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ABSTRACT. Mg2+/Li+ hybrid batteries have recently been constructed combining an Mg anode, 

an Li+-intercalation electrode, and an electrolyte containing both Mg2+ and Li+. These batteries 

have been reported to outperform all the previously reported magnesium batteries in terms of 

specific capacity, cycling stability, and rate capability. Herein, we report the outstanding 

electrochemical performance of Mg2+/Li+ hybrid batteries consisting of one-dimensional (1D) 

mesoporous TiO2(B) cathode, Mg anode, and an electrolyte consisting of 0.5 mol L-1 

Mg(BH4)2+1.5 mol L-1 LiBH4 in tetraglyme (TG). A highly synergetic interaction between Li+ 
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and Mg2+ ions toward the pseudo-capacitive reaction is proposed. The hybrid batteries show 

superior rate performance with 130 mAh g-1 at 1 C and 115 mAh g-1 at 2 C, together with 

excellent cycleability up to 6000 cycles.  

1. INTRODUCTION 

The rechargeable magnesium batteries feature the following competitive advantages: 1) high 

theoretical volumetric capacity (3832 and 2062 mAh cm-3 for Mg and Li, respectively), 2) low 

costs (currently 24 times cheaper than Li), and 3) high safety (unlike Li metal, Mg can be 

electrodeposited rather smoothly without dendritic growth).1, 2 They are therefore promising for 

both mobile and stationary applications, including electric vehicles and load-leveling electricity 

storage stations. The intrinsic strong coulombic interactions between bivalent Mg2+ ions and the 

host materials, however, causes sluggish Mg2+ diffusion and large polarization, and consequently, 

low Mg2+ intercalation levels and/or rapid capacity decay.3, 4 To circumvent the issues associated 

with the intercalation but still take advantage of the high capacity and high safety associated with 

Mg deposition and dissolution, Mg2+/Li+ hybrid batteries have recently been constructed 

combining an Mg anode, an Li+-intercalation electrode, and an electrolyte containing both Mg2+ 

and Li+.5-10 These batteries have been reported to outperform all the previously reported 

magnesium batteries in terms of specific capacity, cycling stability, and rate capability.  

Two key aspects have to be carefully examined when designing the Mg2+/Li+ hybrid batteries, 

i.e., the electrolyte and the cathode. The anodic stability of Mg2+/Li+ electrolyte sometime 

decreases due to the reaction between Li and Mg salts.5 For example, the anodic stability limit of 

Mg(AlCl4-nPhn)2 (all phenyl complex) in tetrahydrofuran (THF) drops to 2.5 V from 3.0 V (vs. 

Mg/Mg2+) when LiBF4 is added, because BF4
- reacts with PhMgCl to form B(Ph)4

-.5, 7 Most 
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recently, Mg(BH4)2 dissolved in TG, a potentially safer ether solvent, has been used as the 

electrolyte for rechargeable Mg batteries.11 The strong chelation arising from the five oxygen 

atoms per TG molecule results in enhanced dissociation between BH4
- and Mg2+, and thus, 

improved Mg deposition-dissolution.12, 13 LiBH4 was found to be an effective additive to 

improve the conductivity of the solution while still maintaining the anodic stability. The 0.5 mol 

L-1 Mg(BH4)2+1.5 mol L-1 LiBH4/TG solution demonstrates 2.4 V anodic stability on non-inert 

stainless steel current collector and nearly 100% coulombic efficiency for reversible Mg 

deposition and dissolution. This mixed solution displays good compatibility with Mo6S8 
11 and 

TiO2 cathode 8.  

