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Stir casting process for manufacture of Al-SiC composites

Abstract
Stir casting is an economical process for the fabrication of aluminum matrix composites. There are many
parameters in this process, which affect the final microstructure and mechanical properties of the composites.
In this study, micron-sized SiC particles were used as reinforcement to fabricate Al-3 wt% SiC composites at
two casting temperatures (680 and 850 °C) and stirring periods (2 and 6 min). Factors of reaction at matrix/
ceramic interface, porosity, ceramic incorporation, and agglomeration of the particles were evaluated by
scanning electron microscope (SEM) and high-resolution transition electron microscope (HRTEM) studies.
From microstructural characterizations, it is concluded that the shorter stirring period is required for ceramic
incorporation to achieve metal/ceramic bonding at the interface. The higher stirring temperature (850 °C)
also leads to improved ceramic incorporation. In some cases, shrinkage porosity and intensive formation of
Al4C3 at the metal/ceramic interface are also observed. Finally, the mechanical properties of the composites
were evaluated, and their relation with the corresponding microstructure and processing parameters of the
composites was discussed.
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Abstract 

Stir casting is an economical process for fabricating aluminium matrix composites. There are 

many parameters in this process which affect the final microstructure and mechanical 

properties of the composites. In this study, micron-sized SiC particles were used as a 

reinforcement, and Al-3 wt. % SiC composites were fabricated at two casting temperatures (680 

and 850 °C) and stirring times (2 and 6 min). Factors of reaction at matrix/ceramic interface, 

porosity, ceramic incorporation, and agglomeration of the particles were evaluated with SEM 

and HRTEM. From results of microstructural characterizations, it was concluded that a 

minimum stirring time is mandatory for ceramic incorporation and for achieving a desired 

metal/ceramic bonding at the interface. Also, it was found that a higher stirring temperature 

(850 °C) would lead to an improved ceramic incorporation, while shrinkage porosity and 

intensive formation of Al4C3 at the metal/ceramic interface were observed. The mechanical 

properties of the composites were also evaluated and their relation with the corresponding 

microstructure of the composites was discussed.  

Keywords: Aluminum matrix composite, Microstructure, Mechanical properties, stir casting. 
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1- Introduction 

Aluminum metal matrix composites (AMMCs) have gained significant attention in recent years. 

This is primarily due to their lightweight, low coefficient of thermal expansion (CTE), 

machinability, and improved mechanical properties, such as increased 0.2% yield stress (YS), 

ultimate tensile stress (UTS), and hardness. Due to these advantages, they are used in 

aerospace industries (airframe and aerospace components), automobile industries (engine 

pistons), and electronic components [1-11].  

Stir casting (vortex technique) is generally accepted commercially as a low-cost method for 

fabricating AMMCs. Its advantages lie in its simplicity, flexibility, and applicability to large 

volume production. This process is the most economical of all the available routes for AMMCs 

production, and it allows very large-sized components to be fabricated. However, methods of 

achieving the following in stir casting most be considered: (i) no adverse chemical reaction 

between the reinforcement material and matrix alloy, (ii) no or very low porosity in the cast 

AMMCs, (iii) wettability between the two main phases, and (iv) achieving a uniform distribution 

of the reinforcement material. Wettability and reactivity determine the quality of the bonding 

between the constituents and, thereby, greatly affect the final properties of the composite 

material [12-19]. 

The addition of alloying elements can modify the matrix metal alloy by producing a transient 

layer between the particles and the liquid matrix. This transient layer has a low wetting angle, 

decreases the surface tension of the liquid, and surrounds the particles with a structure that is 

similar to both the particle and the matrix alloy [3, 12, 14, 15]. Our previous study [3] indicated 
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that Mg is the best metal among Ca, Ti, Zn, Si, and Zr for increasing the incorporation % of 

micron-sized SiC particles by molten pure aluminum.  

