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Dense domains, symmetric operators and
spectral triples

Iain Forsyth, Bram Mesland and Adam Rennie

Abstract. This article is about erroneous attempts to weaken the stan-
dard definition of unbounded Kasparov module (or spectral triple). This
issue has been addressed previously, but here we present concrete coun-
terexamples to claims in the literature that Fredholm modules can be
obtained from these weaker variations of spectral triple. Our coun-
terexamples are constructed using self-adjoint extensions of symmetric
operators.
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1. Introduction

In this note we show, by counterexample, that weaker definitions of un-
bounded Kasparov module, and so spectral triple, may not yield KK or K-
homology classes. In particular, we consider counterexamples arising from
extensions of symmetric operators. These counterexamples address errors
both in [4, pp 164-165] and subsequent errors in [3]. These issues have pre-
viously been raised by Hilsum in [8, Section 4], where it is shown that the
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definition in [4, pp 164-165] leads to contradictions in index theory.1 It is the
purpose of this note to present a set of elementary, concrete counterexam-
ples which avoid the need to appeal to index theory, while shedding further
light on the fine structure of unbounded K-homology.

The principal requirement of any definition of unbounded Kasparov mod-
ule is that it defines a KK-class. This requirement constrains how far the
definition can be extended. The work of Baaj–Julg, [1], provides sufficient
conditions for this to be guaranteed. Different conditions apply to the defi-
nition of relative Fredholm modules, which can be obtained from symmetric
operators, as shown by [2].

The definition of spectral triple that does give a well defined Fredholm
module reads as follows (see [1, 7] and Section 2 of the present paper):

Definition 1.1. A spectral triple (A,H,D) is given by a Hilbert space H,
a ∗-subalgebra A ⊂ B(H) acting on H, and a densely defined unbounded
self-adjoint operator D such that:

(1) a · domD ⊂ domD for all a ∈ A, so that [D, a] is densely defined.
Moreover, [D, a] is bounded on domD and so extends to a bounded
operator in B(H) for all a ∈ A.

(2) a(1 +D2)−1/2 ∈ K(H) for all a ∈ A.

We say that (A,H,D) is even if in addition there is a Z2-grading such
that A is even and D is odd. This means there is an operator γ such that
γ = γ∗, γ2 = IdH, γa = aγ for all a ∈ A and Dγ + γD = 0. Otherwise we
say that (A,H,D) is odd.

It is asserted in [4, pp 164–165] that condition (1) of the definition may
be weakened to:

(1′) There is a subspace Y of domD such that Y is dense in H, a · Y ⊂
domD, and [D, a] is bounded on Y .

Moreover [4, Proposition 17.11.3] asserts that condition (1′) ensures that

(A,H,D(1 + D2)−1/2) is a Fredholm module. Our first and fourth coun-
terexamples prove that this is false, by showing that if the algebra A does
not preserve the domain of D, then the commutators [D(1+D2)−1/2, a] need

not be compact, even when (1 +D2)−1/2 is compact.
In [3, Theorems 1.2, 1.3, 6.2], the authors assert that a Fredholm module

can be obtained from any self-adjoint extension of a symmetric operator D
satisfying certain spectral-triple-like conditions, [3, Definition 1.1, Definition
6.3]. In particular, condition (1′) is invoked to handle commutators with
algebra elements not preserving the domain of the operator D. They further
claim that the resulting K-homology class is independent of the particular
self-adjoint extension. Both these claims are false, as our counterexamples
show.

1Hilsum shows [8, Example 10.3] that some of the topological results in [3] relying on
earlier errors are nonetheless valid.
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To obtain counterexamples to [3] and [4], we also consider self-adjoint
extensions of symmetric operators. To address both the cases of finite and
infinite deficiency indices, we need two examples. It might be thought that
by restricting to one or other of these two cases one could justify weakening
the definition of spectral triple. Our counterexamples show that this is not
the case.

Acknowledgements. We would like to thank Alan Carey for useful dis-
cussions at an early stage of this project.

2. From spectral triple to Fredholm module

The idea of the (hard part of the) proof that a spectral triple (A,H,D)
defines a Fredholm module, due originally to Baaj and Julg, [1], is to write,
for a ∈ A,

(2.1) [D(1 +D2)−1/2, a] = [D, a](1 +D2)−1/2 +D[(1 +D2)−1/2, a].

As we want to show that the left hand side is compact, the aim is to show
that both terms on the right are compact. For the second term, one writes

(1 +D2)−1/2 =
1

π

∫ ∞
0

λ−1/2(1 + λ+D2)−1 dλ,

then takes the commutator with a and multiplies by D yielding

(2.2) D[(1 +D2)−1/2, a] =
1

π
D
∫ ∞
0

λ−1/2[(1 + λ+D2)−1, a] dλ.

A careful analysis of the naive equality

(2.3) D[(1 +D2)−1/2, a] =

−1

π

∫ ∞
0

λ−1/2
(
D2(1 + λ+D2)−1[D, a](1 + λ+D2)−1

+D(1 + λ+D2)−1[D, a]D(1 + λ+D2)−1
)
dλ

appears in [7, Lemmas 2.3 and 2.4]. There, and in the intervening remarks,
it is proved that this equality is valid when a preserves the domain of D.
A similar analysis, employing the Cauchy integral formula, appears in [2,
Proposition 1.1]. The remainder of the proof is to show that the right hand
side of Equation (2.3) is a norm convergent integral with compact integrand,
thus showing that the left hand side is compact.

