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proposed. The power law connection between the shear strain and loading cycle was represented by using
fractional derivative approach. The volumetric strain was characterized by a modified cyclic flow rule which
considered the effect of particle breakage. All model parameters were obtained by the cyclic and static triaxial
tests. Predictions of the test results were provided to validate the proposed model. Comparison with an
existing cumulative model was also made to show the advantage of the proposed model.
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FRACTIONAL ORDER MODELLING OF THE CUMULATIVE 1 

DEFORMATION OF GRANULAR SOILS UNDER CYCLIC 2 

LOADING 3 

Yifei Sun1, Yang Xiao2, Khairul Fikry Hanif3 4 

1. Institute for Mathematics and its Applications, University of Wollongong, Wollongong 2522, Australia 5 
2. College of Civil Engineering, Chongqing University, Chongqing 400045, China 6 
2. Faculty of Engineering, Computing and Mathematics, University of Western Australia, Perth 6907, Australia 7 

ABSTRACT: To model the cumulative deformation of granular soils under cyclic loading, a 8 
mathematical model is proposed. The power law connection between the shear strain and 9 
loading cycle is represented by using fractional derivative approach. The volumetric strain is 10 
characterized by a modified cyclic flow rule which considers the effect of particle breakage. 11 
All model parameters can be obtained by the cyclic and static triaxial tests. Predictions of the 12 
test results are provided to validate the proposed model. Comparison with an existing 13 
cumulative model is also performed to show the advantage of the proposed model. 14 
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 17 

I. INTRODUCTION 18 

Well-constructed infrastructure could still suffer differential foundation settlements and 19 
structural damages if they were exposed to continuous cyclic loadings induced by traffics, 20 
construction activities and even sea waves, etc. If the number of loading cycles is sufficiently 21 
large then even relatively small strain amplitudes may endanger the serviceability of 22 
structures in the long run, especially if their displacement tolerance is small. Miura et al. [1] 23 
reported that the additional monitoring settlement of Saga airport road resulted from landing 24 
and taking off of aircraft reached about 150 mm in just 2 years. In addition, the tunnel 25 
settlement of the Shanghai Metro Line 1 caused by dynamic train loading had reached up to 26 
155 mm in only 4 years [2]. Detailed understanding of the cumulative deformation and 27 
failure mechanism of soils under repeated loading with large number of cycles is thus 28 
essential for the proper design and maintenance of airport roads, railway tracks and highway 29 
pavements, etc. To investigate and constitutive modeling of the cyclic stress strain response 30 
of soils, lots of experimental and theoretical studies have been conducted [3-15]. Khalili et al. 31 
[7] and Liu et al. [12] studied the cyclic behaviour of gravelly soil under cyclic loading with 32 
low frequency. Ishikawa et al. [16] examined the mechanical response of railroad ballast 33 
subjected to repeated train passages on ballasted track by using multi-ring shear test. Suiker 34 
et al. [17] and Indraratna et al. [18-20] investigated the cyclic behaviour of both ballast and 35 
subballast under low and high loading frequency, from which the influences of loading 36 
history and confining pressure as well as the loading frequency were observed. These 37 
excellent works provide fundamental tools for further understanding the cyclic behaviour of 38 
granular soils, which is significant in practical design methods for the stability of both over-39 



