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Abstract 

   Software aging refers to the phenomenon that software systems show progressive performance 

degradation or a sudden crash after longtime execution. It has been reported that this phenomenon 

closely relates to the exhaustion of system resources. This paper quantitatively studies available 

system resources under the real-world situation where workload changes dynamically over time. We 

propose a neural network approach to first investigate the relationship between available system 

resources and system workload and then to forecast future available system resources. Experimental 

results on data sets collected from real-world computer systems demonstrate that the proposed 

approach is effective. 

Keywords: forecasting; neural networks; software aging; software reliability; system availability; 

system resources; system workload. 

I. INTRODUCTION 

Reliability and availability are key qualities of computer systems. More often than not, system 

failures are attributed to software than hardware [12,32]. When an application server runs 

continuously for a long period of time, many error conditions in its process space or kernel space 
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can be accumulated. Examples of these error conditions are memory leak, numerical error 

accumulation, out-of-order processes or threads, unreleased file tables, and data corruption. These 

error conditions will eventually become critical, such as exhaustion of computing resources of the 

system, paroxysmal crash, increased response time and degraded performance. This phenomenon 

is called software aging, which will result in many disastrous consequences. A real-world example 

is the loss of life owing to software aging in the safety-critical weapon-control system of Patriot in 

1991 [25]. Possible root causes of software aging include residual defects in the software [13,17].   

Although researchers have proposed many assumptions about the causes and evolvement of 

software aging [6,15,17,18], its influencing factors are still not well identified or quantified. This 

fundamental question can only be answered by experimental research. However, only a very 

limited number of such experimental studies on software aging have been reported in major 

software and reliability journals [13,14,29]. This contrasts unfavorably with the growing 

awareness and widely accepted importance of experiment-based studies [7,29].  

The exhaustion of system resources is considered to be a primary cause of software aging [13]. 

Grottke et al. proposed to forecast the usage of computing resources with an autoregressive model 

[13], which assumes an even workload over time. Under even workload, aging is the only factor 

affecting available resources, thus AR model is sufficient to forecast this aging trend. 

Unfortunately, however, the workload of real-world systems is often uneven. When workload 

increases, the available resources of a computer system will decrease quickly.  A question that 

naturally arises is: Can we forecast the available system resources based on workload information 

of the system? Vaidyanathan and Trivedi incorporated the effect of workload in their software 

aging model [30]. They grouped workload into eight clusters, and calculate the exhaustion rate of 

computing resources with respect to each workload cluster. They found that the exhaustion rate 
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was faster with higher system activity. Nevertheless, their findings were only for modeling 

purpose rather than for forecasting the exhaustion of resources with varying workload. Moreover, 

in many of the workload states, the dynamics of the resources demonstrates very high variance, 

resulting in very broad confidence intervals of the exhaustion rate. The highly irregular and 

oscillatory behavior of the data makes most trend models insufficient. Further, the models of 

Vaidyanathan and Trivedi [30] are offline models and hence cannot forecast available resources 

online, where workload patterns differ at different times. These issues are addressed in the present 

paper. 

In the present paper, we study available system resources for real-world computing systems 

where workload dynamically changes over time. The proposed method can be used in various 

areas – for instance, for designing countermeasures (such as software rejuvenation) against 

software aging, or for providing a basis for deciding how many connections to a Web server 

should be cut off to avoid the exhaustion of computing resources in accordance with admission 

control [31]. The proposed method is based on neural networks. In this paper, computing resources 

refer to the resources of the operating system, such as Real Memory Free, CPU usage rate, Used 

Swap Space, I/O usage, and so on. We focus on the Real Memory Free and Used Swap Space since 

they are considered to be leading indicators of aging [30]. 