In this study, micron sized-SiC particles were used as reinforcement of pure aluminum to 

fabricate as-cast aluminum matrix composite, and Mg addition (1 wt. %) was aided to improve 

the wettability and incorporation % of ceramic particles. The main aim of this study is to lessen 

the defects of stir casting method and improve the quality of the fabricated composites. 

Therefore, factors of reaction at matrix/ceramic interface, porosity, ceramic incorporation, and 

agglomeration of particles were evaluated. The mechanical properties of the composites were 

also investigated and their relation with the corresponding microstructures was discussed.  

2- Experimental Procedures 

Aluminum ingot with 99.8 in wt. % commercial purity was used as a matrix. The chemical 

composition of the used ingot obtained using a M5000 optical emission spectrometer is given in 

Table 1.  

Table 1  

Chemical composition of the pure aluminum used in this study.  

 

Micron-sized SiC particles with an average particle size of 80 µm and 99.9 % purity were 

supplied (Shanghai Dinghan Chemical Co., Ltd. China) as the reinforcement of metal matrix 

composite. The morphology of the silicon carbide particles used in this study is shown in the 

SEM micrographs in Fig. 1.  

Fig. 1. The morphology of SiC particles which were used as reinforcement. 

In order to fabricate the composites, one gram of reinforcement SiC powder was encapsulated 

carefully in an aluminum foil packet for insertion into the molten aluminium in order to 
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fabricate a composite with 3 wt. % SiC as reinforcement. These powders were pre-heated at 

350 °C for 4 h before the casting process for removing the moisture and impurities. The pure 

aluminum was heated to various temperatures of 680 and 850  °C within a bottom-pouring 

furnace. A pre-heated graphite stirrer was placed below the surface of melt and rotated with a 

speed of 500 rpm and simultaneously argon with a high purity was used as a protective 

shroudon the melt surface. Fig. 2 shows the schematic of the vortex casting set-up used for 

casting process. The composite slurry was poured into a low-carbon steel mould. As mentioned, 

1 % Mg scrap (mass fraction) was added to the melt to increase the wettability between the 

matrix and the reinforcements.  

Mg acts like a surfactant power that obtains the oxygen. The magnesium reacts with alumina to 

form MgAl2O4 spinel at the interface Al/SiC, as shown by the following reactions [20-23]: 

3 Mg (l) + Al2O3 (s) → MgO (s) + 2Al (l)  

3 Mg (l) + 4 Al2O3 (s) → 3 MgAl2O4 (s) + 2Al (l)  

Fig. 2. The schematic of stir casting set-up used for fabrication of composites.  

In summary, three samples were fabricated in this study, which their fabrication routes are 

shown in Table 2. Generally, a lower stirring time is beneficial due to three important reasons. 

First, a lower casting duration is economically preferred. Second, the reaction occurrence 

between matrix and reinforcement might need a long exposure time, meaning that this 

detrimental phenomenon might be avoided using a lower amount of stirring time. Third, higher 

casting duration may lead to entrance of a higher amount of porosity after solidification [24]. 

Therefore, sample S1 was designed in this study to investigate if further stirring after particle 

feeding is necessary or not. As shown in Table 2, the process of particle feeding during casting 
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process was lasted for 2 min for all the samples. However, irrespective of sample S1, the stirring 

was continued for extra 4 min after this 2 min time of feeding process. In fact, the ceramic 

particles for sample S1 have no time after incorporation to be stirred and distributed in molten 

metal.   

Table 2 

Characteristics of the samples fabricated in this study.  

 

The specimens were prepared for metallographic examinations using 220-320-500-1000 mesh 

emery papers, followed by polishing with diamond paste 1µm. Microscopic methods were used 

to study the composite structure and fracture surface using two kinds of scanning electron 

microscopes (SEM, Cam Scan Mv2300, equipped with EDAX analysis and SEM, KYKY-EM3200), 

and an optical microscope (OM). A high-resolution transmission electron microscope (HRTEM, 

Philips CM200) at an accelerating voltage of 200 kV was also used to study the reaction 

occurrence at the interface of aluminum matrix and SiC particles.  