The cathode needs to possess effective Li+ storage capability and a suitable working voltage 

that matches the electrochemical window of the electrolyte. Considering the anodic stability of 

the electrolyte (2.1 V for Mg(BH4)2+LiBH4/TG) on stainless steel current collector with 

poly(vinylidene difluoride) (PVDF) binder (The binder also has an influence on the stability of 

the electrolyte. Figure S1 in the Supporting Information), TiO2(B) is believed to be a promising 

candidate due to its high capacity and flat working voltage plateau (about 0.9 V vs. Mg) within 

the electrochemical window. Several key morphological features have been created to enhance 

the performance of TiO2(B). For example, nanostructured TiO2(B) affords stable and high rate 

charge/discharge capabilities through a surface faradic redox reaction, i.e., the pseudo-capacitive 

behavior originating from the unique sites and energetics of Li+ ion absorption and diffusion.14, 15 

1D TiO2(B) nanostructures, such as nanowires,16-19 nanotubes,20, 21 and hybrid nanostructures,22, 

23 have shown excellent performance because the 1D structure facilitates the electron transport 

along the elongated dimension and the two short dimensions ensure fast Li+ insertion-

deinsertion.24 Nanostructured mesoporous TiO2 (anatase) shows a superior high rate capability 
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duo to negligible diffusion times, enhanced local conductivities, and possibly faster phase 

transfer reactions.25 Mesopores have also been introduced into microsized TiO2(B) particles to 

accommodate strain during cycling.26 Therefore, it is ideal to employ 1D mesoporous TiO2(B) 

with these desired properties for Mg2+/Li+ hybrid batteries. 

2. MATERIALS AND METHODS 

2. 1 Preparation of TiO2 (B) 

Monoclinic TiO2(B) was prepared by a hydrothermal process followed by heat-treatment. 

Commercial fine TiO2-anatase powders (99.8%, Aldrich) were added to a 10 M NaOH aqueous 

solution. After a 30-min ultrasound and a 30-min stir, the obtained emulsion was transferred into 

a 50 mL autoclave, which was then kept in an oven at 180 °C for 72 h. After naturally cooling to 

room temperature, the resultant white precipitates were isolated from the solution by 

centrifugation. The powders were washed using 0.1 mol L-1 HCl solution and then ion-

exchanged in 0.1 mol L-1 HCl solution for 4 h to make H2Ti3O7.
19 After this, the as-obtained 

proton-exchanged titanate was washed using deionized water until the pH was 7 and then freeze 

dried for 20 h. Finally, the dried product was calcined at 400 °C for 4 h to make TiO2(B) 

nanoflakes. 

2.2 Preparation of electrolyte 

The preparation was conducted in an argon-filled glove box (Mbraun, Unilab, Germany) 

containing less than 2 ppm H2O and O2. The 0.5 mol L-1 Mg(BH4)2+1.5 mol L-1 LiBH4/TG and 

the 1.5 mol L-1 LiBH4/TG electrolytes were prepared by dissolving the predetermined amounts of 

Mg(BH4)2 (Sigma-Aldrich, 95%) and LiBH4 (J&K Scientific, 95%) in tetraglyme (TG) (Aladdin, 

further dried over 3 Å molecular sieves). 1.0 mol L-1 LiPF6 in a mixture of ethylene carbonate 

(EC) and dimethyl carbonate (DMC) (EC:DMC = 1:1, by volume) was purchased from 
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Zhangjiagang Guotai Huarong Chemical New Material Co., Ltd. The specific conductivity of the 

solutions was measured using a DDS-307A conductivity meter (Shanghai Kejin). 7Li nuclear 

magnetic resonance (NMR) spectra were recorded on a MERCURY plus 400 Nuclear Magnetic 

Resonance spectrometer (Varian, Inc., USA) while referenced to LiCl dissolved in D2O. 

2.3 Characterization 

X-ray diffraction (XRD) measurements were performed on a Rigaku diffractometer D/MAX-

2200/PC equipped with Cu Kα radiation (λ = 0.15418 nm). Textural and microtextural 

characterizations were conducted using scanning electron microscopy (SEM) on a JEOL field-

emission microscope (JSM-7401F) and transmission electron microscopy (TEM) on a JEOL 

high-resolution electron microscope (JEM-2010). N2 adsorption-desorption experiments were 

carried out at -196 °C on a ASAP 2010 M+C surface area and pore analyzer (Micromeritics, 

USA) after degassing the samples at 150-200 °C for 3 h. The ex situ Raman spectra were 

collected at room temperature with a DXR Raman microscope (Thermo Scientific) using a HeNe 

laser with a wavelength of 532 nm as the excitation source.  