The rest of this paper is organized as follows: Section II provides background information and 

reviews related studies. Section III describes the data sets used in our experiments and introduces 

some basic concepts of our approach. Section IV investigates the relationship between system 

workload and available system resources. Section V presents our approach and experimental 

results for forecasting available system resources. Section VI concludes the paper and points out 

future research topics. 
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II. BACKGROUND 

The phenomenon of software aging was first reported by Marshall [25]. The aging problem was 

in the Patriot missile system, and it was solved by resetting the weapon-control system every eight 

hours. A few years later, Huang et al. [17] proposed a model of software aging together with a 

counteraction, namely software rejuvenation. The studies on software aging and control can 

roughly be classified into four parts: mechanism, metrics, modeling and control. Research on 

software aging mechanisms focuses on causes and effects, influencing factors and evolution of 

software aging. It provides a basis for extracting a metric of software aging and provides 

observations for modeling research. The objective of research on software aging metrics is to 

detect and estimate the severity of software aging. It provides both quantitative metrics for the 

research in mechanism and measurable objective for the research in control. Software aging 

modeling can formulate the aging process based on observations from experiments, and can 

determine the effectiveness of software control. It can also provide a model for the research in 

control. Software aging control is the ultimate objective of software aging research. It aims to 

detect and estimate the severity of software aging, and select optimal rejuvenation policy to heal 

the aged software. 

Matias et al. used design of experiment (DOE) and accelerated degradation test (ADT) 

techniques to characterize the aging phenomenon [24]. They found that the “page size” and “page 

type” factors were responsible for over 99% of memory size variation in httpd processes. Zhao et 

al. injected memory leaks to a test bed to expedite aging. They used the experimental results to 

estimate some parameters of the Weibull distribution, the lifetime distribution of the running 

software [36]. Jia et al. analyzed the evolution of software aging in Apache httpd and reported that 

the aging process is chaotic and can only be forecasted in limited ahead time [18]. Shereshevsky et 
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al. [28] monitored the Hölder exponent (a measure of the local rate of fractality) of the system 

parameters and found that system crashes were often preceded by the second abrupt increase in 

this measure. 

Because software aging involves many complicated and interrelated factors, it is not easy to 

propose a metric that reflects all the factors to measure the degree of software aging. Software 

aging is characterized, for instance, by consistent throughput loss in [8], by increased response 

time in [13], and by exhaustion of computing resources in [14]. Grottke et al. proposed an 

estimated time to exhaustion metric to predict the approximate time of depletion of system 

resources [13]. A comprehensive evaluation function was proposed in [19] to measure the aging 

speed of the Apache server. 

Modeling, on the other hand, is a mainstream of software aging research. Modeling begins by 

making assumptions about the mechanism of aging (including its causes and effects), and 

constructs mathematical models to describe the aging process. It helps with the validation of the 

effectiveness of software rejuvenation and the optimal schedules for software rejuvenation. 

Vaidyanathan and Trivedi [30] monitored operating system activities, and described workload 

based on four important parameters, namely cpuContextSwitch, sysCall, pageIn, and pageOut, 

using a clustering method. The effect of workload on resource depletion was quantified by means 

of slopes, but the issue of real time values of each resource parameter under varying workload was 

not addressed. Huang et al. [17] proposed a three-state stochastic model, including a robust state, a 

failure-prone state and a failure state. This model was extended and studied in detail by other 

researchers to answer similar questions [9,10]. Chen et al. [8] introduced a threshold to judge the 

current pattern of software aging and to describe its nonlinearity. The above models are all Markov 

models. Jia et al. [20] introduced a nonlinear model to describe the evolution of software aging. 
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El-Shishiny et al. [11] exploited neural networks to mine the patterns of the usage of computing 

resources. But their work neglected the influence of system workload. Hong et al. [15] proposed an 

idea of closed-loop design of software rejuvenation to reset the computer system based on 

feedback information. Their objective was to determine the optimal rejuvenation time with the 

feedback information. On the other hand, Jia and Cai introduced control theory to software 

rejuvenation, including how to apply system identification, controller design and evaluation to 

software rejuvenation [21]. Zhao et al. described the workload of an HTTP server using a queuing 

model. Further, using a distributed rejuvenation algorithm, they found the optimal rejuvenation 

time [35]. 

This paper falls into the area of software aging modeling. Our aim is to investigate the 

relationship between workload and available computing resources, and to quantitatively predict 

future available computing resources.  

III. PRELIMINARIES 

A. The Data Sets 

To study the usage of resources in computer systems requires the collection of real-world data. 

