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Pauli-limited effect in the magnetic phase diagram of FeSexTe1−x thin films

Abstract
We present a detailed investigation on the doping dependence of the upper critical fieldHc2(T) of
FeSexTe1−xthin films (0.18 ≤ x ≤ 0.90) by measuring the electrical resistivity as a function of magnetic field.
The Hc2(T) curves exhibit a downturn behavior with decreasing temperature in all the samples, owing to the
Pauli-limited effect (spin paramagnetic effect). The Pauli-limited effect on the upper critical field can be
monotonically modulated by variation of the Se/Te composition. Our results show that Te-doping induced
disorder and excess Fe atoms give rise to enhancement of the Pauli-limited effect.
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We present a detailed investigation on the doping dependence of the upper critical field Hc2(T) of

FeSexTe1�x thin films (0.18� x� 0.90) by measuring the electrical resistivity as a function of

magnetic field. The Hc2(T) curves exhibit a downturn behavior with decreasing temperature in all

the samples, owing to the Pauli-limited effect (spin paramagnetic effect). The Pauli-limited effect

on the upper critical field can be monotonically modulated by variation of the Se/Te composition.

Our results show that Te-doping induced disorder and excess Fe atoms give rise to enhancement of

the Pauli-limited effect. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4936848]

The discovery of iron-based superconductors (IBSs) has

generated great interest in the condensed-matter physics com-

munity due to the high superconducting transition temperature

(TC) and unconventional pairing mechanism.1–3 As one funda-

mental superconducting parameter, the upper critical field,

Hc2, is very important for understanding the superconducting

properties. The temperature dependence of Hc2, Hc2(T),

reflects the details of the underlying electronic structures and

provides insights into the microscopic origin of the pairing

strength and pair-breaking mechanism, which is critical for

potential application of the IBSs. Nevertheless, no single com-

mon characteristic could be generalized to explain the Hc2(T)

behavior in the IBSs, even in the same group. The curvature of

Hc2(T) displays a clear upward trend for the 1111 system,

ReFeAsFxO1�x (Re¼ rare earth), which is attributed to the

presence of multiband effects.4,5 Nevertheless, a sharp increase

in Hc2(T) near TC, combined with saturation at low tempera-

ture, was observed in oxygen deficient LaFeAsO samples,

which are mainly affected by the spin-paramagnetic effect.6,7

Furthermore, the spin-paramagnetic effect was also revealed

in LiFeAs.8 For the electron- or hole-doped 122 system,

AFe2As2 (A¼Ba, Sr, and Ca), Hc2(T) exhibits a linear increase

down to temperature far away from TC,9–11 possibly evoked

by the band-warping effect. The complexity of the structure

and the introduced charge carriers act as a barrier to the inves-

tigation of intrinsic Hc2(T) properties in these systems.

Another type of IBSs, the iron chalcogenides FeCh
(Ch¼Se, Te) in the 11 system, has been discovered with

TC� 8 K.12,13 In view of the simple crystal structure, com-

posed of a one-stack superconducting layer along the c-axis,12

and similarity in the band structure compared with the other

IBSs,14,15 FeCh is taken as a model system to study the

superconducting mechanism. The behavior of Hc2(T) of

FeSe could be described well by the Werthamer-Helfand-

Hohenberg (WHH) theoretical curve in the orbit limited

situation.16 For high Te content FeSexTe1–x samples

(x< 0.5), the Pauli paramagnetic effect dominates the Hc2(T)

shape.17,18 Nevertheless, the origin of the pair-breaking

mechanism in the 11 system remains mysterious, due to the

fact that there has been no investigation on the Hc2(T) behav-

ior of samples in the range of 0.6< x< 0.9, which bridge the

region between the pure FeSe sample and the high Te con-

tent samples (x� 0.5). This is caused by the difficulty in pro-

ducing high quality samples in this special region, where

polycrystalline samples are found to have multiple phases,13

while pure single crystal samples have never been fabricated.

Thus, high quality samples are urgently needed to reveal the

pair-breaking mechanism in this system.

In this paper, we present a systematic characterization of

Hc2(T) in FeSexTe1�x thin films (0.18� x� 0.90), overcoming

the phase separation issue in bulk and single crystal samples

via the pulsed laser deposition (PLD) method. A strong bend-

ing effect on Hc2(T) was observed in high Te composition

samples. The Hc2(T) curves can be successfully described by

the WHH prediction, considering the spin-parameter effect.

Microstructure characterization implies that the Te dopant

introduces disorder, which modulates the Pauli-limited effect

in this system.