The proof of [7, Lemma 2.3] makes it clear that the equality (2.3) re-
quires careful domain considerations, and that (2.3) does not hold simply
for algebraic reasons.

Thus we see that the Baaj–Julg approach to proving compactness of

[D(1 +D2)−1/2, a]
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using Equations (2.1) and (2.2) requires the assumption that a preserves the
domain of D. As a slight generalisation, it is asserted in [7] that the Baaj–
Julg proof can be pushed through provided a maps a core for D into the
domain of D. We amplify on this in the next proposition, which generalises
[8, Lemma 2.1].

Proposition 2.1. Let D : domD ⊂ H → H be a closed operator, let X ⊂
domD be a core for D, and let a ∈ B(H) satisfy:

(1) a ·X ⊂ domD.
(2) [D, a] : X → H is bounded on X and so extends to an operator in
B(H).

Then a · domD ⊂ domD so that [D, a] : domD → H is well-defined. If
moreover there is an H-norm dense subspace Y ⊂ domD∗ such that a∗ ·Y ⊂
domD∗, then [D, a] : domD → H extends to an operator in B(H).

Proof. Since X is a core for D, it is dense in domD in the graph norm.
Let x ∈ domD, and choose a sequence {xn}∞n=1 ⊂ X such that xn → x in
the graph norm, which is equivalent to xn → x and Dxn → Dx in the usual
norm. Since a ∈ B(H), axn → ax, and {Daxn}∞n=1 is Cauchy in the usual
norm since

‖Daxn −Daxm‖ = ‖aDxn − aDxm + [D, a]xn − [D, a]xm‖
≤ ‖a‖‖Dxn −Dxm‖+ ‖[D, a]‖‖xn − xm‖ → 0.

Hence {axn}∞n=1 is Cauchy in the graph norm, and since D is closed, there
is some y ∈ domD such that axn → y in the graph norm. This implies that
axn → y in the usual norm, and since axn → ax in the usual norm we see
that y = ax. Hence ax ∈ domD.

Now suppose that Y ⊂ domD∗, a∗ · Y ⊂ domD∗. To show that [D, a] :
domD → H is bounded, it is enough to show that [D, a] is closeable, since

then [D, a] ⊃ [D, a]|X which is everywhere defined and bounded. Let ξ ∈
domD and η ∈ Y . Then

〈[D, a]ξ, η〉 = 〈aξ,D∗η〉 − 〈Dξ, a∗η〉 = 〈ξ, a∗D∗η〉 − 〈ξ,D∗a∗η〉
= 〈ξ,−[D∗, a∗]η〉 .

Hence dom([D, a])∗ ⊃ Y . Since [D, a] is closeable if and only if ([D, a])∗ is
densely defined, if Y is dense in H then [D, a] is closeable and thus extends
to an operator in B(H). �

Corollary 2.2. Condition (1) of Definition 1.1 is equivalent to:

(i) For all a ∈ A there exists a core X for D such that a ·X ⊂ dom D,
and such that [D, a] : X → H is bounded on X.

To simplify some later computations with bounded transforms

F = D(1 +D2)−1/2
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of unbounded self-adjoint operators, we include the following elementary
lemma.

Lemma 2.3. Let D be an unbounded self-adjoint operator on the Hilbert
space H, and suppose that (1 +D2)−1/2 is compact. Then with

F = D(1 +D2)−1/2, P+ = χ[0,∞)(D), P− = 1− P+,

and A ⊂ B(H) a C∗-algebra, the operator [F, a] is compact for all a ∈ A if
and only if P+aP− is compact for all a ∈ A.

Proof. The phase of D is

Ph(D) = P+ − P−,

and is a compact perturbation of F = D(1 + D2)−1/2, so for a ∈ A, the
commutator [F, a] is compact if and only if [Ph(D), a] is compact. Since
P+ + P− = 1, we see that

[Ph(D), a] = (P+ + P−)[Ph(D), a](P+ + P−) = 2P+aP− − 2P−aP+,

so that [Ph(D), a] is compact if and only if P+aP− − P−aP+ is compact. If
P+aP− − P−aP+ is compact, then so are

P+(P+aP− − P−aP+) = P+aP− and − P−(P+aP− − P−aP+) = P−aP+,

so [F, a] is compact if and only if P+aP− and P−aP+ are compact. Since
(P+aP−)∗ = P−a

∗P+, we have [F, a] is compact for all a ∈ A if and only if
P+aP− is compact for all a ∈ A. �

3. The counterexamples

In this section we produce counterexamples to statements appearing in [3,
Theorems 1.2, 1.3, 6.2]. The first and fourth of our counterexamples below
also show that the definition of spectral triple using condition (1′) in place
of condition (1) does not guarantee that we obtain a Fredholm module.

3.1. Finite deficiency indices: the unit interval. Initially, the authors
of [3] confine their attention to symmetric operators with equal and finite
deficiency indices, [3, Definition 1.1, Theorem 1.2]. We begin with our coun-
terexample to their claims that a Fredholm module is obtained from any
self-adjoint extension of such an operator (which must also satisfy spectral-
triple-like conditions). Our extension will also satisfy the definition of spec-
tral triple using condition (1′). In particular, [4, Proposition 17.11.3] and
[3, Theorem 1.2] are false.