Microhardness tests were conducted according to ASTM E384 using an applied load of 50 g for 

a 15 s duration. At least ten measurements were taken from fabricated samples. Tensile 

specimens were also prepared from the as cast composites. All of the tensile tests were 

performed at room temperature using an Instron type-testing machine operating at a constant 

rate of crosshead displacement, with an initial strain rate of 2×10-3 s-1. The 0.2% proof strength 

(interpreted as the measurable YS), UTS and ductility (% elongation to break) were measured 

and averaged over 3 test samples. For a fair judgment about mechanical properties, the density 

of the samples was measured using Archimedes’ principle. Distilled water was used as the 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB0QFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTransmission_electron_microscopy&ei=XAo8VNL_Es3hasLqgtgD&usg=AFQjCNHRCrsXRKv53Ccz9lQiv8t-xg7Gag&sig2=OD94og9DI2gzuVkLgPb7mg&bvm=bv.77161500,d.bGQ
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immersion fluid. Theoretical density was calculated by rule of mixture and compared with the 

measured densities. 

In order to determine the onset reaction temperature between pure aluminum and SiC 

powders, differential scanning calorimetry (DSC) analysis (Netzsch STA 409, Germany) was 

used. For this purpose, a same weight of aluminum and SiC powders were mixed for 30 min 

using a low-energy ball-mill to make a suitable contact between them and break the possible 

oxide layer on the aluminum surface, and the milled powders were then heated from 25 to 800 

°C with the heating rate of 10 °C/min using pure argon atmosphere and alumina crucible.  

3- Results and discussion 

3-1- SEM and OM studies of the composite microstructures 

Figs. 3-5 show the SEM images of the fabricated samples S1 to S3, respectively. Fig. 3a shows the 

microstructure of sample S1, in which just after ceramic feeding for 2 min, the stirring process 

was stopped. Some points could be drawn from this figure: first, the amount of ceramic 

particles seems to be insignificant for this sample, meaning that further stirring might be 

necessary for the powders to be well entered into the melt and a required bonding forms 

between particles and melt leading to the embed of the ceramics with a good distribution. Our 

visual examinations indicated that a large fraction of the powders were still remained on the 

surface of the melt and adhered to the crucible wall. Second, the presence of gas pores is also 

evident in this microstructure. It has been reported that the source of porosity in cast MMCs 

were originated from gas entrapment during stirring, water vapor (H2O) on the surface of the 

ceramic particles, hydrogen evolution, air bubbles entering the slurry as an air envelope to the 

reinforcement particles, and shrinkage during solidification process [12]. Due to pre-heating of 



7 
 

the SiC powders at 350 °C no water vapor could be present on the ceramic surfaces and also 

hydrogen evolution seems not to be considerably occurred at 680 °C, a very close temperature 

to the melting point of pure aluminum. It seems that gas entrapment was occurred specially in 

this range of temperature, in which the viscosity of the melt is very high. In fact, due to a high 

viscosity of the melt, the slurry cannot highly release the entrapped gases. This affects the gas 

escape and thereby increases the porosity level. Third, solidification shrinkage was occurred in 

just one part (see Fig. 3a), and it seems that this defect is not highly evident at this 

temperature, while air gap between the agglomerated particles could be observed in Fig. 3a. 

Fig. 3b shows the phenomenon of particle detachment from the matrix after polishing process 

to prepare the samples for microstructural characterization. This matter indicated that the 

bonding between them is not adequate enough in this sample. Due to a direct contact between 

molten aluminum and SiC particles, Al4C3 could be formed at the interface [25-28]. It has been 

reported [26] that a layer of aluminum carbide (Al4C3) was found to increase the YS and UTS, 

work hardening rate, and changes the fracture pattern from one involving interfacial 

decohesion to one where particle breakage was dominant. Although the stirring temperature is 

680 °C for the sample S1, however, it seems that no bonding reaction might be occurred for this 

sample, which this matter was investigated in the next section.  