Polycrystalline pellets of FeTe1�xSex with nominal com-

positions in the range of 0.18� x� 0.90 were fabricated as

targets. Powders of Fe, Se, and Te were mixed together in

stoichiometric ratios and heated in an evacuated quartz tube

at 850 �C for 12 h. After the sintering, the mixture was

reground, pelletized, and sintered in the evacuated quartz

tube at 400 �C for 6 h to make the target dense. The films

were grown under high vacuum conditions (�4� 10�4 Pa)

by PLD using a Nd:yttrium aluminum garnet (Nd:YAG)

laser, as reported elsewhere.19,20 Single crystal CaF2 (100)

with lattice parameter a0¼ 5.463 Å was selected as the sub-

strate due to its non-oxide nature and the low mismatch

between its lattice parameter (a0/
ffiffiffi
2
p
¼ 3.863 Å) and the

a-axis parameter of the film (around 3.8 Å). The deposition

temperature was set at 450 �C, and the laser energy was

200 mJ/pulse. The substrate-target distance was maintained

at 4 cm, and the deposition time was the same for all sam-

ples. The actual composition x of each film is determined by

energy dispersive X-ray (EDX) measurements. The thickness

a)Authors to whom correspondence should be addressed. Electronic addresses:

ydu@uow.edu.au; zxshi@seu.edu.cn; and shi@uow.edu.au.
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of the films, measured by scanning electron microscopy

(SEM), was around 50 nm. Only the (00l) reflections of thin

films and substrate could be detected in the X-ray diffraction

(XRD) results, indicating high purity as well as high out-of-

plane orientation for all these films.20 Electrical resistivity

under different magnetic fields was measured on a 14 T

physical properties measurement system (PPMS, Quantum

Design). The measurements of atomic arrangement were

performed on a scanning tunneling microscopy (STM) sys-

tem (USM1500-M, Unisoku Co) in ultrahigh vacuum (UHV)

at 4.2 K.

Figure 1 shows the electronic resistivity versus temper-

ature (R-T) curves for all the film samples, normalized by

their respective resistivity at 300 K. For the un-doped FeTe

film, a kink around 70 K is observed, corresponding to the

antiferromagnetic (AFM) transition accompanied by a

structural transition.13 The kink disappears when the Se

content increases up to x¼ 0.2, which is similar to what is

found in polycrystalline samples and single crystals.13,21

With further Se doping, the R-T curve in the normal state

becomes more metallic, resulting in a large ratio of the

room-temperature resistivity to the residual resistivity

(RRR), as shown in the inset of Fig. 1, which stands for a

clean compound.8

Figure 2 displays R-T curves under different magnetic

fields, ranging from 0 T to 13 T, parallel to the c direction.

With increasing magnetic field, the onset of the supercon-

ducting transition gradually shifts to low temperature.

Broadening of the resistivity transition in magnetic field,

which is the direct evidence of thermal fluctuations in a vor-

tex system,22 could be observed in all the films. The broad-

ening of the widths of the superconducting transition is

different, however, among different Se composition samples,

where the high TC samples (x¼ 0.63, 0.72, and 0.81) show

intense field-induced broadening compared with the other

FIG. 1. Normalized electronic resistivity versus temperature (R-T) curves

from 300 K to 2 K for all the films. Inset: Ratio of room-temperature resistiv-

ity to the residual resistivity ratio (RRR) as a function of Se composition.

FIG. 2. R-T curves under different

magnetic fields for (a) FeSe0.18Te0.82

film, (b) FeSe0.31Te0.69 film, (c)

FeSe0.63Te0.37 film, (d) FeSe0.73Te0.27

film, (e) FeSe0.81Te0.19 film, and (f)

FeSe0.90Te0.10 film, respectively.

222601-2 Zhuang et al. Appl. Phys. Lett. 107, 222601 (2015)
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samples, suggesting the presence of a vortex-liquid region.20

Therefore, to minimize the effects of vortex motion in the

determination of Hc2, we used a criterion that 50% of normal

state resistivity is realized at Hc2.

Figure 3 shows the temperature dependence of Hc2, with

the temperature normalized to TC. The convex shape of

Hc2(t) (t¼ T/TC) with high slope near TC can be seen clearly

in the samples with low Se content (x¼ 0.18 and 0.31), and

the bending behavior is weakened with increasing Se con-

tent. For x¼ 0.90, a linear-like behavior of Hc2(t) with small

slope is identified. The shape of the Hc2(t) dependence on the

Se composition shows that Hc2 does not simply scale with

TC. The observed Hc2 features indicate that the pair-breaking

mechanism varies in samples with different Se/Te composi-

tions. Generally, the Cooper pairs can be broken and

destroyed by two mechanisms in a magnetic field. The first

one is orbital-pair breaking, with opposite momenta acting

on the paired electrons. In this case, the superconductivity is

destroyed when the kinetic energy of the Cooper pairs

exceeds the condensation energy. The other one is attributed

to the Zeeman effect, which aligns the spins of the two elec-

trons in the applied field (Pauli paramagnetic limit). The

superconductivity is also eliminated when the Pauli spin sus-

ceptibility energy is larger than the condensation energy.

