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Particle breakage has a significant influence on the stress-strain and strength behavior of rockfill material. A breakage critical 
state theory (BCST) was proposed to describe the evolution of particle breakage. The breakage critical state line in the break-
age critical state theory was correlated with the breakage factor, which was fundamentally different from that of the original 
critical state theory. A simple elastoplastic constitutive model was developed for rockfill in the frame of BCST. An associated 
flow rule was adopted in this model. Isotropic, contractive and distortional hardening rules were suggested in view of the parti-
cle breakage. It was observed that the proposed model could well represent the complex deformation behaviors of rockfill ma-
terial, such as the strain hardening, post-peak strain softening, volumetric contraction, volumetric expansion, and particle 
breakage under different initial confining pressures. 
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Mechanical responses of rockfill material to external load-
ing are mainly governed by the inter-particle sliding, rolling 
and breakage. Unlike the damage evolutions of frozen soil 
[1], concrete [2], and sandwich structures [3], rockfill mate-
rial exhibits particle breakage as a result of the large con-
fining pressure, cyclic loading, and wetting. As shown in 
many triaxial test results [4-13], particle breakage has a sig-
nificant influence on the stress-strain and strength behaviors 
of rockfill material. To investigate the influence of particle 
breakage on the mechanical responses of granular aggre-
gates, lots of breakage indices have been proposed. Howev-
er, most of the particle breakage indices [4, 15-18] rely on 
the determination of particle size distributions before and 
after tests. Miura [19] used increments of fines content 

(75μm or less) induced during consolidation and shearing 
process as the breakage index. The increase of parti-
cle-surface area and the fractal distribution of the newly 
generated smaller-sized particles during loading were also 
adopted to quantify the degree of particle breakage [20-28].  

Many constitutive models were proposed to capture the 
stress-strain behavior of rockfill material, including (a) hy-
perbolic models [29, 30]; (b) elastoplastic constitutive mod-
els [31, 32]; (c) hypoplastic constitutive models [33-35]; (d) 
and specific constitutive models [36-38]. However, these 
models cannot take into account the influence of particle 
breakage on the stress-strain behaviors unless they are fully 
extended. To incorporate the effect of particle breakage, 
many different models were proposed, for example, models 
[7, 8] based on the disturbed state concept (DSC) [39, 40], 
the modified hardening parameters [41, 42], and the bound-
ing surface plasticity [43-46]. However, these models can-
not represent the evolution of the particle size distribution in 
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the whole process of shearing. 
Critical state theory (CST) [47, 48] is a landmark of the 

modern soil mechanics. Most of the constitutive models [49, 
50] for soils were established based on this theory. However, 
particle was supposed to slide, rotate, but not crush in the 
classical CST. Unfortunately, particle size distribution (PSD) 
of soil usually shifts due to particle crushing, which could 
lead to the change of the critical state line (CSL). Russell 
and Khalili [51] established a bounding surface model in-
corporating a three-segment type CSL in the e-lnp (void 
ratio versus mean effective stress in log scale) plane to de-
scribe the behavior of crushable granular materials. 
Daouadji et al. [52, 53] formed a relationship between the 
position of CSL and the amount of energy needed for parti-
cle breakage, and affirmed that the CSL in the e-lnp de-
scended according to the evolution of PSD. Muir Wood et al. 
[54] thought that the constitutive model could incorporate 
the evolution of PSD as a model state parameter. This state 
parameter is similar to that proposed by Einav [27, 28]. A 
series of critical state lines resulting from particle crushing 
compose a critical state surface [54]. Laboratory tests [51, 
55-57] show that the slope of CSL for sands in the p-q 
(mean effective stress versus deviatoric stress) plane is in-
dependent of particle breakage. However, the large-scale 
triaxial experimental results of rockfill material [58-60] 
indicate that the slope of CSL in p-q plane is nonlinear and 
dependent on the confining pressure because of particle 
breakage. CSL is supposed to be unique in CST, however, 
this is not suitable for soils exhibiting particle breakage. 

Two kinds of relative breakage factors are introduced 
based on the research [27, 28]. A breakage critical state the-
ory (BCST) is proposed for rockfill material. Then, a simple 
constitutive model in the framework of BCST is established 
to reproduce the breakage and stress-strain behaviors for 
rockfill material. 

