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Generalized Closest Substring Encryption

Abstract.

We propose a new cryptographic notion called a generalized closest substring encryption. In this notion, a ciphertext
encrypted with a string S can be decrypted with a private key of another string S′, if there exist a substring of S, i.e. Ŝ,
and a substring of S′, i.e. Ŝ′, that are “close” to each other measured by their “overlap distance”. The overlap distance
between Ŝ and Ŝ′ is the number of identical positions at which the corresponding symbols are the same. In comparison
with other encryption systems, the closest notion is the Fuzzy-IBE proposed by Sahai and Waters. The main difference is
that the fuzzy-IBE measures the overlap distance between S and S′, while ours measures the overlap distance of all of their
substrings (including the complete string), and we take the maximum value among those. The overlap distance between
their substrings will measure the similarity of S and S′ more precisely compared to the overlap distance between the two
complete strings. We note that embedding this overlap distance in an encryption is a challenging task, in particular in order
to achieve a practical scheme. Therefore, we invent a new approach to develop a practical generalized closest substring
encryption system. The novelty of our approach relies on the way we generate ciphertext and private key representing the
complete string so that they can still measure the overlap distance of substrings. The size of ciphertext and private key
grow linearly only in the length of the input string. We prove the security in the selective model under a generalization of
decision q-Bilinear Diffie-Hellman Exponent (BDHE) assumption.

Keywords: Encryption, Closest Substring Problem

1 Introduction

Pattern matching problem has been primarily used in many computational biology applications. In this
work, we investigate an important class of pattern matching problem, namely the closest substring problem
in the context of encryption. The closest substring problem [21] is formalized as follows. Given k strings
S1, S2, · · · , Sk over an alphabet Σ and integers L, dH , we are to find a string S (of length L) and a substring
of each Si (of the same length L), denoted as Ŝi, such that the Hamming distance between S and each Ŝi is
at most dH . That is, the number of identical positions at which the corresponding symbols are the same is
at least d, where d = L − dH . The value d is known as the “overlap distance” (which is the similar notion
used in [30]). The closest substring problem has been found very useful in bioinformatics, such as primer
design [20, 27], genetic probe design [18], antisense drug design [11], and motif finding [10], as it can be
used to measure the similarity between two strings more precisely via their substrings compared to other
measurements like measuring the overlap distance between two complete strings.

In this work, we are motivated to equip an encryption with a closest substring measurement, which is
a generalization of the closest substring problem. Informally speaking, an encryptor constructs a ciphertext
by encrypting a message using a string S and broadcasts it to all recipients. A recipient of the ciphertext
can decrypt it with a private key of string S′, if and only if the overlap distance between S and one of the
substrings of S′ is at least d. A potential application scenario of this encryption exists in bioinformatics.
The string S represents a DNA pattern associated with some disease or some specific pattern, while S′ is an
individual’s DNA sequence. A sensitive message is encrypted with the string S and the encryptor wants to
ensure that only the owner of the DNA sequence S′ that matches the pattern S under the closest substring
measurement can decrypt the ciphertext.

To measure similarity of the two strings more precisely, we consider the measurement on their sub-
strings. Subsequently, we generalize the decryption condition where the ciphertext can be decrypted if and
only if the overlap distance between one of the substrings of S and one of the substrings of S′ is at least d,
and hence, the notion of generalized closest substring encryption. This generalization allows us to acquire
substrings with a larger overlap distance compared to the closest substring problem between a string and a
substring. As an example, consider two strings1 S = ATCGT and S′ = TCGTATGGA. We find that

1 The strings used in this example are taken from letters used in DNA molecules, and therefore Σ = {G,A, T,C}, where they
denote Guanine, Adenine, Thymine and Cytosine, respectively.



the overlap distance between S and a substring of S′ is at most three (the substring of S′ is ATGGA, and
hence, the overlap distance is obtained from ATCGT and ATGGA), but the overlap distance between a
substring of S (i.e, TCGT) and a substring of S′ (i.e, TCGT) is four.

The closest cryptographic primitive to the generalized closest substring encryption is the fuzzy identity-
based encryption (IBE) [30] introduced by Sahai and Waters. Fuzzy-IBE allows a ciphertext encrypted with
a string S to be decrypted with a private key of string S′, if and only if the overlap distance between S and
S′ is at least d. We notice that this distance measurement is not suitable for distance measurement between
substrings. In the example above, when we use the definition of an overlap distance between S = ATCGT
and S′ = TCGTATGGA as defined by Sahai and Waters [30], we will obtain zero and then judge these
two strings as irrelevant. This is because the comparison is performed between the string ATCGT and
TCGTA only. In the following table, we list the comparison of decryption conditions among fuzzy-IBE,
closest substring encryption (CSE) and generalized closest substring encryption (GCSE).

Encryption Notions Decryption Conditions d ≤ dX
Fuzzy IBE dF = the overlap distance between S and S′.

CSE dC = the maximum value of overlap distance between S and a substring of S′.
GCSE dG = the maximum value of overlap distance between a substring of S and a substring of S′.

Table 1. Various encryption notions. Here, we assume a ciphertext is encrypted with a string S and we want to decrypt the ciphertext
using a private key of another string S′, where d denotes a threshold value and dX is the defined distance in the corresponding
encryption notion. As an example, let S = ATCGT and S′ = TCGTATGGA. We have dF = 0, dC = 3 and dG = 4. The
definition of dG measures the similarity of S and S′ more precisely than the other two definitions.

Trivial Construction A trivial construction of GCSE can be obtained by modifying fuzzy-IBE. In compar-
ison with fuzzy-IBE, the difficulty of constructing a GCSE system is the fact that we do not know which two
substrings will produce the overlap distance larger than the threshold value until both strings are provided.
To address this problem, we can split the string into many independent strings. Suppose n is the length of
string. Let S = s1s2 · · · sn and the i-th substring of S be Ŝ[i] = sisi+1 · · · sn, where s denotes a symbol
from an alphabet. More precisely, the trivial construction works as follows. We split the string S into the set
of strings {Ŝ[1], Ŝ[2], · · · , Ŝ[n]} and S′ into the set of strings {Ŝ′[1], Ŝ

′
[2], · · · , Ŝ

′
[n]}. To encrypt a message with

S, we generate all ciphertexts of fuzzy-IBE encrypted with all produced strings of S. Similarly, we compute
private keys of fuzzy-IBE on all produced strings of S′. If there exist a substring Ŝ of S and a substring Ŝ′ of
S′ where their overlap distance is at least d, the recipient of ciphertexts will select the ciphertext encrypted
with Ŝ and the private key of Ŝ′ to extract the message.

Unfortunately, the above trivial construction is inefficient and accompanied with O(n) numbers of ci-
phertexts and private keys of fuzzy-IBE. We note that the most efficient fuzzy-IBE scheme (or more gener-
ally threshold attribute-based encryption [16]) in the literature can achieve constant-size ciphertext, but the
private key size grows linearly at least in the length of total attribute number. It means this trivial construc-
tion for GCSE gives O(n2) size of private keys. Notice that O(n2)-length private key is quite impractical
especially when the encryption is proposed for the aforementioned applications. In a gene sequence, the
average length of a gene is 27 thousands [22]. If we want to generate a private key for such a long gene
sequence, we have n = 27, 000 and O(n2) is impractical in terms of implementation. Another drawback of
this trivial construction is in the encryption phase. When each ciphertext computation costs O(n) time (e.g.
[30, 16]), it requires O(n2) time in the encryption phase of GCSE. Hence, this trivial construction, although
straightforward, is undesirable.



Our Contributions We formalize the notion of Generalized Closest Substring Encryption (GCSE in short).
Briefly, a ciphertext encrypted with a string S can be decrypted with a private key of another string S′, if and
only if the overlap distance between one of the substrings of S and one of the substrings of S′ is at least d.
The number d is determined by either the key authority during key generation or an encryptor in ciphertext
generation, but in this work, when referring to the definition and construction of GCSE, we focus on the
first type, unless it is specified otherwise. We note that this encryption system does not restrict the identical
length of S and S′. It is also applicable to those scenarios where the string S′ of the private key is much
shorter than the input string S used in the encryption phase.