ground and underground structures. However, some of the tests only covered a cyclic load 40 
with very small loading cycles, say less than 100. The corresponding constitutive models, 41 
such as the bounding surface model [7, 21] and the generalized plasticity model [22-23] can 42 
only simulate the cyclic behaviour of granular soils for very limited cycles. For the 43 
cumulative strain under high loading cycles (N > 103), these models usually failed due to the 44 
unintentional accumulation of numerical errors and the huge calculation effort, especially in 45 
the finite element analysis. It is of little possibility for these theoretical models to be used in 46 
practical engineering where the loads usually have at least tens of thousands of cycles. To 47 
overcome this limitation, lots of empirical and semi-empirical models were proposed. For 48 
example, Indraratna et al. [24] proposed a pressure-dependent elastoplastic model by 49 
introducing empirical parameters to consider the effect of stress history, stress ratio, number 50 
of cycles, and breakage. In fact, the cumulative deformation of granular soils under cyclic 51 
stress is not only influenced by the current loading stress but also affected by previous 52 
loading cycles. It is indeed a memory-intensive phenomenon which can be mathematically 53 
expressed by a simple power law of the loading cycles, N, as suggested by Chrismer and 54 
Selig [25] and Indraratna et al. [26], etc. Inspired by the creep of soils under constant static 55 
stress, lots of empirical models for predicting cumulative deformation of granular soils, such 56 
as sand, ballast and subballast, etc., subjected to averaged cyclic deviator stress were 57 
suggested [5-6, 8-11]. Due to the explicit expressions, these models can be easily 58 
incorporated in the engineering-oriented finite element method. However, most of the 59 
existing models contain a lot of model parameters and even so still cannot well predict the 60 
accumulation of residual strain in soils subjected to cyclic loading with many cycles. Most 61 
importantly, they did not physically explain the reason for the cumulative deformation of 62 
granular soils evolving in a power law. Sun et al. [27-28] suggested the use of fractional 63 
calculus in modeling the dependency of power law in complex mechanical process. Later, 64 
Yin et al. [29-30] proposed a framework for constitutive modeling the strain hardening and 65 
softening of geomaterials under static loading by employing the basic theory of fractional 66 
derivative. However, fractional order constitutive modeling of cumulative behaviour of soils 67 
under cyclic loading is still rarely reached. The aim of this paper is to make an attempt to 68 
model the cumulative shear strain of granular soils subjected to drained cyclic loading based 69 
on the theory of fractional derivative. Moreover, a modified cyclic flow rule considering the 70 
effect of particle breakage is proposed for determining the corresponding cumulative 71 
volumetric strain. Comparison between the experimental results and model predictions is also 72 
presented. 73 

 74 

II. CUMULATIVE STRAIN BASED ON FRACTIONAL CALCULUS 75 

2.1. General formula 76 

To quantify the cyclic behaviour of granular soils, laboratory tests, including the biaxial and 77 
triaxial tests are usually conducted under either constant stress rate ( σd ) or constant strain 78 
rate ( εd ). By regarding the soil as an intermediate material, lying between the ideal solids 79 



which obey Hooke’ law and the Newtonian fluids which satisfy Newton’s law of viscosity, 80 
the stress (σ ) and strain (ε ) relationship should obey [29] 81 

 α

αεσ
dt

tdGt )()( =  (1) 82 

where α  denotes the fractional derivative order, ranging between 0 and 1. With α  83 
approaching 1, the material behaves increasingly like an ideal solid, whereas it becomes 84 
increasingly softer like a fluid with α  approaching 0. G is a material constant. t denotes the 85 
time for loading and unloading. To start with, the Riemann-Liouville definitions of the 86 
fractional order derivative (Eq. (2)) and integral (Eq. (3)) of function f are used [30]: 87 
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where )(•Γ  denotes the gamma function and can be formulated as 90 
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For soils loaded and then unloaded for N cycles, the total strain can be obtained by 92 
summing the strain of each loading and unloading cycle, that is 93 
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where the time, T, denote the loading period for one complete loading and unloading process. 95 
σ  and σ̂  denote the loading and unloading stresses, respectively. Gi and iG′  (i = 1, 2, 3, …, 96 

N) are the loading and unloading moduli, respectively. Rearranging Eq. (5), one has 97 
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Following Yin et al. [29], for soils tested under triaxial loading condition, the shear strain 99 

sε  and volumetric strain can be reformulated by using Eq. (6) as 100 

 ∑ ∫∑ ∫
=

+− −
=

+−

− − −Γ′
+

−Γ
=

N

i

iT
TTi

i

N

i

TTi

Ti
i

s d
t

q
Γ

d
t

q
Γ 1 2

)1( 1
1

2
)1(

)1( 1 )(
)(ˆ

)(
11

)(
)(

)(
11 t

t
t

α
t

t
t

α
ε αα  (7a) 101 



 ∑ ∫∑ ∫
=

+− −
=

+−

− − −
′

Γ′
+

−
′

Γ
=

N

i

iT
TTi

i

N

i

TTi

Ti
i

v d
t

p
K

d
t

p
K 1 2

)1( 1
1

2
)1(

)1( 1 )(
)(ˆ

)(
11

)(
)(

)(
11 t

t
t

α
t

t
t

α
ε αα  (7a) 102 

where )(3/2 31 εεε −=s  and )2( 31 εεε +=v ; 1ε  and 3ε  are the first and third principal strains, 103 