2.4 Electrochemical Measurements. 

TiO2(B) cathode slurry was prepared by mixing 70 wt % active material, 20 wt % super-P carbon 

powder (Timcal), and 10 wt % poly(vinylidene fluoride) (PVDF, dissolved in N-methyl-2-

pyrrolidinone). The electrode discs with a diameter of 12 mm were prepared by following these 

steps: coating the slurry onto a stainless steel foil current collector, drying at 80 °C for 1 h, 

pressing at 2 MPa, vacuum drying at 100 °C for 4 h, and punching the foil into discs. Polished 

Mg foil was used as the anode, and CR2016 coin cells were assembled in an argon-filled glove 

box. Cyclic voltammetry measurements were performed on a CHI650C Electrochemical 
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Workstation (Shanghai, China). Galvanostatic discharge-charge measurements were conducted 

at ambient temperature on a Land battery measurement system (Wuhan, China). 

 

3. RESULTS AND DISCUSSION 

1D mesoporous TiO2(B) was prepared via a hydrothermal process followed by heat-treatment. 

The wide-angle X-ray diffraction (XRD) pattern (Figure 1a) can be indexed to the monoclinic 

TiO2(B) phase (JCPDS No. 46-1237). TiO2(B) can be readily distinguished from the anatase 

TiO2 structure by the absence of the peak at 37.8o (004).27 The well-defined peak in the small-

angle XRD pattern (inset in Figure 1a) is indicative of a mesoporous structure, which was later 

confirmed by high-resolution transmission electron microscopy (HRTEM) observation. Raman 

spectroscopy was also used, since laboratory XRD is not able to detect minor phases and 

amorphous matter. The Raman bands (Figure 1b) can be assigned to the vibrations in TiO2(B).28-

31 Characteristic peaks of anatase TiO2 at 395 and 515 cm-1 are absent,32, 33 which proves the 

formation of single phase TiO2(B). The scanning electron microscope (SEM) image in Figure 1c 

shows a general view of 1D TiO2(B), which is made up of nanoflakes with thickness of several 

tens to hundreds of nanometers and length of 2-4 μm. The TEM image (Figure 1d) reveals the 

mesoporous nature of the nanoflakes, with the HRTEM image (Figure 1e) indicating a clear 

hierarchical pore structure in the range of 2-20 nm on the surface. The resolved lattice fringes 

and fast Fourier transform (FFT) pattern (inset, Figure 1e) confirm the formation of monoclinic 

TiO2(B) (Figure S2). The mesoporosity is further confirmed by nitrogen adsorption-desorption 

analysis, which reveals a typical type IV isotherm (Figure 1f) with a clear H3-type hysteretic 

loop. The Brunauer-Emmett-Teller (BET) specific surface area is 44.27 cm2 g-1, and the pore 

volume is 0.181 cm3 g-1, which are larger than previously reported.27 The pore size distribution 
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obtained using the Barrett-Joyner-Hallenda (BJH) method (inset, Figure 1f) shows two maxima 

centered at 2 and 11.6 nm, respectively. The formation of mesopores is likely to be due to the 

water evolution during the thermal conversion from H2Ti3O7 to TiO2(B). The mesopores would 

enable good contact between the electrolyte and the cathode, and consequently enhance 

electrochemical reactions. 

