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Abstract: 

In contrast to its bulk crystal, the FeSe thin film or layer exhibits better superconductivity 

performance, which recently attract much interest in its fundamental research as well as potential 

application around the world. In present work, tuning superconductivity in FeSe thin films was 

achieved by magnesium-doping technique. Tc is significantly enhanced from 10.7 K in pure FeSe 

films to 13.4 K in optimized Mg-doped ones, which is approximately 1.5 times higher than that 

of bulk crystals. This is the first time to achieve the enhancement of superconducting transition 

temperature in FeSe thin films with practical thickness (120 nm) via a simple Mg-doping 

process. Moreover, these Mg-doped FeSe films are quite stable in atmosphere with Hc2 up to 

32.7 T and Tc
zero up to 12 K, respectively, implying their outstanding potential for practical 

applications in high magnetic fields. It was found that Mg enters the matrix of FeSe lattice, not 

react with FeSe forming any other secondary phase. Actually, Mg first occupies Fe-vacancy, and 

then substitutes for some Fe in the FeSe crystal lattices when Fe-vacancies are fully filled. 
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Simultaneously, external Mg-doping introduces sufficient electron doping and induces the 

variation of electron carrier concentration according to Hall coefficient measurements. This is 

responsible for the evolution of superconducting performance in FeSe thin films. Our results 

provide a new strategy to improve the superconductivity of 11 type Fe-based superconductors 

and will help to understand the intrinsic mechanism of this unconventional superconducting 

system. 

Keywords: FeSe film; superconductivity; pulsed laser deposition; Mg doping; electron 

concentration;  
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1. Introduction 

The discovery of iron-based materials with a high superconducting transition temperature Tc has 

attracted much attention for both fundamental studies and practical applications1. Till now, plenty 

of efforts have been made to obtain higher superconducting performance, but the intrinsic 

mechanism of superconductivity in these systems is still being explored. Among iron-based 

superconducting family, the Iron selenide (FeSe) has the simplest structure with binary chemical 

composition, consisting of only two-dimensional conducting planes2, rendering it to be an 

appropriate candidate for exploring the intrinsic mechanism of iron-based superconductors. 

Compared with its bulk crystals, FeSe in the form of film or multilayer attracts more attention as 

large enhancement in superconducting performance can be obtained. Especially, high Tc (around 

77 K) was reported in single unit-cell FeSe layer3, which is considered as the highest value 

among all the iron-based superconductors. As for the enhancement mechanism of 

superconductivity in FeSe film or layers, there is still a hot debate, and more fundamental work 

is still required to understand the superconductivity of FeSe films and multilayer in depth. On the 

other hand, the instability of FeSe single layer or multilayer in atmosphere serves as the largest 

obstacle from further various characteristics or physical measurements to explore the nature of 

superconductivity in FeSe system. Hence, with the atmosphere-stable property, high-

performance FeSe thin film is more suitable for fundamental research and practical application 

as well. 

Recently, we have succeeded in enhancing superconductivity in FeSe thin films by tuning the Fe-

vacancy disorders. The amount of Fe-vacancy disorders can effectively control the electron 

carrier concentration, determining superconductor-insulator transition (SIT) and the evolution of 

superconductivity in FeSe thin films. Actually, controlling the carrier concentration is one of the 
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most effective ways to acquire better superconductivity in iron-based superconductors. Till now, 

the regulation of charge carrier can be realized via various methods, such as adjusting 

stoichiometric composition4 -6, chemical doping7 -9, liquid-gating technique10, etc. Understanding 

the nature of carrier concentration variation in FeSe film can provide a valuable hint to reveal the 

intrinsic mechanism of superconductivity in this system.  