respectively. q )( 31 σσ ′−′=  and p′  3/)2( 31 σσ ′+′=  are the loading deviator and mean 104 

effective principal stresses, respectively; 1σ ′  and 3σ ′  are the first and third effective principal 105 

stresses, respectively. q̂  denote the unloading deviator stresses. Ki and iK ′  (i = 1, 2, 3, …, N) 106 

are the volumetric loading and unloading moduli, respectively. Note that 1σ ′= ddq  and 107 

3/1σ ′=′ dpd  during loading and 1ˆ σ ′−= dqd  and 3/ˆ 1σ ′−= d'pd  during unloading.   108 

2.2 Formula for long-term deformation 109 

It is noted that Eq. (6) strictly counts the strain variation of each individual loading cycle. 110 
The entire iteration steps may cause huge calculation effort and numerical errors if large 111 
amounts of loading cycles are involved. Therefore, a modified fractional order model for 112 
long-term cyclic loading needs to be proposed. As adopted by Indraratna et al. [24, 26] as 113 
well as Chrismer and Selig [25], the power law connection between the cumulative strain and 114 
its corresponding loading cycles can well predict the long-term deformation of granular soils. 115 
Most importantly, it can be easily implemented in the finite element analysis because of its 116 
explicit expression. To better take into account this power law phenomenon, the fractional 117 
derivative is employed here. For cyclic triaxial test as schematically illustrated by Fig. 1, the 118 

cumulative shear strain p
sε  is assumed to result from the average deviator stress qav [5] and 119 

have the following relationship: 120 

 av1 q
rpdN

d

a

p
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aε  (8) 121 

where the shear strain p
sε  is fractionally differentiated by the number of loading cycles (N) 122 

instead of the time t. This is because in the context of cyclic loading rate means a derivative 123 
with respect to the number, N. It should be noted that the number of load cycles, N, can be 124 
related to the real loading time, t, by using t = N / f where f denotes the load frequency. 125 
Similar approaches can be found elsewhere in [6, 8-10]. r is the shear-related parameter, 126 
reflecting the long-term behavior of granular soils. pa is the atmospheric pressure (101kPa), 127 
for the purpose of parameter dimensionless. Applying Laplace and inverse Laplace 128 
transformations to both sides of Eq. (8), yields 129 
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Eq. (9) is the ultimate correlation between the cumulative strain sε  and the loading cycles, 131 

N. It offers mathematical representation for how the cumulative strain frequently manifests 132 
itself through the empirical formula with the form of a power-law function. 133 



 134 

III. CYCLIC FLOW RULE 135 

Based on the principle of energy conservation, many different kinds of functions [32-34] 136 
describing the static flow for various geomaterials have been deduced, for instance, the Rowe 137 
dilatancy equation [32]. However, for granular soils which not only experience particle 138 
arrangement but also particle breakage during loading [35]. The energy dissipated by particle 139 
breakage for one individual loading process is assumed to be proportional to the energy 140 
dissipated by particle arrangement as suggested by McDowell [36]. Therefore, the following 141 
energy conservative equation is used: 142 
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where p′  ( 3/23/ 31 σσ ′+′= ) is the mean effective principal stress. The stress ratio pq ′= /η . 144 

M ( bpM ′= 0 ) is the critical state friction parameter of the tested material. M0 and b are the 145 

material constants. It was found that the shear and volumetric strains of soils tested under 146 
cyclic loading flows according to a cyclic flow rule [6, 8]. Wichtmann et al. [8-10] proposed 147 
a stress dilatancy equation by assuming that the energy was only dissipated by particle 148 
slippage. However, as stated before, granular soils not only suffer particle arrangement but 149 
also breakage during loading. Therefore, to better reflect the deformation mechanism, a 150 
modified cyclic flow rule is suggested here by considering energy dissipation from both 151 
particle rearrangement and breakage. For an arbitrary cyclic loading process, the total plastic 152 
strain for the tested sample can be expressed as an integral of all the increments in Eq. (10). 153 
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The stress ratio, η , in Eq. (11) varies with time. However, it can be treated as a mean value,  155 