 

Figure 1. (a) Wide-angle powder X-ray diffraction pattern of the as-prepared TiO2(B) matches 

well with the standard pattern (JCPDS No. 46-1237). Small-angle powder X-ray diffraction 

pattern in the inset indicates its mesoporous nature. (b) Raman spectrum reveals pure TiO2(B) 

phase. The SEM image in (c) with a higher magnification in the inset shows the TiO2(B) 

nanoflakes. TEM images in (d) and (e) indicate the porous nature of the nanoflakes; both the 
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lattice fringes (e) and the FFT pattern (inset in (e)) confirm the formation of TiO2(B). (f) 

Nitrogen adsorption-desorption isotherm of mesoporous TiO2(B) nanoflakes. The inset shows 

the pore size distribution. 

TiO2(B)|Li cells with 1.5 mol L-1 LiBH4/TG electrolyte show an S-shaped sloping voltage 

plateau on charge and discharge (Figure 2a) that is typical in the TiO2(B) system.15, 16, 22 The first 

discharge and charge capacities are 254 mAh g-1 and 213.6 mAh g-1, with an irreversible 

capacity loss (ICL) of 15.9%, which is likely caused by unwanted electrolyte degradation and 

irreversible trapping of Li+.14 The capacity observed above 1.7 V has been ascribed to either Li+ 

insertion-deinsertion into TiO2(B) nanoflakes 15 or reactions between Li+ and minor anatase TiO2 

34. We tend to agree with the former explanation, since anatase TiO2 was not observed in the as-

prepared TiO2(B). The incremental capacity in the range of 1.65-1.45 V corresponds to pseudo-

capacitive Li+ ion storage on the nanoflake surfaces, which is demonstrated in the differential 

capacity plots (Figure 2b). Upon cycling, the intercalation process becomes less obvious, while 

the pseudo-capacitive surface reaction becomes dominant, as evidenced by the increasing slopes. 

The capacitive capacity, however, gradually decreases during cycling, which may be due to the 

irreversible reaction of Li+ ions with certain sites on the nanoflakes. 

TiO2(B)|Mg cells with Mg(BH4)2+LiBH4/TG electrolyte show a plateau at approximately 0.7 

V, lower than that for the TiO2(B)|Li cells (Figure 2c), which results from the standard potential 

difference between Mg metal and Li. The initial capacities are slightly lower than in the 

TiO2(B)|Li cells, which may be due to the lower ionic conductivity of the mixed Mg2+/Li+ 

electrolyte (535 μS cm-1) compared with that of the single Li+ electrolyte (603 μS cm-1). The 

hybrid batteries, however, have much better efficiency, since the ICLs for the initial three cycles 

are 8.4%, 1.3%, and 0.8%, respectively. Considering the negligible capacity of the TiO2(B)|Mg 
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cells with 0.5 mol L-1 Mg(BH4)2/TG electrolyte (Figure S3), the capacities of TiO2(B)|Mg cells 

with Mg(BH4)2+LiBH4/TG electrolyte mainly come from reactions involving Li+ ions. The 

location of the plateaus is evident in the differential capacity plots (Figure 2d). During cycling, 

the peak at approximately 0.85 V in the first cycle shifts towards higher potential and decreases 

in intensity, implying reduced Li+ insertion-deinsertion; the peaks in the range of 0.8 - 0.5 V 

remain similar in intensity, indicative of steady pseudo-capacitive storage. The capacity in the 

low voltage region in the TiO2(B)|Mg cells with Mg(BH4)2+LiBH4/TG electrolyte (63.3% and 

68.9% capacitive contribution to the total storage for the 1st and 26th cycle, respectively) is 

larger  compared with that of TiO2(B)|Li cells with LiBH4/TG electrolyte (55.7% and 60.3% 

capacitive contribution for the 1st and 26th cycle, respectively) (shown in Figure 2b), suggesting 

a greater pseudo-capacitive contribution in the presence of Mg2+ ions. 

The steady pseudo-capacitive contribution for the mixed Mg(BH4)2+LiBH4/TG electrolyte, in 

contrast to the decreasing performance when only LiBH4 was used, inspired us to find out if the 

Mg2+ ions participate in reactions during cycling. In other words, activation may be required for 

Mg2+ ions to be electrochemically active towards the TiO2(B) electrode. Figure S4 shows the 

discharge-charge curves of TiO2(B)|Mg cells with 0.5 mol L-1 Mg(BH4)2/TG electrolyte at 0.1 C. 