We invent an entirely new approach in the construction of GCSE, which is much more efficient compared
to the trivial construction. We map strings S, S′ into two specific integer strings E,K respectively, with the
same length. If there exist a substring of S and a substring of S′ such that their overlap distance is at least d,
we can find d pairs (For each pair, one is fromE and the other one is fromK) of integers such that their sums
are all equal to some specific integer. There is no restriction (e.g. identical positions) in choosing integers,
and hence we do not need to split strings S and S′ into many strings. In our construction, a ciphertext
encrypted with an n1-length string S consists of n1 + 2 group elements. A private key for an n2-length
string S′ only consists of n2 group elements. Both ciphertext and private key therefore grow only linearly
in the length of string. Our encryption and decryption also cost linear time only in the length of input string.
We prove the security of our system under the selective model. The security is based on a generalization of
decision q-Bilinear Diffie-Hellman Exponent (BDHE) assumption. Additionally, we also construct a GCSE
system of the second type, which allows flexibility for the encryptor to determine the overlap distance. The
trade-off is a bit longer ciphertext and private key in comparison to the first scheme.

1.1 Overview of Our Construction

In this section, we give a high level overview of the main ideas of our construction. For strings with alphabet
size |Σ| = c, we use an integer from the integer range [1, c] to represent each symbol. In this work, we
assume that each symbol is from the space [1, c].

Let S = s1 s2 · · · sn1 ∈ [1, c]n1 and S′ = s′1 s
′
2 · · · s′n2

∈ [1, c]n2 , where si denotes the i-th symbol
of string S. If there exist a substring of S and a substring of S′ such that their overlap distance is at least
d, denoted by CS(S, S′) ≥ d, then there exist integers a1, a2, L such that the overlap distance between the
following two L-length substrings is at least d.

dO

(
sa1+1 sa1+2 · · · sa1+L, s′a2+1 s

′
a2+2 · · · s′a2+L

)
≥ d.

In other words, we can find at least d number of identical locations (integers) {b1, b2, · · · , bd} from {1, 2, · · · , L}
such that sa1+bi = s′a2+bi for all bi ∈ {b1, b2, · · · , bd}.

The main ideas of our construction are inspired from the following observation. Let E and K be two
particular strings defined as

E = E[1]E[2] E[3] · · ·E[n1] : E[i] = c · (n1 − i)
K = K[1]K[2]K[3] · · ·K[n2] : K[i] = c · i,

whereE[i],K[i] denote the i-th symbol ofE andK, respectively. We observe that the sum ofE[a1+bi] and
K[a2 + bi] is equal to c · (n1− a1 + a2), which is independent of bi. Next, we consider E and K embedded
with S and S′ respectively, which are defined as

E = E[1]E[2] E[3] · · ·E[n1] : E[i] = c · (n1 − i) + si

K = K[1]K[2]K[3] · · ·K[n2] : K[i] = c · i− s′i.

We have E[i] +K[i′] = c · (n1 − i+ i′) + si − s′i′ . The sum of E[i] and K[i′] falls into the following two
cases associated with CS(S, S′).



– Case 1: If CS(S, S′) ≥ d. Then, there exist at least d pairs (E[i],K[i′]) with distinct i′ satisfying the
equation E[i] +K[i′] = c · j for some integer j. From the definition of CS(S, S′), they are

(
E[a1 + bi],K[a2 + bi]

)
: i = 1, 2 · · · , d, j = (n1 − a1 + a2).

– Case 2: CS(S, S′) < d otherwise. In this case, for any integer j, we found that the number of pairs
(E[i],K[i′]) satisfying E[i] +K[i′] = c · j is less than d. In particular, when si 6= s′i′ for any i and i′,
we have E[i] + K[i′] = c · (n1 − i + i′) + si − s′i′ 6= 0 (mod c). It means that the number of pairs
satisfying E[i] +K[i′] = c · j for any j is zero.

We note that the above two strings E and K have a similar classification under the overlap distance
between S and S′, where a1 = a2 = 0. If dO(S, S′) ≥ d, there exist at least d pairs (E[i],K[i′]) with distinct
i′ satisfying E[i] + K[i′] = c · j for some j. They are (E[b1],K[b1]), (E[b2],K[b2]), · · · , (E[bd],K[bd]).
Otherwise, the number of pairs (E[i],K[i′]) satisfying E[i] +K[i′] = c · j for j = n1 is less than d. The
difference is that j must be equal to n1 instead of any integer in Case 2 . Therefore, a GCSE system based
on these embedded integer strings could imply a fuzzy-IBE system if the changed definition on j in Case 2
will not affect the security.

Our GCSE construction is based on the above observation. In particular, we use embedded E in encryp-
tion for string S and embedded K in private key generation for string S′. To understand our idea clearly, we
will first introduce the generation of private key as follows.

The private key skS′ of S′ = s′1 s
′
2 · · · s′n2

is defined as gf(i)α
c·i−s′i for i = 1, 2, · · · , n2. Here, g is a

group element of pairing group with p prime order, f(x) ∈ Zp[x] is a random (d − 1)-degree polynomial
function and f(0) = τ is constant. The master secret key is (α, τ).

The ciphertext encrypted with S = s1 s2 · · · sn1 is generated as follows. The encryption algorithm first
selects a random number r ∈ Zp and computes e(g, g)r to encrypt message. Next, it generates two other
parts of ciphetext for decryptors to compute e(g, g)r. The first part of ciphertext is defined as grα

c(n1−i)+si

for all i = 1, 2, · · · , n1, where gα
l

for all potential integers l are the master public key. The second part of
ciphertext is gβr, where gβ and gβ

−1(1−ταc·j) for all j = 1, 2, · · · , 2n are the master public key.

The decryption on the ciphertext for S by using the private key skS′ is available iff CS(S, S′) ≥ d.
Let a1, a2, b1, b2, · · · , bd be integers satisfying sa1+bi = s′a2+bi . Using the result in Case 1, the decryption

algorithm first picks grα
c(n1−a1−bi)+sa1+bi from the ciphertext and gf(a2+bi)α

c(a2+bi)−s
′
a2+bi from the pri-

vate key for all bi. Then, it computes e(g, g)rf(a2+bi)α
c(n1−a1+a2) for all {b1, b2, · · · , bd}. Next, it computes

e(g, g)rf(0)α
c·(n1−a1+a2) by running the Lagrange polynomial interpolation. Finally, the decryption algorithm

picks j = n1−a1+a2 and computes e(gβr, gβ
−1(1−ταc·(n1−a1+a2))), which is equal to e(g, g)r−rτα

c(n1−a1+a2) .

The multiplication e(g, g)rf(0)α
c·(n1−a1+a2) · e(g, g)r−r·ταc(n1−a1+a2) is the final encryption key e(g, g)r,

which is used to extract the message.

The security requires that an adversary cannot decrypt a ciphertext encrypted with S using a private
key skS′ for (S′, d) if CS(S, S′) < d. In the following, we provide an intuitive analysis to show why
this security holds. Since the adversary can easily compute e(g, g)r−r·τα

c·j
from the master public key and

ciphertext for any j ∈ {1, 2, · · · , 2n}, it must be hard to compute e(g, g)r·τα
c·j

without a valid private key.

Given grα
c(n1−i)+si for any i from the ciphertext and gf(i

′)α
c·i′−s′

i′ for any i′ from the private key, the

adversary can compute e(g, g)rf(i
′)α

c(n1−i+i
′)+si−s

′
i′ . The complete computation results are provided in the



following array

e(g, g)rf(x1,1)α
1

e(g, g)rf(x1,2)α
1 · · · e(g, g)rf(x1,l1 )α

1

e(g, g)rf(x2,1)α
2

e(g, g)rf(x2,2)α
2 · · · e(g, g)rf(x2,l2 )α

2

· · ·
e(g, g)rf(x2nc,1)α

2nc
e(g, g)rf(x2nc,2)α

2nc · · · e(g, g)rf(x2nc,l2nc )α
2nc

, (1)

where 1 ≤ xi,k ≤ n1 are distinct in each row and the maximum exponent of α is not more than 2nc. In this
array, we use li to denote the number of group elements in the i-th row. IfCS(S, S′) < d, we deduce lc·j < d
for any positive integer j ∈ {1, 2, · · · , 2n} according to Case 2. The computation task of the adversary is to
compute e(g, g)rf(0)α

c·j
for any j from computation results in the array (1) where lc·j < d.

