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Model-assisted optimal allocation for planned domains using 
composite estimation 

Wilford B. Molefe and Robert Graham Clark1 

Abstract 

This paper develops allocation methods for stratified sample surveys where composite small area estimators are 
a priority, and areas are used as strata. Longford (2006) proposed an objective criterion for this situation, based 
on a weighted combination of the mean squared errors of small area means and a grand mean. Here, we 
redefine this approach within a model-assisted framework, allowing regressor variables and a more natural 
interpretation of results using an intra-class correlation parameter. We also consider several uses of power 
allocation, and allow the placing of other constraints such as maximum relative root mean squared errors for 
stratum estimators. We find that a simple power allocation can perform very nearly as well as the optimal 
design even when the objective is to minimize Longford’s (2006) criterion. 

 
Key Words: Small area estimation; Sample design; Sample size allocation; Composite estimation; Mean squared error. 

 
 

1  Introduction 
 

Sample surveys have long been used as cost-effective means for data collection but it is also the case 
that general purpose surveys will often not achieve adequate precision for statistics for subpopulations of 
interest (often called domains or areas). Domains may be geographically based areas such as states. They 
may also be cross-classifications of a small geographic area and a specific demographic or social group. A 
domain is regarded as small if the domain-specific sample is not large enough to produce a direct 
estimator with satisfactory precision. 

In this paper, we suppose that stratified sampling is used with H  strata defined by the small areas, 

indexed by 1.h U  The set of all N  units in the population is denoted U  and the set of H  strata is 

denoted 1.U  This effectively assumes that small areas can be identified in advance, which is not always 

the case (Marker 2001). Even so, the survey designer may be able to make an educated guess at areas of 

interest, which should still result in an improved design even if new requirements for area statistics 

emerge after the survey has been run. The population of hN  units in stratum h  is written hU  and the 

sample of hn  units selected by simple random sampling without replacement (SRSWOR) from stratum h  

is .hs  Let jY  be the value of the characteristic of interest for the thj  unit in the population. The small area 

population mean for stratum h  is hY  and the national mean is .Y  The corresponding sample estimators 

are hy  and ,y  respectively; 1=h h jj sh
y n y

  and 1= ,h hh U
y P y

  where = .h hP N N  Let the 

sampling variances be  = varh p hv y  and  = var .pv y  

Longford (2006) considers the problem of optimal sample sizes for small area estimation for this 
design. The approach is based on minimizing the weighted sum of the mean squared errors of the planned 
small area mean estimators and an overall estimator of the mean. The weight attached to each area is 
proportional to the area population raised to the thq  power, so the value of 0 2q   specifies the 
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relative importance of larger compared to smaller areas. The mean squared error of the all-strata mean 
estimator is multiplied by ,G  where G  reflects the perceived priority of this estimator. An analytical 
solution exists for the case where = 0,G  but it has undesirable practical properties, and may sometimes 
result in zero or minimum sample sizes for some strata. When > 0,G  Longford (2006) suggests 
numerical optimization. 

Choudhry, Rao and Hidiroglou (2012) investigate the use of nonlinear programming (NLP) to 
efficiently allocate sample to strata, when there may be bounds on stratum sample sizes, and priority on 
overall, stratum and cross-strata domain estimators of multiple variables. The paper mostly concentrates 
on design-based direct area estimators, but they also consider the objective criterion of Longford (2006) 
for composite estimation. For the Canadian Monthly Retail Trade Survey, they show that the Longford 
allocation gives extremely unequal sample sizes by strata, for q  equal to 0.5, 1 and 1.5. For example, 
when = 1.5,q  the highest stratum coefficient of variation (CV) is 112%, and even for = 0.5,q  the 
highest coefficient of variation is 24%, which was deemed too high. It is not clear whether these CV%s 
refer to direct or composite estimators - such high CVs would be surprising for composite estimators, as 
their CVs are bounded above even as the sample size tends to zero. Choudhry et al. (2012) did not 
investigate whether other designs such as power allocations can give low values of Longford’s criteria. 