Fig. 3. SEM image of smaple S1 after stir casting, (a) low-magnification, (b) high-magnification. 

Fig. 4a shows the microstructure of sample S2 casted at 680 °C, and the stirring for four extra 

minutes was applied after particle feeding. The presence of gas pore and solidification 

shrinkage was shown using yellow-colored circle and red-colored rectangles, respectively. It is 

important to note that a lower amount of gas pores could be seen in this sample, meaning that 
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further stirring and turbulence in the slurry could help the entrapped gases to escape from the 

melt, while 6 min stirring at 680 °C might attract further hydrogen gases from the environment. 

This shows that gas entrapment is more dominant in respect to hydrogen evolution at this 

temperature. As it can be seen, the amount of ceramic particles is considerable for this sample, 

meaning that mechanical stirring is a real factor for incorporation improvement of ceramics by 

molten metal. Also, it is concluded from this microstructure that stirring time could not affect 

the formation of shrinkage solidification and this unwanted phenomenon mainly influenced by 

temperature of stirring and mould in Al-SiC composites. The most important point which could 

be drawn from Fig. 4b is the formation of a relative defect-free interface between matrix and 

reinforcement. The ceramic particles seems to be well adhered to the matrix and no 

detachment of particles from the matrix could be seen during sample preparation for 

microstructural study. This shows that the stirring time is a very important parameter for 

achieving a desired interface. Fig. 4c shows that the entrance of air between the particles could 

also be seen in the microstructure of sample S2. In fact, it seems that mechanical stirring could 

not avoid the formation of agglomerated particles at 680 °C and a large fraction of porosity in 

this sample might be emanated from the air gap between the ceramic particles.  

Fig. 4. SEM image of smaple S2 after stir casting, (a) low-magnification, (b and c) high-magnifications. 

Fig. 5a shows the microstructure of sample S3 casted at 850 °C, in which the ceramic particles 

were stirred for 6 min. As it can be seen, considerable amounts of ceramic particles were 

incorporated into the matrix at this temperature. It has been reported that SiC particles has a 

higher wettability by molten aluminum at higher temperatures [15]. This image confirms that 

sample S3 contains the highest amount of ceramic particles. Another important matter is the 
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presence of round-shape gas pores which have the average diameter less than 10 µm. An 

intensive attraction of environmental gases occurred for this sample at 850 °C for aluminum 

alloys [29, 30] and it seems that these round-shape small pores are not related to gas 

entrapment due to very low viscosity of the melt [31, 32]. Like the other samples, 

agglomeration of ceramic particles could be observed for this sample. However, the distribution 

of ceramic particles seems to be better for this sample in respect to the samples S1 and S2. From 

Fig. 5a, it seems that particles were well bonded to the matrix. However, Fig. 5b shows the 

considerable occurrence of particle detachment from the matrix. From the reaction occurrence 

point-view, it might be concluded that this should be due to the formation brittle Al4C3 

compound, while Fig. 5c indicated that intensive shrinkages were taken place for this samples 

during solidification and this shrinkage highly affects the detachment of these particles. As it 

can be seen from Fig. 5c, even a crack was formed as a result sudden reduction of temperature 

from 850 °C to room temperature (no pre-heating was applied for the mould). These matters 

indicated that sample S3 contains these detrimental defects in some parts. Fig. 5c also 

demonstrates that air gap between the particles was also formed for this sample.  

Fig. 5. SEM image of smaple S3 after stir casting, (a) low-magnification, (b and c) high-magnification. 

In summary, Table 3 compared the charateristics of as-cast samples as regards four factors of 

reaction at interface, ceramic amount, ceramic agglomeration, and matrix-ceramic bonding. 

This Table was desinged based on the SEM and HRTEM anlysis.  