The basic properties of the following example are worked out in [11]. Let
H = L2([0, 1]) and let AC([0, 1]) be the absolutely continuous functions. Set

domD = {f ∈ AC([0, 1]) : f ′ ∈ L2([0, 1]), f(0) = f(1) = 0}, D =
1

i

d

dx
,
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so that D is a closed symmetric operator with adjoint

domD∗ = {f ∈ AC([0, 1]) : f ′ ∈ L2([0, 1])}, D∗ =
1

i

d

dx
.

The deficiency indices of D are both 1. The operator D∗D has normalised
eigenvectors

D∗D
(√

2 sin(πnx)
)

= π2n2
√

2 sin(πnx), n ∈ Z,

which are known to be complete for L2([0, 1]). Since n2π2 →∞ as |n| → ∞,
it follows that

(1 +D∗D)−1/2 ∈ K(H).

It is clear that C∞([0, 1]) preserves both domD and domD∗, and that [D∗, a]
is bounded for all a ∈ C∞([0, 1]). In particular, the data

(C∞([0, 1]), L2([0, 1]),D)

satisfy [3, Definition 1.1]. Let D0 be the self-adjoint extension defined by

domD0 = {f ∈ AC([0, 1]) : f ′ ∈ L2([0, 1]), f(0) = f(1)}.

The eigenvectors of D0 are

D0e
2πinx = 2πn e2πinx, n ∈ Z,

which by Fourier theory form a complete basis for H. Hence the nonnegative
spectral projection P+ associated to D0 is the projection onto

span{e2πinx : n ≥ 0}.

Since D0 has compact resolvent and is self-adjoint, any failure to obtain a
Fredholm module (and so K-homology class) must arise from some function

f ∈ C([0, 1]) having noncompact commutator with F := D0(1 + D2
0)−1/2.

Indeed this is the case, and to see this let x be the identity function on
[0, 1], which generates C([0, 1]) along with the constant functions. Lemma
2.3 shows that to prove that [F, x] is not compact, it suffices to prove that
P+xP− is not compact. We observe that the noncompactness of P+xP− can
also be deduced from [13, Theorem 1.(iv)]. This is described in detail in the
appendix to [10], in which it is shown that the compactness of P+xP− and
P−xP+ is equivalent to the vanishing mean oscillation (VMO) of x viewed
as an L∞ function on the circle [10, Theorem A.3]. Since x is not VMO,
P+xP− is not compact. The calculations below have the virtue of making
this explicit, and also indicate how we will deal with further counterexamples
in higher dimensions where we do not have the VMO characterisation at our
disposal.

Elementary Fourier theory shows that for
∑

n∈Z fne
2πinx ∈ L2([0, 1])

x ·
∑
n∈Z

fn e
2πinx =

∑
n,l∈Z

fn

(
1− δ`n

2πi(n− `)
+

1

2
δ`n

)
e2πi`x.
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With P+ the nonnegative spectral projection associated to D0 and P− =
1− P+, we find that

P+xP− ·
∑
n∈Z

fn e
2πinx =

−1

2πi

∑
n≥1, `≥0

f−n
n+ `

e2πi`x.

Then for m ∈ N we define the sequence of vectors

ξm =

∞∑
n=1

√
m

n+m
e−2πinx.

Lemma 3.1. The sequence {ξm}∞m=1 is bounded.

Proof. We have

‖ξm‖2 = m

∞∑
n=1

1

(m+ n)2
= mψ(1)(m+ 1),

where ψ(k)(x) = (dk+1/dxk+1)(log(Γ))(x) is the polygamma function of or-

der k. As m→∞, (m+ 1)ψ(1)(m+ 1)→ 1, so

lim
m→∞

‖ξm‖2 = lim
m→∞

m · 1

m+ 1
= 1. �

With ζm = P+xP−ξm and ψ(0)(x) = (d/dx)(log(Γ))(x) the digamma
function, we find that

‖ζm‖2 =
m

4π2

∞∑
`=0

( ∞∑
n=1

1

(n+m)(n+ `)

)2

(3.1)

≥ m

4π2

m−1∑
`=0

( ∞∑
n=1

1

(n+m)(n+ `)

)2

=
m

4π2

m−1∑
`=0

(
ψ(0)(m+ 1)− ψ(0)(`+ 1)

m− `

)2

=
m

4π2

m−1∑
`=0

1

(m− `)2

(
m−`−1∑
k=0

1

`+ k + 1

)2

≥ m

4π2

m−1∑
`=0

1

(m− `)2

(
m− `

`+ (m− `− 1) + 1

)2

=
m

4π2

m−1∑
`=0

1

m2
=

1

4π2
.

Lemma 3.2. If {ζm}∞m=1 has a norm convergent subsequence {ζmj}∞j=1, then
ζmj → 0.
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Proof. We show that limm→∞
〈
ζm | e2πipx

〉
= 0 for all p ∈ Z, which shows

that if ζmj → ζ, then ζ = 0. We have

〈
ζm | e2πipx

〉
=

{∑∞
n=1

−
√
m

2πi(m+n)(n+p) p ≥ 0

0 otherwise.