The aim of this paper is to find the best allocation to strata for a linear combination of the mean 
squared errors of small area composite estimators and of an overall estimator of the mean, similar to 
Longford (2006). In Section 2 we reformulate the objective in model-assisted terms, introduce the use of 
regressor variables, and derive a model-assisted composite estimator. Section 3 is devoted to optimizing 
the design. In Subsection 3.1 we discuss direct optimization, for example by NLP. Subsection 3.2 
describes power allocation with the exponent chosen to numerically minimize the objective criterion. 
Section 4 is a numerical study of the various methods using the Swiss canton data of Longford (2006) and 
Section 5 contains conclusions. 

 
2  Composite estimation 
 

Composite estimators for small areas are defined as convex combinations of direct (unbiased) and 

synthetic (biased) estimators. A simple example is the composition  1 h h hy y     of the sample 

mean hy  for the target area h  and the overall sample mean y  of the target variable. The coefficients h  

are set with the intent to minimise its mean squared error (MSE), see for example Rao (2003, Section 4.3). 

The coefficients by which the MSE is minimized depend on some unknown parameters which have to be 

estimated. 

Better results can be obtained if there are some regressors ,ix  for which domain population means are 

available, as well as sample data at either unit or domain level enabling Y  to be regressed on .x  A 

synthetic estimator for domain h  is then defined by  syn
ˆ ˆ= ,hY T

hβ X  where β̂  is the estimated regression 

coefficient, and hX  is the domain population mean of the regressor variables. An efficient direct estimator 

which is particularly suitable when domain sizes may be small is  ˆ=hr hy y  T
h hβ x X  (Hidiroglou 

and Patak 2004) where hy  and hx  are the domain h  sample means of Y  and .X  A composite estimator 

can then be constructed as   ˆ= 1 .h h hr hy y    T
hβ X   
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The design-based MSE of the composite estimator is given by:  

         2 2 2
synMSE ; = 1 2 1p h h h hr h h h h h hy Y v v B c            

where hc  is the sampling covariance of hry  and  syn
ˆ ,h hrY v  is the sampling variance of the direct estimator 

 syn,hr hy v  is the sampling variance of the synthetic estimator  syn
ˆ ,hY  and =h hB YT

U hβ X  is the bias of 

using  syn
ˆ

hY  to estimate ,hY  with Uβ  denoting the approximate design-based expectation of ˆ.β  Further,  

      
2 2 2

synMSE ; 1p h h h h hhy Y v B       (2.1) 

because h hc v  and hv v  when the number of small areas is large, under regularity conditions. 

A two-level linear model   conditional on the values of x  will be assumed, with uncorrelated stratum 

random effects hu  and unit residuals :i  

 
   

  2

2

=

= 0

var =

var =

i h i

h i

h uh

j eh

Y u

E u E

u

 





   

  


 


     

T
iβ x

 (2.2) 

for 1h U  and .hi U  This implies that   2 2 2var = =i uh eh hY      for all ,i U  and that the 

covariance cov ,i jY Y     equals 2
h h   for units i j  in the same strata and 0 for units from different 

strata, where  2 2 2= .h uh uh eh      For simplicity, it will be assumed that =h   are equal for all 

strata. 