Table 3 

The summary of obtained results for the composite samples. 
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Line EDAX microanalysis (see Fig. 6) was used to evaluate the chemical characterization around 

a ceramic particle in sample S3. As shown in Fig. 6, the presence of Mg is evident, meaning that 

this element not only presents at the Al/SiC interface, but also its trace could be found in the 

matrix of aluminum with a same intensity. In fact, it could be deduced that Al-Mg alloy was 

fabricated as a result of adding 1 wt. % Mg chips to the vortex.  

Fig. 6. EDAX anlysis around a ceramic particle in sample S3.  

OM analysis was used in this study to compare the grain size of the matrix alloy after composite 

solidification of samples S2 and S3. One important point could be obtained from Figs. 7a and 7b. 

As a result of solidification from a higher temperature of 850 °C in respect to 680 °C, a higher 

value of grain size was formed for sample S2 (see Fig. 7a) rather than sample S3 (see Fig. 7b). 

This would affect the mechanical properties based on Hall-Petch equation [33]. In fact, a more 

quick solidification could further avoid the growth of aluminum grains.  

Fig. 7. OM study of as-cast samples (a) S2, (b) S3.  

3-2- Reaction between aluminum matrix and SiC particles  

It was reported [27, 34] that from 657 to 827 °C, SiC interacts with aluminum via a dissolution-

precipitation process. This mechanism involves the migration of carbon atoms from places 

where the SiC surface is in direct contact with the aluminum to the growing faces of Al4C3 

crystals located at or close to the aluminum-SiC interface. The Al4C3 brittle compound has 

detrimental influences within the composite and reduces the strength and ductility, and also it 

reacts with liquid water or with moisture in the ambient, debilitating even more the composite 

[35]. Al4C3 would be formed based on Eq. 1 [36]: 

3 SiC + 4 Al= 3 Si+ Al4C3                                                                                                                              (1) 
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The reaction is thermodynamically possible because the standard free energy change for this 

reaction is negetive and Al4C3 and Si are the two major interfacial reaction products [28, 34, 36]. 

As mentioned, the migration of carbon atoms (exchange of atoms) is involved in a chemical 

reaction, leading to wettability and bonding improvement. Therefore, it seems that Al4C3 

formation to a low extent is suitable for required bonding between SiC and aluminum [37]. 

However, intensive reaction between Al and SiC due to long exposure time or very high casting 

temperature which leads to the formation of a more thick layer of Al4C3 might not to be 

suitable for AMMCs [37].  

Fig. 8 shows the thermal analysis of the ball-milled Al-SiC mixture. As it can be seen, just after 

the melting of aluminum at about 670 °C, an exothermic trend could be observed, which 

corresponds to the occurrence of a reaction between Al and SiC, leading to a large release of 

heat. It seems that reaction was occurred completely at about 720 °C. This figure indicates that 

Al and SiC tend to react with each other just after melting of the aluminum.  

Fig. 8. DSC anlysis of Al-SiC powder mixture.  

In order to evaluate the reaction occurrence between Al and SiC and observe the boding of SiC 

with aluminum matrix, HRTEM analysis was used for all the samples. Fig. 9a shows the 

nanostructure of sample S1. As it can be seen, a relative clean interface was formed between 

crystalline SiC and aluminum matrix, and no trace of Al4C3 could be observed at or near the 

interface, meaning that 2 min stirring at 680 °C is not high enough for the migration of carbon 

atoms and formation a suitable bond between Al and SiC particles. It is very important to note 

that aluminum foils contain SiC particles were not simultaneously entered into the melt and 

therefore, some of the particles had less than 2 min time for stirring and boding to the matrix. It 
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has been reported [38] that Al4C3 appears as needle or slice like on the interface toward the 

matrix side in HRTEM micrograph and no trace of Al4C3 could be detected in this sample. Fig. 9b 

shows the nanostructure of sample S2, in which particles were exposed to the molten aluminum 