The TiO2(B) electrodes were respectively obtained by disassembling TiO2(B)|Li cells with 

LiBH4/TG electrolyte, and TiO2(B)|Mg cells with Mg(BH4)2+LiBH4/TG electrolyte after 26 

cycles, and then carefully washing them in TG to remove the electrolyte salts. There are 

negligible capacities for the TiO2(B)|Mg(BH4)2/TG|Mg cells, meaning that Mg2+ ions can neither 

be intercalated into TiO2(B) nor participate in any pseudo-capacitative reaction when only 

Mg(BH4)2 was used. These tests rule out the ‘activation’ of TiO2(B) so that it becomes 

electrochemically active towards Mg2+ ions. The ex situ XRD (Figure S5) and Raman patterns 
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(Figure S6) of TiO2(B) at specific discharge and charge states show no noticeable difference 

when cycled in LiBH4/TG and in Mg(BH4)2+LiBH4/TG, respectively, which means that the 

capacity is predominantly from pseudo-capacitive reactions on the surface rather than the 

insertion reaction, which is consistent with the literature.14  

 

Figure 2. (a) Discharge-charge profiles for selected cycles at 0.1 C (1 C = 335 mA g-1) of the 

TiO2(B)|Li cells with 1.5 mol L-1 LiBH4/TG electrolyte, and (b) the corresponding differential 

capacity plots; (c) discharge-charge profiles for selected cycles of the TiO2(B)|Mg cells with 0.5 

mol L-1 Mg(BH4)2 + 1.5 mol L-1 LiBH4/TG electrolyte, and (d) the corresponding differential 

capacity plots. The peak intensity in (d) levels off during cycling, indicating a steady 

contribution from the pseudo-capacitative reaction, in contrast to the degradation in (b), as 

evidenced by the decreasing peak intensity. 
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The effects of the electrolytes on the electrochemical performance of the 1D mesoporous 

TiO2(B) nanoflakes was also investigated. Here, we used the optimal concentration considering 

the solubility and the performance. After 200 cycles, the TiO2(B)|Li cells show a higher capacity 

of ~220 mAh g-1 in the electrolyte consisting of LiPF6 in a mixture of ethylene carbonate and 

dimethyl carbonate (1:1 v/v) (LiPF6/EC+DMC) (Figure S7a), while the cells with LiBH4/TG 

electrolyte deliver ~150 mAh g-1 capacity and poor cycleability. This is in good agreement with 

reports that TiO2(B) shows good cycleability in EC-based electrolyte, since the fluorine-

containing salt suppresses surface reactions such as solvent decomposition.35 Ester solvents 

passivate the Mg surface, 36 however, and Mg(PF6)2 fails to be a viable electrolyte salt for Mg 

batteies, so they can not be used to prepare mixed ion electrolyte for Mg2+/Li+ hybrid batteries. 

The TiO2(B)|Mg cells deliever higher capacity and better cycling performance in 

Mg(BH4)2+LiBH4/TG than in (PhMgCl)2-AlCl3+LiBH4/THF (Figure S7b), which is likely to 

have resulted from better Mg deposition-disslution efficiency in Mg(BH4)2 based electrolyte 

(Figure S8).  