Under model (2.1),  

     1 2 1 2= = 1hr h hw h hE v E n S n 
      

where 2
hwS  is the within-stratum-h sample variance of ;iy  T

U iβ x  and  

      
    

2 22
syn

2 1

=

= var = 1 1 .

h h h h

h h h h

E B E Y Y E Y

Y N N

  




       

   

T
hβ X

 

To simplify expressions, we assume that , hn N  and H  are all large, although we do not derive rigorous 

asymptotic results. Assuming that hN  is large, we firstly obtain  2 2
h hE B    . Substituting for  hrE v  

and  2
hE B  into (2.1) we get the anticipated MSE or approximate model assisted mean squared error, 

denoted AMSE :h  

      2 1 2 2 2AMSE = MSE ; 1 1 .h p h h h h h h hE y Y n 
             (2.3) 

Optimizing with respect to h  we immediately obtain the optimal weight h  as:  
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        1
opt = 1 1 1 .hh n        (2.4) 

We substitute the optimum weight (2.4) into (2.3) to obtain the approximate optimum anticipated MSE:  
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3  Optimizing the design 

 

3.1  Optimal design for F  
 

One way of measuring the performance of designs for small area estimation is with a linear 
combination of the anticipated MSEs of the small area mean and overall mean estimators. Following 
Longford (2006), but using anticipated MSEs instead of design-based MSEs, we define the criterion  
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 (3.1) 

where the weights q
hN  reflect the inferential priorities for area ,h  with 0 2,q   and 

 
1= ,q q

hh U
N N   and hry  is the grand mean estimator defined in Section 2. This objective reflects the 

fact that surveys have many stakeholders, some of whom will be only concerned with one specific small 

area, while others will place priority only on national estimators. Estimators for small regions are often 

considered a priority, particularly if they correspond to administrative or governmental jurisdictions, 

although smaller areas may be assigned less priority than larger regions. The quantity G  is a relative 

priority coefficient. Ignoring the goal of national estimation corresponds to = 0G  and ignoring the goal 

of small area estimation corresponds to large values of ,G  since when G  is very large the second 

component in (3.1) dominates. The factor  qN   is introduced to appropriately scale for the effect of the 

absolute sizes of q
hN  and the number of areas on the relative priority .G  The criterion in (3.1) is 

algebraically similar to the criterion in Longford (2006). Here, however, we adopt the model-assisted 

approach which treats the design-based inference as the real goal of survey sampling, but employs models 

to choose between valid randomization-based alternatives (e.g., Chapter 6 of Särndal, Swensson and 

Wretman 1992). 

Suppose that national estimation has no priority  = 0 ,G  and the aim is to minimize (3.1) subject to a 

fixed total sampling cost function = ,f h hh
C C n  where hC  is the unit cost of surveying a unit in 

stratum .h  The unique stationary point for this optimization is  
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1 1

2 1 2 1

,opt . 2 1 2

1
= 1

q q
f h h h h h h

h q q
h h h h h h

h U h U

C N C C N C
n

N C H N C

 



 


        

 
 

 (3.2) 

where 1= .hh
C H C   We will concentrate on the case when unit costs are equal across strata, so that 

the constraint becomes = hh
n n  and (3.2) simplifies to  

 

1 1

2 2

,opt . 2 1 2

1
= 1 .

q q
h h h h

h q q
h h h h

h U h U

n N N
n

N H N

 


        

 
 

 (3.3) 

If there are other active constraints (e.g., minimum stratum sample sizes or maximum stratum MSEs), or if 

> 0,G  then (3.2) and (3.3) do not apply and F  must be minimized numerically, for example by NLP as 

in Choudhry et al. (2012). 

In practice it would almost always be appropriate to set 0 2,q   with = 0q  corresponding to all 

areas being equally important regardless of size, and = 2q  giving much greater weight to larger areas. 

(The value of = 2q  would lead to proportional allocation if direct estimators were used rather than 

composite - see for example Bankier 1988.) In many cases = 1q  would be a sensible compromise. For 

example, this has been used to motivate power allocations (Bankier 1988) for master household samples 

in Vietnam and South Africa (Kalton, Brick and Lê 2005, paragraph 76, page 89). 

The first term in (3.3) is the optimal allocation for the direct estimator and corresponds to power 

allocation (Bankier 1988). The second term will be positive for more populous areas (large )hN  and 

negative for less populous areas. Therefore, the allocation optimal for model-assisted composite 

estimation has more dispersed subsample sizes ,opt .hn  than the allocation that is optimal for direct 

estimators. 