1  Relative particle breakage 

Einav [27, 28] used the fractal theory to modify the relative 
breakage proposed by Hardin [15]. This concept may cause 
different values of relative breakage at the same stress point 
with different stress paths. To avoid this, two relative 
breakage factors are defined: (a) u

rB  the relative particle 

breakage factor at the ultimate state; (b) cr
rB  the relative 

particle breakage factor at the critical state. u
rB  is used in 

different shear processes while cr
rB  is only applied in one 

shear process. 
The relative breakage defined by Einav [27, 28] can be 

expressed as follows: 
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where md  is the smallest particle size; Md  is the largest 
particle size. 

Based on these fractal researches by McDowell et al. 
[61], the present particle-size distribution ( )dF  in Equa-
tion (1), i.e., a cumulative distribution by mass can be ex-
pressed as follows: 

 ( ) ( )
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M
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d
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where α  is the fractal dimension; δ  is a parameter de-
scribing the particle size; d  is the present particle size. 

The particle size distribution at the initial state ( )0F d  
is expressed as follows: 
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where 0α  is the initial fractal dimension. 0α  can be ob-
tained from the initial particle size distribution of rockfill 
material. 

The particle size distribution at the ultimate state ( )uF d  
is expressed as follows: 
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where uα  is the fractal dimension at the ultimate state. 
The particle size distribution at the critical state ( )crF d  

is expressed as follows: 
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where crα  is the fractal dimension at the critical state. 
In this paper, two relative breakage factors are defined. 

Combinations of Equations (1)-(4) gives a relative particle 
breakage factor u

rB  at the ultimate state as follows: 
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Substitution of )(dFu  with ( )crF d  in Equation (1) 

gives a relative particle breakage factor cr
rB  at the critical 

state as follows: 
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The fractal dimension at critical states changes with the 
magnitude of stress. The fractal dimension at the ultimate 
state is invariant for the same material. The relative break-
age at the critical state bears a physical meaning, which 
indicates the degree of particle breakage in the process of 
shearing. The relative breakage at the ultimate state also has 
a physical meaning of the magnitude of particle breakage in 
the state of shearing relative to the ultimate state. The rela-
tionship between relative breakages at the critical and ulti-
mate states is deduced from Equations (6) and (7) as fol-
lows: 
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Combination of Equations (2) and (6) gives PSD as a 
function of u

rB  as follows: 
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Figure 1 Particle size distribution related to the relative particle breakage 
factor. 

Figure 1 shows the variation of PSD due to the relative 
particle breakage factor u

rB  at the ultimate state. The frac-
tal dimension at the breakage critical state is correlated with 
the initial confining pressure as follows: 

 ( )0 0
ini a

cr u
ini a

p p
k p pa

aaaa   = + −
+

, (10) 

where kα  is a material parameter; inip  is the initial con-

fining pressure; ap  is the atmosphere pressure. 
Equation (10) illustrates that the fractal dimension in-

creases with the increase of initial confining pressure, indi-
cating that the degree of particle crushing increases with the 
increase of initial confining pressure. 

It is fundamentally significant to find out the evolution 
rule of the relative particle breakage factor. The relative 
particle breakage factor cr

rB  at the critical state is assumed 
to be correlated with the accumulated strain as follows: 
 ( )1 expcr

r B BB k e= − − , (11) 

 ( )1 2p p
B ij ijεεε  = , (12) 

where Bk  is a material parameter. 
The strain parameter Bε  in the multi-principal stress 

space can be rewritten as  

 ( ) ( )2 21 3
3 2

p p
B v sεεε  = + . (13) 

Differentiation of Equation (11) gives 
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r Bcr p p p p

r v v s s
B

B k
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ε
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Equation (14) is important for the evolution of hardening 
rule in establishing a constitutive model. 

2  Breakage critical state theory (BCST) 

CST cannot reflect the evolution of particle breakage. CSL 
in both e-lnp and p-q planes is supposed to be unique in 
CST. Breakage critical sate theory (BCST) can take into 
account particle crushing by adding a breakage factor into 
e-lnp or p-q planes. It is supposed that the current breakage, 
strain and stress tend to be steady at the breakage critical 
state. The sufficient conditions for a breakage critical state 
are given as follows: 
 1cr

rB = , (15) 

 B
crMη = , (16) 

 cre e= , (17) 

where e  is a void ratio; cre  is a void ratio at the critical 
state; η  is a stress ratio of the deviatoric  stress q  to the 
mean stress p ; B

crM  is the slope of the breakage critical 
state line in the p-q plane. 