We found the above computation task is not easier than computing e(g, g)r from given group elements
e(g, g)rα

i
for all i = ±1,±2, · · · ,±q and q = 2n + 1, which is a variant of q-BDHE problem defined in

[5]. To prove this transformation, we program the function f(x) as

f(x) = wα+

2n∑
j=1

( lc·j∏
i=1

(x− xc·j,i)
wj
αc·j

)
,

where w is a random number and w−1j =
∏lc·j
i=1(0 − xc·j,i). We have f(0) = wα +

∑2n
j=1

1
αc·j

. It is
not hard to verify that each group element in the array (1) can be seen as a multi-exponentiation from
e(g, g)rα

i
for i = ±1,±2, · · · ,±q without the need of e(g, g)rα

0
. Meanwhile, e(g, g)r can be extracted

from e(g, g)rf(0)α
c·j

for any j ∈ {1, 2, · · · , 2n}. That is, if e(g, g)rf(0)α
c·j

for any j is computable from the
array (1), we are able to program the reduction to solve the q-BDHE problem.

The security assumption we finally adopt is the generalization of decision q-BDHE problem. Let h = gr.
The assumption says that it is hard to distinguish e(g, h)α

0
from a random element, when given

gα
x
, x ∈ X, hα

y
, y ∈ Y

where X,Y are two integer sets chosen by the adversary satisfying |x| ≤ q, |y| ≤ q and x+y 6= 0 for ∀x ∈
X,∀y ∈ Y . This assumption is one type of decision (P,Q, f)-general Diffie-Hellman assumptions [3].
We give a proof that the adopted assumption holds in the generic group model. The formal security proof
of our system is based on the above intuitive analysis and programmed function f(x) in each private key
simulation.

1.2 Other Related Work

Identity-based encryption is the basic form of functional encryption which is proposed from a designated
receiver. The first fully secure construction was proposed by Boneh and Franklin [4] using bilinear pairing.

Functional encryption is an emerging paradigm for public-key encryption. In a functional encryption
system a user will learn F (k,M) from decryption which is determined by the functionality F (·, ·) of the
encrypted message M and the input private key of value k issued by some authority. The beginning of func-
tional encryption can be traced back to the fuzzy-IBE [30] and attribute-based encryption (ABE) [15]. The
forms of ABE fall into Key-Policy ABE and Ciphertext-Policy ABE. In KP-ABE, a ciphertext is associated
with a set of attributes and a private key is associated with a function. The decryption will be successful
if the function accepts the set of attributes. On the contrary, in CP-ABE, a ciphertext is associated with a
function while a private key is associated with a set of attributes.

Over the past several years, there have been significant works on functional encryption including def-
inition [26, 6], adaptive security proof [19, 24], revocation of private keys [29], multi authorities [7, 8] and



the expression of function. The core of functionality has also been developed to support various operations,
such as threshold [30, 16], AND gates [9, 32], monotone span programs [15, 2], inner product [17, 23, 19,
25], circuit [13, 14] and DFA (Deterministic Finite Automata) [31]. The proposed constructions [30, 1] of
fuzzy-IBE in the literature can be seen as one type of ABE with threshold functionality. Among the existing
functional encryption schemes, fuzzy-IBE is the only notion introduced to measure a certain distance of two
strings that supports error-tolerance. There is no other encryption systems which provide a more advanced
distance measurement.

2 Definitions and Assumption

2.1 Definition of Overlap Distance Between Substrings

Let strings be over alphabet Σ with size c. We use an integer from [1, c] to denote each symbol in Σ.
Based on this knowledge, let S = s1 s2 · · · sn1 ∈ [1, c]n1 and S′ = s′1 s

′
2 · · · s′n2

∈ [1, c]n2 , where si
denotes the i-th symbol of string S. We say S and S′ have a substring with overlap distance d, denoted by
CS(S, S′) ≥ d, if there exist integers a1, a2, L such that

dO

(
sa1+1 sa1+2 · · · sa1+L, s′a2+1 s

′
a2+2 · · · s′a2+L

)
≥ d.

Here, dO(·, ·) denotes the overlap distance of two given L-length strings and is used to count the number of
identical positions at which the corresponding symbols are the same. We note that the overlap distance is
equivalent to the length of string subtracting their Hamming distance.

When CS(S, S′) ≥ d, there exist identical locations (integers) {b1, b2, · · · , bd} ⊆ {1, 2, · · · , L} such
that sa1+bi is equal to s′a2+bi for i = 1, 2, · · · , d. Let ki = a1 + bi and k′i = a2 + bi be the positions of
symbols sa1+bi and s′a2+bi in the complete string S and S′, respectively. We have

k′1 − k1 = k′2 − k2 = k′3 − k3 = · · · = k′d − kd = a2 − a1.

2.2 Definition of Generalized Closest Substring Encryption

A generalized closest substring encryption comprises the following four algorithms.

Setup The setup algorithm takes as input the security parameter and integers (n, c), where n denotes the
maximum length of string and c is the size of alphabet of strings. It returns a master public key MPK
and a master secret key MSK.

Encryption The encryption algorithm takes as input the master public key MPK, a string S with |S| ≤ n
and a message M . It outputs a ciphertext CT .

Key Generation The key generation algorithm takes as input the master secret keyMSK, a string S′ with
|S′| ≤ n and an overlap distance d. It returns a private key skS′ for (S′, d).

Decryption The decryption takes as input a ciphertext CT encrypted with S, the master public key MPK
and the private key skS′ for (S′, d). The decryption algorithm attempts to decrypt the ciphertext and
outputs the ciphertext if CS(S, S′) ≥ d. Otherwise, it simply returns the symbol ⊥.

Correctness for Generalized Closest Substring Encryption Consider all (MPK,MSK), (n, c), (S,M)
and (S′, d, skS′). Suppose CT is generated from (MPK,S,M) and skS′ is computed from (MSK,S′, d).
If CS(S, S′) ≥ d, we have the decryption on CT using the private key skS′ which will output message M .

Security for Generalized Closest Substring Encryption Without a valid private key for (S′, d) satisfying
CS(S, S′) ≥ d, it requires that an adversary knows nothing about the message in CT encrypted with S.



2.3 Definition of Security Model

We now describe the security model for the GCSE. The security model is similar to an identity-based
encryption. An adversary can only query private keys for (Si, di) satisfying CS(S∗, Si) < di when S∗

is the challenge string. Otherwise, the adversary can trivially win the game by decrypting the challenge
ciphertext by itself. The game between an adversary and a challenger is defined as follows.

Setup. The challenger first runs the setup algorithm, gives MPK to the adversary and keeps MSK by
itself.

Phase 1. The adversary makes private keys queries for any string and overlap distance (Si, di) adaptively
chosen by itself. The challenger runs the key generation algorithm and returns the private key skSi to
the adversary.

Challenge. The adversary submits a string S∗ and two messages M0,M1 for challenge. It requires that
CS(S∗, Si) < di holds for all (Si, di) queried in the phase 1. Then, the challenger flips a random coin
coin ∈ {0, 1}, and computes CT ∗ = Encrypt[S∗,Mcoin]. The challenge ciphertext CT ∗ is given to
the adversary.

Phase 2. Phase 1 is repeated with the restriction on any (Si, di) satisfying CS(S∗, Si) ≥ di.
Guess. The adversary outputs a guess coin′ of coin.

The advantage of the adversary in this game is defined as ε = Pr[coin′ = coin]− 1
2 .

Definition 1. A generalized closest substring encryption system is (t, qk, ε) semantically secure if for all t
polynomial time adversaries who make qk private key queries have a negligible advantage ε in the above
game. We say that the system is selectively secure if we need to add a selective-S phase before the setup
phase, where the adversary commits to the challenge string S∗.

