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Abstract

Lin (2014) developed a framework of the method of the sample-moment-based density approximant, for estimating the probability density
function of microdata based on noise multiplied data. Theoretically, it provides a promising method for data users in generating the synthetic data
of the original data without accessing the original data; however, technical issues can cause problems implementing the method. In this paper, we
describe a software package called MaskDensity14, written in the R language, that uses a computational approach to solve the technical issues
and makes the method of the sample-moment-based density approximant feasible. MaskDensity14 has applications in many areas, such as sharing
clinical trial data and survey data without releasing the original data.
c⃝ 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).
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1. Motivation and significance

Confidential data are not allowed to be issued to the public
without certain levels of protection. A number of methods for
protecting data have been recommended and used in practice
(see Duncan and Lambert [1], Willenborg and De Waal [2],
Oganian [3], Shlomo [4], and references therein).

∗ Corresponding author.
E-mail address: yanxia@uow.edu.au (Y.-X. Lin).

The multiplicative noise method is one method for providing
data protection (Kim and Jeong [5]). The method is briefly
described as follows. Let y1, y2, . . . , yN (the original data) be
a sample drawn from a sensitive random variable Y . Let C be
a positive random variable, independent of Y . When we say the
original data y1, y2, . . . , yN were masked by C , it means their
masked data have the form y∗

i = yi ×ci , i = 1, 2, . . . , N , where
{ci } is a sample from C . The original data {yi }

N
1 are protected

by {y∗

i }
N
1 . The system of releasing noise multiplied data is a

non-open query based system.
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A key issue is how to recover the statistical information of
the original data based on their noise multiplied data. Recently,
many data analysis methods to recover the original information
from noise multiplied data have been developed (Kim and
Jeong [5]; Sinha, et al. [6]; Hwang [7] and Lin and Wise [8]).
These methods are not standard, and some of them are complex
to use. As a consequence, Lin [9] introduced a framework
on the sample-moment-based density approximant. The
framework provides a method for estimating the probability
density function of the original data based on noise multiplied
data. It gives a solution for generating the synthetic data of
the original data without accessing the data themselves. Thus,
using standard statistical inference methods to analyze the
original data based on noise multiplied data becomes possible.
Developing software to implement the method is desirable.

We briefly describe the computational statistical approach
developed by Lin [9] as follows. Let {yi }

N
1 be a set of original

sample data drawn from a random variable Y . The data were
masked by a noise C which yielded masked data {y∗

i }
N
1 . Let

{ci }
N
1 , not the same sample used to mask {yi }

N
1 , be another

independent sample drawn from C . Assume that Y has moment
generating function. Thus, the density function fY of Y can be
determined by its moments. The sample-moment-based density
approximant of the density function of Y is defined as

fY,K |{y∗
i ,ci }

N
1
(y) =

K
k=0

ak(y)
(Y ∗)k

Ck
(1)

where (Y ∗)k =
N

i=1(y∗

i )k/N and Ck =
N

i=1 ck
i /N ; ak(y) =

ak(y; a, b) is a polynomial function of y, i.e. a continuous
function of y (the details see Lin [9]), where a and b, used
in Lin [9], are min1≤i≤N {yi } and max1≤i≤N {yi }, respectively.
Lin [9] showed that fY,K |{y∗

i ,ci }
N
1

can well represent the density
function of Y given that the sample size N and the upper order
of moment K are appropriate (for brevity, we sometimes use
“the upper order K ” instead of “the upper order of moment K ”).
Thus, the sample drawn from fY,K |{y∗

i ,ci }
N
1

can be considered
as synthetic data of the original data. The upper order K was
determined with reference to the density function fY of the
original data in Lin [9].

To implement the technique developed by Lin [9] in prac-
tice, there are a number of technical issues to solve. Firstly,
the upper order K has to be determined without the reference
to fY , as fY is not available. Secondly, it is desirable that the
boundaries a and b are determined without using the informa-
tion max1≤i≤N {yi } and min1≤i≤N {yi } directly, as the informa-
tion might be confidential.

