = Dp— B, Lemma 2.6
applied to Dy, shows that T'(B) also belongs to OP°(Dp). This is clearly enough to conclude
that Ngeydom LF = Npendom LY. That B (Dp,p) = B°(D, p) now follows since B (D, p) is
an ideal in OP°(D) and that all the transformations used above also preserve B°(D,p). O

Corollary 2.10. Let B € OP°(D),, and r € R. Then OP"(Dg) = OP"(D) and OP}(Dp) =
OP;(D).
Proof. By definition and Proposition 2.9,
OP"(Dp) = OPY(Dp)(1 4+ D%)"/* = OPY(D)(1 + D%) /> = OP"(D)(1 + D*)"*(1 + D%)~"/>.
By Lemma 2.6, (1 + D?)"/2(1+ D%)~"/2 € OPY(D), thus,

OP"(Dg) C OP"(D) - OP°(D) c OP"(D).

Reversing the role of (D, B) and (Dg, —B), we get the second inclusion. The statements about
OP{(D) are proved the same way. O

We require one more technical estimate for later use.

Lemma 2.11. Let D be an unbounded self-adjoint operator affiliated with a von Neumann
algebra N' and let B € OP°(D). Then for any numbers p > 0 and s > 2||B||, the operator

(1+D?)"(1+D?+sB+s%) " is bounded with sup g5 || (1+D?)" (1+D?+sB+s*) || < 0.
Proof. We let C, = (1 + D?)?(1+ D? + sB + s*)7?. For p = 0, C, is bounded, and also for
p =1, we have
(1+D)(1+D*+sB+s?)  =1-(sB+s)(1+D>+sB+5>) ",
and thus for s > 2||B||, we obtain
IOl = [|(1+D*) 1+ D*+sB+5%) || <1+ (s]| Bl +s*)(1 +s%/2) 7 < 4.

For 0 < p < 1 we observe that C is invertible, and so there is some positive constant b = b(s)
such that

0<b< (14+D*)(1+D*+sB+s”)%(1+D? < 16.
Conjugating by (1 + D?)~! and raising to the power p yields, by operator monotonicity,
V(1 +D* 2 < (1+D*+sB+s*) 72 < (16)°(1 +D*) "%,
and conjugating by (1 + D?)? yields
v < (1+D??(1+D*+sB+ %) %(1+D?” < (16)°.

Hence ||C,|| < 47 independent of s whenever 0 < p < 1.
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So, let us assume that the result hold for some given p. Then for C,; we find
Co1= (1+D)" (14D + 5B+
= (1+D)(1+D*+sB+s>) " (1+D)’(1+D*+sB+5>) "
+ (D) |1+ D), (1 + D 4 5B +5%) | (1+ D2+ 5B+ %)
=C,C,—s(1+D*(1+D*+sB+s*)'[(1+D*",B](1+D*+sB+s*) """
= C1C, — C1(0*(B) = B)(14+D*)’(1+ D’ + sB+ ") "s(1+ D>+ sB+s°)"!
= C,C, — Cy(0*(B) — B)C,s(1+D* + sB +s*)~*

Now it is straightforward to show that |[s(1 + D? + sB + s*)7!|| is bounded independently of
s > 2||B|, so if C, is bounded uniformly in s, so too is C,41. This completes the proof. O

3. NONUNITAL PHILLIPS-RAEBURN EXAMPLES

In this Section we prove that the examples studied by Phillips and Raeburn in [22] give rise to
smoothly summable semifinite spectral triples. We begin by recalling the construction in [22]
in order to set our notation and assumptions. To this end, A will denote a C*-algebra (usually
non-unital) with a fixed faithful, norm-lower semi-continuous, densely defined trace, 7, which
is invariant under a strongly continuous, isometric action of the reals, a : R — Aut(A). We let
A, denote the dense ideal of trace-class elements in the C*-algebra A, that is

A, ={a € A|7(Ja]) < oo} =span{a € A, |7(a) < c0}.

We define a Banach-*-algebra norm on A, via ||a||, = ||a|| + 7(|a|) := ||a]| + ||a||1, and observe

that the action « restricts to a strongly continuous action of R as isometric s-automorphisms
of A-.