In present work, tuning the superconductivity of FeSe thin films was achieved by Mg doping 

technique.  Distinct enhancement in Tc is obtained from 10.7 K in pure FeSe film to 13.4 K in 

optimized Mg-doped ones. Mg-doping can introduce electron doping and induce the variation of 

electron carrier concentration, which significantly influences ultimate superconducting 

performance in FeSe films. With increasing the content of Mg-doping, a dome-shaped Mg-

content dependence of Tc is observed for the first time. Once certain content of Mg-doping is 

reached, one slump in Tc occurs together with obvious variation in both the XRD diffraction peak 

position and hall coefficient, implying nearly vanishing of superconductivity. It is believed that 

moderate Mg-doping has positive effect on the superconducting performance in FeSe films 

through the introduction of sufficient electron doping, but degradation or even collapse will 

occur to superconductivity when excessive content of Mg is introduced into FeSe films. 

 

2. Experimental 

FeSe films are grown on CaF2 (100) single crystal (lattice parameter a = 5.462 Å) by PLD 

technique (Nd: YAG, 355 nm, 10 Hz, 2 W output). The substrate temperature is chosen as 300 ˚C 

and the entire experiment is carried out in a closed chamber with vacuum better than 5 × 10 -4 Pa. 

Home-made FeSe pellet which is prepared from commercial available Fe and Se powder serves 

as the target for FeSe sputtering. In order to check the influence of Mg content on FeSe films, the 
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thickness of FeSe films is strictly fixed at 120 nm which shows ordinary Tc as 10.7 K in our 

previous work4. Right after the deposition of FeSe film, Mg-deposition is introduced by directly 

switching to Mg target holder. By controlling the deposition time of Mg as 1.5 min, 3 min, 10 

min and 20 min, a batch of Mg-doped FeSe films are obtained and denoted as #FM0 (pure FeSe), 

#FM1, #FM2, #FM3 and #FM4, respectively. Both of the electrical resistivity and Hall 

coefficient measurements are carried out in a 9 T physical property measurement system 

(PPMS). XRD θ-2θ scan is used to characterize the crystal structure of films. For checking the 

surface morphology and chemical composition, scanning electron microscopy (SEM, JEOL 

JSM-6490LV) and high-accuracy energy dispersive X-ray spectrum (EDX) detector (Oxford 

Instruments X-MaxN 80) is employed.  

 

3. Results and discussion 

Fig. 1(a) shows the temperature dependence of electrical resistivity for all films (#FM0, #FM1, 

#FM2, #FM3, and #FM4) in the magnified temperature range while full range up to 300 K is 

plotted in the inset of Fig. 1(a). The ρ(T) curves with positive slope are exhibited in all of them, 

indicating classical metallic behaviors. At normal state, the resistivity of FeSe films keeps at low 

level owing to the good conductivity after introducing small amount of Mg. Nevertheless, it 

dramatically increases in excessive Mg-doped sample #FM4 probably because of the severe 

scattering effect of electrons, which is introduced by excessive Mg-doping. In order to recognize 

the change of Tc clearly, d(R/R300K)/dT curves are illustrated in Fig. 1(b). In pure FeSe film 

#FM0, resistivity drops sharply at Tc
onset ≈ 10.7 K and reaches zero at Tc

zero ≈ 9.8 K. With the 

introducing of Mg-doping, Tc
onset increases systematically and the highest Tc

onset ≈ 13.4 K is 

achieved in optimized Mg-doped sample #FM2, which is approximately 1.5 times higher than 
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that of bulk crystals. Further increasing the content of Mg-doping, degradation in Tc
onset is 

observed in #FM3 but Tc
onset still remains higher than that in un-doped #FM0. Interestingly, an 

incomplete transition down to 4.2 K is detected in over-doped sample #FM4. The possible 

explanation will be given below combined with other characterizations including XRD and Hall 

measurement. According to the Tc results above, our work is the first time to achieve 

enhancement of superconducting transition temperature in atmosphere -stable FeSe thin films 

with practical thickness (120 nm) via a simple Mg-doping process. Despite current Tc is not very 

high compared with the result of Te substitution or ultra-thin technique3,11,12, what we explored 

here is a new inspiring way to improve the superconductivity of traditional FeSe films.  