WHH theory, which could identify the contribution of

each pair-breaking mechanism, was used to fit the Hc2(t)
curves, and the strength of the spin-paramagnetic effect and

the spin-orbit effect was incorporated via the Maki parame-

ter a and the spin-orbit interaction kso,23 respectively.

According to the WHH theory, Hc2(t) can be described by

the digamma function24

ln
1

t
¼ 1

2
þ ikso

4c

� �
w

1

2
þ

�h þ kso=2þ ic
2t

� �

þ 1

2
� ikso

4c

� �
w

1

2
þ

�h þ kso=2� ic
2t

� �
� w

1

2

� �
; (1)

where c � ½ða�hÞ2 � ðkso=2Þ2�1=2
and �h ¼ 4�h

p2 �dh=dtð Þt¼1

¼ 4Hc2

p2 �dHc2=dtð Þt¼1
.

In the condition of the absence of both spin-paramagnetic

effect and spin-orbit interaction, a¼ 0 and kso¼ 0, Eq. (1) can

be further treated as

ln
1

t
¼ w

1

2
þ

�h

2t

� �
� w

1

2

� �
; (2)

and the orbit-limited upper critical field as

Horb
c2 0ð Þ ¼ �0:69

dHc2

dt

� �
t¼1

: (3)

The WHH model described by Eq. (1) has been adopted to

fit all the data, and to evaluate the value of upper critical field

HWHH
c2 ð0Þ and the strength of the spin-paramagnetic effect a,

assuming that kso¼ 0, since the spin-orbit scattering is

expected to be rather weak in the FeSexTe1�x system.16,17

By comparing the values of the calculated Horb
c2 ð0Þ (a¼ 0)

and HWHH
c2 ð0Þ (a 6¼ 0), which are summarized in Table I and

displayed in Fig. 4(a), we can identify the role of the spin-

paramagnetic effect in the 11 system. For conventional

superconductors, the upper critical field is mainly restricted

by the orbital pair-breaking mechanism, where HWHH
c2 ð0Þ is

comparable to Horb
c2 ð0Þ. In our results, however, the calcu-

lated HWHH
c2 ð0Þ values for all films are smaller than Horb

c2 ð0Þ,
which is consistent with the downward trend of Hc2 and indi-

cates that the spin-paramagnetic effect is the predominant

pair-breaking mechanism in the 11 system. It should be

noted that Horb
c2 ð0Þ is much larger than HWHH

c2 ð0Þ in samples

with low Se content, while HWHH
c2 ð0Þ becomes comparable to

Horb
c2 ð0Þ in samples with high Se content (x¼ 0.81, 0.90), as

shown in Fig. 4(a), demonstrating the enhanced spin-

paramagnetic effect in films with low Se content. The calcu-

lated fitting results for a as a function of Se content are

displayed in Fig. 4(b). The value of a decreases with increas-

ing Se content, and it reaches a value of zero when x¼ 0.90,

consistent with the trend in Fig. 4(a) and indicating that the

spin-paramagnetic effect indeed plays a critical role in the

Hc2 curves in the 11 system.

We now focus on the origin of the variation of the spin-

paramagnetic effect with changing Se/Te composition. As

the unique feature in the 11 system compared to other IBSs,

excess Fe in high Te component samples, which is located at

the interstitial Fe(2) sites,25,26 exhibits a larger local mag-

netic moment than that of normal Fe in Fe-(Se,Te) layers

and leads to charge carrier localization, which is represented

by the upturn trend in the R(T) curves before entering into

the superconducting state.25 Thus, excess Fe provides a local

moment interacting with the Fe plane magnetism, which is

expected to persist, even if the magnetism of the Fe plane is

FIG. 3. Temperature dependence of the upper critical field of all supercon-

ducting films, determined using the criterion of 50% of the normal-state

resistivity. The solid lines are fits to the WHH model with consideration of

the spin-paramagnetic effect.

TABLE I. Superconducting parameters of all film samples obtained through

WHH analysis of the upper critical field.