Thus we can ignore the case p < 0. Computing further gives

〈
ζm | e2πipx

〉
=

{−√m
2πi

(
ψ(0)(m+1)−ψ(0)(p+1)

m−p

)
p ≥ 0, p 6= m

−
√
m

2πi ψ
(1)(m+ 1) p = m.

Since ψ(0)(m + 1) ∼ log(m + 1) as m → ∞, we see that in all cases〈
ζm | e2πipx

〉
→ 0 as m→∞. �

Corollary 3.3. The sequence {ζm}∞m=1 has no norm convergent subse-
quences.

Proof. If ζm had a convergent subsequence {ζmj}∞j=1, then ζmj → 0 by

Lemma 3.2. But by Equation (3.1), ‖ζmj‖ 6→ 0, which is a contradiction. �

Corollary 3.4. The operator P+xP− is not compact.

Proof. By Lemma 3.1, {ξm}∞m=1 is bounded, but {P+xP−ξm}∞m=1 contains
no convergent subsequence. Hence P+xP− is not compact. �

In summary we have shown the following:

Proposition 3.5. The self-adjoint extension D0 of the closed symmetric
operator D has compact resolvent, and for all a ∈ C∞([0, 1]), the commuta-
tors [D0, a] are defined on domD, and are bounded on this dense subset. The

bounded transform F := D0(1+D2
0)−

1
2 has the property that the commutator

[F, x] is not a compact operator. Therefore (C([0, 1]), L2([0, 1]), F ) does not
define a Fredholm module.

3.2. Infinite deficiency indices: the unit disc. The next three subsec-
tions produce counterexamples to three statements appearing in [3, Theo-
rems 1.3, 6.2]. These theorems rely on both the finite deficiency index case,
and the extended definition in [3, Definition 6.3], which allows for symmet-
ric operators having infinite (and equal) deficiency indices. The third of
the counterexamples below again shows that the definition of spectral triple
using condition (1′) in place of condition (1) does not guarantee that we
obtain a Fredholm module.

The counterexamples below will be described using a single basic example.
For this we let D be the closed unit disc in R2, and take the Hilbert space
L2(D,C2) with the measure

C(D) 3 f 7→ 1

2π

∫ 2π

0

∫ 1

0
f(r, θ) r dr dθ.
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Write D̊ := D\∂D for the interior of D. We will use the Dirac operator on D̊
for our example. This is a densely defined symmetric operator on L2(D,C2),
which is given in local polar coordinates by

Dc :=

(
0 e−iθ(−∂r + ir−1∂θ)

eiθ(∂r + ir−1∂θ) 0

)
: C∞c (D̊,C2)→ C∞c (D̊,C2).

Let D be the closure of Dc, and observe that its domain is given by

domD =

{f ∈ L2(D,C2) : ∃fn ∈ C∞c (D̊,C2), fn → f, Dcfn → g ∈ L2(D,C2)}.

This is also referred to as the minimal domain (or minimal extension) of the
Dirac operator.

The maximal domain (or maximal extension) of the Dirac operator is the
domain of its adjoint D∗. This extension can be described using distribu-
tions. The symmetric operator Dc induces a dual operator

D†c : C∞c (D̊,C2)† → C∞c (D̊,C2)†,

on the space of distributions C∞c (D̊,C2)†, uniquely determined by the for-
mula

〈D†cφ, f〉 := 〈φ,Dcf〉, φ ∈ C∞c (D̊,C2)†, f ∈ C∞c (D̊,C2).

A similar formula embeds L2(D,C2) into the space of distributions. Using
these identifications, the domain of D∗ is given by

domD∗ = {f ∈ L2(D,C2) : D†cf ∈ L2(D,C2)}.
The domain of D∗ coincides with the first Sobolev space H1(D,C2), [6,
Proposition 20.7]. With this characterisation it is straightforward to check
that for any smooth bounded function a on the disc, a : domD → domD
and a : domD∗ → domD∗, and [D∗, a] is bounded on both domD and
domD∗.

Lemma 3.6. The operator (1 +D∗D)−1/2 is compact.

Proof. The eigenvectors of D∗D are{(
Jn(rαn,k)e

inθ

0

)
,

(
0

Jn(rαn,k)e
inθ

)
: n ∈ Z, k = 1, 2, . . .

}
,

where αn,k denotes the k-th positive root of the Bessel function Jn. These
eigenvectors are complete for L2(D,C2) by arguments similar to those in
Section 3.5: namely {einθ : n ∈ Z} is complete for S1, and

{Jn(rαn,k) : k ≥ 1}
is complete for L2([0, 1], r dr) for all n ∈ Z, [5].

We note that

D∗D
(
Jn(rαn,k)e

inθ

0

)
= α2

n,k

(
Jn(rαn,k)e

inθ

0

)
,
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D∗D
(

0
Jn(rαn,k)e

inθ

)
= α2

n,k

(
0

Jn(rαn,k)e
inθ

)
,

so the eigenvalues of D∗D are {α2
n,k}∞n=0,k=1. Each of these eigenvalues has

multiplicity 4. Since αn,k →∞ as n, k →∞, it follows that (1 +D∗D)−1/2

is compact. �

Since (1 +D∗D)−1/2 is compact, the data (C∞(D), L2(D,C2),D) satisfies
the definition of symmetric unbounded Fredholm module in [3, Definition
6.3]. The closed symmetric operator D has infinite deficiency indices, since
one may check directly that

ker(D∗ ∓ i) ⊃ span

{(
±ieinθIn(r)

ei(n+1)θIn+1(r)

)
,

(
±ie−i(n+1)θIn+1(r)

e−inθIn(r)

)
: n ∈ N

}
,

where the In are modified Bessel functions of the first kind. Thus D has self-
adjoint extensions. It is a well known general fact that any closed symmetric
extension Dext of D must satisfy domD ⊂ domDext ⊂ domD∗, [12].