Now a determines densely defined derivations, 0 and 0, on A and A, respectively, given by the
formulas

d(a) = lim aufa) —a a€ A and 0.(a) = limw a€ A,

t—0 t t—0 t
where the limit in each case is taken with respect to the complete norm topologies of the
respective algebras. Moreover, dom(0,) € dom(0) and 0|dom(a,) = O--

Proposition 3.1. The smooth x-subalgebra, N> dom(9*) is dense in A and the smooth -
subalgebra, NS, dom(dF) is dense in A,.

Proof. Let f be a smooth compactly supported complex valued function on R. If a € A define
ag = [7 f(t)ow(a)dt € A. By a change of variable we get

d(ay) = lim ——— as(af) = lim — / fr=s) ar(a)dr =— /R f'(ra.(a)dr = —ay.

s—0 S s—0
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By induction, we have 0*(as) = (—1)*au where f*) denotes the k-th derivative of f. Hence,
a; € N2, dom(0%). Now take a sequence {f,} of non-negative smooth bump functions sym-
metric about 0, each with integral 1, and supports shrinking to {0}. Then

lag, —all = | / fultas(a)dt — af| = | / fulO)au(a)dt - / fu(t)adt]| L*(R, H,)
-y / fa®ara) — @)t < sup  [la(a) —a]

tesupp(fn)

and we see that |lay, —al]| — 0 as n — oo by the strong continuity of o. The same argument
works equally well with A.. O

3.1. The induced representation of the crossed product of A by R. In this subsection
we review some well known facts about crossed products in order to set notation and to recall
the framework of [22]. The first thing to recall here is that R is amenable, so that there is no
distinction between the full and reduced crossed products. We denote the crossed product by
Ax,R. We remind the reader of the multiplication and involution for x, y € L*(R, A) C Ax,R:

(z %o y)(r) = /Rfﬁ(t)at(y(r —0))dt, 2 (r) = an(z(=r))"

We let H, = L*(A,7) be the (GNS) Hilbert space completion of the pre-Hilbert space AY? =
{a € A|a*a € A;}. Of course the action of A on the ideal AY? by left multiplication extends to
a x-representation of A on H,. We denote this x-representation by juxtaposition since if a € A
and b € Aiﬂ, then the action of a on the vector b is just ab.

Definition 3.2. The covariant pair (7, \) of representations of (A,R) on L*(R, H,) = L*(R)®
H, is defined by taking for ¢ € L*(R,H,), a € A and t, s € R

(m(a)€)(s) == a . (a)s(s) and (A(£)§)(s) = &(s —1).

Then one easily checks the covariance condition A(¢)w(a)A(—t) = m(ay(a)). Thus, we get a
x-representation 7 of the crossed product algebra A x,R on the Hilbert space L*(R, H,), which
for x in the algebra L'(R, A) C A x, R and ¢ € L*(R, H,) is given by

(#(2)E)(s) = / o (D)€ (s — ).

One checks directly that 7(z *, y) = 7(2)7(y) as required.

Our interest now is in NV = (7(A x,R))”, the von Neumann algebra generated by this represen-
tation. The essential point is that 2 = L'(R, A,) N L*(R, H,) is a Hilbert algebra with Hilbert
space completion L?*(R, H,) satisfying 7(2)” = N. Moreover, letting M = 7w(A)” C B(H,)
and 7 be the normal extension of 7 to M, then with M: the domain of 7 in M, and M;/2
the half-domain, we have w(A) N M; = 7(A,) and w(A) N M = 7T(A71-/2). We also note that

H, = L*(M,7) is the GNS space of M for 7 and thus H, N M = M;l/2.
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By Théoreme 1, page 85 of [15] there is an induced faithful, normal, semifinite trace 7 on N
which for products of elements in x, y in L?*(R, H,) such that 7(z),7(y) € N, is defined by

(3.1) T(@(z) 7 (y)) = (zly) Z/T(x(t)*y(t))dt-

R

3.2. Constructing a nonunital spectral triple. We have already introduced the von Neu-
mann algebra N needed for a semifinite spectral triple. Now we need the remaining ingredients.

Welet D =14 &1 on L*(R) ® H, so that D is an unbounded self-adjoint operator affiliated
to V.

Proposition 3.3. For a € dom(d) we have [D,w(a)] = s=m(d(a)).

271

Proof. Let £ € dom(D) and a € dom(0). Then we claim that 7(a)¢ € dom(D). This follows
from the computation

(Dr(@)e)(s) = (Dr(a))(s) = 5= (T(a))(5) = oo (a @E) ()
(0 (0@)E(s) + o7 @ ().