2. Software description

The MaskDensity14 software presented in this paper uses
the R language, which is widely used system by statisticians
(see The R Package for Statistical Computing http://www.r-
project.org). MaskDensity14 follows the standard manner to ob-
tain the smoothed function of the sample-moment-based den-
sity approximant fY,K |{y∗

i ,ci }
N
1

. Based on (1), MaskDensity14

(Version 1.0) evaluates fY,K |{y∗
i ,ci }

N
1
(y) at 512 equal distance

points on [a, b]. Then, MaskDensity14 uses standard smooth-
ing and normalizing techniques to obtain the smoothed sample-
moment-based density approximant fY,K |{y∗

i ,ci }
N
1

. The kernel
R package adopted by MaskDensity14 is ks (see http://cran.r-
project.org/web/packages/ks/ks.pdf).

Determining an appropriate value for the upper order K and
boundaries a and b for fY,K |{y∗

i ,ci }
N
1

is a critical issue. The upper
order K in Lin [9] is determined by comparing the plots of
fY,K |{y∗

i ,ci }
N
1

and fY . Using this way to determine the value for
K is impracticable as the original data are not available. The
boundaries a and b used in Lin [9] are min{yi } and max{yi },
respectively. Using those values in fY,K |{y∗

i ,ci }
N
1

might cause
problems because the values might be confidential, and the data
provider might feel uncomfortable to release them to the public.

A method for determining K and boundaries a and b,
without directly employing the information of the original data
is essential for the software built in this paper.

2.1. Determination of the upper order K in fY,K |{y∗
i ,ci }

N
1

Provost [10] pointed out that, if an inappropriate upper order
K is used in the density approximant fY,K , it may cause fY,K
taking negative values. Simulation studies by Lin [9] showed
that the density approximant will not be more accurate for large
values of the upper order K . It is a challenge to determine an
appropriate K for fY,K |{y∗

i ,ci }
N
1

without reference to fY .

Lin [9] used a term “the correlation between two density
functions” to evaluate the similarity of two density functions.
The implication of the term is related to the concept of “the
probability plot correlation coefficient”. The Q–Q plot method
can be used to compare two probability distributions if they
are close to each other. Adopting the idea of the Q–Q plot, we
evaluate the value of “the correlation between density functions
f1 and f2” in the following manner. (1) Independently simulate
two samples {x1,i } and {x2,i } of the same size from f1 and f2,
respectively. (2) Sort the two samples, and then calculate the
sample correlation coefficient of the sorted samples.

Lin [9] demonstrated that the larger the value of “the
correlation between fY,K |{y∗

i ,ci }
N
1

and fY ” is, the closer the two
functions, fY,K |{y∗

i ,ci }
N
1

and fY , will be. Motivated by this fact,
the following steps are built in MaskDensity14 for determining
the appropriate K in fY,K |{y∗

i ,ci }
N
i

without directly using the

information of the original data {yi }
N
1 . Consider the masked

dataset {y∗

i }:
Step 1. Set an initial upper order of moment, K = 1 and a

maximum upper order of moment to be tested. The maximum
upper order of moment set in MaskDensity14 is 100.

Step 2. Independently simulate a sample {ci }
N
1 from C and

obtain the smoothed function fY,K |{y∗
i ,ci }

N
1

using Eq. (1). In
MaskDensity14, we assume that the data agency provides the
data user with a sample of C . The size of the sample is suffi-
ciently large (>N ) such that the sample can well represent the
probability structure of the noise C . Thus, a sample drawn from

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://cran.r-project.org/web/packages/ks/ks.pdf
http://cran.r-project.org/web/packages/ks/ks.pdf
http://cran.r-project.org/web/packages/ks/ks.pdf
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the sample population can be considered as a sample drawn
from C .1

Step 3. Simulate a sample {y′

j }
N
1 from fY,K |{y∗

i ,ci }
N
1
(y).

Step 4. Independently simulate a second sample {c′

j }
N
1 from

C . Mask {y′

j }
N
1 by using this new sample of noise and yield a

new masked dataset {y′ ∗

j }
N
1 .

Step 5. Sort {y′ ∗

i }
N
1 and {y∗

i }
N
1 , respectively. Evaluate the

correlation Cor(K ) between the two sorted datasets. Keep track
of the optimum upper order of moment such that Cor(Kopt) =

max
k≤K

Cor(k).