3.3. An example with noncompact resolvent. The arguments in the
proofs of [3, Theorems 1.2 and 6.2] purport to show that all self-adjoint
extensions of an operator such as D above give rise to a Fredholm module
(for C∞(D) in this example). As in the finite deficiency index case, this
fails, but it can fail in more ways.

The issue of (relatively) compact resolvent is addressed on [3, page 198].
The assertions about extensions used there are false2, and we now show how
to obtain an extension with noncompact resolvent. Write

D =

(
0 D−
D+ 0

)
.

Then define a self-adjoint extension of D by

Dext :=

(
0 D∗+
D+ 0

)
,

where D+ = (D+)min is the minimal extension, and ((D+)min)∗ = (D−)max

is the maximal extension of D−, [6, Proposition 20.7]. As in Equation (3.2)
in the next section, it is easily checked that

ker(D−)max = span{rne−inθ : n = 0, 1, . . . },
thus Dext has infinite dimensional kernel and so the resolvent is not compact.
As the constant function 1 ∈ C∞(D) acts as the identity on the Hilbert space,
this shows that we fail to obtain a spectral triple for C∞(D). Since this also
means that

1− F 2
Dext

= 1−D2
ext(1 +D2

ext)
−1 = (1 +D2

ext)
−1

is not compact, we do not obtain a Fredholm module for C(D).

2There are no nontrivial self-adjoint extensions of a self-adjoint operator.
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3.4. The dependence of K-homology classes on the choice of exten-
sion. Next we show that the claim in [3, Theorem 6.2] that the K-homology
class of a symmetric operator with equal deficiency indices is independent of
the self-adjoint extension is false. This example also shows that [3, Theorem
1.3] is false.

To define our self-adjoint extensions, we use boundary conditions. The
trace theorem, [6, Theorem 11.4], gives the continuity of f 7→ f |∂D as a

map domD∗ → H1/2(∂D,C2) ⊂ L2(S1,C2). Thus we can use the boundary
values to specify domains of extensions of D inside domD∗.

We consider APS-type extensions arising from the projections

PN : L2(S1)→ L2(S1),

N ∈ Z, defined by

PN

(∑
k∈Z

cke
ikθ

)
=
∑
k≥N

cke
ikθ,

∑
k∈Z

cke
ikθ ∈ L2(S1).

We use PN to define self-adjoint extensions by setting

domDPN
:=

{(
ξ1
ξ2

)
∈ domD∗ : PN (ξ1|∂D) = 0, (1− PN+1)(ξ2|∂D) = 0

}
DPN

ξ := D∗ξ, for ξ ∈ domDPN
.

The self-adjoint extensions above do define Fredholm modules, and so
K-homology classes, for the algebra of functions constant on the boundary,
since these functions preserve the domain, but each DPN

defines a different
class. This is easy, and not new: see [2, Appendix A], since the index (that
is the pairing of the K-homology class with the constant function 1) is easily
computed to be

Index((DPN
)+) = N.

The reason is that

(3.2) ker(D∗) = span

{(
rneinθ

0

)
,

(
0

rne−inθ

)
: n = 0, 1, 2, . . .

}
,

and so

ker((DPN
)+) =

{
{0} N ≤ 0

span{rneinθ : 0 ≤ n < N} N > 0,

whilst

ker((DPN
)−) =

{
{0} N > −1

span{rne−inθ : 0 ≤ n ≤ −N − 1} N ≤ −1.
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3.5. Another noncompact commutator. In Section 3.1 we showed that
the weakened definition of spectral triple does not suffice to guarantee that
we obtain a Fredholm module. The example there also showed that [3,
Theorem 1.2] is false. Now we show that the problem of noncompact com-
mutators persists in the infinite deficiency index case. This shows that [3,
Theorem 6.2] can not be repaired by requiring that the self-adjoint exten-
sions employed have compact resolvents.

In this section, DP shall denote the self-adjoint extension DP0 . As DP
is an extension of D, we find that [DP , a] is defined and bounded on the
domain of D, for all a ∈ C∞(D). As in Section 3.1, we need to compute
commutators with the phase of DP .

For k ≥ 1, let αn,k denote the kth positive zero of the Bessel function Jn.
Then the eigenvectors of D2

P are{(
Jn(rαn−1,k)e

−inθ

0

)
,

(
0

Jn(rαn−1,k)e
inθ

)}∞
n,k=1

,(3.3) {(
Jn(rαn,k)e

inθ

0

)
,

(
0

Jn(rαn,k)e
−inθ

)}∞
n=0,k=1

.

Lemma 3.7. The eigenvectors (3.3) of D2
P span L2(D,C2). The corre-

sponding set of eigenvalues is {α2
n,k}∞n=0,k=1, and hence the resolvent of DP

is compact.