" 2mi
Since (m(a)DE)(s) = a;'(a)(5%&(s)), the result follows. O

To analyse functions of D, we first suppose that A = C. If we define the Fourier transform
of a function g € L'(R) via §(s) = [ e”*™*g(t)dt, then (provided § € dom(D)) by a familiar

—

calculation, D(g(t)) = tg(t). Applying the functional calculus then yields
J(D)g=fg=F*3=A )3
for functions f € L*(R). In other words, f(D) = A(f). In particular, if fi(t) = (1 + t2)~%/2

for s > 1 so that f, € L'(R) then f,(D) = (1 + D?)~%/2 = X(f,). For general A, the same
computations go through unchanged.

Lemma 3.4. Let h € L2(R) be such that A(h) is in N, and let T € M. Then TA(R) is a

Hilbert-Schmidt operator in N* with respect to 7 and moreover we have

#((TA(R))*TA(R)) = #(T*T) / B(t) h(t) dt.

Proof. Firstly, by construction TA(h) € N. Moreover, z(t) := h(t)T and we have for £ €
C.(R, H,) C L*(R, H,):

(#(2)E)(s) = / o (x(t))E(s — t)dt = / a7 (T)h(HE(s — t)dt

R

= o, (T) /R h(t)E(s — t)dt = o (T)(A(R)E)(s) = (TA(h)E)(s).
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By density of C.(R, H,) in L*(R, H,), we deduce that TA(h) is of the form 7(z) for z €
L?*(R, H,), since as previously remarked L?(R, MY ?) € L2(R, H,). The result follows by equa-
tion (3.1) since

(x| = /R H(t) o (t))dt = /R HTTRIA())dt = 7(T*T) /R Ih(t)|2dt < oo,
O

Corollary 3.5. Let s > 1. The restriction of the weight o associated to D (see Definition 2.1)
to M :=7(A)" C N :=7(A x4 R)" is proportional to T, the normal extension of T to M.

Proof. By definition of o, for 0 < a € M; and with hy(t) := (1 +t?)~*/*, we have from Lemma
3.4 that

ps(m(a)) = 7(AMho)m(@)A(hs)) = [|hsll3 7(a) = || 37 (7 (a)).

Hence, ¢s|ar), = 1hslI3 7larr). -

Let now T" € M\ M; satisfy 0 < T'so that 7(T") = 4+00. We construct a sequence (T})yen in My
such that T} converges to T" in the weak operator topology and such that 0 < T), < T. To do
this, we choose 0 < b < 1in M; converging in the weak operator topology to the identity of M
and set T}, := T/?b,T/%. By construction, 0 < T;, < T, and since M- is an ideal in M, T}, € M.
The convergence follows from (1), Ty¢) = (T2, by TY2¢) — (T4, TV2¢) = (b, T¢), for all
v, 0 € H.

Hence, we find that ¢ (1) > ¢s(Tk) = ||hs||37(T%), and thus ¢ (T) > lim,||h,||37(7%). Since
the weak operator topology and the ultra-weak topology agree on bounded sets and 7T is ultra-
weakly lower semicontinuous, we deduce that lim, 7(7;) > 7(T') = 4oc0. Hence ¢ (T) = +o0
and therefore ¢;|n, = ||hs]|37]ar, as needed. O

Notation. We use (dom(9;))? for the x-algebra of finite sums of products of two elements in
dom(9;).

Lemma 3.6. Let a € (dom(9,))? C dom(9,) so that a is a sum of factors b;c;, where b;, ¢; €
dom(9,). Then for all s > 1, the operator w(a)(1 + D?)~%/? is trace-class in N with respect to
T.

Proof. Without loss of generality we assume that a = bc with b, ¢ € dom(9;). Observe that
(3.2) m(a)(1+ D?) ™% = m(be) (1 + D*)~*/% = w(b)[n(c), (1 + D*) "2 + w(b)(1 + D*) " (c).

The last term is trace-class in N, since it is the product of two Hilbert-Schmidt operators in
(N, 7). Indeed, if we define the bounded L-function, f(t) = (14 t?)~*/4, then

w(0)(1 + D?)=*n(e) = m(b)(1+ D) (1 + D*)~*x(c) = m(D)AH)A(f)m ()
= 7MUY = 7 (2)7(y)",
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where z(t) = bf(t) and y(t) = ¢* f(t). So by the previous lemma 7(z) and 7(y) are Hilbert-
Schmidt, and hence 7(x)7(y)* is trace-class in (N, 7).