Step 6. Update K to K + 1 and return to Step 2 if K + 1 ≤

100. Stop when Cor(K ) drops below a threshold taken as
Cor(K ) < 1 − 10


1 − Cor(Kopt)


or K + 1 > 100.

Step 7. Report Kopt as the optimum upper order of moment
used.

Remarks. (1) Step 5 is the key step in identifying an appropri-
ate upper order of moment for the approximant of fY . We ex-
plain the logic used to support Step 5 as follows. If the density
approximant determined by {y∗

i , ci } is close to the true density
function fY , {y′

i } can be considered as an independent sample
from Y . Consequently, {y′∗

i } can be considered as an indepen-
dent sample from Y C . Thus, the smoothed density functions
determined by {y∗

i } and {y′∗

i }, respectively, will be more likely
close to each other.

MaskDensity14 reports the value of “the correlation between
the smoothed density functions” given by {y∗

i } and {y′∗

i }. The
higher the value is, the relatively better the approximation be-
tween fY,K |{y∗

i ,ci }(y) and fY (y) will be.
(2) We set the tested maximum upper order of moment to be

100. To save time, we would not like to have the testing proce-
dure going from K = 1 to K = 100. Our experience (also see
examples in Lin [9]) shows that Cor(K ) will decrease quite
rapidly if K becomes too large. It is due to the result of poor
estimates of high-order moments. If the value of Cor(K ) de-
creases too low and

1 − Cor(Kopt) <
1
10

[1 − Cor(K )] ,

according to our empirical testing, it is not necessary to carry
out any further testing. Therefore, we set the threshold 1 −

10[1 − Cor(Kopt)] in Step 6.

2.2. The boundaries a and b used in MaskDensity14

Example 1 shows the impact of the values of a and b on the
plot of fY,K |{y∗

i ,ci }.

Example 1. Simulate a sample {yi }
2000
1 from N (5, 32). To

purely focus on the impact of the boundaries a and b on the per-
formance of fY,K |{y∗

i ,ci }
2000
1

without any interference from the
noise C , we let C = 1.

1 We can modify MaskDensity14 and allow the data agency to provide the
data user with the probability distribution information of C , instead of a sample
from C .

Fig. 1. The smoothed density function for N (5, 32) is in (thin) solid line. The
approximant smoothed density function fY,K |{y∗

i ,ci }
given by PB(1) and PB(2)

are in (thin) longdash line; given by PB(3) (i.e. a = min{yi } and b = max{yi })
in (bold) solid line; given by PB(4) and PB(6) in (bold) dotted line; given by
PB(7) and PB(11) in (bold) twodashed line.

To well represent the impact of the boundaries on the plot of
fY,K |{y∗

i ,ci }, seven pair-boundary (a, b)s: PB(j) = (min{yi } +

(2 − j + 1)s, max{yi } − (2 − j + 1)s), j = 1, 2, 3, 4, 6, 7, 11,
are considered, where s is the sample standard error given by
{yi }

2000
1 .

The domains determined by the pair-boundaries are sub-
sets of the others in order. The shortest domain is [min{yi } +

2s, max{yi } − 2s] and the longest one is [min{yi } −

8s, max{yi } + 8s]. The pair-boundary PB(3) is determined by
a = min{yi } and b = max{yi }, used as a reference.

The plots of fY,K |{y∗
i ,ci } based on the seven pair-boundaries

are presented in Fig. 1. Fig. 1 shows that the plots of the density
approximants given by PB(1) and PB(2) are very different
from the plot of the true density function; the plots given by
PB(4) and PB(6) are reasonable. The values of Cor(Kopt )

based on PB(4) and PB(6) are all around 0.9997, which are
higher than those of Cor(Kopt ) based on PB(1) and PB(2)
(0.9873 and 0.9973, respectively). It confirms that, based on
the same sample {yi }, a density approximant with a relatively
higher value of Cor(Kopt ) should give a better approximation
of fY . As the size of the interval [a, b] increases, the plot
of the corresponding density approximant tends to be flat and
gradually runs away from the plot of the true density function
(see the plots given by PB(7) and PB(11)).