The relative particle breakage factor cr
rB  at the critical 

state always equals unit even under different stress paths, 
while the relative particle breakage factor u

rB  at the ulti-
mate state changes with stress path as indicated in Equa-
tions (6)-(8). Both cr

rB  and u
rB  are the same as the one at 

final ultimate sate. Therefore, the particle size distribution 
(PSD) at critical sates in different stress paths is related 
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to u
rB . And the breakage critical state line (BCSL) is also 

correlated with u
rB . 

As shown in Figure 2, the slope of BCSL in the p-q plane 
is correlated with the relative particle breakage factor u

rB  
at the ultimate state. 

 B cr
cr

cr

q
M

p
= , (18) 

 ( )0 expB u
cr cr M rM M k B= − , (19) 

where crq  is the deviatoric  stress at the critical state; 

crp  is the mean effective stress at the critical state; 0
crM  

and Mk  are model parameters. 

 
Figure 2 Breakage critical state line in p-q plane related to the relative 
particle breakage factor. 

 
Figure 3 Breakage critical state line in e-lnp plane related to the relative 
particle breakage factor. 

As shown in Figure 3, the slope of BCSL in the e-lnp 
plane is defined as a function of the relative particle break-
age factor u

rB  at the ultimate state. 
 0 lncr cr Be e pl= − , (20) 

 ( )0 exp u
B B rk Bλλλ = , (21) 

where 0
cre  is the initial void ratio at the critical state; Bλ  

is the slope of the breakage critical state line in the e-lnp 
plane; 0

Bλ  and kλ  are model parameters. 
Experimental results (in Figure 7) show that the parame-

ter 0
Bλ  is correlated with the initial confining pressure, 

which can be predicted with a power function as follows: 

 0
n

ini
B B

a

p
p

λ χ
 

=  
 

, (22) 

where Bχ  and n  are model parameters. 

Figure 2 illustrates that the slope of BCSL B
crM  in the 

p-q plane decreases with the increase of relative particle 
breakage factor u

rB  at the ultimate state, while the slope of 
BCSL Bλ  in the e-lnp plane, as shown in Figure 3, in-

creases with the increase of u
rB . 

3  Yielding surface 

An elliptic surface in Figure 4 is used as a yielding surface, 
the equation of which can be expressed as follows: 
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where the ellipsoidal aspect ratio β  controls the shape of 

the yielding surface; 0p  is actually a hardening parameter, 
which controls the size of the yielding surface. Figure 4 
only shows half surface with the deviatoric stress larger 
than zero. 

In general, the mean effective stress p  and deviatoric 
stress q  in Equation (23) can be defined as follows: 

 1
3 ij ijp σ δ= , (24) 

 3
2 ij ijq S S= , (25) 

 ij ij ijS pσ δ= − , (26) 

where ijδ , the Kronecker’s delta, is defined as follows: 

 
1 ,
0 .ij

i j
i j

δ
=

=  ≠
 (27) 

The mean effective stress p  and deviatoric stress q  
can be expressed by a scalar ρ  as follows: 



 XIAO Yang, et al.   Sci China Tech Sci   xxx(xxxx) Vol.xx No.x 

 0p pρ= , (28) 
 0q pρη= , (29) 
where η  is a ratio of the deviatoric stress q  to the mean 
effective stress p . 

Substitution of Equations (28) and (29) into Equation (23) 
gives 
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  .(30) 

 
Figure 4 Elliptic yielding surface. 

4  Hardening rule 

The isotropic, contractive and distortional hardening rules 
are introduced in this part. The isotropic and contractive 
hardening rules are used to control the size of yielding sur-
face, while the distortional hardening rule can determine the 
shape of yielding surface. An associated flow rule is adopt-
ed in the hardening. 