mη , as suggested by Chang and Wichtmann [37]. 156 
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Substituting Eqs. (12) and (13) into Eq. (11), one has 159 
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By rearranging Eq. (14), the relationship between the cumulative volumetric strain and the 161 
the shear strain can be obtained as 162 
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Eq. (15) can be regarded as a modified cyclic flow rule for granular soils considering the 164 
influence of particle breakage. However, the value of the stress ratio, mη , needs to be 165 

determined before the actual use of Eq. (15) in capturing the flow direction of the cumulative 166 
strains in granular soils. According to the laboratory observation by Chang and Wichtmann 167 

[37], mη  is slightly larger than the averaged stress ratio, avη , in cyclic loading. Therefore, the 168 

averaged stress ratio, avη , is used instead of the mean value, mη . 169 

 ( )
( )a

aa

p
s

p
v M

d
d

av

1av1

ηβ
η

ε
ε

++ −
=  (16) 170 

where β  is the material constant, diminishing the influence of the difference between the 171 

mean stress ratio, mη , and the averaged stress ratio, avη , on the cyclic flow direction. Fig. 2 172 

shows the comparison of the flow directions predicted by Eq. (16) and the modified Cam-173 
clay model suggested by Wichtmann et al. [9, 38]. The modified cyclic flow rule takes into 174 
account the effect of particle breakage and thus gives better performance than that by 175 
Wichtmann et al. [38], especially in the stress dilatant part where the trend of volumetric 176 
dilation was reduced by the particle breakage occurred inside the sample. 177 

 178 

IV. CONSTITUTIVE EQUATIONS 179 

The cumulative total strain is a sum of the elastic strain and the plastic strain, which can be 180 
formulated as 181 

 p
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where e
ve  and e

se  are the resilient volumetric and shear strains, respectively. The resilient 184 

parts of the total strains can be given as 185 
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where the shear modulus G can be defined as [39-40] 188 
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where e0 is the initial void ratio of the sample. Pa = 101 kPa, is the atmospheric pressure. G0 190 
denotes the shear-related modulus for virgin loading; K is the bulk modulus that is expressed 191 
as 192 
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where K0 denotes the compression-related modulus for virgin loading;. The cumulative 194 
plastic strains caused by cyclic loading can be given as 195 

 1
av

)1(
−

+Γ
= a

a
aε N

rp
qd

a

p
s  (23) 196 

 ( )
( )

1
av

av

1av1

)(1
−

++

+Γ
−

= a

a
a

ηβ
ηε N

rp
qMd

a
a

aa
p
s  (24) 197 

where parameter r should depend not only on the soil type but also on the stress state and 198 
initial physical state. As suggested by Li et al. [41], it was not convenient to introduce the 199 
moisture content and dry density directly into the equation. However, the cyclic strain 200 
amplitude of the first loading cycle can indirectly represent the influence of the initial 201 
physical state on the cumulative strain of the granular soils. Thus, an empirical formula 202 
considering the influence of both stress state and initial physical state of soils is suggested as 203 

 ( ) ( )nmDr amplav εη=  (25) 204 

where D, m, n, are material constants and the cyclic strain amplitude, amplε , can be obtained 205 
by using 206 
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where q∆  and maxq∆  denote the cyclic amplitude of the deviator stress and the distance away 208 

from the failure envelop, respectively, as illustrated in Fig. 1. Note that p′∆  and pav in Fig. 1 209 

are the cyclic amplitude of the mean principal stress and the averaged mean principal stress, 210 
respectively. 211 