Based on the simulation studies carried out in Example 1 and
other examples (not shown here for saving space), the impact of
a and b on fY,K |{y∗

i ,ci } can be summarized as follows:
(1) If [a, b] is a subset of [min{yi }, max{yi }] with a size

much smaller than the size of [min{yi }, max{yi }], fY,K |{yi ,ci }

might have fewer chances of being a good approximation of fY
as fY,K |{yi ,ci } has to squeeze all the information provided by
{yi } into the smaller interval [a, b].

(2) If [a, b] is close to [min{yi }, max{yi }] (either a subset or
a superset), fY,K |{y∗

i ,ci } is able to give a good approximation of
fY . Particularly, the difference between the approximants of the
density of Y based on domain [min1≤i≤N {yi }, max1≤i≤N {yi }]

and [a, b] ⊇ [min1≤i≤N {yi }, max1≤i≤N {yi }] is not signif-
icant, because both approximants are evaluated based on
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the same sample {yi }
N
1 and no {yi }

N
1 fall within intervals

[a, min1≤i≤N {yi }) and (max1≤i≤N {yi }, b]. The smoothed den-
sity function defined on the interval [a, b] will not add too much
weight on [a, min1≤i≤N {yi }) and (max1≤i≤N {yi }, b].

(3) As the size of the interval [a, b] ⊇ [min1≤i≤N {yi },

max1≤i≤N {yi }] increases, the normalized smoothed func-
tion fY,K |{y∗

i ,ci } based on the pair-boundary (a, b) has to
spread more weight to the whole interval [a, b] and the plot
of the fY,K |{y∗

i ,ci } will be flattened, compared to the plot
of the fY,K |{y∗

i ,ci } based on the pair-boundary (min1≤i≤N {yi },

max1≤i≤N {yi }).
Let {yi }

N
1 be a sample from Y and {ysub, j } be a subset

of {yi }
N
1 . Denote Ysub the population of {ysub, j }. The density

approximants of fY and fYsub can be obtained from the masked
data {y∗

i }
N
1 and {y∗

sub, j }, respectively. Since the probability
structures of Y and Ysub might not be the same, the appropriate
pair-boundaries used in the density approximants of the two
populations might not be the same.

With the full knowledge on the original data {yi }
N
1 , the

data agency has no problems in providing the data user with
an appropriate pair-boundary (a, b) for fY,K |{y∗

i ,ci }
N
1

. It is im-
possible for the data agency to provide an appropriate pair-
boundary (a, b) for fY,K |{y∗

i ,ci }sub without knowing in which
subset {ysub, j } the data user might be interested.

To ensure that the data user has more freedom in exploring
the statistical information of the full/subset of the original
data, it is of interest how to determine an appropriate pair-
boundary for fYsub based on the information of {y∗

i , ci }
N
1 and

the appropriate pair-boundary for fY,K |{y∗
i ,ci }

N
1

provided by the
data agency.

Taking into account the discussions above, a standard proce-
dure for determining a and b is adopted in MaskDensity14:

(1) If Y is a categorical variable taking values 1, 2, . . . , M ,
let a = 0, and b = M + 1 (see Section 2.3).

(2) If Y is not a categorical variable, the values of a and b
are determined as follows:

Step 2.1 Let abasic and bbasic be the boundaries determined
by the data agency. With the full knowledge of the original data
{yi }

N
1 , the data agency can find appropriate abasic and bbasic

such that [abasic, bbasic] ⊇ [min1≤i≤N {yi }, max1≤i≤N {yi }] and
fY,K |{y∗

i ,ci }
N
1

is close to the density function of the original data.

Step 2.2 For each α = 0.01–0.05 with increment 0.01,2 let

aα = max

abasic,
y∗

sub

c̄
−

1/α

 y∗2
sub

c2
−


y∗

sub

c̄

2

 (2)

bα = min

bbasic,
y∗

sub

c̄
+

1/α

 y∗2
sub

c2
−


y∗

sub

c̄

2

 (3)

2 To save time in running the program, we only consider these five different
values of α in MaskDensity14.

where y∗

sub and y∗2
sub are the sample mean and the sample second

moment of {y∗

sub, j }, respectively; c̄ and c2 are the sample mean
and the sample second moment of the noise C , respectively;

Step 2.3 For each pair-boundary (abasic, bbasic), (aα, bα),
α = 0.01, . . . , 0.05, determine the optimal upper order
K for fY,K |{y∗

sub, j ,c j } and record Cor(Kopt ), denoted by
Cor(Kopt,basic) and Cor(Kopt,α), α = 0.01, . . . , 0.05, respec-
tively;

Step 2.4 Let a = aα0 and b = bα0 , α0 ∈ {basic, 0.01,

0.02, . . . , 0.05} such that

Cor(Kopt,α0) = max{Cor(Kopt,basic), Cor(Kopt,α),

α = 0.01, . . . , 0.05}.