The temperature dependence of the upper critical magnetic field Hc2(T) is plotted in Fig. 1(c) and 

the linear extrapolations to T = 0 K are shown in the inset. Hc2 determined as a function of Tc
mid. 

Hc2 of #FM4 is not shown here because of the incompleteness of transition. The estimated Hc2 in 

other four samples are about 27.8 T, 31.2 T, 32.7 T and 29.1 T for #FM0, #FM1, #FM2, #FM3 

and #FM4 respectively. One can see that Mg-doped FeSe films exhibit higher Hc2 than un-doped 

one, and the best Hc2 value as high as 32.7 T is obtained in #FM2, exhibiting great potential of 

our atmosphere-stable FeSe superconducting films for high-field applications.  

As shown above, improvement in superconductivity of FeSe thin films can be achieved by Mg-

doping, it is of great importance to understand its intrinsic enhancement mechanism. It is well 

known that charge carrier concentration is one of the most crucial parameters that influence the 

superconductivity in iron-based superconductors13. As Mg belongs to the group of alkaline earth, 

abundant electron carriers are supposed to be provided through doping. Hereby hall 

measurements are performed to reveal the state of charge carrier in all 5 samples. In Fig. 2, 

temperature dependences of Hall coefficient (RH) are illustrated. RH is defined as RH =ρxy/B, 
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where ρxy stands for Hall transverse resistivity and B is designated field under fixed temperatures 

ranging from 20 K to 300 K. RH in all the samples have negative value at the temperature above 

Tc, indicating that electrons are dominated carrier type in all of our Mg-doped FeSe films. From 

room temperature to 150 K, the RH of all 5 samples is almost temperature independent. Below 

that, the absolute value of RH starts to increase, implying the multiband nature in typical FeSe 

system. Carrier concentration (n) indicates the amount of carriers in unit volume. The relation 

between RH and n is deduced in equation (1):  

   RH =
Ey

jxB
=

VH t

IB
= −

1

ne
                                                                 (1) 

(RH - Hall coefficient, Ey - induced electric field, j - the current density of the carrier electrons, B 

- magnetic field, VH - Hall voltage, t- the thickness of the plate, I- the current across the plate 

length, e- elementary charge, n – carrier concentration). As carrier concentration (n) is inversely 

proportional to RH, the increasing RH in minus side at lower temperature region represents that n 

decreases with lowering temperature. Similar Temperature dependence of RH is observed in un-

doped #FM0, lightly-doped #FM1, #FM2 and heavily-doped #FM3. However, large absolute 

value of RH is obtained in over-doped #FM4, suggesting a severe reduction in electron 

concentration. It can be considered that excessive Mg-doping is responsible for the extremely 

low electron concentration. It seems that the transmission property of electronic state is 

significantly changed for some reason, which is consistent with the decaying behavior in the 

temperature dependence of resistivity, as shown in Fig. 1(a). Hence, by showing the collapse in 

carrier concentration, the investigation in Hall coefficient offers a strong evidence for the 

degradation of superconductivity in #FM4.  

In order to distinguish the tendency of #FM0, #FM1, #FM2 and #FM3, magnified view of RH in 

low-temperature region is shown in the inset of Fig. 2. Interestingly, an abnormal lower electron 
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concentration is found below 80 K in lightly-doped #FM1 which shows significantly enhanced 

superconductivity. It might result from a competitive mechanism between “self-doping” and 

“external Mg-doping” in #FM1. Actually, in our un-doped FeSe films, Fe-vacancy disorder 

induced “self-doping” exists. The discovery of disorder-induced “self-doping” is raised by T. 

Berlijn’s group14 in the system of KFe2Se2. By angle-resolved photoelectron spectroscopy 

(ARPES), they found that Fe-vacancy disorder can provide significant electron concentration 

(ne). According to the analysis in our previous work4, similar increment in ne is detected in pure 

FeSe films in which Fe-vacancy disorders are detected. This is the reason why un-doped FeSe 

film (#FM0) still shows relatively high RH value.  