FeSexTe1�x x¼ 0.18 x¼ 0.31 x¼ 0.47 x¼ 0.63 x¼ 0.73 x¼ 0.81 x¼ 0.90

dHc2/dt (T) 100 155 147 136 94.7 80.4 32.0

Horb
c2 ð0Þ (T) 69.4 107 102 94.5 65.6 55.7 22.2

HWHH
c2 ð0Þ (T) 19.2 27.6 47.2 52.8 55.6 52.6 22.2

TC (K) 9.8 12.2 16.1 19.8 20.3 20.1 12.1

222601-3 Zhuang et al. Appl. Phys. Lett. 107, 222601 (2015)
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destroyed by strain or doping.27 Such interaction could

enhance the effective exchange field and spin susceptibility

(vsp). Because the free energy in the normal state, FN,

decreases by the amount of 0.5vspl0H2, the enhanced vsp

results in a smaller value of Hp
c2, at which FN reaches the

value of zero.

The orbit-limited upper critical field determined by the

initial slope of Hc2 near TC is proportional to (lvF)�1, where l
is the mean free path and vF is the Fermi velocity. Thus, the

large dHc2

dt t¼1
is always attributed to the disorder effect, which

gives rise to interband and/or intraband scattering and could

enhance the Horb
c2 by decreasing l. Figure 5(a) displays an

STM image of a FeSe0.73Te0.27 film with exposed Se/Te

atoms arranged in a square-like lattice. The surface of this

film is made up of two types of atoms, bright and dark, with

a height difference of around 45 pm, as shown in Fig. 5(b).

Since the anion heights of Se and Te are around 1.4 Å and

1.8 Å,28 respectively, the height difference is attributed to

the chemical contribution, i.e., different atomic sizes of

Se and Te. This deduction is confirmed by the statistical

analysis of the apparent height of individual atoms, as shown

in the histogram of Fig. 5(d). By using the Gaussian

distribution fitting, it is found that there exists a double-peak

distribution with a mean height difference of around 45 pm.

The area ratio of the higher peak to the lower peak is

0.68:0.32, close to the composition ratio of Se to Te in this

film. Therefore, the “dark” atom and “bright” atom are iden-

tified as Se and Te atoms, respectively. Te atoms are distrib-

uted randomly in the arrangement of Se atoms, which is

expected to induce more disorder with increasing Te content

due to the larger atomic size of Te compared with that of Se,

resulting in a larger Horb
c2 . This inference is consistent with

the transport results, where FeSe is the cleanest compound in

the 11 system due to its having the largest RRR value and

smallest residual resistivity before entering into the super-

conducting state. The enhancement of dHc2

dt t¼1
or Horb

c2 would

lead to the strong bending effect in Hc2(t) curves, i.e., strong

spin paramagnetic effect. It is noteworthy that there is no

excess Fe in the STM results for FeSe0.7Te0.3, excluding the

influence of Fe(2) on the spin-paramagnetic effect in high Se

content samples. In fact, the amount of excess Fe is negligi-

ble when x	 0.3, in which the upturn of R(T) disappears.

The disorder-induced enhancement of the spin-paramagnetic

effect has been observed in other IBSs. For example, the

FIG. 4. Se composition dependence of

(a) the orbit-limited upper critical field

Horb
c2 ð0Þ and the fitted upper critical field

HWHH
c2 ð0Þ, and (b) the spin-paramagnetic

effect a.

FIG. 5. (a) STM topographic image of

FeSe0.73Te0.27 film (15 nm� 15 nm,

Vbias¼ 50 mV, Itip¼ 30 pA), (b) line

profile for the blue dashed line in panel

(a), (c) atomic resolution STM image

(10 nm� 10 nm, Vbias¼ 300 mV, Itip

¼ 30 pA), (d) histogram of atom heights

imaged in (a).

222601-4 Zhuang et al. Appl. Phys. Lett. 107, 222601 (2015)
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Maki parameter increased from a¼ 0.25 in LaFeAsO0.93F0.07

to a¼ 1.31 for an As-deficient La-1111 sample,7 where the

disorder induced by As deficiency provides intraband scatter-

ing, contributing to the orbit-limited upper critical field. In

the case where interband scattering of Cooper pairs is

enhanced by introducing disorder, the suppression of TC is

expected.29 Nevertheless, TC is slightly increased after Te

doping in the 11 system. Consequently, the introduced disor-

der is assumed to scatter within the individual Fermi surface

sheet, leading to the suppression of interband scattering and

stabilization of the unconventional s6 state for high TC.7,29

In summary, we have investigated the doping depend-

ence of the upper critical field in FeSexTe1�x thin films

(0.18� x� 0.90). The role of the Pauli-limited effect on

Hc2(t) is revealed in the magnetic phase diagram of FeSex

Te1�x. STM reveals that the Te doping could induce disor-

der, giving rise to a tunable spin-paramagnetic effect in

FeSexTe1�x. Our study sheds light on our understanding of

the upper critical field, which has benefits for potential high

field application of IBSs.

This work was supported by Australian Research Council

(ARC) (DP 120100095, DP 140102581) and National Science

Foundation of China (Grant No. NSFC-U1432135).
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