We next show that the first term is trace-class in (N, 7). This is more subtle. It suffices to
assume that s < 2, so that s/2 < 1. Let Cs = Sm(w/ 2 50 by the integral formula for fractional

powers, [8, page 701], we have (1 + D?)=%/2 = C, f t=5/2(1 + D? + t)~'dt. Now we calculate,
using the fact that ¢ € dom(9,),

[w(c), (1+ D*) %] = C /O°° t=*[m(c), (1 + D* + 1) "]dt

= CS/ t=2(1 4+ D* + ) [D*, 7(c)](1 + D? +t)"'at
0

c/oo £752(1+ D> +1)" (D[D,ﬂ(c)]+[D,7r(c)]D)(1+D2+t)‘1dt

C t= 21+ D*+t)™ (DW(@T(C)) + W(@T(c))D> (14 D?*+t)"'at
T 2mi 0
= [T ED s D ) @) 1+ D )
21 J,
+ 20 / t7/2(1 4+ D* + t)'7(d.(c))D(1 + D? + t)"at.
T Jo

Hence, the first term on the right hand side of Equation (3.2) equals

m(b)[r(c), (1 + D*) %] =

OS. /OO t=*2x(0)D(1 + D* +t)"'7(9-(c))(1 + D* +- )~ 'dt

211

QCSZ‘/ 52 (b)(1 + D? + )" 7(8,.(¢))D(1 + D + t)"Ldt.
T Jo

To complete the proof, we show that both of these integrands are trace-class in N/ and that
the integrals converge in trace-norm. We do this for the first integral as the argument for the
second integral is the same. We factor the integrand as a product of Hilbert-Schmidt operators
and estimate their Hilbert-Schmidt norms.

First, m(b)D(14+D?+1t)~" = n(b)A(f) = #(b- f) where f(z) = Tra; s a bounded L? function.
Hence, and writing || - | us, || - ||op for the Hilbert-Schmidt and operator norms respectively,

1+a2+¢

9 1/2
W@WO+W+ﬂﬂhyﬂﬂbﬁmij”:waé<_i;_>m)

IN

(T(b*b) /R 1 sz da:) R ).
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Now letting ¢ = d(c) = 0,(c) € A, we calculate that

() (1 + D + )" s < () (1 + D* + )72 s (1+ D + )72,

_ (T«c/)*a) / (ﬁ)d) e D,

N\ \\1/2 1 V2 1 _ N T 1/2 1
< (@ ([ fate) S = (@,

Hence, the integrand is trace-class in N with trace-norm bounded by

1
VIt

Since for 1 < s < 2 the function t + t=%/2/4/1 4t is integrable as a function of ¢ € [0, c0), we
see that the integral is a trace-class operator in N. O

[t7*27(B)D(1 + D* + )" m(9(e))(1 + D* + )l < t7*(7(b"b) 7((¢') ) *m

This completes the proof that (dom(9,)?, L*(R,H.), D) is a spectral triple.

We now extend our analysis with a useful formula for the trace of certain elements. First we
need a technical result.

Lemma 3.7. If {A,} is a sequence of operators in N* with 0 < A,, <1 for all n and A, — 1
in the weak operator topology on B(L*(R, H,)), then for all trace class operators T € N,
7(T) = lim, 7(A,T).

Proof. Using the Jordan decomposition, it suffices to prove this for trace-class operators T' > 0.
In this case, TV/2A,T/? < T||A,|| < T, and therefore 7(A,T) = #(T"/?A,T"?) < #(T), so that
lim,, 7(A,T) < #(T). On the other hand, one easily shows that T'/2A,T"? — T in the weak
operator topology: that is, for £,n € L3(R, H,)

(TY2A,TY2¢ | m) = (A, TV26 | T ) — (TYV2¢| TV *n) = (T¢ | m).

Since the weak operator topology and the ultra-weak topology agree on bounded sets and 7
is ultraweakly lower semicontinuous, 7(7) < lim,7(T"/2A,T"/?) = lim,7(A,T). Thus we have
the bounds

Tim, 7(A,T) < #(T) < lim, #(A,T),
and the result follows. O

Lemma 3.8. Let a € (dom(0,))* C dom(d,). Then for all s > 1

7 (m(a)(1+D?) %) = 7(a) /R (1+¢%) /2.
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Proof. Without loss of generality we assume that a factors as a = be, where b, ¢ € dom(0,).
Let g, = X{_, ) so that g, € L'(R) N L>(R) C L*(R). Then the multiplication operators M,
on L*(R) satisfy

0< M, <1; |M,]| =1 M, —1 weakly on L*(R).