For this purpose, we used the data sets reported in [30]. The data collection process is briefly 

described below. A monitoring tool was used to collect operating system resource usage data (such 

as physical/virtual memory usage and file/process table usage) and system activity data (such as 

paging activity and CPU utilization) from nine heterogeneous UNIX workstations. These 

workstations were connected by an Ethernet LAN at the Duke Department of Electrical and 

Computer Engineering. These workstations provided various services, and the inputs from clients 

were unknown. From these workstations, more than one hundred parameters were monitored at 

regular intervals (10 minutes) for more than three months. These parameters “include those that 
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describe the state of the operating system resources, state of the processes running, information on 

the /tmp file system, availability and usage of network related resources, and information on 

terminal and disk I/O activity”. In this study, we used the data sets collected from the workstations 

named Rossby and Jefferson. The data set of Jefferson was not illustrated or studied in [30]. 

We analyzed the system resources data (represented by Real Memory Free and Used Swap Space 

as explained previously) and system workload data. To measure the latter, it is natural to think of 

the HTTP connection rate, that is, the number of HTTP requests coming from clients per unit time. 

It is, however, not a good measure of workload. This is because, first, an HTTP request may be 

CPU intensive or I/O intensive. For example, a static HTML page request is more often I/O 

intensive since it involves little computation [22]. On the other hand, a dynamic request such as a 

database query will involve much CPU usage. These types of requests will result in different 

bottleneck of the system. Secondly, even for the same type of HTTP request, say I/O intensive 

requests, those requesting large files will cost more resources than those requesting small files. 

Finally, requests from clients may not necessarily be HTTP requests. 

Following [30], we characterize the system workload by variables pertaining to CPU activity and 

file system I/O. To be more specific, the following variables have been used to characterize the 

workload in our study: 

cpuContextSwitch: The number of process context switches performed during the measurement 

interval. 

sysCall: The number of system calls made during the interval. 

pageIn: The number of page-in operations (pages fetched in from file system or swap device) 

during the interval. 
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Thus, a point in a three-dimensional space, (cpuContextSwitch, sysCall, pageIn), represents the 

measured workload for a given interval of time. In our study, the raw data were normalized first. 

Note that we did not include the factor pageOut in the above definition as did in [30]. This is 

because this variable is almost constant in the data sets. Figure 1 depicts the three dimensions of the 

workload data collected from the workstation Rossby. 
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(b) 

 
(c) 

Fig. 1. Workload data observed on Rossby 
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B. A Neural Network Approach 

A neural network approach is adopted in our study. This subsection provides a brief 

introduction to neural networks. 

A neural network is a mathematical model that can learn and mimic human behavior. It is 

composed of many simple elements called neurons. Neurons are connected (with weights on the 

connections) so that they can process information collaboratively and can store the information. 

Although many types of neural network models have been proposed, the most popular one is 

called multi-layer perceptron (MLP) feed forward model, which is composed of non-linear, 

non-parametric approximators. Neural-network based approaches have many advantages. First, 

they can capture nonlinear phenomena. Secondly, they can solve problems for which an 

algorithmic solution does not exist or is too complex to find. Finally, they can show improved 

performance with time when more and more patterns are learnt.  Neural networks have been 

successfully applied to many areas such as pattern recognition [26], system identification [4,5], 

forecasting [1] and intelligent control [2]. 

When applying neural networks, it is important to choose an appropriate network architecture, 

namely the number of layers and the number of hidden neurons per layer. This question can only 

be answered by experience. Hornik et al. [16] established that as few as one hidden layer with 

sufficient neurons can approximate any continuous function with any precision. In our study, we 

decided to use a three-layer neural network with two hidden layers. There are several reasons for 

adopting two hidden layers. First, using a single hidden layer could make the neurons tend to 

interact with each other globally, which is not desirable. Using two hidden layers has an advantage 

that the first hidden layer can learn the local features that characterize specific regions of the input 

space, and global features are extracted in the second hidden layer [23].   
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The selection of a training algorithm for the neural network is another important issue. Back 

propagation error (BP) is most useful for feed forward networks [34]. An MLP feed forward 

model together with BP training is normally called a BP neural network. In a BP neural network, 

only neurons in adjacent layers are connected. A BP neural network can learn complicated 

nonlinear input-output relationships from a set of sample data, that is, a set of input-output values. 