To understand the properties of the optimal allocation when > 0,G  and to provide a non-iterative 

method, Molefe (2011, Chapter 3) derived Taylor Series approximations to the optimal ,hn  based on 

small .  However, the resulting approximation tended to result in very large negative and very large 

positive values of ,opt.hn  unless   is very small. (In practice, these would be truncated to either 0 or the 

population size, respectively.) Mathematically, the issue is apparently that the optimal hn  are quite 

nonlinear in   at = 0,  so that Taylor Series approximations are only a good approximation in a small 

neighbourhood of = 0.  Taylor Series based on small values of a function of both G  and   were also 

considered but had similar difficulties, and so these approaches are not further discussed here. 

 
3.2  Power allocation 
 

Power allocations (Bankier 1988) are defined by  

 

1

=
p

h
h p

h
h U

nN
n

N



 (3.4) 
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for 1 ,h U  where 0 1.p   A special case is the square root allocation when = 1 2 .p  The exponent 

p  is called the power of the allocation. Setting = 1p  results in proportional allocation and = 0p  

results in equal allocation. 

Bankier (1988) proposed choosing p  based on perceived relative priorities. However, this was based 

on direct estimators being used in each stratum. We are interested in the case where composite estimation 

is to be used, and the objective is to obtain a low value for F  in (3.1). We obtain numerically the value of 

p  which minimizes F  by one-dimensional optimization. We further consider imposing minimum 

stratum sample sizes, with p  re-optimized accordingly. (Alternatively, maximum stratum MSE 

constraints could be imposed.) 

 
4  Numerical study 
 

We use data on the 26 cantons of Switzerland (Longford 2006); their population sizes range from 

15,000 (Appenzell-Innerrhoden) to 1.23 million (Zürich). The population of Switzerland is 7.26 million. 

We assume that = 10,000, = 0.025n   and = 1   (following Longford 2006). The last assumption 

only affects the magnitude of F  and the relative root mean squared errors (RRMSE) but not the 

relativities across methods. It is satisfied if, for example, a prevalence rate of 50% is estimated. All 

calculations were performed in the R statistical environment (R Development Core Team 2012). Values of 

= 0, 0.5, 1, 1.5q  and 2, and values of = 0, 10G  and 100 were used, as in section 5.2 of Choudhry 

et al. (2012). The program used to produce all results is available in the appendix of Molefe and Clark 

(2014). 

Six different allocations are evaluated in Tables 4.1-4.3. The value of F  is shown for each design, 

relative to the value for equal allocation. Strata sample sizes were constrained in all allocations to lie 

between 1 and the population sizes, while still summing to .n  The first design is equal allocation, then 

proportional allocation. The third design is the optimal design, which minimizes F  in (3.1) by NLP 

subject to all stratum sample sizes being at least 1. The fourth design minimizes F  subject to all stratum 

RRMSEs being 8% or less, which, from formula (3.1), is equivalent to a minimum stratum sample size of 

113. For the third and fourth designs, NLP was carried out using the R package Rsolnp  (Ghalanos and 

Theussl 2011). The fifth design is power allocation, where the exponent p  is calculated to minimize .F  

The sixth design is power allocation with all stratum sample sizes constrained to be 113 or more, and with 

p  calculated to minimize F  reflecting these constraints. In both the fifth and sixth cases, p  was 

calculated using the optimize function in R. 