Once Mg is introduced into FeSe films, “external Mg-doping” starts to affect the electron state of 

FeSe together with original “self-doping”. It is speculated that there is one “mixed-doping state” 

exists when two doping modes are comparable to each other. In lightly-doped sample (#FM1), 

only very little Mg is implanted into FeSe layers. In this case, doping performance will be offset 

or even produce lower ne than un-doped sample (#FM0). But, improvement of superconductivity 

is still observed in lightly-doped sample (#FM1). It might be because Fe-vacancy is occupied by 

Mg that enters FeSe lattice, which will be discussed in detail later combined with XRD results. 

With further increasing content of external Mg-doping, the effect of “self-doping” becomes 

ignorable whilst big amount of electron carrier is introduced from Mg into FeSe films, reflecting 

by the increment of |RH| in the results of Hall coefficient. As a result, the “external-doping” 

become dominating in providing charge carrier rather than “self-doping” in #FM2 and #FM3, but 

the intrinsic mechanism is still needed to be clarified in future work. It is noteworthy that the 

superconducting performance in #FM3 is not as good as that in #FM2, even though they possess 

the similar electron concentration. It is due to the decreased orientation degree of FeSe film in 
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#FM3, which will be discussed later based on XRD results. In the case of over-doped #FM4, 

abrupt decay is found in electron state and superconducting performance. It is ascribed to both 

severe electron scattering and the destruction of superconducting structure derived from 

excessive Mg doping. Based on the results above, Mg-doping is demonstrated as an effective 

way to introduce significant electron carrier into FeSe films. 

Typical XRD θ-2θ spectrums are illustrated in Fig. 3(a), ranging from 10 to 80 degree. One can 

see that highly (00l) oriented FeSe texture based on PbO structure exists in all 5 samples. 

Noteworthily, highly c-axis oriented β-FeSe phases are observed. It is manifested that Mg enters 

FeSe lattice instead of reacting with FeSe to form new phases. This speculation is diverse from 

the result raised in Mg-doped FeSe bulks8 where lattice parameters of FeSe remain unchanged 

and MgSe phase is formed with Mg addition, representing absolutely different doping 

mechanism of Mg in FeSe films and bulks. In Mg-doped FeSe bulks made by solid-state 

sintering, the small and reactive Mg particles are prone to react with FeSe particles. 

Subsequently, lots of secondary phases are generated at relatively higher sintering temperature. 

Oppositely, in present work, Mg-doping is introduced by low-temperature sputtering using PLD 

technique. It enables homogeneous distribution of Mg element within FeSe films. As a result, 

Mg can readily enter FeSe lattice, and bring about novel properties in this system. Moreover, in 

Fig. 3(a), it is also found that β-FeSe (101) diffraction peak appears in Mg heavily-doped 

(#FM3) sample, which induces a negative effect on texture degree and could bring about 

deterioration on superconductivity, as shown in Fig. 1(a). 

Fig. 3(b) shows the enlarged interval near β-FeSe (001) peak. Slight shift of diffraction peaks is 

observed in all Mg-doped FeSe films (#FM1, #FM2, #FM3 and #FM4) compared with un-doped 

one (#FM0). The specific 2θ values are extracted and plotted in the inset of Fig. 3(b), where the 
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dashed line represents the case of un-doped sample (#FM0). It was recognized that β-FeSe (001) 

peak locates at lower 2θ in #FM1, #FM2 and #FM3 than that in #FM0, demonstrating the 

elongation in c-axis parameter after Mg-doping. On the contrary, the β-FeSe (001) peak of #FM4 

with excessive content of Mg-doping is found to locate at higher 2θ angle, that is to say, the 

lattice along c-axis shrinks. The variation of diffraction peak position can be understood well 

combined with the effect of Mg-doping. It has been confirmed that plenty of Fe-vacancies exist 

in as-grown FeSe films15. During the diffusion of Mg element into FeSe films, Mg enters the 