4.1  Isotropic hardening rule 

Usually the yielding surface expands, contracts, or remains 
unchanged in size depending on the plastic volumetric strain 
rate. Similar to that in the Modified Cam-Clay model [48], 
the evolution of 0p  is determined by the plastic volumet-
ric: 
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p
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Differentiation of Equation (31) with respect to p
vε  gives  
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1
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−∂
. (32) 

4.2  Contractive hardening rule 

The development of the size of the yielding surface is not 
only depended on the incremental plastic volumetric strain 
but also the parameter Bλ , which is included in the func-
tion of 0p . And, the parameter Bλ  is also correlated with 

the relative particle breakage factor cr
rB  at the critical 

state. 
Combination of Equations (8) and (14) gives 
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Combination of Equations (21) and (33) gives 
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Differentiation of Equation (31) with respect to Bλ  gives 
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It can be seen from Equation (35) that 0p  decreases 
with the increase of plastic volumetric strain. 

Combination of Equations (32), (34) and (35) gives 
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4.3  Distortional hardening rule 

The slope ( B
crM ) of the BCSL in the p-q plane controls the 

ratio of q  versus p  in the yielding surface. The top point 

on the yielding surface declines with the decrease of B
crM  

when given the values of 0p . The following equation is 
used for distortional hardening: 

 d d
B

B ucr
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r

M
M B

B
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=
∂

. (37) 

Substitution of Equations (19) and (33) into Equation (37) 
gives 
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Equation (38) indicates that the slope of the BCSL in the 
p-q plane decreases with the increase of plastic volumetric 
strain. 

The model obeys the associated flow rule. Thus the 
yielding function also serves as the plastic potential function. 
The incremental plastic strain is determined as 

 d dp
ij
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fελ
σ
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, (39) 

where the plastic index dλ  is determined as 
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The consistency condition of the yielding function can be 
obtained as 
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Therefore, the plastic modulus pA  can be obtained by 
combining Equations (36), (38), (39)-(41) as follows: 
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where 
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The plastic flow direction is normalized as a unit vector 
normal to the yielding surface. The components of the unit 
vector vn  and sn  can be given as 

 
1

v
fn

L p
∂

=
∂

, (45) 

 
1

s
fn

L q
∂

=
∂

, (46) 

where  

 ( ) ( )2 2
02 B

cr
f p M
p

β r β∂
= −

∂
, (47) 

 ( )2
02 1f p

q
ρ β η∂

= −
∂

. (48) 

The gradient amplitude L  in Equations (45) and (46) 
can be expressed as follows: 

 
22









∂
∂

+







∂
∂

=
q
f

p
fL . (49) 

The gradient amplitude can be explicitly rewritten by 
substituting Equations (47) and (48) into Equation (49) as 
follows: 

 ( ) ( ) ( )4 2 44 2 2
02 1B

crL p M β r β r β η= − + − . (50) 

5  Constitutive equation 

The total incremental strain is assumed to be composed of 
both elastic and plastic parts. The elastic incremental strain 
can be expressed as follows: 

 1d de
v

e

p
B

e = , (51) 

 1d d
3

e
s

e

q
G

e = , (52) 

where the elastic bulk modulus eB  and the elastic shear 
modulus eG  are defined as 

 01
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+
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where ν  is usually set as 0.3. 
The plastic incremental strain can be given as follows: 

 d d dp v
v v s

n
n p n q

H
ε = + , (55) 

 d d dp s
s v s

n
n p n q

H
ε = + , (56) 

where the Macaulay bracket  in Equations (55) and (56) 
is defined as follows: 
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 (57) 

The normalized plastic modulus H  in Equations (55) 
and (56) can be given as 
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 2
pA

H
L

= . (58) 

The total incremental strain can be expressed as follows: 

 e p
v v vd d de e e= + , (59) 

 e p
s s sd d de e e= + . (60) 

The constitutive equation of the particle-breakage critical 
state model is finally established. It contains ten parameters, 
i.e., uα , 0

crM , Bχ , n , kα , Mk , Bk , kλ , β  and κ . 
The determinations of these parameters will be introduced 
in the next section. 

6  Model parameters 

The established constitutive model can predict the 
stress-strain behavior and the evolution of particle breakage 
in the process of shearing. It contains ten model parameters. 
They are mainly determined from the conventional triaxial 
tests. The values of model parameters are listed in Table 1. 