for 6 min during stirring. A very good physical bonding seems to be formed for this sample 

between Al and crystalline SiC and after too long characterization, needle like Al4C3 phase was 

detected with a different orientation growth from the crystalline plane orientations of silicon 

carbide. However, it should be noted that the size of this needle-like phase seems to be less 

than 8 nm in height. Therefore, it is concluded that this phase could be fabricated after 6 min 

stirring at 680 °C. During detection of Al4C3 for sample S3 at the interface using a very high 

magnification, it was found that exposure of SiC with molten aluminum at 850 °C highly affects 

the formation and growth of this phase even just after 6 min stirring. Fig. 9c shows the 

nanostructure of sample S3. As it can be seen, Al4C3 with a height of about 120 nm was simply 

detected at the Al/SiC interface which selected area diffraction (SAD) pattern of the 

corresponding phase confirms its formation with a crystalline structure, which it is not clear if 

this large sized phase could adversely affect the mechanical properties.  

Fig. 9. HRTEM study of as-cast samples (a) S1, (b) S2, and (c) S3.  

3-3- Mechanical properties and fractography analysis 

Tensile and Vickers microhardness tests were conducted in order to evaluate the effects of 

porosity content, ceramic particle, formation of Al4C3, and matrix grain size on the mechanical 

properties. Table 4 shows the results of relative densities of the samples.  

Table 4 

The relative densities of the samples. 
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As it can be seen from this Table, no intensive difference in relative density could be seen 

between the samples. As mentioned, the type of porosity and its shape highly affect the 

mechanical properties, and round-shaped pores do not reduce the tensile strenght and ductility 

as much as edge-like pores due from stress-concentration view-point. The shrinkage porosities 

are not round in shape and therefore, they could lessen the bonding strength at matrix/ceramic 

interface and mechanical properties of the composite would be reduced if they form at the 

interface. The other effective parameter is the presence of ceramic particles. Due to the 

difference of SiC and Al alloy shrinkage (the thermal expansion coefficient of SiC is about 4×10−6 

C-1, the thermal expansion coefficient of Al alloy is greater than 20×10−6 C-1), internal stress will 

increase in the composite materials, leading to the formation of dislocations around the 

particles, which strengthens the composite [39-42]. It should be noted that if the cooling rate is 

too fast, then the resulting internal stress may be significant. If these stresses exceed the 

maximum strength of the aluminum alloy, this phase might crack [40-42].  

Fig. 10 shows the results of tensile and microhardness tests. As it can be seen, the values of 

average microhardness were increased by increasing the amount of ceramic particles. Figs. 3- 5 

indicated that samples S1 to S3 have a higher amount of ceramic particles, respectively. This 

means that interface quality seems not to be highly effective in this regard. As it can be 

observed, the YS and UTS values of sample S2 are higher than that of sample S1 due a stronger 

interface and the presence of a higher amount of ceramic particles. However, this trend could 

not be seen for sample S3, in which lower amounts of YS and UTS were obtained in respect to 

sample S2. This means that the considerable formation of shrinkage porosity at the interface 

will be significantly reduced the strength of a composite which even has a higher amount of 
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ceramic particle. However, it is not clear that the intensive formation of Al4C3 (see Fig. 9c) could 

adversely affect the bonding and strength of the composite. Care should be taken that sample 

S3 has a relatively lower grain size in respect to sample S2 (see Fig. 7). However, this slight 

difference in grain size could not make this sample to be more stronger than that of sample S2.  

Fig. 10 also shows the values of ductility for the samples, in which a higher amount of ductility 

was obtained for samples S1 containing lower ceramic particles. It could be concluded that the 

presence of ceramic particles and formation of shrinkage porosities around the particles are 

two important factors in this regard, in which sample S3 has a lower ductility in respect to 

sample S2.  

Fig. 10. Mechanical properties of the as-cast samples.  