FeSe crystal lattice and occupies Fe-vacancies so that the elongation of lattice parameter is 

generated. Simultaneously, additional electron carrier is introduced and consequently, higher 

superconductivity is acquired, as shown in Fig. 1 and Fig. 2. Further increasing the content of 

Mg-doping, some of the Fe sites in the FeSe superconducting lattice are likely to be replaced by 

excessive Mg. As the Mg2+ is smaller than that of Fe2+ in radius, shrinkage in c-axis parameter is 

rational. Moreover, because of the substitution of Mg for Fe, destruction of superconducting 

structure and severe electron scattering serve as negative factors which bring about the collapse 

in superconductivity. In over-doped sample (#FM4), strong suppression in superconductivity is 

found, corresponding to the results in superconducting performance and Hall coefficient. 

Speculation can be easily made that the different content of Mg-doping drives the evolution of 

superconducting properties in all FeSe films. For acquiring how much Mg doping is introduced, 

EDX analysis is employed. It is a qualified candidate due to the adequate penetration depth as 

well as high accuracy for chemical composition analysis. In this work, we acquire element 

content of Mg, Fe and Se throughout the entire film and calculate the atomic ratio of Mg/FeSe to 

represent the implantation content of Mg-doping. Detailed information including the atomic ratio 

of Mg/FeSe, the carrier concentration at 30 K, and superconducting performance of all 5 samples 
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are listed in Table 1. These results will strongly support and give reference to our following 

discussions on the mechanism of Mg-doping effect. 

Based on Table 1, the Tc and relative electron concentration n/n#FM3 at 30 K of all five samples 

are both presented in Fig. 4 as a function of the content of Mg doping. The content of Mg within 

#FM0, #FM1, #FM2, #FM3 and #FM4 is 0 %, 6.4 %, 13.1 %, 26.2 % and 75.3 % as detected. It 

is in approximate linear dependence with the increment of Mg-deposition time, demonstrating 

our reliable deposition technique in controlling yield proportionally. However, Tc varies in a 

more complicated way. When little amount of Mg is introduced, despite that electron 

concentration is slightly reduced due to the “mixed-state” mentioned above, great improvement 

in Tc by 2 K is detected in #FM1. It is explained that Mg enters FeSe lattice and occupies Fe-

vacancy so that defects introduced by Fe-vacancy disorder are eliminated and more ideal 

superconducting structure might be achieved. Further increasing the content of Mg-doping, 

“external Mg-doping” becomes the dominating factor rather than original Fe-vacancy disorder 

induced “self-doping”. With heavy electron doping, Tc up to 13.4 K is obtained in #FM2, which 

has been enhanced by more than 25 % compared with un-doped #FM0. In the case of heavily-

doped sample (#FM3), β-FeSe (101) peak emerges in XRD pattern (see Fig. 1(a)). The reduction 

in orientation degree of FeSe films may lead to lower superconductivity even though the electron 

carrier concentration in this sample is comparable to that of #FM2 with the highest Tc. As 

expected, degradation in Tc and ΔTc is detected in heavily-doped sample #FM3. In the case of 

over-doped sample #FM4, an abrupt drop in Tc occurs as low as 4.9 K. It should be ascribed to 

both the severe electron scattering and the destruction of superconducting structure owing to the 

result of substitution effect. Ultimately, a dome-shaped tendency is observed in the tuning effect 

of Mg-doping on Tc. It is noticed that the highest Tc is acquired in the region with high electron 
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concentration and the collapse of Tc occurs when electron concentration remains at very low 

level. Hence, electronic state, especially electron carrier concentration is verified to possess 

significant impact on the superconductivity in FeSe films. In addition, owing to the advantage of 

simplicity and effectiveness, external Mg-deposition technique is highly expected as one 

promising way to provide controllable electron doping into FeSe films. 