Cyclic voltammetry (CV) was further used to explore the primary charge storage mechanism 

of TiO2(B)|Mg in Mg(BH4)2+LiBH4/TG electrolyte. For comparison, TiO2(B)|Li cells in 

LiBH4/TG electrolyte were also studied using CV. Three pairs of prominent cathodic/anodic 

peaks (Figure 3a) in the range of 1.4-1.95 V for TiO2(B)|Li and 0.6-1.2 V for TiO2(B)|Mg can be 

observed at a slow scan rate of 0.01 mV s-1, which is consistent with the differential capacity 

curves (Figure 2b, d). The peak located at higher potential is denoted as B and two pairs at lower 

potentials are denoted as S2 and S1, respectively. For the TiO2(B)|Li cells, the B peak is likely 

due to Li+ insertion-deinsertion.31 It should be noted that this peak sometimes was ascribed to the 

Li+ ions interacting with minor anatase TiO2,
37 which was not observed in our XRD and Raman 
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analysis (Figure 1a and 1b). The S2 and S1 peaks are related to the characteristic pseudo-

capacitive behavior on the surface.26 Similar reactions are observed in the TiO2(B)|Mg cells with 

Mg(BH4)2+LiBH4/TG electrolyte. The peak currents for S2 and S1 scale with the first power of 

the scan rate (Figure 3d), indicating pseudo-capacitive reactions; the B peak scales with the 

square root of the scan rate (Figure 3c), which is related to ion insertion-deinsertion.26 Compared 

with the TiO2(B)|Li cells, the TiO2(B)|Mg cells with Mg(BH4)2+LiBH4/TG electrolyte show 

enhanced pseudo-capacitive behavior, as evidenced by the larger peak areas. At high scan rates, 

the peak current increments of S2 and S1 are much higher than that of B, which indicates that 

fast pseudo-capacitive ion transport occurring at the interface dominates the capacity. 

 

 

Figure 3. CVs of (a) TiO2(B)|Li cells with 1.5 mol L-1 LiBH4/TG electrolyte and TiO2 

(B)|Mg cells with 0.5 mol L-1 Mg(BH4)2 + 1.5 mol L-1 LiBH4/TG electrolyte at a scan rate of 
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0.01 mV S-1, and (b) TiO2(B)|Mg cells with 0.5 mol L-1 Mg(BH4)2 + 1.5 mol L-1 LiBH4/TG 

electrolyte at different scan rates. For the TiO2(B)|Mg cells, (c) B peak reduction currents 

scale with the square root of the scan rate, indicating ion insertion; (d) S2 and S1 peak 

reduction currents scale with the first power of the scan rate, indicating pseudo-capacitive 

reactions at the surface.  

 

Figure 4. Rate capability of (a) TiO2(B)|Li cells with 1.5 mol L-1 LiBH4/TG electrolyte，(b) 

TiO2(B)|Mg cells with 0.5 mol L-1 Mg(BH4)2 + 1.5 mol L-1 LiBH4/TG electrolyte; (c) long-term 

cycling performance of the Mg2+/Li+ hybrid batteries at 1 and 2 C; (d) the proposed working 

mechanism of the Mg2+/Li+ hybrid battery.  
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Capacity degradation during cycling is a common feature of rechargeable batteries. High 

capacity retention with good coulombic efficiency will dramatically reduce operation costs. In 

our experiments, the hybrid batteries delivered exceptionally long-term (up to 6000 cycles) 

cycling performance, even at high rates (Figure 4a-4c). After 200 cycles, the hybrid batteries 

afford superior rate performance with 158.5 mAh g-1 at 0.5 C, 126.3 mAh g-1 at 1 C, and 115.6 

mAh g-1 at 2 C, while LiBH4/TG delivers only 105.5 mAh g-1 at 0.5 C, 92.7 mAh g-1 at 1 C, and 

80.2 mAh g-1 at 2 C (Figure 4a, b, c). Hybrid cell and lithium cell showed similar capacity when 

cycled at a low rate of 0.2 mA cm-2. However, for Li cell, a dramatic performance degradation 

was observed when the current was increased to 2 mA cm-2 due to Li dendrite formation.10 Li 

metal is known to form dendrites that affect the electrochemical performance at high rate (˃1 

mA cm-2).38 This is unlikely in our tests due to the low current densities (0.1~5 C, 0.014~0.35 

mA cm-2). The hybrid cells demonstrate high capacity with good coulombic efficiency at high 

current rates of 1 C and 2 C up to 6000 cycles, with the capacity levelling off at about 115 mAh 

g-1 up to 6000 cycles at 2 C (Figure 4c).  