 212 

V. MODEL PARAMETERS 213 



This model contains ten parameters, i.e., G0, v, M0, a, b, α , β , D, m and n. All of them 214 

can be determined by static and cyclic triaxial tests. The moduli K0 and G0 can be obtained by 215 
resonant column test or measuring the initial stress-strain of the sample subjected to triaxial 216 
loading. The critical state friction parameter M0 and b related to the gradient of the critical 217 
state stress in the p-q space and can be obtained by static triaxial test. The critical state stress 218 
along with the peak stress envelop of railroad ballast, as shown in Fig. 3 varies with the initial 219 
confining pressures which is different from that of sand [42-43]. This can be partially 220 
attributed to the particle breakage during sample preparation which changed the initial 221 
particle size distribution of the railroad ballast. The critical stress ratio, M, depends on the 222 
effective mean principal stress [43-45]. An increase of stress level leads to an increase of the 223 
particle breakage [46-48]. Therefore, a varying critical stress ratio as suggested by Xiao et al. 224 
[43] is used. However, the critical state friction angle for sand [10] is taken as constant here. 225 
Parameters a and β  define the flow direction of sand under cyclic loading and can be 226 

determined by adjusting the value of β  to obtain a better correlation between 227 

)//ln( av βηεε +p
s

p
v dd  and )ln( avη , where the value of a can be obtained by measuring the 228 

slope of the corresponding fitting line, as illustrated in Fig. 4. The fractional derivative order, 229 
α , describes the rate of strain accumulation and is independent of the deviator stress 230 
according to the research by Li et al. [41]. Therefore, it can be determined by fitting the 231 

relationship between the shear strain, p
sε , and the number of loading cycles, N. Note that 232 

sometimes the cumulative strain used to calculate the exponent, α , as illustrated in Fig. 5, is 233 
the cumulative total strain rather than the cumulative plastic strain. This is considered 234 
acceptable because the resilient/elastic strain will become nearly constant and negligible 235 
when compared with the plastic strain after a certain number of loading cycles. Parameters D, 236 
m, and n can be obtained by regression with the value of r (Fig. 6) which is related to the 237 
plastic strain of the first loading cycle. To show the advantage of the present model in 238 
simulating the cumulative deformation, the prediction of the mathematical model proposed 239 
by François et al. [46] is also provided for comparison. The model contains 10 parameters 240 
(Table 1) that depend on the value of the cyclic stress amplitude. As suggested by François et 241 
al. [49], the model parameters need to be determined by nonlinear least squares method. 242 
Detailed values of the model parameters can be found in Table 1.  243 

 244 

VI. MODEL PERFORMANCE 245 

It was found that the stress amplitude had significant influence on the cyclic deformation 246 
of granular soils in the long run [8-10]. To validate the proposed mathematical model, test 247 
results of four different granular soils, as shown in Table 2, are used. The natural quartz sand 248 
was taken from a sand pit near Dorsten, Germany [10]. The grain shape is sub-angular and 249 
the specific weight along with the other physical properties can be found in Table 2. The 250 
samples were tested under different drained cyclic triaxial loading conditions with the 251 
averaged mean principal stress equal 200 kPa and the averaged deviator stresses equal to 50 252 
kPa, 100 kPa, 150 kPa, 175 kPa, and 225 kPa. Each loading condition had the same cyclic 253 
stress amplitude qampl, equal to 40 kPa, and the same loading frequency, equal to 1 Hz. Fig. 7 254 



shows the model simulation of the cumulative deformations of natural quartz sand [10]. The 255 
cumulative strain increased with the increase of the applied average stress ratio. It is observed 256 
that the mathematical model can well capture both the long-term shear strain and volumetric 257 
strain under different deviator stresses. It can also give satisfactory predictions of the initial 258 
deformations for several test conditions. However, if more different complicated loading 259 
conditions involved, this model indeed loses some ability in accurately predicting the 260 
deformation at the initial loading stage, for example, test result with higher stress ratio. This 261 
is because this model aims at predicting the long-term cumulative deformation rather than the 262 
short-term stress strain response of the sample. However, this shortcoming can be resolved by 263 
using variable fractional derivative order but is not within the scope of current research. To 264 
the author’s knowledge, the fractional derivative order could depend on the mechanical state, 265 
such as the loading stress and strain, etc. [27-29]. But, the use of the variable order may 266 
involve significantly complex mathematic calculations (see [27] for instance), which is not 267 
applicable for the engineering concern. The predictions of the numerical model, denoted as 268 
François model [46], are also provided for comparison. As shown in Fig. 7, it can only give 269 
comparatively good predictions of the soil deformation under low stress ratios. In contrast, 270 
the proposed model exhibits better potential in characterising the cumulative deformation of 271 
the natural quartz sand under both low and high stress ratios. 272 