Table 4.1 shows the efficiency of the various methods when = 0,G  where efficiency refers to the 

achieved values of F  from formula (3.1), which is a weighted combination of MSEs of area composite 

estimators and an overall grand mean estimator. When = 0,q  equal allocation is then optimal for ,F  and 

all of the allocation methods except proportional allocation return equal allocation. For larger values of ,q  

Optimal for Composite is the most efficient, as expected. Imposing the area maximum RRMSE constraint 

of 8% increases F  by 4% when = 2,q  and has negligible effect (1.4% or less) for smaller .q  The 

optimal power allocation has virtually identical efficiency to the optimal-for-composite allocation, both 

with and without the area RRMSE constraint. The unconstrained optimal-for-composite and power 

allocations are more efficient than proportional allocation when q  is small, and about equally efficient for 
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1.5.q   When the area RRMSE constraint is imposed, these designs suffer a small penalty, but are still 

more efficient than proportional except when = 2.q  

 
Table 4.1 
Relative efficiency of stratified designs for = 0G  
 

Design  0q   0.5q   1q   1.5q   2q   

Equal allocation  1.000 1.000 1.000 1.000 1.000 
Proportional allocation  2.117 1.340 0.887 0.637 0.493 
Optimal for composite  1.000 0.933 0.786 0.627 0.488 
Optimal for composite with constraints  1.000 0.933 0.787 0.636 0.509 
Optimal power allocation  1.000 0.933 0.786 0.628 0.490 
Optimal power with constraints  1.000 0.933 0.787 0.636 0.509 

 
Table 4.2 shows relative efficiencies for = 10.G  As for when = 0,G  the optimal-for-composite and 

optimal power designs perform very similarly, with a similar effect of imposing the area RRMSE 
constraint. The major difference compared to = 0G  is that proportional allocation is more efficient when 
G  is larger. The optimal designs, even with the constraint imposed, remain more efficient than 
proportional allocation except for 1.5.q   

 
Table 4.2 
Relative efficiency of stratified designs for = 10G   
 

Design  0q   0.5q   1q   1.5q   2q   

Equal allocation  1.000 1.000 1.000 1.000 1.000 
Proportional allocation  1.360 0.944 0.701 0.568 0.491 
Optimal for composite  0.875 0.784 0.668 0.565 0.490 
Optimal for composite with constraints  0.875 0.784 0.670 0.575 0.505 
Optimal power allocation  0.905 0.791 0.668 0.565 0.490 
Optimal power with constraints  0.905 0.790 0.670 0.575 0.505 

 
Table 4.3 shows efficiencies for large  100 .G G   Here, proportional allocation is close to the best 

design for all .q  It is about equivalent to the unconstrained optimal designs for all 0.5,q   and more 

efficient than the constrained optimal designs for all 1.q   The relative performance of the four optimal 

designs is about the same as for = 0G  and = 10.G  

 
Table 4.3 
Relative efficiency of stratified designs for = 100G   
 

Design  0q   0.5q   1q   1.5q   2q   

Equal allocation  1.000 1.000 1.000 1.000 1.000 
Proportional allocation  0.656 0.576 0.529 0.503 0.488 
Optimal for composite  0.608 0.565 0.527 0.503 0.488 
Optimal for composite with constraints  0.608 0.567 0.536 0.515 0.501 
Optimal power allocation  0.624 0.567 0.528 0.503 0.488 
Optimal power with constraints  0.612 0.568 0.536 0.515 0.501 

 
Figure 4.1 shows the distribution of the area RRMSEs across the 26 cantons for {0.5, 1, 1.5, 2}q   

when = 0G  for the four optimal designs. The results for = 0q  are not shown because the canton 
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sample sizes are then all equal for the optimal designs. The optimal for composite allocation (top left) 

shows a fairly tight range of area RRMSEs when = 0.5,q  becoming more dispersed as q  increases. The 

maximum RRMSEs are 6.6%, 9.4%, 13.8% and 15.6% for = 0.5, 1, 1.5q  and 2, respectively. Thus, for 

1,q   some of the RRMSEs are undesirably large. The optimal for composite allocation with constraints 

forces all area RRMSEs to be 8% or less, shown by the top right panel. The bottom two panels show the 

corresponding optimal power allocations. The unconstrained power allocation is broadly similar to the 

unconstrained optimal for composite allocation, but less dispersed, with lower maximum area RRMSEs. 