The possible role of Mg2+ ions in this hybrid system can be considered from three aspects: 

insertion-deinsertion, pseudo-capacitive reactions on the surface, or ‘catalytic activity’ towards 

the reaction between Li+ ions and TiO2(B). Since TiO2(B) shows no difference in its crystal 

structure (Figure S5) or Raman spectra (Figure S6) after cycling in both kinds of electrolyte, 

Mg2+ ions are unlikely to enter into the lattice. Furthermore, the discharge-charge curves, 

differential capacity plots (Figure 2), and CVs (Figure 3a, b), as well as the rate capability 

(Figure S9), indicate that the capacity of TiO2(B) is largely associated with the pseudo-capacitive 

reactions at the surface. When the TiO2(B) electrode was re-used (after cycling in two kinds of 
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electrolyte) to make TiO2(B)|Mg(BH4)2/TG|Mg batteries, negligible capacity was observed 

(Figure S4). This finding indicates that Mg2+ ions alone will not contribute to the capacity of 

TiO2(B) in either insertion-deinsertion or pseudo-capacitive reactions. Therefore, Mg2+ ions 

somehow contribute to the pseudo-capacitive reaction of Li+ at the surface. Discovering if Mg2+ 

ions also participate in this reaction at the surface or just ‘catalyse’ the reaction between Li+ and 

the TiO2(B) surface is not possible at this stage. A safe conclusion is that the hybrid batteries are 

based on the pseudo-capacitive reaction dominated by a highly synergetic interaction between 

Li+ and Mg2+, and a likely mechanism is proposed in Figure 4d. 

On the other hand, Li+ ions are more ‘reactive’ when mixed with Mg2+ ions, which 

means that Li+ ions become less constrained by counter BH4
- ions. In the 7Li nuclear 

magnetic resonance (NMR) spectrum (Figure S10), LiBH4 solution shows a resonance 

shift at -0.7 ppm, while in the Mg2+/Li+ solution, the signal shifts to -0.83 ppm, indicating 

increased electron shielding. The resultant higher electron cloud density around the Li+ 

ions means stronger interaction between Li+ ions and TG molecules (which have strong 

chelation arising from the five oxygen atoms per TG molecule), with consequently 

weakened Li+ and BH4
- ion pair interaction and increased activity for Li+ ions. It is not 

straightforward to accurately describe the dynamic interactions in solution between the 

Li+ ions and the BH4
- and TG molecules upon adding Mg(BH4)2. Crystal structure 

analysis of LiBH4 single crystals (with coordinated TG) grown from both kinds of 

electrolytes may shed some light, but so far we have not been successful in achieving the 

necessary single crystal for studies. 

 

4. CONCLUSION 
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 In this study, a high-performance Mg2+/Li+ hybrid battery with 1D mesoporous TiO2(B) 

nanoflakes as the cathode, Mg as the anode, and 0.5 mol L-1 Mg(BH4)2+1.5 mol L-1 

LiBH4/TG as the electrolyte has been developed. The batteries show a high charge 

capacity and good cycling performance with ~130 mAh g-1 at 1 C up to 3000 cycles and 

~115 mAh g-1 at 2 C up to 6000 cycles. The capacity of these Mg2+/Li+ hybrid batteries is 

dominated by pseudo-capacitive reactions, and their efficiency is effectively enhanced by 

the presence of Mg2+ ions. The high specific capacity and cycle life at high rates, together 

with the intrinsic high safety of the Mg anode, make Mg2+/Li+ hybrid batteries a 

competitive candidate for electricity storage. Future work on the identification of mixed 

Mg2+/Li+ electrolyte with high anodic stability and efficient Mg deposition-dissolution, 

and of Li+ ion active cathode with the optimum potential (relative to the electrolyte) 

would yield more effective Mg2+/Li+ hybrid batteries. 
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