Therefore, by the Fourier transform, we see that g, € L*(R) N Cy(R) and the convolution
operators A(g,) satisfy

0<AGn) <1; M3l =1; Mgn) — 1 weakly on L*(R).
By the previous two lemmas 7(7(a)(1 + D?)™%/2) = lim, 7(A(§,)m(bc)(1 + D?)~*/2). We let

fs() = (1 +1%)7/%, s0 that 7(A(gn)m(be)(1 + D?)~*2) = 7(A(gn)m(b)m(c)A(fs)). If we define
xn(t) = b*g,(t) and y(t) = cfs(t) then 7(z,) = 7(b*)A(gn) and 7(y) = w(c)A(f5) so that

P (NGO (1+ D)) = # (7o) ) = [ 7 a0 yo)dt = [ = (G0t 0) d

:T(bC)/Rgn(t)fs(t)dtZT(a)/Rgn—@)fS@)dt:T(a)/ (1 +£2)2dt.

—n

Hence, #(m(a)(1 + D?)7*/?) = lim 7(a) /"(1 +12)72dt = 7(a) /(1 +12)7%/2dt. O

n R

—-n

Corollary 3.9. Let a € (dom(9?))* C dom(d,) so that a is a sum of factors be, where b, ¢ €
dom(09?). Then with e = 1 + a invertible in A,

s—1

Resg—; {%%(W(e_l)[D, m(e)](1+ D2)_S/2)} = lim %(s — D)#(m(e )[D, m(e)](1 + D2)_S/2)

Proof. Tt suffices to see that e710,(e) is a finite sum of products satisfying the hypotheses of
the previous lemma. To this end let e7! =1 — f where f € A,. Then

e0:(e) = (1= f)0:(1 = be) = (f = {0, (b)c + bO-(c)}
= _87'<b)c - ba.,-(C) + faT(b)C + fbaﬂ'(c)’

and we note that each left factor 0,(b), b, f0,(b), fb € A, C Ai/Q; and each right factor ¢, 9, (c) €
dom(9,). It follows from Proposition 3.3 and Lemma 3.8 that

1
7 (m(e ") [D,m(e)](1 + D2)’s/2) = TT(€713(6)) /(1 + %)~/ 2dt.
R

™

The result follows from the fact that Res,—; [ (1 + t2)7/2dt = 2. O
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3.3. Connection with noncommutative integration theory and the smoothness ques-
tion. The remainder of this Section is devoted to explaining how this example fits with the
formulation of the nonunital local index formula as proved in [7]. In other words we will prove
a version of the Phillips-Raeburn index theorem. Recall now the notation from Section 2.

Proposition 3.10. With (A, 7,«) as above and defining B1(D,1) and By(D,1) relative to
(N, 7), we have w(A) N Bo(D, 1) = m(AY?) and 7(A) N Bi(D, 1) = n(A,).

Proof. First, Lemma 3.4 shows that W(A-lr/Q) C By(D,1). Conversely, if a € A and also 7(a) €

Bs(D, 1), then by definition m(a)(1+ D?)~%/* € L2(N,#) for all s > 1. As before we write M =
7(A)" C B(H,) and 7 for the normal extension of 7 to M and since L*(N,7) = L*(R, L2(M, 7)),

we have m(a) € MY?. Hence 7(a) € M2> Nw(A) = m(AY?) . Thus 7(A) N By(D, 1) = m(AY?).
For the final statement, we recall the result in Corollary 3.5 together with the notation given
there. Combining this with [7, Proposition 1.19], we deduce that

Bi(D,1)N7w(A)" = ﬂ dom(||hs)|37) = dom(7) = 7(M;).

Taking the intersection with w(A) gives By (D, 1) N7(A) = 7(A,) as needed. O

The argument of the previous proposition analyses the integration theory that forms the first
ingredient for the local index formula. What remains is to find a subalgebra of dom(d,) C A
which yields a smoothly summable spectral triple in the sense of Definition 2.5.