Remarks. The logic used to support the standard procedure
above is explained as follows.

(i) Given that [abasic, bbasic] is a superset of [min1≤i≤N
{yi }, max1≤i≤N {yi }] and {ysub, j } ⊂ {yi }, we have abasic ≤

min{ysub, j } ≤ max{ysub, j } ≤ bbasic;
(ii) From Tchebichev inequality, we have

P(Lα ≤ Ysub ≤ Uα) > 1 − α (4)

where Lα = E(Ysub) −
√

V ar(Ysub)/α and Uα = E(Ysub) +
√

V ar(Ysub)/α. Ignoring the probability α, {ysub, j } will be
bounded by

[max {abasic, Lα} , min {bbasic, Uα}] . (5)

By taking into account the information Cor(Kopt,basic) and
Cor(Kopt,α), and replacing the means by sample means in Lα

and Uα , we should expect that [aα0 , bα0 ] is a reasonable domain
replacing [min{ysub, j }, max{ysub, j }] based on the information
of {y∗

sub, j , c j }. There might be other ways for determining the
appropriate pair-boundary (a, b) for fY,K |{y∗

sub, j ,c j }. We leave it
as an open question.

2.3. MaskDensity14 for categorical data

Categorical data is the primary type of data considered in
confidential microdata. With noise multiplied data, the mass
function of the original data can be obtained by the method of
moments. Assume that Y is a categorical variable taking values
1, 2, . . . , M . The mass function of Y can be obtained by solving
simultaneous equations

E(Y ∗m)/E(Cm) =

M
i=1

im P(Y = m), m = 1, . . . , M,

subject to E(Y ∗m) and E(Cm), m = 1, . . . , M , are available.
However, the values of the theoretical means might not be
available for the data user in practice. We adopt the method of
moments in MaskDensity14 by replacing E(Y ∗m) and E(Cm)

with corresponding sample moments, m = 1, . . . , M . With
the high orders of sample moments involved, or sometimes the
small size of the sample used, the method of moments might
fail by giving negative values to the mass function of Y .
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If the method of moments fails, MaskDensity14 will use the
sample-moment-based approximant density method to estimate
the mass function of Y .

In theory, the technique of the approximant of a density
function is for continuous univariate distributions. However,
MaskDensity14 will use the following way to cope with
categorical data. (i) Mask the underlying categorical variable
by a continuous noise. Thus, the masked data are no longer
categorical data. (ii) Apply the method of sample-moment-
based density approximant to the masked data and estimate
the smoothed density function of the categorical variable based
on the masked data. Obviously, the density approximant will
have multiple centers at the levels of the categorical variable.
(iii) Finally, use the existing K-means clustering R package to
convert the smoothed density approximant to the mass function.

2.4. Software architecture

MaskDensity14 is built for two purposes. One purpose is to
provide masked data. The other is for the data user generating
synthetic data.

The flow chart for producing masked data is presented
below:

By default the values of abasic and bbasic are min{yi }
N
1 and

max{yi }
N
1 , respectively. By default, the sample of noise is from

a mixture of two normal distributions with means randomly
generated. The data agency has the option of providing the
values of abasic and bbasic, and the noise C used to mask the
underlying original data. The binary file “noise.bin” contains a
large sample from C , the values of abasic and bbasic, and the
information about whether the underlying data are numerical or
categorical. The sample noise in “noise.bin” are generated
by sampling data from the noise sample used to mask the
original data. This process is run in background during the
process of producing masked data. The size of the noise sample
in “noise.bin” is ten times larger than that of the original data. In
the process of determining the upper order K , the independent
noise sample are drawn from this big noise sample. Since there
is no link between the entries in the original dataset and the
sample noise stored in “noise.bin”, the individual entries of
the original dataset cannot be identified simply knowing the
masked data and the noise sample drawn from “noise.bin”. The
binary file is recognizable by MaskDensity14 only.