The material parameter uα  is the fractal dimension at 
the ultimate state. uα  is invariant for rockfill material as 
the particle size distribution (PSD) of rockfill material tends 
to be steady with larger confining pressure and shear stress 
applied. The ultimate fractal dimension uα  for rockfill 
materials could be 2.7 according to [25]. The parameter β  
controls the shape of the yielding surface. For the sake of 
simplicity, β  is kept as 0.50 in this paper. The swelling 
index κ  (κ =0.0085) can be obtained from the unloading 
compression line in the e-lnp plane. 

Equation (10) is used to reproduce the relationship be-
tween the fractal dimension and the initial confining pres-
sure. Figure 5 shows that the parameter kα  in Equation 
(10) is supposed to be 0.35 which is in good agreement with 
the test data. As shown in Figure 6, Equation (19) is applied 
to predict the test results in terms of the relationship be-
tween the slope of BCSL in the p-q plane B

crM  and the 

relative particle breakage factor u
rB  at the ultimate state. 

Parameters 0
crM  and Mk  are set as 2.80 and 0.68 for pre-

diction. The initial slope 0
Bλ  of BCSL in the e-lnp plane is 

related to the initial confining pressure. As shown in Figure 
7, the predictions of Equation (22) can agree well with the 
test results with parameters Bχ  and n  equal to 0.0048 
and 0.68, respectively. When the parameters Bχ  and n  
are given, the mean value of the parameter kλ  (=0.78) can 

be calculated by Equation (21) with values of Bλ  and u
rB  

obtained from tests at different initial confining pressures. 
The parameter Bk  cannot be directly determined from 

the conventional triaxial tests. It is difficult to evaluate the 

particle breakage in the whole process of shearing. Only the 
particle size distribution at the end of shearing is obtained. 
Therefore, the value of the parameter Bk  has to be deter-
mined based on comparisons between the model predictions 
and the test results on the stress-strain relationship. This 
method is the same as that to determine the value of the 
plastic modulus introduced by Bardet [62]. The difference 
between the model predictions and the test results on the 
stress-strain relationship firstly decreases with the increase 
of Bk  and then increases with the increase of Bk . An op-
timal value of Bk  can make a minimal difference between 
the model predictions and the test results. Bk  is finally 
determined as 10.50 for the rockfill material. 
Table 1  Values of model parameters 

Model prameters Values 

uα  2.70 

kα  0.35 

Bk  10.50 
0
crM  2.50 

Mk  0.68 

kλ  0.78 

Bχ  0.48×10－2 
n  0.68 
β  0.50 
κ  0.85×10－2 

 

 
Figure 5 Determination of parameter kα  

 
Figure 6 Determination of parameters 0

crM  and Mk . 
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Figure 7 Determination of parameters Bχ  and n . 

7  Model prediction 

7.1  Test introduction 

Table 2 Particle size distribution before test 

Particle size (mm) Values (%) 
0~5 19.0 
5~10 14.0 

10~20 22.0 
20~40 30.0 
40~60 15.0 

 
A series of compress tests [11] were conducted for rockfill 
material by the large-scale triaxial apparatus, as shown in 
Figure 8. The diameter and height of specimen are 300mm 
and 600mm, respectively. The material from Jiangsu Yixing 
Reservoir is a kind of quartzite sandstone containing 15% 
mudstone. The dry density of the aggregate in test is 2.12 
g/cm3. And, the coefficients of uniformity and curvature are 
52.5 and 1.07, respectively. Table 2 presents the particle size 
distribution before tests. The confining pressures in these 
tests are set as 300kPa, 600kPa, 900kPa and 1200kPa, re-

spectively. The axial strain increased with a rate of 2 
mm/min until it increased to 15%. 
 

 
Figure 8 Large-scale triaxial apparatus. 