2.4 Complexity Assumption

Let BG = (G,GT , e, p, g) be a bilinear group and g be a group element from G. Here, G,GT are groups
with prime order p and e is the bilinear map. The security proof of our system is based on the generalization
of q-Bilinear Diffie-Hellman Exponent problem. The q-Bilinear Diffie-Hellman Exponent problem, which
was first introduced in [5], is to compute e(h, g)α

q
, when given h, g, gα, · · · , gαq−1

, gα
q+1
, · · · , gα2q

. This
problem is equivalent to computing e(h, g) when given h, gα

i
for all i = ±1,±2, · · · ,±q. We note that

all exponents of α (i.e. 0 in the h base and ±1,±2, · · · ,±q in the g base) in the given instance are not
determined by an adversary.

In the generalization of q-Bilinear Diffie-Hellman Exponent problem (q-GBDHE in short), all exponents
of α in the given instance are conditionally determined by the adversary. In this problem, the given instance
is generated by a challenge oracle. An adversary is allowed to query two integer sets X,Y to this challenge
oracle that returns gα

x
for any x ∈ X and returns hα

y
for any y ∈ Y , where the two integer setsX,Y satisfy

the following restrictions.

– All absolute values of integers in X and Y are not larger than q.
– The sum of x and y is nonzero for ∀x ∈ X and ∀y ∈ Y .

Then, it must remain hard to compute e(g, h)α
0
.

We say that an adversary who outputs the guess on Z has advantage ε in the solving the decision q-
GBDHE problem if∣∣∣∣∣Pr [AOc(·),X,Y (Z = e(g, h)) = 0

]
− Pr

[
AOc(·),X,Y (Z = R) = 0

]∣∣∣∣∣ = ε.



The integer sets in the variant of q-BDHE problem are X = {±1,±2, · · · ,±q} and Y = {0}. Boneh,
Boyen and Goh [3] introduced a general Diffie-Hellman exponent assumption (P,Q, f)-GDHE, which has
included many assumptions including the q-BDHE assumption. Actually, our assumption is also one type
of the decision (P,Q, f)-GDHE assumptions with a specific P definition. In the Appendix, we review the
general GDHE problem and give a proof that the decision q-GBDHE assumption holds in the generic group
model.

Definition 2 (Decision q-GBDHE). We say that the decision generalization of q-Bilinear Diffie-Hellman
Exponent assumption holds with (t, ε) if no t-polynomial time adversary has a non-negligible advantage ε
in solving the problem.

3 Construction

In this construction, the authority determines the overlap distance d for input string during the key gener-
ation. A random (d − 1)-degree polynomial function f(x) ∈ Zp[x] is chosen in the key generation where
f(0) is constant for all strings. The interpolation polynomial in the Lagrange form is used for decryption.
Let ∆bi,d be the Lagrange coefficient for bi ∈ {b1, b2, · · · , bd} ∈ Zp to compute f(0). We define f(0) is
computed as f(0) =

∏d
i=1 f(bi)∆bi,d.

3.1 Algorithms

Setup The setup algorithm takes as input a security parameter 1λ and integers (n, c), where n denotes the
maximum length of string and c denotes the size of alphabet Σ. It first chooses a bilinear group BG =
(G,GT , e, p) and a random group element g ∈ G. The algorithm then chooses random α, β, τ from Zp.
Finally, for all i = 1, 2, · · · , cn and j = 1, 2, · · · , 2n, group elements gi, u0, uj , e0 are computed as follows

gi = gα
i
: i = 1, 2, · · · , cn

u0 = gβ

uj = g
1
β
(1−ταcj)

: j = 1, 2, · · · , 2n
e0 = e(g, g).

The master secret key includes (g, α, τ), and the master public key are the description of bilinear group
along with (n, c, gi, u0, uj , e0) for all i = 1, 2, · · · , cn and j = 1, 2, · · · , 2n.

Encryption The encryption algorithm takes as input the master public key, an n1-length string S =
s1 s2 · · · sn1 ∈ [1, c]n1 for any n1 ≤ n, and a message M ∈ GT . The encryption algorithm chooses a
random r from Zp and creates the ciphertext as follows.

Cm = e(g, g)−r ·M
C0 = ur0

Ci = grc(n1−i)+si : i = 1, 2, · · · , n1

The output ciphertext is CT = (Cm, C0, C1, · · · , Cn1).

Key Generation The key generation algorithm takes as input the master secret key, an n2-length string
S′ = s′1 s

′
2 · · · s′n2

∈ [1, c]n2 for any n2 ≤ n and an overlap distance d. The algorithm begins by randomly
choosing a (d − 1)-degree polynomial function f(x) ∈ Zp[x] such that f(0) = τ . Then, the algorithm



computes gc·i−s′i = gα
c·i−s′i and fi = f(i) for all i = 1, 2, · · · , n2. Finally, it computes the private key of S′

as follows.
skS′ = (sk1, sk2, · · · , skn2) =

(
gf1
c·1−s′1

, gf2
c·2−s′2

, · · · , gfn2c·n2−s′n2

)
.

Decryption Suppose that a ciphertext CT is encrypted with S and we have a private key skS′ for (S′, d)
where CS(S, S′) ≥ d. Then, there exist integers a1, a2, L such that

dO

(
sa1+1 sa1+2 · · · sa1+L, s′a2+1 s

′
a2+2 · · · s′a2+L

)
≥ d.

and sa1+bi = s′a2+bi for at least d number of locations bi in {b1, b2, · · · , bd} ⊆ {1, 2, · · · , L}.
The decryption algorithm begins by computing:

e(Ca1+bi , ska2+bi) = e
(
grc(n1−a1−bi)+sa1+bi

, g
fa2+bi
c(a2+bi)−s′a2+bi

)
= e(g, g)α

c(n1−a1+a2)rf(a2+bi).

Then, the ciphertext can be decrypted as

Cm · e
(
C0, un1−a1+a2

)
·
d∏
i=1

(
e(g, g)α

c(n1−a1+a2)rf(a2+bi)
)∆a2+bi,d

= e(g, g)−r ·M · e(g, g)r−r·ταc(n1−a1+a2) · e(g, g)rf(0)αc(n1−a1+a2)

=M.

3.2 CCA Security and Flexible Overlap Distance

The construction is proposed for chosen-plaintext security. We can extend it to chosen-ciphertext security by
applying the techniques of using simulation-sound NIZK proofs [28], or the Fujisaki-Okamoto transforma-
tion [12] based on random oracles. The corresponding security model is similar to identity-based encryption,
where it allows the adversary to make any decryption query except the challenge ciphertext.

In this construction, the overlap distance is determined by the private key generator. It will be more flex-
ible if an encryptor can decide the overlap distance in practice. That is, the encryption takes as input S and
an integer de. A private key of any string S′ can decrypt the ciphertext if CS(S, S′) ≥ de. Fortunately, our
construction can be extended to encryption with a flexible overlap distance de decided by the encryptor. We
present the construction with flexible overlap distance in the Appendix. In our construction, the encryption
takes as input (S, de) and the private key generation takes as (S′, d), where d is a fixed value for all strings
and de ≤ d. The corresponding decryption will be successful if CS(S, S′) ≥ de. The extension additionally
generates d− de group elements in ciphertext and n+ n2 + d group elements in private key.

4 Security Proof

In this section, we prove the security of our construction. To simplify the proof, we first give three lemmas
to explain why the simulation will be successful without abortion in the selective model.

Definition 1 Let n, n∗, ni, c be positive integers satisfying ni, n∗ ≤ n and 2 ≤ c. Let S∗ = s1s2 · · · sn∗ ∈
[1, c]n

∗
and Si = si1s

i
2 · · · sini ∈ [1, c]ni . Define Sij for all j = 1, 2, · · · , 2n to be subsets of {1, 2, · · · , ni},

where k ∈ Sij if there exists k∗ ∈ {1, 2, · · · , n∗} satisfying

c(n∗ − k∗) + sk∗ + c · k − sik = c · j.

Define Tik for all k = 1, 2, · · · , ni to be subsets of {1, 2, · · · , 2n}, where j ∈ Tik if k /∈ Sij .



In the above definition, Sij is defined to capture all integers {xcj,1, xcj,2, · · · , xcj,lcj} defined in the array

in Section 1.1 for string Si, and Tik is defined to capture remained exponents of α in gf(k)
c·k−sik

. We have

c(n∗ − k∗) + sk∗ + c · k − sik ≤ c(n− 1) + c+ cn− 1 = 2nc− 1 < c(2n)

holds for all k∗ and k, such that Si2n = ∅. Therefore, we have 2n ∈ Tik because k /∈ Si2n.