Proof. With the measure rdrdθ, we can take D = [0, 1]×S1/ ∼, where ∼ is
the identification (0, z) ∼ (0, 1) for z ∈ S1. It is well known that {einθ}∞n=−∞
is complete for L2(S1), so it is enough to show that:

(a) {r 7→ Jn(rαn−1,k)}∞k=1 spans L2([0, 1], r dr) for all n = 1, 2, . . ..
(b) {r 7→ Jn(rαn,k)}∞k=1 spans L2([0, 1], r dr) for all n = 0, 1, 2, . . . .

Statement (a) is true by [5, Theorem 6], and (b) is true by [5, Theorem
2].3 Hence the eigenfunctions above are the entire set of eigenfunctions,
and the set of eigenvalues is {α2

n,k}∞n=0,k=1. Each of these eigenvalues has
multiplicity 4. In particular DP has no kernel, and since αn,k → ∞ as

n, k →∞, (1 +D2
P )−1/2 is compact. �

To facilitate our computations we now describe an orthonormal eigenbasis
for DP .

Proposition 3.8. The vectors

|1, n, k,±〉 =
1

Jn(αn−1,k)

(
Jn(rαn−1,k)e

−inθ

±Jn−1(rαn−1,k)e−i(n−1)θ
)
,

|2, n, k,±〉 =
1

Jn(αn−1,k)

(
Jn−1(rαn−1,k)e

i(n−1)θ

∓Jn(rαn−1,k)e
inθ

)
,

3In [5], Boas and Pollard take the usual measure on [0, 1] instead of r dr and a slightly
different set of functions, but it is easy to see that the two approaches are equivalent.



DENSE DOMAINS, SYMMETRIC OPERATORS AND SPECTRAL TRIPLES 1013

n, k = 1, 2, . . .. form a normalised complete set of eigenvectors for DP . The
corresponding set of eigenvalues is given by

DP |j, n, k,±〉 = ±αn−1,k |j, n, k,±〉 .

Proof. From Lemma 3.7 it is straightforward to show that the eigenvectors
and eigenvalues of DP are

DP
(

Jn(rαn−1,k)e
−inθ

±Jn−1(rαn−1,k)e−i(n−1)θ
)

= ±αn−1,k
(

Jn(rαn−1,k)e
−inθ

±Jn−1(rαn−1,k)e−i(n−1)θ
)
,

DP
(
Jn−1(rαn−1,k)e

i(n−1)θ

∓Jn(rαn−1,k)e
inθ

)
= ±αn−1,k

(
Jn−1(rαn−1,k)e

i(n−1)θ

∓Jn(rαn−1,k)e
inθ

)
,

for n, k = 1, 2, . . .. Note that these eigenvectors are complete for L2(D,C2)
since we can recover our spanning set (3.3) from linear combinations of these.

To normalise these eigenvectors, we use the following standard integrals
which can be found in [14]:〈(

Jn(rαn−1,k)e
−inθ

±Jn−1(rαn−1,k)e−i(n−1)θ
)
,

(
Jn(rαn−1,k)e

−inθ

±Jn−1(rαn−1,k)e−i(n−1)θ
)〉

=
1

2π

∫ 2π

0

∫ 1

0
(J2
n(rαn−1,k) + J2

n−1(rαn−1,k))r dr dθ

=
1

2

(
J2
n(αn−1,k) + J2

n(αn−1,k)
)

= J2
n(αn−1,k),

and similarly〈(
Jn−1(rαn−1,k)e

i(n−1)θ

±Jn(rαn−1,k)e
inθ

)
,

(
Jn−1(rαn−1,k)e

i(n−1)θ

±Jn(rαn−1,k)e
inθ

)〉
= J2

n(αn−1,k). �

Our purpose is to find a function a ∈ C(D) for which the commutator

[F, a] is not compact, where F = DP (1+D2
P )−1/2 is the bounded transform.

Let P+ be the nonnegative spectral projection associated to DP , and let
P− = 1−P+. By Lemma 2.3, we need only show that there is some a ∈ C(D)
for which the operator P+aP− is not compact.

In terms of the eigenbasis of DP , for any a ∈ C(D) we can write

P+aP− =
∑
i,j=1,2

∞∑
n,m,k,`=1

|i, n, k,+〉 〈i, n, k,+| a |j,m, `,−〉 〈j,m, `,−| .

(3.4)

Now we fix a = re−iθ. The function re−iθ generates C(D) (along with the
constant function 1), and fails to preserve the domain of DP ; for instance
re−iθ · |2, 1, k,±〉 /∈ dom(DP ). To show that P+re

−iθP− is not compact,
we will construct a bounded sequence of vectors ξn, with the property that
P+re

−iθP− maps ξn to a sequence with no convergent subsequences. In order
to find the sequence ξn, we first derive an explicit formula for P+re

−iθP−.
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Lemma 3.9. The operator P+re
−iθP− can be expressed as

P+re
−iθP−

=

∞∑
m,k,`=1

2αm,k
(αm,k − αm−1,`)(αm,k + αm−1,`)2

|1,m+ 1, k,+〉 〈1,m, `,−|

+

∞∑
n,k,`=1

2αn,`
(αn−1,k − αn,`)(αn,` + αn−1,k)2

|2, n, k,+〉 〈2, n+ 1, `,−|

+
∑
k 6=`

1

α0,k + α0,`
|1, 1, k,+〉 〈2, 1, `,−|+

∞∑
k=1

1

α0,k
|1, 1, k,+〉 〈2, 1, k,−| .