We recall from Definition 2.2 the (partially defined) operators N' > T +— L(T) := (1 +
D?)~2[D2 Tl and N > T — R(T) := [D? T)(1 + D*)~'/2. Also we set Fp = D(1 + D?)7'/2,

Lemma 3.11. Ifa € dom(9?) then w(a) € dom(L)Ndom(R) and on the space Hy, = Ndom(D¥)

Lir(a)) = %FDw(a(a))+4—;(1+D2)1/277(82(a)) and
Rin(a) = ~-m(0(a))Fp + 15m(0*(a))(1 + D?) 72

Proof. The following calculation takes place on Hy, = Nidom(D*) where we may commute D
with bounded functions of D. The calculation for R is similar as R(7(a))* = —L(mw(a*)).

L(r(a)) = (1 + D*)7*[D* n(a)] = (1 + D*)""*{D[D,n(a)] + [D, ()] D}

= S Fon(0(a) + 5 —(1+ D*) " x(0()D
= S Fom(0(a)) + (1 + D)2 (#(2(e)), D] + Dr(0(a)))
= L Fpm(9(a) + 5 (1 + D) V2w (0(@). s

i 472
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Proposition 3.12. Ifa € ()2, dom(9") then 7(a) € (", dom(R' o L*). Hence, by the equality
of Ny dom(R' o L¥) and ()2, dom(d"), see [10], if a € A is smooth in the sense of the action
a of R on A then w(a) is smooth in the sense of the derivation o.

Proof. 1t suffices to prove the following fact by induction on n = [ + k: if a € ﬂj’;l dom(d7)

then R'o L¥(m(a)) is a finite sum of terms of the form g(D)x(b) f(D) where g, f are continuous
bounded functions on R and b = 9™(a) is a smooth element in A with m < 2n.

When n = 1 we are looking at L(7(a)) or R(m(a)) which have the correct form by the previous
lemma. Now if the result holds for some n = (I + k) > 1 then we obtain the case n 4+ 1 by
applying either L or R to this case since L and R commute. By the inductive hypothesis it
suffices to apply L or R to a term of the form g(D)m(b)f(D). We apply L as the other case is
similar. A computation like those above yields

LGDIROF (D) = 9D){ £Fon(O0) + 15(1+ D) 25(@(0) | £(D)
Since b = 9" (a), A(b) = ™" (a) and 9*(b) = 9™ 2(a), the induction is complete O

Remark. Proposition 3.12 shows that with A C A the smooth elements for the action of «,
the spectral triple (A, L*(R,H,), D) is QC* or smooth. However we need more than this to
deal with integrability as well as smoothness. The next result combines our smoothness and
integrability results, and recovers the Phillips-Raeburn and Lesch index theorems.

Theorem 3.13. Let C C A, be the x-algebra generated by
{abe A, : 9%(a), O*(b) € AY? for all k=0,1,2,...}.

Then (C, L*(R, H,), D) is a smoothly summable semifinite spectral triple relative to (N, 7) with
spectral dimension 1. The spectral dimension is isolated and the formula

1 . s
C 3 ag, a1 — ¢1(ag,ay) = éRessle(ag[D,al](l + D2) /2)

defines a (b, B) cocycle for C. Moreover, for P = X(0,00)(D) and u =1+ a unitary with a € C,

Index; (PuP) = —¢1(u*,u) = —L_ T(u*0(u)).
2mi
Proof. From Proposition 3.10, each (9%(a)), a € C is an element of B;(D, 1), and hence 7(C) C
B°(D,1). Also since [D,w(C)] C «(C), we have [D, 7(C)] C B°(D,1). By [7, Proposition 3.16],
the spectral triple is smoothly summable with spectral dimension 1. That the spectral dimension
is isolated follows from the fact that only one zeta function arises in the local index formula,
and so (see [7]) is guaranteed to have at worst a simple pole at s = 1. All the remaining claims
follow from Corollary 3.9 and the proof of the local index formula in [7]. U

Our result here shows that an important class of examples fall into the framework of [7]. Notice
that in this case our formula involves the path D + tu][D, u*| which is generically not a path of
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(Breuer-)Fredholm operators. The same issue arises in general as can be seen from [7] and the
resolution of this apparent difficulty in general will be to replace this path by one in the ‘double’
which is introduced in the next Section. Using the double it is straightforward to prove as in [7]
that X(0,00) (D) — X[o,00) (uDu*) € K(N, 7). Hence x[,00)(D), X[0,00)(uDu*) form a Fre