It is also important to correctly choose a set of initial weights for the network. It is a common 

practice to initialize weights to small random values within a certain interval. The BP neural 

network is used in our study. 

The accuracy of the test results will be measured using all of the following approaches: (1) 

visual analysis, (2) Root Mean Square Error (RMSE), and (3) Pearson’s correlation coefficient (r). 

The first approach, visual analysis, is straightforward and intuitive, and hence commonly used for 

researchers to verify the forecasting effect [3, 27]. The second approach, RMSE, is a well-known 

metric of predictive accuracy. It quantitatively measures the differences between values predicted 

by the neural network and the values actually observed. The third approach, Pearson’s r, is widely 

used by researchers as a measure of the degree of correlation, or linear dependence, between two 

variables. When r ≥ 0.5, the two variables have a strong positive correlation. Furthermore, the 

statistical significance of the correlation is given by the p-value. A p-value below 0.05 is normally 

considered to be statistically significant. The Pearson’s correlation coefficient is used in the 

present study to investigate the linear relationship between the observed and predicted values. 

IV. ON THE RELATIONSHIP BETWEEN SYSTEM WORKLOAD AND AVAILABLE SYSTEM RESOURCES 

Intuitively, there is a relationship between system workload and available system resources. This 

is because the higher the system activity, the higher is the system workload and, hence, the more 

will computing resources be consumed, resulting in decreased available system resources. It must 

http://en.wikipedia.org/wiki/Feed-forward
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be pointed out, however, that available system resources do not only relate to normal usage of 

resources consumed by running applications, but also relate to software aging caused by 

accumulated error conditions of the system, such as memory leak. It has been observed that the 

higher the system activity is, the likelier will the system age [30]. The research question of this 

section is: how close is the relationship between system workload and available resources, and can 

the latter be modeled quantitatively by the former? Answers to these questions may also provide 

hints on whether and when we can control available resources by controlling system workload. 

As explained earlier in the paper, in this research we use two indicators, namely realMemoryFree 

and usedSwapSpace, to represent system resources as they are leading indicators of aging [30], and 

three indicators, namely cpuContextSwitch, sysCall, and pageIn, are used to represent system 

workload. 

The workload and resource usage data observed from the real world are strongly nonlinear. For 

instance, many spikes can be seen in Figure 1. The relationship between workload and resources is 

also nonlinear and is difficult to formulate. We decided, therefore, to use the BP neural network to 

study this relationship 1, with the settings given in Section III-B. The input to the network is 

workload data, namely, three-dimensional vectors (cpuContextSwitch, sysCall, pageIn), and the 

output is resources data, namely, two-dimensional vectors (realMemoryFree, usedSwapSpace). 

As a common practice, the number of neurons was determined through trial and error [23], which 

will be explained shortly, and we used the first two-thirds or so of the data set to train the neural 

network and the remaining one-third or so to validate/test the learning effect of the network [23]. 

We first applied this approach to the Rossby data set. The whole Rossby data set can be divided 

into a few segments, each of which records observations from system startup to system reset. We 

used one of these segments in our study, which contains a total of 5,811 observations. Since the 

1 A preliminary version of this approach was proposed in QSIC 2009 [33]. 
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observations were at intervals of ten minutes, the total duration is 10×5,811=58,110 minutes. We 

cut this segment of 5,811 observations into two parts: the first part contains 4,000 observations and 

was used to train the neural network, and the second part contains 1,811 observations and was used 

for testing.  

The accuracy is first quantified using the Root Mean Square Error (RMSE), a widely used 

measure of the difference between values predicted by a model and those actually observed, 

calculated as follows: 

n

ey
RMSE

n

i
ii∑

=

−
= 1

2)(
, 

where n is the total number of observations, and yi and ei represent the ith observed and forecasted 

values (output of the neural network), respectively. 