7.2  Evolution of yielding surface 

The constitutive model with parameters in Table 1 can re-
produce the variation of the yielding surface in the process 
of shearing. Figure 9 shows the evolutions of yielding sur-
faces under different initial confining pressures. It can be 
seen that the big value of initial confining pressure corre-
sponds with the large size of yielding surface. The size of 
yielding surface gets larger at first to the maximal one in the 
process of shearing. Then it becomes smaller from the 
maximal size. The degree of the yielding size decreasing at 
the end of shearing becomes smooth with the increase of 
initial confining pressure, which indicates that the positive 
dilatancy decreases with the increase of initial confining 
pressure. This phenomenon is mainly because that particle 
breakage rather than dilatancy gets dominant in the high 
pressure. 
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Figure 9  Evolution of yielding surface in the process of shearing: (a) p0=300kPa; (b) p0=600kPa; (c) p0=900kPa; (d) p0=1200kPa. 
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Figure 10  Relationship among stress ratio, first strain and volumetric strain: (a) p0=300kPa; (b) p0=600kPa; (c) p0=900kPa; (d) p0=1200kPa. 

7.3  Prediction of stress-strain behaviors 

Figure 10 illustrates the comparisons between the model 
predictions (solid curves) and experimental results (dots) 
under different initial confining pressures in the coordinate 
system composed by the stress ratio, the first strain and 
volumetric strain. The predicted three-dimensional curves 
are also projected onto three planes, i.e., the stress ratio 
versus the first strain plane, the stress ratio versus the vol-
umetric strain plane and the first strain versus the volumet-
ric strain plane. The four predicted curves at each initial 
confining pressure can agree well with the experimental 
results. Rockfill material presents such behaviors as the 
high positive dilatancy (volumetric expansion) and the 

post-peak strain softening at lower initial confining pressure 
as shown in Figure 10 (a), which indicates that the dilatancy 
is obvious at lower pressure. Rockfill material also presents 
the behaviors of volumetric contraction at high initial con-
fining pressure as shown in Figure 10 (d), which is at-
tributed to great particle crushing at high pressure. Consti-
tutive models based on the CST can only predict the be-
haviors of the strain hardening and the volumetric contrac-
tion of soils. While the constitutive model based on BCST 
can well predict the behaviors such as the strain hardening, 
the post-peak strain softening, the volumetric contraction, 
and the volumetric expansion. 

7.4  Prediction of particle breakage 
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Figure 11  Evolution of particle size distribution. 

The main characteristic of this model is that it can repro-
duce the evolution of the particle breakage in the process of 
shearing, which is attributed to the breakage critical state 
theory proposed in this paper. The relative breakage factor 
embedded in the established model equations implies the 
development of the particle crushing in the process of 
shearing. The fractal dimension α  is a variant. And, it can 
be obtained from the relative breakage factor. The fractal 
dimension α , based on Equations (2) and (7), reflects the 
evolution of grading. As illustrated in Figure 11, the predic-
tion of particle size distribution can agree well with the test 
results under different initial confining pressures. 

8  Conclusions 

A breakage critical sate theory (BCST) is proposed. A con-
stitutive model based on BCST is established to reproduce 
the evolution of particle crushing. The main conclusions are 
summarized as follows: 

First, two relative breakage factors were defined based 
on the fractal theory. The relative particle breakage factor 
represents how the material approached the breakage criti-
cal state. The relative particle breakage factor at the ulti-
mate state was embedded in the equations of the breakage 
critical state lines. Second, the breakage critical state theory 
(BCST) was proposed. The breakage critical state line was 
correlated with the breakage factor in order to reflect the 
evolution of particle crushing. Sufficient conditions were 
given for the evaluation of a breakage critical state. Third, 
the constitutive model based on BCST was established. The 
associated flow rule was adopted for deriving model equa-
tions. Isotropic, contractive and distortional hardening rules 

were introduced due to evolution of particle breakage. Last, 
the proposed model can well predict such behaviors of 
rockfill material as high positive dilatancy (volumetric ex-
pansion) and the post-peak strain softening at the lower 
initial confining pressure. It can also describe the behaviors 
of volumetric contraction at high initial confining pressure. 
The volumetric contraction is mainly attributed to the great 
particle crushing at the high pressure. By incorporating the 
fractal breakage theory, the proposed model could also well 
depict the particle breakage and the associated evolution of 
PSD during loading. 

In summary, the proposed model based on BCST can 
well reproduce such behaviors of rockfill materials as the 
strain hardening, the post-peak strain softening, the dilatan-
cy, the particle breakage and the associated PSD evolution 
under different initial confining pressures. 
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