Lemma 1 If CS(S∗, Si) < di, we have |Sij | < di for all j = 1, 2, · · · , 2n.

Proof. Otherwise, without loss of generality, suppose Sij = {k1, k2, · · · , kdi} that has di integers. According
to the definition of Sij , there exist k∗1, k

∗
2, · · · , k∗di from {1, 2, · · · , n∗} such that

c(n∗ − k∗1) + sk∗1 + c · k1 − sik1 = c(n∗ − k∗1 + k1) + sk∗1 − s
i
k1 = c · j

c(n∗ − k∗2) + sk∗2 + c · k2 − sik2 = c(n∗ − k∗2 + k2) + sk∗2 − s
i
k2 = c · j

· · ·
c(n∗ − k∗di) + sk∗di

+ c · kdi − s
i
kdi

= c(n∗ − k∗di + kdi) + sk∗di
− sikdi = c · j

From the above equations, we have sk∗j ≡ sikj (mod c) and then deduce sk∗j = sikj for all j = 1, 2, · · · , di
from the definition of s ∈ [1, c]. Then, we also have

k∗1 − k1 = k∗2 − k2 = · · · = k∗di − kdi = n∗ − j.

dO

(
sk∗1 sk∗1+1 sk∗1+2 · · · sk∗di , s

i
k1 s

i
k1+1 s

i
k1+2 · · · sikdi

)
≥ di,

and then CS(S∗, Si) ≥ di, which is contrary to CS(S∗, Si) < di. This completes the proof of Lemma 1. �

Lemma 1 is used in programming a (di− 1)-degree polynomial function f(x) for the key generation on
Si. The following two lemmas are used to indicate that the two integer sets X,Y chosen by the simulator
will be accepted by the challenge oracle of the decision q-GBDHE problem.

Lemma 2 ∀k ∈ {1, 2, · · · , ni}, ∀j ∈ Tik and ∀k∗ ∈ {1, 2, · · · , n∗}, we have(
c · k − sik − c · j

)
+
(
c(n∗ − k∗) + sk∗

)
6= 0.

Proof. Otherwise, we have ∃k ∈ {1, 2, · · · , ni}, ∃j ∈ Tik and ∃k∗ ∈ {1, 2, · · · , n∗} satisfying(
c · k − sik − c · j

)
+
(
c(n∗ − k∗) + sk∗

)
= 0.

According to the definition of Sij and Tik, we have j ∈ Tik and then k /∈ Sij , which is contrary to k ∈ Sij from
the above equation c(n∗ − k∗) + sk∗ + c · k − sik = c · j. This completes the proof of Lemma 2. �

Lemma 3 Given any strings S∗, S1, S2, · · · , Sqk , let X and Y be two integer sets defined as

X =
{
− (4nc+ 1),−2nc

}
∪ [1, 2nc− 1] ∪ [2nc+ 1, 4nc+ 1]

∪
{
ck − sik − cj : k = 1, 2, · · · , ni, j ∈ Tik, i = 1, 2, · · · , qk

}
Y =

{
− 2nc

}
∪
{
c(n∗ − k∗) + sk∗ : k

∗ = 1, 2, · · · , n∗
}
.

We have x+ y 6= 0 holds for ∀x ∈ X,∀y ∈ Y .



Proof. Otherwise, we have ∃x∗ ∈ X and ∃y∗ ∈ Y satisfying x∗ + y∗ = 0. Let X1, X2, X3, Y1, Y2 be
subsets of X and Y defined as

X1 =
{
− (4nc+ 1),−2nc

}
X2 = [1, 2nc− 1] ∪ [2nc+ 1, 4nc+ 1]

X3 =
{
ck − sik − cj : k = 1, 2, · · · , ni, j ∈ Tik, i = 1, 2, · · · , qk

}
Y1 =

{
− 2nc

}
Y2 =

{
c(n∗ − k∗) + sk∗ : k

∗ = 1, 2, · · · , n∗
}
.

We have

−2nc ≤ ck − sik − cj ≤ cn− 1− c ≤ 2nc− 1

1 ≤ c(n∗ − k∗) + sk∗ ≤ c(n∗ − 1) + c ≤ cn.

Therefore, the only potential x∗ ∈ X, y∗ ∈ Y satisfying x∗ + y∗ = 0 is choosing x∗ from X3 and y∗ from
Y2. However, according to Lemma 2, we have x+y 6= 0 for ∀x ∈ X3,∀y ∈ Y2. Therefore, x∗, y∗ satisfying
x∗ + y∗ = 0 do not exist. This completes the proof of Lemma 3. �

In our proof, the simulation of private key and challenge ciphertext are closely related to integers defined
in Lemma 3. With this property, the simulator is able to get all group elements from the challenge oracle of
decision q-GBDHE problem to complete simulation. Our proof is completed in the following theorem.

Theorem 1 Suppose the Decision q-GBDHE assumption holds with (ε, t). Then, no adversary can break
our construction with (ε, qk, t

′) under the selective model, where q = 4nc+ 1 and t′ = t−O(qkn
2).

Proof. Suppose we have an adversary A with advantage ε in the selective game against our construction.
Then, we construct a reduction algorithm B that solves the decision q-GBDHE problem with advantage ε.
B runs A and simulates the security game as follows.

Selective-S The adversary declares a string S∗ for challenge where n∗ ≤ n. Let S∗ = s1 s2 s3 · · · sn∗ . B
first defines two integer sets X∗, Y ∗ as follows

X∗ =
[
− (4nc+ 1), 4nc+ 1

]
\ {−Y ∗}

Y ∗ =
{
− 2nc, c(n∗ − 1) + s1, c(n

∗ − 2) + s2, · · · , c(n∗ − n∗) + sn∗
}
,

where {−Y ∗} denotes all opposite numbers from {Y ∗}, and A \ B denotes the complement set of B in
A. Then, it queries X∗, Y ∗ to the challenge oracle to get group elements gα

x
and hα

y
for all x ∈ X∗ and

y ∈ Y ∗.
It is easy to verify that x+ y 6= 0 for ∀x ∈ X∗ and ∀y ∈ Y ∗. Let X be the integer set defined in Lemma

3, we haveX ⊆ X∗. In the following simulation, all required x in gα
x

for setup and key generation are from
the set X .

Setup Let the master secret key α of GCSE scheme be the same as the secret in the decision q-GBDHE
problem. Taking as input integers (n, c), the reduction algorithm first chooses random wβ, wτ from Zp and
sets β, τ to be

β = wβα
−2nc, τ = wτα+

2n∑
l=1

1

αc·l
.



Then, the master public key can be re-written into

gi = gα
i
: i = 1, 2, · · · , cn

u0 = gβ = (gα
−2nc

)wβ

uj = g
1
β
(1−ταcj)

= g
− 1
β
(wταcj+1+

∑2n
l=1,l 6=j

1

αcl−cj
)

=
(
gα

2nc+cj+1
)−wτ

wβ ·
2n∏

l=1,l 6=j

(
gα

2nc+cj−cl
)− 1

wβ : j = 1, 2, · · · , 2n

e0 = e(g, g) = e
(
gα
−(4nc+1)

, gα
4nc+1

)
,

where the exponents of α in gi and uj satisfy

1 ≤ 1, 2, · · · , cn ≤ 2nc− 1

2nc+ 1 ≤ 2nc+ cj + 1 ≤ 4nc+ 1

1 ≤ 2nc+ cj − cl ≤ 4nc+ 1

2nc+ cj − cl 6= 2nc.

The integers x in all above related to gα
x

are from {−(4nc+1),−2nc}, [1, 2nc−1] and [2nc+1, 4nc+1].
Finally, the simulator computes the master public key using gα

x
and the above re-written structures.

The reduction algorithm embeds the unknown secret α into the master public key and randomize other
secret keys β, τ using wβ, wτ . They are therefore random and independent from the view of adversary.

Key Generation We now describe how the reduction algorithm can simulate a private key for (Si, di) where
CS(S∗, Si) < di. The most complicated part of key simulation is the choice of (di − 1)-degree polynomial
function f(x) ∈ Zp[x].