Proof. In view of Equation (3.4), we first compute the operators

〈i, n, k,+| re−iθ |j,m, `,−〉
for i, j = 1, 2. Using integration by parts and standard recursion relations
and identities for the Bessel functions and their derivatives, [14], we find:

(1) Case i = j = 1:

〈1, n, k,+| re−iθ |1,m, `,−〉

=
1

2πJn(αn−1,k)Jm(αm−1,`)

∫ 2π

0

∫ 1

0
r2ei(n−m−1)θ

(
Jn(rαn−1,k)Jm(rαm−1,`)

− Jn−1(rαn−1,k)Jm−1(rαm−1,`)
)
dr dθ

=
δn,m+1

Jm+1(αm,k)Jm(αm−1,`)

∫ 1

0
r2Jm+1(rαm,k)Jm(rαm−1,`)

− r2Jm(rαm,k)Jm−1(rαm−1,`) dr

=
2αm,kδn,m+1

(αm,k − αm−1,`)(αm,k + αm−1,`)2
;

(2) Case i = 1, j = 2:

〈1, n, k,+| re−iθ |2,m, `,−〉

=
1

2πJn(αn−1,k)Jm(αm−1,`)

∫ 2π

0

∫ 1

0
r2ei(m+n−2)θ(Jn(rαn−1,k)Jm−1(rαm−1,`)

+ Jn−1(rαn−1,k)Jm(rαm−1,`)
)
dr dθ

=


1

J1(α0,k)J1(α0,`)

∫ 1
0 r

2J1(rα0,k)J0(rα0,`)

+r2J0(rα0,k)J1(rα0,`) dr n = m = 1

0 otherwise

=


1

α0,k+α0,`
n = m = 1 and k 6= `

1
α0,k

n = m = 1 and k = `

0 otherwise;
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(3) Case i = 2, j = 1:

〈2, n, k,+| re−iθ |1,m, `,−〉

=
1

2πJn(αn−1,k)Jm(αm−1,`)

∫ 2π

0

∫ 1

0
r2e−i(n+m)θ

(
Jn−1(rαn−1,k)Jm(rαm−1,`)

+ Jn(rαn−1,k)Jm−1(rαm−1,k`)
)
dr dθ

= 0;

(4) Case i = j = 2:

〈2, n, k,+| re−iθ |2,m, `,−〉

=
1

2πJn(αn−1,k)Jm(αm−1,`)

·
∫ 2π

0

∫ 1

0
r2ei(m−n−1)θ

(
Jn−1(rαn−1,k)Jm−1(rαm−1,`)

− Jn(rαn−1,k)Jm(rαm−1,`)
)
dr dθ

=
δm,n+1

Jn(αn−1,k)Jn+1(αn,`)

∫ 1

0
r2Jn−1(rαn−1,k)Jn(rαn,`)

− r2Jn(rαn−1,k)Jn+1(rαn,`) dr

=
2αn,`δm,n+1

(αn−1,k − αn,`)(αn,` + αn−1,k)2
.

The desired equation is now obtained by using these cases in combination
with (3.4). �

For convenience we write

|`,−〉 := |2, 1, `,−〉 , |k,+〉 := |1, 1, k,+〉 ,
and define the sequence

ξn :=

∞∑
`=1

√
n

n+ `
|`,−〉 , n = 1, 2, . . . .

Lemma 3.10. The sequence {ξn}∞n=1 is bounded.

Proof. As in Lemma 3.1 we have

‖ξn‖2 = n

∞∑
`=1

1

(n+ `)2
= nψ(1)(n+ 1),

where ψ(m)(x) = (dm+1/dxm+1)(log(Γ))(x) is the polygamma function of

order m. As n→∞, (n+ 1)ψ(1)(n+ 1)→ 1, so ‖ξn‖2 → 1. �

To simplify the computations, we subtract the operator

K :=

∞∑
k=1

1

2α0,k
|1, 1, k,+〉 〈2, 1, k,−|
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from P+re
−iθP−, since K is obviously compact, and define

ζn := (P+re
−iθP− −K)ξn.

Our purpose is to show that ζn has no convergent subsequence. To this end
we investigate its limiting behaviour.

Lemma 3.11.

lim inf
n→∞

‖ζn‖ ≥
1

2π
.

Proof. We have

ζn =
∞∑

k,`=1

√
n

(n+ `)(α0,k + α0,`)
|k,+〉 .

It is proved in [9, Lemma 1] that for all ` ≥ 1,

π(`− 1/4) < α0,` < π(`− 1/8),(3.5)

yielding the inequality
√
n

(n+ `)(α0,k + α0,`)
>

√
n

(n+ `)(α0,k + π(`− 1/8))
.