 

4. Conclusion 

To summarize, we demonstrated that a simple Mg-doping procedure on as-grown FeSe thin film 

can effectively tune the electronic state and lattice structure of original FeSe. Enhancement of Tc 

and Hc2 are obtained up to 13.4 K and 32.7 T, respectively under optimized content of Mg-

doping. According to Hall coefficient measurement, electron serves as the dominant type of 

charge carrier in both un-doped and Mg-doped FeSe films. It is found that small amount of Mg-

doping can introduce significant electron concentration into FeSe films, in which better 

superconductivity is exhibited. However, abnormal reduction of electron concentration was 

found in FeSe film with excessive content of Mg-doping, which brings about the severe 

degradation in superconducting performance. Based on XRD results, highly (00l) oriented 

texture and slight shift of diffraction peaks are both observed in all Mg-doped FeSe films, 

indicating that Mg element enters the matrix of FeSe lattice, rather than reacts with FeSe and 

forming any other secondary phase. What’s more, our Mg-doped FeSe films possess the property 

of atmosphere-stabilization which is a critical factor in the practical application. Our work is the 

first attempt to study the effect of heavy electron doping on traditional FeSe thin films via alkali 

earth metal doping, which not only provides a new strategy to improve the superconductivity of 

11 type Fe-based films, but also helps to understand the intrinsic mechanism of this 
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unconventional superconducting system. 
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Table 1. Detailed information of all prepared samples. 

 

Mg/FeSe 

(%) 

n at 30 K 

(×10
20 

cm
-3

) 

n/n#FM3  

at 30 K 

(%) 

Tc
onset 

(K) 

ΔTc 

(K) 

Hc2  

(T) 

#FM0 0 8.2 80.4 10.7 1.9 27.8 

#FM1 6.4 7.8 71.6 12.7 1.2 31.2 

#FM2 13.1 10.6 97.4 13.4 1.4 32.7 

#FM3 26.2 10.9 100 11.4 1.8 29.1 

#FM4 75.3 2.3 21.3 4.9 n/a n/a 
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FIG. 1. (a) Temperature dependences of resistivity (R-T curves) at self-field for Mg-doped FeSe films with 

different deposition time of Mg (0 min, 1.5 min, 3 min, 10 min and 20 min) ranging from 4 K to 20 K. Inset is 

the full range R-T data from room temperature to 4.2 K. (b) d(R/R300 K)/dT curves for all five films from 4 to 

20 K. (c) Plot of upper critical field (Hc2) as a function of Tc
mid

 for #FM0, #FM1, #FM2 and #FM3. The linear 

extrapolations to T = 0 K are shown in the inset. 
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Figure 2 
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FIG 2. Hall coefficient RH as a function of temperature of five FeSe films. RH is determined as RH= ρxy/B, 

dedicating the slope of hall transverse resistivity ρxy at designated field B. Enlarged area from 20 K to 100 K is 

shown in the inset to distinguish the tendency clearly. 
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Figure 3 
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FIG. 3. (a) XRD θ-2θ patterns of five films grown on CaF2 (100) substrate. The spectrums are shown on a 

linear scale. Number signs (hkl) represent β-FeSe phases and the pound sign stands for the unidentif ied peak. 

(b) Magnified interval near β-FeSe (001) peak. The spectrums are shown on a logarithmic scale and the 

locations of peaks are marked by dashed lines. In the inset, the specific location of β-FeSe (001) peak is shown 

by extracting 2θ values from original spectrums. The dashed line represents the case of un-doped sample. 
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 Figure 4 
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FIG. 4. The relative electron concentration n/n#FM3 at 30 K of all five samples is shown in the left y-axis and 

the tuning effect on Tc by Mg-doping is shown in the right y-axis. The x-axis represents the content of Mg 

within FeSe films which is reflected by the atomic ratio of Mg/FeSe detected by EDX characterization. The 

electron carrier concentration n is calculated by n = 1/(q·RH) and it is normalized by being divided by the n#FM3 

at 30 K. The right y-axis exhibits Tc values detected in different samples. A dome-shaped tendency is observed. 
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