Let Si = si1 s
i
2 · · · sini . The private key of Si is

(sk1, sk2, · · · , skni) =
(
gf1
c·1−si1

, gf2
c·2−si2

, · · · , gfni
c·ni−sini

)
,

where

skk = gfk
c·k−sik

= gfk·α
c·k−sik = gα

c·k−sik ·f(k), f(0) = wτα+
2n∑
j=1

1

αc·j
.

That is, the private key of each skk is computed from a mutli-exponentiation of gα
xi . To respond the private

key query, we must make sure that all xi are in X∗ in order to simulate the private key.
The exponent of skk might contain αc·k−s

i
k−c·j for some j = 1, 2, · · · , 2n. According to Lemma 3, all

queries on integers c ·k−sik− c · j for those j ∈ Tik are within X∗. Therefore, we must eliminate all queries

to get gα
c·k−sik−c·j for other j /∈ Tik (i.e. j ∈ {1, 2, · · · , 2n} \Tik). Suppose fk ·αc·k−s

i
k in the simulation can

be re-written into

fk · αc·k−s
i
k =

2n∏
j=1

Ajα
c·k−sik−cj =

∏
j∈Tik

Ajα
c·k−sik−cj +

∏
j /∈Tik

Ajα
c·k−sik−cj ,

where Aj are coefficients. We don’t need gα
c·k−sik−c·j for those j /∈ Tik if Aj is equal to zero.

We achieve this property by programming the polynomial function
∏
xi∈Sij

(x− xi) with regard to 1
αc·j

.
Let Fj(x) be

Fj(x) = αc·k−s
i
k

∏
xi∈Sij

(x− xi)
1

αc·j
= αc·k−s

i
k−c·j

∏
xi∈Sij

(x− xi).



When j /∈ Tik, we have k ∈ Sij (Definition 1) such that

Fj(k) = αc·k−s
i
k−c·j

∏
xi∈Sij

(k − xi) = 0 · αc·k−sik−c·j = 0.

When CS(S∗, Si) < di, we have |Sij | < di according to Lemma 1 such that Fj(x) is a polynomial function
with degree di − 1 at most. This means we can embed such a polynomial function in the (di − 1)-degree
polynomial function f(x).

B starts by randomly choosing integer sets Uij for all j = 1, 2, · · · , 2n with di − 1− |Sij | elements from
Z∗p \ {1, 2, · · · , n}, and computing wj as

wj =
( ∏
xi∈Sij∪Uij

(0− xi)
)−1
6= 0.

Next, B sets the polynomial function f(x) for Si as

f(x) = wτα+
2n∑
j=1

( ∏
xi∈Sij∪Uij

(x− xi)
wj
αc·j

)
.

If
∑2n

j=1
wj
αc·j

= 0, we deduce w2n = −
∑2n−1

j=1 wjα
c(2n−j). Then, we can immediately solve the hard

problem by computing e(g, h) as

e(g, h) = e
( 2n−1∏

j=1

g−wjα
4nc−cj

, hα
−2nc

) 1
w2n ,

from given instance where 2nc+1 ≤ 4nc− cj ≤ 4nc+1. Otherwise, f(x) is a (di−1)-degree polynomial
function and f(0) = τ . The exponent fk · αc·k−s

i
k of skk satisfies

αc·k−s
i
kf(k) = wτα

c·k−sik+1 +
2n∑
j=1

( ∏
xi∈Sij∪Uij

wj(k − xi)αc·k−s
i
k−c·j

)

= wτα
c·k−sik+1 +

2n∑
j=1

(
Ajα

c·k−sik−c·j
)

= wτα
c·k−sik+1 +

∑
j∈Tik

Ajα
c·k−sik−c·j .

We have 1 ≤ ck − sik + 1 ≤ 2nc− 1 and then{
ck − sik + 1, c · k − sik − c · j : k = 1, 2, · · · , ni, j ∈ Tik

}
⊆ X∗.

Finally, B computes the private key skk of sik for Si as

skk =
(
gα

c·k−sik+1
)wτ
·
∏
j∈Tik

(
gα

ck−sik−c·j
)Aj

.



Challenge The adversary returns M0,M1 ∈ GT for challenge on the challenge string S∗ = s1s2 · · · sn∗ .
The reduction algorithm randomly chooses coin ∈ {0, 1} and creates the ciphertext CT ∗ as

CT ∗ = (Cm, C0, C1, C2, · · · , Cn∗)

=
(
Z−1 ·Mcoin, (hα

−2nc
)wβ , hα

c(n∗−1)+s1
, hα

c(n∗−2)+s2
, · · · , hα

c(n∗−n∗)+sn∗
)
.

Let r = loghg , if Z = e(g, h), we have

Z−1 ·Mcoin = e(g, g)−r ·Mcoin

(hα
−2nc

)wβ = gβr = ur0

hα
c(n∗−i)+si = grc(n∗−i)+si

such that CT ∗ is an encryption of GCSE for Mcoin.

Guess The adversary A eventually returns a guess coin′ on coin. If coin′ = coin, the reduction algorithm
B outputs 1 to guess that Z = e(g, h); Otherwise, it outputs 0 to indicate that Z is a random element in GT .

This completes the reduction proof of our construction. According to Lemma 3 and the simulation,
B perfectly simulates private keys and the challenge ciphertext. If Z = e(g, h), CT ∗ is a valid GCSE
encryption on Mcoin and A will guess coin correctly with probability 1

2 + ε, where ε is the advantage
of adversary. When Z is a random element in GT , CT ∗ can be seen as a one-time encryption on Mcoin.
The ciphertext reveals no information about coin to the adversary, and the adversary will guess coin with
probability 1/2 only. Therefore, the reduction algorithm can solve the decision q-GBDHE problem with
advantage ε. The simulation time is mainly dominated by the key simulation, where each skk requires O(n)
point multiplications in G. We therefore prove the Theorem 1. �

5 Conclusion

The closest substring problem is a useful pattern matching problem, which measures the similarity of two
given strings more precisely via their substrings compared to others like measuring the overlap distance be-
tween two complete strings. We proposed a new type of encryption system motivated by this measurement.
In this system, a ciphertext encrypted with a string S cannot be decrypted with a private key of string S′,
unless the overlap distance between one of the substrings of S and one of the substrings of S′ is at least
d, which is either determined by the key authority or the encryptor. We proposed concrete schemes of gen-
eralized closest substring encryption systems, which are efficient and practical. Both ciphertext and private
key grow linearly only in the length of string. We proved the security of our systems in the selective model
under the generalization of q-Bilinear Diffie-Hellman problem.
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16. Herranz, J., Laguillaumie, F., Ràfols, C.: Constant size ciphertexts in threshold attribute-based encryption. In: Nguyen, P.Q.,
Pointcheval, D. (eds.) Public Key Cryptography 2010. LNCS, vol. 6056, pp. 19–34. Springer, Heidelberg (2010)

17. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

18. Lanctôt, J.K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection problems. Inf. Comput. 185(1), 41–55 (2003)
19. Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: Attribute-based en-

cryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

20. Lucas, K., Busch, M., Mossinger, S., Thompson, J.A.: An improved microcomputer program for finding gene- or gene family-
specific oligonucleotides suitable as primers for polymerase chain reactions or as probes. Computer Applications in the Bio-
sciences 7(4), 525–529 (1991)

21. Marx, D.: The closest substring problem with small distances. In: FOCS 2005. pp. 63–72. IEEE Computer Society (2005)
22. Morse, S.P.: Selected Lectures on Genealogy: An Introduction to Scientific Tools, chap. DNA to genetic genealogy, pp. 57–82.

Weizmann Institute of Science, Rehovot, Israel (2013) (http://www.stevemorse.org/genetealogy/dna.htm)
23. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products. In: Matsui, M. (ed.) ASIACRYPT. LNCS,

vol. 5912, pp. 214–231. Springer, Heidelberg (2009)
24. Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption.