This allows us to estimate the coefficients of ζn via
∞∑
`=1

√
n

(n+ `)(α0,k + α0,`)

≥
∞∑
`=1

√
n

(n+ `)(α0,k + π(`− 1/8))

=

√
n

π(n− α0,k/π + 1/8)

∞∑
`=1

(
1

`+ α0,k/π − 1/8
− 1

n+ `

)

=

√
n

π(n− α0,k/π + 1/8)

∞∑
`=1

(
1

`+ α0,k/π − 1/8
− 1

`
+

1

`
− 1

`+ n

)
=

√
n

π(n− α0,k/π + 1/8)

(
−ψ(0)(α0,k/π + 7/8) + ψ(0)(n+ 1)

)
=

√
n

π

ψ(0)(n+ 1)− ψ(0)(α0,k/π + 7/8)

n− α0,k/π + 1/8

which in turn allows us to bound ‖ζn‖ by

‖ζn‖2 ≥
n

π2

∞∑
k=1

(
ψ(0)(n+ 1)− ψ(0)(α0,k/π + 7/8)

n− α0,k/π + 1/8

)2

(3.6)

≥ n

π2

n∑
k=1

(
ψ(0)(n+ 1)− ψ(0)(α0,k/π + 7/8)

n− α0,k/π + 1/8

)2

.
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Now, α0,k/π ∈ (k − 1/4, k − 1/8) by Equation (3.5), and ψ(0) increases
monotonically on (0,∞), so for k ≤ n we have

0 ≤ ψ(0)(n+ 1)− ψ(0)(k + 1) < ψ(0)(n+ 1)− ψ(0)(k + 3/4)

< ψ(0)(n+ 1)− ψ(0)(α0,k/π + 7/8).

For k ≤ n,

ψ(0)(n+ 1)− ψ(0)(k + 1) =

n−k−1∑
j=0

1

k + j + 1
,

and so

0 ≤
n−k−1∑
j=0

1

k + j + 1
< ψ(0)(n+ 1)− ψ(0)(α0,k/π + 7/8).

For k ≤ n we also have

0 < n− α0,k/π + 1/8 < n− k + 3/8,

allowing us to obtain the estimate

n∑
k=1

(
ψ(0)(n+ 1)− ψ(0)(α0,k/π + 7/8)

n− α0,k/π + 1/8

)2

(3.7)

>
n∑
k=1

1

(n− k + 3/8)2

n−k−1∑
j=0

1

k + j + 1

2

≥
n∑
k=1

1

(n− k + 3/8)2
·
(

n− k
k + (n− k − 1) + 1

)2

=
n∑
k=1

(n− k)2

(n− k + 3/8)2
1

n2

≥
n∑
k=1

(n− k)2

(n− k + 1)2
1

n2

=
1

n2

n∑
j=2

(j − 1)2

j2
≥ 1

n2
n− 1

4
.

Thus combining Equations (3.6) and (3.7) yields

‖ζn‖2 ≥
n

π2

n∑
k=1

(
ψ(0)(n+ 1)− ψ(0)(α0,k/π + 7/8)

n− α0,k/π + 1/8

)2

≥ n− 1

4nπ2
.(3.8)

As n→∞,

lim inf
n→∞

‖ζn‖2 ≥
1

4π2
�
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Next we analyse the possible limits of convergent subsequences of ζn,
should they exist.

Lemma 3.12. If {ζn}∞n=1 has a norm convergent subsequence {ζnj}∞j=1, then
ζnj → 0.

Proof. We show that limn→∞ 〈ζn |k,+〉 = 0 for all k = 1, 2, . . ., which shows
that if ζnj → ζ, then ζ = 0. We have

〈ζn | k,+〉 =

∞∑
`=1

√
n

(n+ `)(α0,k + α0,`)

Since α0,k ∈ (πk − π/4, πk − π/8) by Equation (3.5), we have

1

α0,k + α0,`
<

1

π(k + `− 1/2)
.

Hence

0 ≤ 〈ζn|k,+〉 ≤
√
n

π

∞∑
`=1

1

(n+ `)(k + `− 1/2)

=

√
n

π(n− k + 1/2)

∞∑
`=1

(
1

k + `− 1/2
− 1

n+ `

)
=

√
n

π(n− k + 1/2)

(
ψ(0)(n+ 1)− ψ(0)(k + 1/2)

)
.

As n→∞, ψ(0)(n) ∼ ln(n), showing that

lim
n→∞

√
n

π(n− k + 1/2)

(
ψ(0)(n+ 1)− ψ(0)(k + 1/2)

)
= lim

n→∞

(√
n(ln(n+ 1)− ψ(0)(k + 1/2))

π(n− k + 1/2)

)
= 0.

Hence limn→∞ 〈ζn | k,+〉 = 0. �

Corollary 3.13. The sequence {ζn}∞n=1 has no norm convergent subse-
quences.

Proof. If ζn had a convergent subsequence {ζnj}∞j=1, then ζnj → 0 by

Lemma 3.12. But by Lemma 3.11, ‖ζnj‖ 6→ 0, which is a contradiction. �

Corollary 3.14. The operator P+re
−iθP− is not compact.

Proof. By Lemma 3.10, {ξn}∞n=1 is bounded, but {(P+re
−iθP−−K)ξn}∞n=1

contains no convergent subsequence. As P+re
−iθP− and P+re

−iθP− − K
differ by a compact operator, P+re

−iθP− is not compact. �

In summary we have shown the following:
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Proposition 3.15. The self-adjoint extension DP of the closed symmetric
operator D has compact resolvent, and for all a ∈ C∞(D), the commutators
[DP , a] are defined on domD, and are bounded on this dense subset. The

bounded transform F := DP (1+D2
P )−

1
2 has the property that the commutator

[F, re−iθ] is not a compact operator. Therefore (C(D), L2(D,C2), F ) does not
define a Fredholm module.
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