The masked dataset and the binary file “noise.bin” can be
sent out to the data user, and the original data are concealed
from the data user. The data user can apply MaskDensity14 to
the files and obtain the synthetic data of the original data. A
brief flow chart of the process is presented below:

2.5. Software functionalities

There are two main functions, mask and unmask, in
MaskDensity14. Function mask is used to produce masked data
and the binary file noise.bin. The outcome of unmask is a sim-
ulated sample drawn from the sample-moment-based density
approximant of the original data.

3. Illustrative examples

Due to the focus of this paper, we only demonstrate the main
functions of MaskDensity14. Simulation studies and applica-
tions will be investigated in another paper.

Example 2. Let {yi }
10000
1 be the original sample data drawn

from a random variable Y . The probability distribution of the
random variable Y is a mixture of two normal distributions
MixNorm(m1 = 30, m2 = 50, s1 = 4, s2 = 2, p = 0.7),
i.e. Y = I(w=0)Y1 + I(w=1)Y2, where I is an indicator function,
Y1 ∼ N (30, 42), Y2 ∼ N (50, 22) and w is Bernoulli distributed
with P(w = 0) = 0.3. Let C ∼ MixNorm(m1 = 80, m2 =

100, s1 = 5, s2 = 3, p = 0.4) be the multiplicative noise used
to mask {yi }

10000
1 .

The R code used to simulate {yi } and {ci } is listed below:

set.seed(123)
n=10000
rmulti <- function(n, mean, sd, p)
{
x <- rnorm(n)
k<-length(mean)
u <- sample(1:k, size=n, prob=p, replace=TRUE)
for(i in 1:k)
x[u==i]<-mean[i]+sd[i]*x[u==i]

return(x)
}
y <- rmulti(n=10000, mean=c(30, 50), sd=c(4,2),
p=c(0.3, 0.7))

# y is a sample drawn from Y.
noise<-rmulti(n=10000, mean=c(80, 100),
sd=c(5,3), p=c(0.6, 0.4))

# noise is a sample drawn from C.

With the original data {yi } and the sample of noise, the data
provider can use the following R code to generate a set of
masked data of {yi }:
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Table 1
The summary of statistics given by “y1$unmaskedV ariable” and “y”.

Data Min. 1st Qu. Median Mean 3rd Qu. Max.

y 16.34 33.63 48.83 43.90 50.74 57.70
y1$unmaskedV ariable 15.19 35.12 48.48 44.00 50.99 57.80

library(MaskDensity14)
a1<-runif(1, min=min(y)-2,max=min(y))
b1<-runif(1, min=max(y), max=max(y)+2)
ymask<-mask(y, noisefile="noise.bin",
noise, a1=a1, b1=b1)
write(ymask$ystar, "ystar.dat")

The values a1 and b1 are the abasic and bbasic, respectively,
introduced in Section 2.2. In this example, we let a1 and b1 be
the values randomly selected from [min(y) − 2, min(y)] and
[max(y), max(y) + 2], respectively.

After running the above R code, two files “ystar.dat” and
“noise.bin” are generated and ready for the data user. Saving
the two files “ystar.dat” and “noise.bin” in the same R working
directory, the data user can use the following code to obtain
synthetic data of {yi }

10000
1 .

library(MaskDensity14)
ystar <- scan("ystar.dat")
y1 <- unmask(ystar, noisefile="noise.bin")
sample<-y1$unmaskedVariable

R output y1$unmaskedV ariable gives the synthetic data of
the original data {yi }. The size of the synthetic data is the
same as that of the original data. The data user can apply
standard R code to y1$unmaskedV ariable and obtain the
output data analysis of the original data. For example, the
output “plot(density(y1$unmaskedVariable))” gives the plot
of the density approximate of the original data; the output
“summary(y1$unmaskedVariable)” gives the estimate of the
summary statistics of the original data. The summary statistics
for original data and synthetic data are listed in Table 1.

Example 3 gives another example where the original data are
categorical.