The two constrained designs are very similar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1  Distribution of anticipated relative root mean squared errors (RRMSE) (%) of estimated strata 

means for 4 allocations for various q  with = 0.G  
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Table 4.4 shows the values of the optimal exponents calculated for the optimal power designs for each 

q  and .G  When G  is 0 or 10, the optimal exponent p  of the power allocation is very close to 2 ,q  

where q  is the exponent in the definition of F  in (3.1). For = 100,G  the optimal exponent is quite close 

to 1, reflecting that for large ,G F  essentially reflects the variance of the grand mean, so that proportional 

allocation is nearly optimal. Table 4.5 shows the optimal power exponents when the area RRMSE 

constraints are applied. Applying these constraints has little effect on the optimal .p  

 
Table 4.4 
Optimal exponent in power allocation by G  and q  
 

  0q   0.5q   1q   1.5q   2q   

0G   0.000 0.277 0.557 0.837 1.111 
10G   0.293 0.500 0.721 0.912 1.050 
100G   0.730 0.852 0.936 0.983 1.008 

 
Table 4.5 
Optimal exponent in power allocation by G  and q  with constraint on strata RRMSEs 
 

  0q   0.5q   1q   1.5q   2q   

0G   0.000 0.277 0.554 0.813 1.073 
10G   0.293 0.511 0.729 0.898 1.036 
100G   0.859 0.907 0.945 0.979 1.007 

 
5  Conclusions 
 

The anticipated MSE is a sensible objective criterion for sample design, because the particular sample 

which will be selected is not available in advance of the survey. Hence a criterion which averages over all 

possible samples is appropriate. Särndal et al. (1992, Chapter 12) base their optimal designs on the 

anticipated variance, which similarly averages over both model realizations and sample selection, 

although they consider only approximately design-unbiased estimators. 

When both strata composite estimators and overall estimators are a priority, it makes sense to optimise 

an objective criterion which is a linear combination of the relevant anticipated MSEs. Allocations which 

are optimal in this sense give lower values of the objective function than either proportional or equal 

allocation. An optimal power allocation, p
h hn N  where p  is obtained numerically to minimize the 

objective function, is simpler and avoids the possibility of negative sample sizes which need to be 

truncated. Under conditions, it is very nearly as efficient as the optimal allocation. When there is no 

priority on national estimation  = 0 ,G  the optimal exponent turns out to be close to = 2 ,p q  where 

q  is the exponent applied to stratum population sizes in the objective criterion. This removes the need to 

perform an optimization. Thus, we recommend an objective criterion very similar to that of Longford 

(2006), but we suggest a simple power allocation with = 2p q  when = 0,G  rather than the optimal 

allocation for .F  This extends the the domain of application of power allocation to surveys using stratum 

composite estimators. 
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Rather than just relying on the overall objective criterion to appropriately balance resources across 

strata, it may often be desirable to also impose minimum stratum sample sizes or maximum stratum 

RRMSEs. These were successfully implemented using NLP. In the Swiss canton example in Section 4, an 

upper limit of 8% for stratum RRMSEs significantly reduced the highest RRMSE with little loss in the 

objective criterion. More complex constraints, for example on cross-strata domains or for multiple 

variables of interest, could also be implemented using NLP. 
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Appendix 
 
Derivation of (3.2) 
 

The steps of this derivation are similar to Longford (2006) although F  is defined differently and 
unequal costs are allowed. A stationary point of (3.1) subject to =f h hC C n  is given by  

 

     22 2

0 =

= 1 1 1 .

h
h

q
h h h h

F
C

n

N n C


 



         

  

Writing   12= 1      and rearranging gives  
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Substituting into the constraint =f h hC C n  and solving for   gives  

 
 1 2

2 1

1
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q
h h h

h
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N C




   



  

where 1= .hh
C H C   Substituting back into (A.1) and rearranging gives the result. 
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