In general, researchers determine the number of neurons in the hidden layers of multi-layer 

neural networks by trial and error [23]. This approach is adopted in the present study. We increase 

the number of neurons in the two hidden layers from (5, 5) to (30, 30) and calculate the RMSE 

values of realMemoryFree and usedSwapSpace, as shown in Table 1. It can be observed that 

RMSE decreases when the number of neurons increases, and that the decrease rate becomes small 

when the number of neurons is sufficiently large. More specifically, when the numbers of neurons 

in the two hidden layers increase from (10, 10) to (20, 20), the RMSE values of both 

realMemoryFree and usedSwapSpace drop noticeably from 0.3194 to 0.3044 (by 4.70%) and from 

0.3982 to 0.3877 (by 2.64%), respectively; however, when the numbers of neurons further 

increase from (20, 20) to (30, 30), the RMSE values decrease only slightly (by 0.33% for 

realMemoryFree and 0.80% for usedSwapSpace).  We decided, therefore, to set the numbers of 

neurons to (20, 20) in the experiments because too many neurons in hidden layers can greatly 

increase the training time.We have also applied the same approach to the Jefferson data set, where 
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4,000 observations were used to train the neural network, and 2,049 observations were used for 

testing.  

 

Table 1. RMSE for different numbers of neurons in the two hidden layers 

Numbers of neurons in two hidden layers RMSE of realMemoryFree RMSE of  usedSwapSpace 

(5,5) 0.3216 0.4078 

(10,10) 0.3194 0.3982 

(20,20) 0.3044 0.3877 

(30,30) 0.3034 0.3846 
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Fig. 3. Test results for usedSwapSpace (on the Rossby data set) 
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will no longer have a significant impact on the available resources. This is because the system has 

already accumulated many error conductions, and reducing workload can no longer bring the 

system back to a normal state. See, for example, Figure 1 (a), which shows that the system 

workload was not at its peak level around the end of the observations, but Figure 2 shows that 

realMemoryFree reached its lowest level in the end of the observations. This observation shows 

that our approach can be used to diagnose software aging. As a result, the system was reset after 

the 1,811th observation point. 

In addition to the above visual analysis, the test results are also quantitatively analyzed using 

RMSE and Pearson’s Correlation Coefficient (r), as summarized in Table 2. For Figures 2, 3, 4 and 

5, the correlation coefficients are 0.773, 0.716, 0.904, and 0.818, respectively. Because a Pearson’s 

r greater than or equal to 0.5 indicates a strong correlation, and also because all four p-values are 

smaller than 0.001, we can conclude that there is a strong and statistically significant positive 

correlation between the observed values and predicted values in all four figures, which means that 

our approach is effective. This also means that there is a close relationship between workload and 

available resources. Table 2 indicates that the results on the Jefferson data set are better than those 

on the Rossby data set. This is because software aging in the Rossby workstation affected the 

prediction accuracy, as explained in the preceding paragraph. This inaccuracy, however, can be 

useful: it can help us to diagnose and identify software aging. For instance, Figure 6 (a) shows the 

trend of the (absolute) prediction errors of Figure 3 (that is, the differences between the observed 

and predicted values of usedSwapSpace on the Rossby data set), and Figure 6 (b) shows the 

corresponding errors of Figure 5 on the Jefferson data set. It is evident that, in Figure 6 (a), the 

prediction error increases with time owing to software aging in the Rossby workstation, whereas 
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Figure 6 (b) does not have this pattern as the Jefferson workstation did not get as aged. 

Identification of this kind of error pattern may help with the diagnosis of software aging. 

 

Table 2. Quantitative analysis of the test results shown in Figures 2 to 5 

Figure RMSE Pearson’s correlation 
coefficient (r) 

p-value (two-tailed) 

Fig. 2 0.1400 0.773 p<0.001 
Fig. 3 0.1856 0.716 p<0.001 
Fig. 4 0.0338 0.904 p<0.001 
Fig. 5 0.1036 0.818 p<0.001 
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Fig. 5. Test results for usedSwapSpace (on the Jefferson data set) 

 

 

 

 

 

 
(a) A growing trend of the absolute errors of prediction, based on Fig. 3 results 
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(b) Absolute errors of prediction, based on Fig. 5 results 

 
Fig. 6. A comparison of the trend of prediction errors: Fig. 3 results vs Fig 5 results 

V. FORECASTING FUTURE AVAILABLE SYSTEM RESOURCES 

The previous section studied the relationship between system workload and available resources. 