In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)
25. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner product encryption. In: Pointcheval, D., Johans-

son, T. (eds.) EUROCRYPT. LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012)
26. O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint Archive 2010, 556 (2010)
27. Proutski, V., Holmes, E.C.: Primer master: a new program for the design and analysis of pcr primers. Computer Applications

in the Biosciences 12, 253–255 (1996)
28. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: FOCS 1999. pp. 543–

553. IEEE Computer Society (1999)
29. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext delegation for attribute-based encryption. In: Safavi-

Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012)
30. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–

473. Springer, Heidelberg (2005)
31. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.

7417, pp. 218–235. Springer, Heidelberg (2012)
32. Zhou, Z., Huang, D.: On efficient ciphertext-policy attribute based encryption and broadcast encryption: extended abstract. In:

ACM Conference on Computer and Communications Security 2010. pp. 753–755. ACM (2010)

Appendix A: Generic Security of Decision q-GBDHE Assumption

In this section, we prove the intractability of the decision q-GBDHE problem involved in the decision
(P,Q, f)-GDHE problem [3]. We first review the definition of this problem.



Definition 3 (Decision (P,Q, f)-GDHE Problem). Given the tuple(
gP (x1,x2,···,xm), e(g, g)Q(x1,x2,···,xm), Z

)
,

decide whether Z = e(g, g)f(x1,x2,···,xm). Here, P,Q ∈ Fp[X1, X2, · · · , Xm]
s are two s-tuples of m-variate

polynomials over Fp, and f ∈ Fp[X1, X2, · · · , Xm].

Since P,Q are just two lists containing s multivariate polynomials, we can write them into P =
(p1, p2, · · · , ps) and Q = (q1, q2, · · · , qs), where p1 = q1 = 1. We say f depends on (P,Q), denoted
by f ∈ 〈P,Q〉, if there exist {ai,j}1≤i,j≤s and {bi}1≤i≤s such that

f =
∑

1≤i,j≤s
ai,j · pi · pj +

∑
1≤i≤s

biqi.

The decision (P,Q, f)-GDHE problem is proved to be hard in [3] when f /∈ 〈P,Q〉.

The adopted q-GBDHE problem is to decide whether Z = e(g, h) when given

{gαx : x ∈ X}, {hαy : y ∈ Y },

where |x|, |y| ≤ q and x + y 6= 0 for any x ∈ X and y ∈ Y . Let h = gη, X = {x′1, x′2, · · · , x′qx} and
Y = {y′1, y′2, · · · , y′qy}. Our problem can be reformulated as the (P,Q, f)-GDHE problem where

P =
(
αx
′
1 , αx

′
2 , · · · , αx′qx , ηαy′1 , ηαy′2 , · · · , ηαy

′
qy

)
Q = 1

f = η,

and thus m = 2 and s = qx + qy. To claim the hardness of the q-GBDHE problem, we must prove
f /∈ 〈P,Q〉. By making all possible products of two polynomials from P that are multiples of η, we want to
prove no linear combination among the polynomials from the following list R below leads to f .

R =
(
ηαx

′
i+y
′
j : x′i ∈ X, y′j ∈ Y

)
.

Note that all exponents of α in the R list are non-zero according to the definition of the q-GBDHE problem,
and f is equivalent to ηα0. We therefore have f , which is independent of any linear combination from R
and f /∈ 〈P,Q〉.

Appendix B: Construction with Flexible Overlap Distance

Algorithms

Setup As in the basic scheme, the setup algorithm generates the basic master secret key and master pubic
key. In addition, it randomly chooses γ ∈ Zp and computes vk = gγα

ck
for all k = 1, 2, · · · , n. The master

secret key includes (g, α, τ, γ), and the master public key are the basic master public key (n, c, gi, u0, uj , e0)
along with vk for all k = 1, 2, · · · , n.

Encryption The encryption algorithm takes as input the master public key, a string S = s1s2 · · · sn1 ∈
[1, c]n1 for any n1 ≤ n, an integer de(≤ d) and a message M ∈ GT . As in the basic scheme, the encryption
algorithm generates the basic ciphertext CT . Additionally, using the chosen random number r in creating
CT , the algorithm computes(

CFde+1, C
F
de+2, · · · , CFd

)
=
(
vrde+1, v

r
de+2, · · · , vrd

)
.



The output ciphertext is CTF = (CT,CFde+1, C
F
de+2, · · · , CFd ).

Key Generation As in the basic scheme, the key generation algorithm generates the basic private key skS′
for string S′. Let f(x) be the (d − 1)-polynomial function chosen in the basic private key generation. In
addition, the algorithm computes

{skFl } =
{
gγ
−1αc·lf(2n+l) : l = 1− d,−d, · · · , n+ n2 − 1

}
.

The output private key skFS′ of S′ is composed of skS′ and {skFl }.

Decryption Suppose that a ciphertext CTF is encrypted with (S, de) and we have a private key skS′ of S′

satisfying CS(S, S′) ≥ de. As in the basic scheme, the decryption algorithm computes

e(Ca1+bi , ska2+bi) = e
(
grc(n1−a1−bi)+sa1+bi

, g
fa2+bi
c(a2+bi)−s′a2+bi

)
= e(g, g)α

c(n1−a1+a2)rf(a2+bi)

for all bi ∈ {b1, b2, · · · , bde} ⊆ {1, 2, · · · , L}. Then, for all i = de+1, de+2, · · · , d, the algorithm computes

e(CFi , sk
F
n1−a1+a2−i) = e

(
gγα

c·ir, gγ
−1αc(n1−a1+a2−i)f(2n+n1−a1+a2−i)

)
= e(g, g)α

c(n1−a1+a2)rf(2n+n1−a1+a2−i).

Let a2 + bi = 2n + n1 − a1 + a2 − i for all i = de + 1, de + 2, · · · , d. Finally, the algorithm decrypts the
ciphertext the same as the basic scheme by

Cm · e
(
C0, un1−a1+a2

)
·
d∏
i=1

(
e(g, g)α

c(n1−a1+a2)rf(a2+bi)
)∆a2+bi,d

= e(g, g)−r ·M · e(g, g)r−r·ταc(n1−a1+a2) · e(g, g)r·f(0)αc(n1−a1+a2)

=M.

Correctness

For all 0 ≤ n1, a1, a2 ≤ n, 0 ≤ d ≤ n, 1 ≤ de ≤ d and de + 1 ≤ i ≤ d, we have

1− d ≤ de − i ≤ (n1 − a1 + a2)− i ≤ n1 + n2 − de − i ≤ n+ n2 − 1

so that the encryptor can always find the key skFn1−a1+a2−i from skFS′ . Also, we have

a2 + bi ≤ n < 2n+ n1 − a1 + a2 − i.

Therefore, a2+ bi for all {b1, b2, · · · , bd} are distinct and f(0) can be computed using interpolation polyno-
mial f(a2 + bi) in the Lagrange form.

Security Proof

Definition 2 Define SFj for all j = 1, 2, · · · , 2n to be subsets of {−n + 1,−n + 2, · · · , 2n − 1}, where
l ∈ SFj if there exists l∗ ∈ {d∗e + 1, d∗e + 2, · · · , d} satisfying l + l∗ = j. Define TFl for all l =

−n+ 1,−n+ 2, · · · , 2n− 1 to be subsets of {1, 2, · · · , 2n}, where j ∈ Til if l /∈ Sij .

Lemma 4 |SFj | = d− d∗e holds for all j = 1, 2, · · · , 2n.



Proof. Given any j ∈ {1, 2, · · · , 2n} and l∗ ∈ {d∗e + 1, d∗e + 2, · · · , d}, we have

1− n ≤ j − d ≤ j − l∗ ≤ j − d∗e − 1 ≤ 2n− 1

such that
SFj =

{
j − (d∗e + 1), j − (d∗e + 2), · · · , j − d

}
and then |SFj | = d− d∗e. This completes the proof of Lemma 4. �

Lemma 5 ∀l ∈ {−n+ 1,−n+ 2, · · · , 2n− 1}, ∀j ∈ TFl and ∀l∗ ∈ {d∗e + 1, d∗e + 2, · · · , d}, we have

(l − j) + l∗ 6= 0.

Proof. Otherwise, we have ∃l ∈ {−n+1,−n+2, · · · , 2n−1}, ∃j ∈ TFl and ∃l∗ ∈ {d∗e+1, d∗e+2, · · · , d}
satisfying

(l − j) + l∗ = 0.