The relationship between the particle strength and particle/ matrix interfacial bonding strength 

is the critical criterion to determine the fracture mode of the composites during deformation. If 

the particle/matrix interfacial bonding strength is high, particle fracture usually happens during 

deformation. On the other hand, if the particle/matrix interfacial bonding strength is weak, 

decohesion between the SiC particles and the aluminum matrix will occur prior to the particle 

fracture [43-49]. Fig. 11a shows a particle fracture mode for sample S2 with a strong bonding. 

The presence of dimples in the matrix is also evident for this sample. It seems that matrix 

deformation was taken place and at last, the ceramic was fractured after matrix deformation. 

The micrograph in Fig. 11b clearly shows that particle debonding has taken place at particle-

matrix interface. The presence of cracks around the SiC particles is also evident for this sample. 

This image shows that debonding of SiC particles was taken place before deformation of matrix, 

although no facet could be seen in the matrix, meaning that the matrix has a ductile nature.  
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Fig. 11. SEM study of fracture surfaces of samples (a) S2, and (b) S3.  

4. Conclusions 

Micron-sized SiC particles were incorporated into a melt of pure aluminum with the aid of Mg 

addition as wetting agent to fabricate aluminum matrix composite. Two casting temperatures 

and stirring times were applied to focus on the ceramic particle incorporation, porosity 

formation, agglomeration of ceramic particles, interfacial reactions between Al and SiC. The 

following results could be drawn from this study: 

1- No suitable bonding would be obtained at the metal/ceramic interface for the stirring time of 

2 min, meaning that a minimum stirring time is necessary for ceramic particles to be well in 

contact with the melt and make a strong interface.  

2- Formation of Al4C3 would lead to a better Al/SiC bonding at 680 °C, while its intensive 

formation at 850 °C might reduce the mechanical properties of the composite.  

3- A higher stirring temperature would lead to a further incorporation of ceramic particles into 

the molten pure aluminum with an improved distribution.  

4- Agglomeration of the micron-sized SiC particles could be observed in all the samples, 

meaning that the stirring time and temperature and viscosity of the melt could not affect this 

matter.  

5- Gas pores, solidification shrinkage, and air gap between the agglomerated ceramic particles 

are observed in the samples after stir casting, while by changing the stirring time and 

temperature, the type and the amount of the porosities will be changed.  
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6- Detachment of ceramic particles from the matrix was observed in some areas when the 

ceramic particles were not stirred for a suitable time, and the composite was cooled at a high 

rate during solidification.  

7- By using 50 g load for microhardness test, it was found that a sample with a higher amount 

of ceramic particle is harder than the other samples, while the tensile strength and ductility 

amounts are observed to be intensively depended on the interface of Al/SiC.  
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Tables Caption 

Table 1  

The chemical composition of the pure aluminum used in this study.  

Table 2 

Characteristics of the samples fabricated in this study.  

Table 3 

The summary of obtained results for the composite samples. 

Table 4 

The relative density of the samples. 
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Figures Caption 

Fig. 1. The morphology of SiC particles which were used as reinforcement. 

Fig. 2. The schematic of stir casting set-up used for fabrication of composites.  

Fig. 3. SEM image of smaple S1 after stir casting, (a) low-magnification, (b) high-magnification. 

Fig. 4. SEM image of smaple S2 after stir casting, (a) low-magnification, (b and c) high-magnifications. 

Fig. 5. SEM image of smaple S3 after stir casting, (a) low-magnification, (b and c) high-magnification. 

Fig. 6. EDAX anlysis around a ceramic particle in sample S3.  

Fig. 7. OM study of as-cast samples (a) S2, (b) S3.  

Fig. 8. DSC anlysis of Al-SiC powder mixture.  

Fig. 9. HRTEM study of as-cast samples (a) S1, (b) S2, and (c) S3.  

Fig. 10. Mechanical properties of the as-cast samples.  

Fig. 11. SEM study of fracture surfaces of samples (a) S2, and (b) S3.  
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