A further question is: can we forecast future available system resources? The answer to this 

question will be of practical importance. In this section, we will continue to use the neural network 

approach to answer this question. 

A. One-Step-Ahead Forecasting 

To forecast available system resources using neural networks, we need to first decide which 

input parameters should be provided to the network. Intuitively, these parameters should be 

relevant to the usage of system resources. Therefore, to forecast the next-step value of 

realMemoryFree, we decided to use the following five parameters: ΣcpuContextSwitch, ΣsysCall, ΣpageIn, 

systemRunningTime, and CrealMemoryFree. The first three parameters are the accumulated values 
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(accumulated from the last system startup to the present time) of cpuContextSwitch, sysCall, and 

pageIn, respectively. Note that accumulated rather than present values of the workload variables 

are used, and this is because of concerns of the impact of software aging: available system 

resources are not only related to the current system workload, but also related to accumulated error 

conditions caused by historical activities since the last system startup. For the same reason, a forth 

parameter systemRunningTime is included, which refers to the running time since the system was 

last started. The fifth parameter CrealMemoryFree refers to the current value of realMemoryFree. This 

parameter is included because we believe that the value of realMemoryFree at time slot ti+1 is 

related to its previous value at time slot ti. Note that we did not include the accumulated value of 

realMemoryFree as an input parameter because the current value of realMemoryFree has already 

reflected the effect of historical memory leaks. As an example of illustration, suppose the current 

time is 10:00 pm and the system was last restarted at 1:00 pm, to forecast the value of 

realMemoryFree at the next observation point (that is, 10:10 pm), our approach will use the 

following data: accumulated values of the three workload variables (accumulated from 1:00 pm to 

10:00 pm), running time since the last startup (that is, nine hours and ten minutes), and the value of 

realMemoryFree at time 10:00 pm. Similarly, to forecast the next-step value of usedSwapSpace, 

we decided to use the following five parameters: ΣcpuContextSwitch, ΣsysCall, ΣpageIn, 

systemRunningTime, and CusedSwapSpace.  

We first applied this approach to the Rossby data set. As explained previously, the whole 

Rossby data set can be divided into a few segments, each of which records observations from 

system startup to system reset. We used one of these segments, which contains 5,844 observations, 

to train the neural network, and another segments, which contains 1,594 observations, for testing. 

The test results based on the Rossby data set for realMemoryFree and usedSwapSpace are shown 
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in Figure 7 and Figure 8, respectively. Using visual analysis, we can find that, in both figures, the 

1,594 forecasted values predict the trends of the observed values well. In other words, the neural 

network approach is effective.  

We have also applied the same approach to the Jefferson data set, where 5,811 observations 

were used to train the neural network, and 3,016 observations were used for testing. The test 

results are shown in Figures 9 and 10. Using visual analysis, we can find that the observed values 

can generally be tracked well by the neural network in both figures. These results on Jefferson 

confirm that our approach is effective for forecasting available system resources. 

The results of Figures 7 to 10 are further analysed quantitatively as summarized in Table 3. All 

four correlation coefficients are well above 0.9 with p-values below 0.001. This means that there is 

a strong and statistically significant positive correlation between the observed and predicted values 

in all four figures. In other words, our approach is effective. 

 

Table 3. Quantitative analysis of the test results shown in Figures 7 to 10 

Figure RMSE Pearson’s correlation 
coefficient (r) 

p-value (two-tailed) 

Fig. 7 0.1118 0.935 p<0.001 
Fig. 8 0.0838 0.940 p<0.001 
Fig. 9 0.0275 0.992 p<0.001 
Fig. 10 0.0439 0.975 p<0.001 
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Fig. 7. A comparison of one-step-ahead forecasted and observed results for realMemoryFree (on the Rossby data 
set)  
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Fig. 8. A comparison of one-step-ahead forecasted and observed results for usedSwapSpace (on the Rossby data set) 

 

Fig. 9. A comparison of one-step-ahead forecasted and observed results for realMemoryFree (on the Jefferson data 
set) 
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Fig. 10. A comparison of one-step-ahead forecasted and observed results for usedSwapSpace (on the Jefferson 
data set) 
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realMemoryFree. Among the five parameters, systemRunningTime is known, and we can feed 

back the forecasted value of CrealMemoryFree (for time slot ti+1) to the network as its estimated value.  