The railroad ballast was a kind of crushed basalt, collected from Bombo quarry near 273 
Wollongong, New South Wales, Australia. It was an angular/subangular volcanic latite basalt 274 
that contains the primary minerals feldspar, plagioclase, and augite [42]. Its physical 275 
attributes can be found in Table 2. The railroad ballast was tested under the confining 276 
pressures equal to 10 kPa, 60 kPa, 120 kPa with two different cyclic stress amplitudes equal 277 
to 185 kPa and 455 kPa. The sample was prepared by tamping to 300 mm in diameter and 278 
600 mm in height before tested under a loading frequency equal to 20 Hz. Fig. 8 shows the 279 
comparison between the test results and the predicted results by the proposed model as well 280 
as the François model. It is observed from Fig. 8(a) that the proposed model can well capture 281 
the cumulative shear strain of ballast tested under different confining and deviator stresses. 282 
The cumulative shear strain increased with increasing confining pressure. Larger deviator 283 
stress resulted in larger cumulative shear strain given the same confining pressure. Moreover, 284 
through the incorporation of the modified cyclic flow rule, the proposed model can well 285 
characterize both the volumetric dilatancy under low confining pressure and the volumetric 286 
contraction under relatively high confining pressure, as shown in Fig. 8(b). But in contrast, 287 
the François model can only give satisfactory predictions of the shear strains under low 288 
confining pressure and the volumetric strains under high confining pressure. Most 289 
importantly, the model parameters are highly dependent on the cyclic amplitude. Therefore, 290 
the proposed model exhibits a better flexibility in modelling the long-term deformation of 291 
different granular soils tested under different loading conditions.  292 

Moreover, to preliminarily demonstrate the ability of the fractional order model in 293 
characterising the entire stress strain hysteresis curve, two additional cyclic tests, as shown in 294 
Figs. 9 and 10, are simulated by using Eq (7). Fig. 9 shows the prediction of the drained 295 
cyclic triaxial tests on the Zipingpu rockfill [14]. The sample was prepared to have a diameter 296 



equal to 300 mm and a height equal to 600 mm before initially compressed to an effective 297 
mean principal stress equal to 500 kPa. The subsequent test was conducted under the stress 298 
amplitude equal to 400 kPa. The physical properties of the sample can be found in Table 2. 299 
The shear-related moduli, G0, used for first, second loading and the subsequent unloading are 300 
15.5 MPa, 9.7 MPa, 7.0 MPa, respectively. The compression-related moduli, K0, used for first, 301 
second loading and the subsequent unloading are 42.3 MPa, 5.5 MPa, and 1.0 MPa, 302 
respectively. The fractional orderα  is found to be 0.71. It is observed from Fig. 9(a) that the 303 
proposed approach can well represent the virgin loading and unloading of the Zipingpu 304 
rockfill. The subsequent hysteresis loops between the axial strain and the deviator stress can 305 
be also characterised. However, as shown in Fig. 9(b), the proposed model can only simulate 306 
the increase of the volumetric strain during virgin loading. The subsequent variation cannot 307 
be well simulated. Fig. 10 shows the prediction of the trixial test results performed on a dense 308 
rockfill [22] which consisted of mainly weathered quartz monzonite. The triaxial test was 309 
performed on a 300 mm diameter and 700 mm high specimen. The initial effective mean 310 
principal stress was equal to 3 MPa and the subsequent loading amplitude was 2MPa with a 311 
loading frequency equal 0.1 Hz. Detailed physical properties of the Toyoura sand can be 312 
found in Table 2. The shear-related moduli, G0, used for first, second loading and the 313 
subsequent unloading are 32 MPa, 7.1 MPa, 9.5 MPa, respectively. The compression-related 314 
moduli, K0, used for first, second, loading and the subsequent unloading are 5.82 MPa, 4.0 315 
MPa, and 0.58 MPa, respectively. The fractional order α = 0.81. Once again, a well 316 
representation of the stress strain hysteresis can be observed from Fig. 10(a). But the 317 
predicted volumetric strain is relatively higher than the experimental results. Further 318 
modification of the current model needs to be conducted in order to accurately capture the 319 
variation of the volumetric strain during cyclic loading. 320 