According to the definition of SFj and TFl , we have j ∈ TFl and then l /∈ SFj , which is contrary to l ∈ SFj
from l + l∗ = j. This completes the proof of Lemma 5. �

Lemma 6 Let X and Y be the two integer sets defined in Lemma 3. Let XF , Y F be two integer sets defined
as

XF = X ∪ {6nc+ c · k : k = 1, 2, · · · , n}

∪
{
− 6nc+ c(l − j) : l = −n+ 1,−n+ 2, · · · , 2n− 1, j ∈ TFl

}
∪
{
− 6nc+ c · l + 1 : l = −n+ 1,−n+ 2, · · · , 2n− 1

}
Y F = Y ∪

{
6nc+ c · l∗ : l = d∗e + 1, d∗e + 2, · · · , d

}
.

We have x+ y 6= 0 holds for ∀x ∈ XF ,∀y ∈ Y F .

Proof. Otherwise, we have ∃x∗ ∈ X and ∃y∗ ∈ Y satisfying x∗ + y∗ = 0. Let X4, X5, X6, Y3 be subsets
of XF , Y F defined as

X4 =
{
6nc+ c · k : k = 1, 2, · · · , n

}
X5 =

{
− 6nc+ c(l − j) : l = −n+ 1,−n+ 2, · · · , 2n− 1, j ∈ TFl

}
X6 =

{
− 6nc+ c · l + 1 : l = −n+ 1,−n+ 2, · · · , 2n− 1

}
Y3 =

{
6nc+ c · l∗ : l∗ = d∗e + 1, d∗e + 2, · · · , d

}
.

Since n ≥ 1 and c ≥ 2, we have

2nc+ 1 ≤ 6nc+ c · k ≤ 7nc

−9nc ≤ −6nc+ c(l − j) ≤ −6nc+ c(2n− 1− 1) ≤ −2nc− 1

−9nc ≤ −6nc+ c · l + 1 ≤ −6nc+ c(2n− 1) + 1 ≤ −2nc− 1

4nc+ 2 ≤ 6nc+ c · l∗ ≤ 7nc.

Therefore, ∀x ∈ X,∀y ∈ Y , we have

|x| ≤ 4nc+ 1 < y′ : ∀y′ ∈ Y3
|y| ≤ 2nc < |x′| : ∀x′ ∈ X4 ∪X5 ∪X6.



Lemma 3 says x + y 6= 0 for ∀x ∈ X and ∀y ∈ Y . Thus, the only potential x∗ ∈ X, y∗ ∈ Y satisfying
x∗ + y∗ = 0 is choosing x∗ from X5 ∪X6 and y∗ from Y3. If x∗ ∈ X5 and y∗ ∈ Y3, we have x∗ + y∗ 6= 0
according to the Lemma 5. Otherwise, x∗ ∈ X6 and y∗ ∈ Y3, we have x∗ + y∗ = 1(mod c) and then
x∗ + y∗ 6= 0. This completes the proof of Lemma 6. �

Theorem 2 Suppose the Decision q-GBDHE assumption holds with (ε, t). Then, no adversary can break
our construction with (ε, qk, t

′) under the selective model, where q = 9nc and t′ = t−O(qkn
2).

Proof. Suppose we have an adversary A with advantage ε in the selective game against our flexible con-
struction. Then, we construct a reduction algorithm B that solves the decision q-GBDHE problem with
advantage ε. B runs A and simulates the security game as follows.
Selective-S The adversary declares (S∗, d∗e) for challenge where n∗ ≤ n and d∗e ≤ d. Let S∗ = s1s2 · · · sn∗ .
Then, the reduction algorithm defines two integer sets X∗, Y ∗ as follows

X∗ =
[
− 9nc, 9nc

]
\ {−Y ∗}

Y ∗ =
{
− 2nc, c(n∗ − 1) + s1, c(n

∗ − 2) + s2, · · · , c(n∗ − n∗) + sn∗
}

∪
{
6nc+ c(d∗e + 1), 6nc+ c(d∗e + 2), · · · , 6nc+ c · d

}
.

Then, B queries X∗, Y ∗ to the challenge oracle to get group elements gα
x

and hα
y
.

We also have x + y 6= 0 for ∀x ∈ X∗ and ∀y ∈ Y ∗ and X ⊆ X∗, where X is defined in Lemma 6. In
the following simulation, all required x in gα

x
for key setup and generation are from the set X .

Setup As in the proof for the basic scheme, B simulates the basic master public key. To simulate vk = gγα
ck

for all k = 1, 2, · · · , n, B begins by randomly choosing wγ ∈ Zp and then setting γ = wγα
6nc. We have{

6nc+ c · k : k = 1, 2, · · · , n
}
⊆ X∗. Finally, it computes the additional master public keys vk as

vk = gγα
ck

= (gα
6nc+ck

)wγ : k = 1, 2, · · · , n.

Key Generation We now describe how to simulate a private key skFSi for Si = si1 s
i
2 · · · sini where

CS(S∗, Si) < d∗e. Let Sij be sets defined in Definition 1 and let SFj be sets defined in Definition 2 for all
j = 1, 2, · · · , 2n.
B starts by randomly choosing integer sets Uij for all j = 1, 2, · · · , 2n with d− 1− |Sij | − |SFj | elements

from Z∗p \ {1, 2, · · · , 4n}, and computing wj as

wj =
( ∏
xi∈SFj

(0− xi − 2n) ·
∏

xi∈Sij∪Uij

(0− xi)
)−1
6= 0.

Next, it sets the polynomial function f(x) for Si as

f(x) = wτα+

2n∑
j=1

( ∏
xi∈SFj

(x− xi − 2n) ·
∏

xi∈Sij∪Uij

(x− xi)
zj
αc·j

)
.

The same analysis as the proof for Theorem 1, we have f(x) is a (d − 1)-degree polynomial function.
Then, B simulates the basic private key skSi the same as in the Theorem 1.

Finally, to compute the extension key

skFl = gγ
−1αclf(2n+l) : l = 1− d,−d, · · · , n+ n2 − 1,



where
skFl = g

1
wγ

α−6nc+clf(2n+l)
,

and the exponent 1
wγ
α−6nc+clf(2n+ l) of skFl satisfies

1

wγ
α−6nc+clf(2n+ l)

=
wτ
wγ

α−6nc+cl+1 +

2n∑
j=1

( ∏
xi∈SFj

(2n+ l − xi − 2n) ·
∏

xi∈Sij∪Uij

wj(2n+ l − xi)α−6nc+c(l−j)
)

=
wτ
wγ

α−6nc+cl+1 +

2n∑
j=1

(
Ajα

−6nc+c(l−j)
)

=
wτ
wγ

α−6nc+cl+1 +
∑
j∈TFl

(
Ajα

−6nc+c(l−j)
)
,

B computes skFl for all l as follows.

skFl =
(
gα
−6nc+cl+1

)wτ
wγ ·

∏
j∈TFl

(
gα
−6nc+c(l−j)

)Aj
.

The simulation on the extension key will not abort since{
− 6nc+ cl + 1,−6nc+ c(l − j) : l = −n+ 1,−n+ 2, · · · , 2n− 1, j ∈ TFl

}
⊆ X∗.

Challenge The adversary returns M0,M1 ∈ GT for challenge on (S∗, d∗e). The reduction algorithm ran-
domly chooses coin ∈ {0, 1} and creates the ciphertext CT ∗F as

CT ∗F =
(
CT ∗, C∗Fd∗e+1, C

∗F
d∗e+2, · · · , C∗Fd

)
=
(
CT ∗, hwγα

6nc+c·(d∗e+1)
, hwγα

6nc+c·(d∗e+2)
, · · · , hwγα6nc+c·d

)
,

where CT ∗ is simulated the same as the proof for basic scheme.
Let r = loghg , we have

hwγα
6nc+c·i

= gwγα
6nc·αcir = gγα

cir = vri : i = d∗e + 1, d∗e + 2, · · · , d.

Therefore, the challenge cipheretext is valid for (S∗, d∗e).

Guess The adversary A eventually returns a guess coin′ on coin. If coin′ = coin, the reduction algorithm
B outputs 1 to guess that Z = e(g, h); Otherwise, it outputs 0 to indicate that Z is a random element in GT .

This completes the reduction proof of our construction. Following the similar analysis as the proof in
Theorem 1, we then prove the Theorem 2. �
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