To provide estimated values for the remaining three parameters, namely ΣcpuContextSwitch, ΣsysCall, 

and ΣpageIn, we applied the neural network to forecast each of these values. Without loss of 

generality, let us consider ΣcpuContextSwitch. To forecast the value of ΣcpuContextSwitch at time slot ti+1, we 

provided the network with four input parameters, namely the values of ΣcpuContextSwitch, ΣsysCall, and 

ΣpageIn observed at time slot ti, and systemRunningTime. We believe that all these four parameters 

can have an impact on the value of ΣcpuContextSwitch at time slot ti+1. We applied the same data in our 

experiment, that is, 5,844 observations for training and 1,594 observations for testing using the 

Rossby data set; and 5,811 observations for training and 3,016 observations for testing using the 

Jefferson data set. The test results are excellent: the values of ΣcpuContextSwitch, ΣsysCall, and ΣpageIn can 

all be quite accurately forecasted in both the Rossby and the Jefferson servers. An example of the 

test results is given in Figure 11. We note that it is much easier to forecast the accumulated values 

of the workload variables than to forecast their individual values at each time slot. This is because 

the curvature of accumulated values is much smoother than that of the individual values. 
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Fig. 11. A comparison of forecasted and observed results for ΣcpuContextSwitch (on the Rossby data set) 
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Table 4. Quantitative analysis of the test results shown in Figures 12 to 15 

Figure RMSE Pearson’s correlation 
coefficient (r) 

p-value (two-tailed) 

Fig. 12 0.2755 0.894 p<0.001 
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Fig. 14 0.0384 0.988 p<0.001 
Fig. 15 0.0549 0.962 p<0.001 
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We can compare the accuracy of one-step-ahead and two-step-ahead forecasting by comparing 

Figures 7, 8, 9, and 10 against Figures 12, 13, 14, and 15, respectively. A visual analysis can reveal 

that the accuracy of two-step-ahead forecasting is not as good as that of one-step-ahead forecasting. 

We can further compare the respective rows of Table 3 and Table 4: the RMSE values 

one-step-ahead forecasting increased from Table 3’s 0.1118, 0.0838, 0.0275, and 0.0439 to Table 

4’s 0.2755, 0.0918, 0.0384, and 0.0549, respectively. Furthermore, all correlation coefficients 

decreased. In short, both visual and quantitative analyses show that the accuracy of two-step-ahead 

forecasting has dropped.  Nevertheless, in all of the two-step-ahead forecasting results, the trends 

of the observed values can still be reasonably tracked, and there is still a strong positive correlation 

between the forecasted and observed values with a strong statistical significance. It can be 

expected that, for n-step-ahead forecasting, the accuracy will decrease when n increases. 

 

Fig. 12. A comparison of two-step-ahead forecasted and observed results for realMemoryFree 
(on the Rossby data set) 
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Fig. 13. A comparison of two-step-ahead forecasted and observed results for usedSwapSpace  

(on the Rossby data set) 

 
Fig. 14. A comparison of two-step-ahead forecasted and observed results for realMemoryFree  

(on the Jefferson data set) 
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Fig. 15. A comparison of two-step-ahead forecasted and observed results for usedSwapSpace  
(on the Jefferson data set) 

 

VI. CONCLUSION AND FUTURE WORK 
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Jefferson, which provided different services with different configurations. The experimental 

results on the data sets from both servers show that the proposed method is effective. Nevertheless, 

the generalization of our approach is still threatened by the use of data sets from only two servers. 

Control for this threat can be achieved only through additional studies using different servers in 

different environments. Another future research topic is to apply the neural network approach to 

investigate the influence of other factors on software aging. 
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