 321 

VII. CONCLUSIONS 322 

A fractional order model was presented to simulate the cumulative deformation of 323 
granular soils subjected to cyclic loading. This model consists of two main parts. Firstly, a 324 
fractional derivative was used to derive the power law connection between the cumulative 325 
shear strain and its loading cycles. Then, an energy based approach was employed to provide 326 
a modified cyclic flow rule particularly for crushable granular soils. The modified the flow 327 
rule took into account the particle breakage of granular soils under cyclic loading thus had a 328 
better potential in characterizing the cyclic flow direction of granular soils. All the model 329 
parameters can be determined from the cyclic and static triaxial tests. It is noted that the 330 
physical origins of several parameters are not clear and still need further investigation. To 331 
validate the proposed model, predicted and measured results for several different granular 332 
soils, i.e., sand, rockfill, and railroad ballast, were simulated. The proposed model was also 333 
compared with an existing cumulative model to demonstrate its advantage in modelling long-334 
term deformation of granular soils. It was observed that with the help of the fractional 335 
derivative theory, the distinct power law evolution between the shear strain and the 336 
corresponding loading cycle under different loading conditions was reasonably captured. 337 
Besides, by employing the modified cyclic flow rule, the model was also able to predict both 338 



the volumetric compression under relatively high confining pressure and the volumetric 339 
dilatancy under low confining pressure. It is thus concluded that the proposed model could 340 
well capture both the cumulative shear strain and the cumulative volumetric strain of granular 341 
soils. Moreover, to preliminary demonstrate the fractional order approach in modelling the 342 
stress strain hysteresis during cyclic loading, two additional simulations of the triaxial test 343 
results performed on rockfill were also provided. The fractional order approach was shown to 344 
have great potential in modelling the entire stress and strain curve of rockfill during cyclic 345 
loading. However, this model cannot accurately represent the variation of the volumetric 346 
deformation. Further modifications still need be conducted. 347 
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Table caption list: 

Table 1 Model parameters 

Table 2 Physical properties of the granular soils 



Table 1. Model parameters 

Model Parameters Natural quartz  
sand [10] Railroad ballast [42] 

Current model 

qampl (kPa) 40 185 455 
G0 (kPa) 230 383 383 
K0 (kPa) 213 355 355 

M 1.28 4.66 4.66 
b 0 0.82 0.82 
a 1.64 1.8 1.8 
α  0.15 0.1 0.1 
β  0.55 1.0 1.0 
D 1477.34 318.8 318.8 
m 0.56 -1.1 -1.1 
n -0.21 -0.72 -0.72 

François model [49] 

fα (10-4) 0.007 7.4 2.6 

fβ (10-6) -0.07 -5.4 -21.8 

fη  700 105.9 7.0 
df 0.25 0.01 0.01 

cα (10-4) 0.04 8.0 0.56 

cβ (10-6) -0.02 -78 -3.4 

cη  700 1.1 85.7 
Cp (Pa-1) 0.005 0.007 0.007 

Kref 213 355 355 
v 0.2 0.2 0.2 

 

Table 2. Physical properties of the granular soils 

Materials Natural quartz 
sand [10] 

Zipingpu rockfill 
[14] 

Weathered 
monzonite [22] 

Railroad ballast 
[42] 

Gs 2.65 - 2.71 2.66 
d50 (mm) 0.35 9.5 18 39.5 

Cu 1.9 - 11 1.53 
emax 0.930 - 0.3 0.97 
emin 0.544 - 0.15 0.67 
e0 0.745 0.313 0.17 0.74 
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Fig. 1. Schematic representation of the cyclic triaxial test 
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Fig. 2. Cyclic flow rule 
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Fig. 3. Critical state line and peak stress line 
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Fig. 4. Determination of parameters a and β  
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Fig. 5. Determination of exponent α  
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Fig. 6. Determination of parameters D, m and n 
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Fig. 7. Model predictions of the cumulative deformation of natural quartz sand [10] 
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Fig. 8. Model predictions of the cumulative deformation of railroad ballast [42]  
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Fig. 9. Representation of the stress strain behaviour of Zipingpu rockfill [14] 
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Fig. 10. Representation of the stress strain behaviour of weathered monzonite [22] 
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