Example 3. Let Y be a categorical random variable with
probability distribution Bernoulli(0.1) + 1. The multiplicative
noise C is the absolute value of a random variable with
distribution N ((a + b)/2, 1 + (a − b)2/4), where a = 170
and b = 80. The following R code is used to obtain a sample
{yi } from Y and a sample from C , respectively. Both of them
have size 2000.

set.seed(124)
n<-2000
a<-170
b<-80
y<-rbinom(n, 1, 0.1)+1
noise<-(a+b)/2+ sqrt(1+(a-b)^2/4)*rnorm(n, 0,1)
noise[noise<0]<- - noise[noise<0]

Since {yi } only takes two values 1 and 2, the boundaries abasic
and bbasic are 0 and 3, respectively. The R code used to produce
{y∗

i } is as follows:

library(MaskDensity14)
ymask<-mask(factor(y), noisefile="noise.bin",
noise, a1=0,b1=3)

# using factor(y) because y is
a categorical variable
write(ymask$ystar, "ystar.dat")

After running the above code, the files “ystar.dat” and
“noise.bin” are ready for the data user.

The following code is used to obtain a set of synthetic data
of {yi } with the same size and the estimated mass function of Y .

library(MaskDensity14)
ystar<-scan("ystar.dat")
y1 <- unmask(ystar, noisefile="noise.bin")
unmaskY<-y1$unmaskedVariable # synthetic data
mass_function<-y1$prob # estimated
mass function

The true mass function is P(Y = 1) = 0.9 and P(Y =

2) = 0.1. The proportions of Y = 1 and Y = 2 given by the
sample of the original data are 0.9055 and 0.0945, respectively.
The estimated mass function based on noise multiplied data is
P(Y = 1) = 0.90100844 and P(Y = 2) = 0.109802758,
which is very close to the true mass function.

4. Impact

MaskDensity14 is a promising software package for estimat-
ing the density function of univariate random variables based on
noise multiplied data. The advantages of MaskDensity14 can be
summarized as follows:

No restriction on the type of distribution of the multiplicative
noise

The data agency has a broad range of choices on the multi-
plicative noise for protecting the original data. Indeed, the noise
sample used to mask the original data has a certain level impact
on the accuracy of density approximant. This issue is beyond
the focus of this paper.

More possibilities for data agencies to share data with the
public

With MaskDensity14, the process of sharing data informa-
tion for the public can be simplified. The data agency might
have less responsibility for data analytics. It is particularly im-
portant for data agencies that have no necessary resource for
doing advanced data analysis.

Standard statistical methods for data analysis
The complexity of the statistical inference based on noise

multiplied data is reduced.
Lin and Wise [8] showed that the level of protection of the

underlying original data can be maintained through an appro-
priate multiplicative noise even if the probability distribution of
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the noise is available to the public. To provide extra protection
for the underlying original data, MaskDensity14 encrypts the
information of the multiplicative noise into a binary file. There
may be other better methods to replace this manner.

A critical issue in MaskDensity14 is about the decision on
the upper order of moment K . It is possible to improve the
accuracy of the density approximant further if there is a better
way to determine the upper order K .

MaskDensity14 provides the data user with opportunities to
explore the statistical information of the subset of the original
dataset. The accuracy of the density approximant of a subset
of data can be further improved if there is a better manner for
determining the boundaries for the subset data based on the
information provided by the data provider.

The method of the sample-moment-based density approxi-
mant is for univariate distributions. In real life, developing a
computational statistical method for multivariate distributions
is desirable. With MaskDensity14 built, it will provide help
in developing software for estimating joint density functions
based on noise multiplied data.

The software developed in this paper provides data agencies
and data users with a totally different process in data protection
and confidential data analysis. Data agencies can mainly focus
on the issue of data protection, and data users can generate
synthetic data by themselves rather than receiving synthetic
data from data providers.

5. Conclusions

MaskDensity14 is applied to univariate distributions. With
MaskDensity14 built, the method of sample-moment-based
density approximant becomes feasible. The data user can
produce (asymptotically) synthetic data of the original data by
himself and carry out data analysis on the original data by using

standard statistical methods without accessing the original
data. Compared to existing methods, MaskDensity14 provides
a different manner in data protection and data statistical
information recovery.
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