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Abstract Lots of constitutive models exist to characterise 
the cyclic behaviour of granular soils but can only simulate 
deformations for very limited cycles. Fractional derivatives 
have been regarded as one potential instrument for 
modelling memory-dependent phenomena. In this paper, the 
physical connection between the fractional derivative order 
and the fractal dimension of granular soils is investigated in 
detail. Then a modified elasto-plastic constitutive model is 
proposed for evaluating the long-term deformation of 
granular soils under cyclic loading by incorporating the 
concept of factional calculus. To describe the flow direction 
of granular soils under cyclic loading, a cyclic flow 
potential considering particle breakage is used. Test results 
of several types of granular soils are used to validate the 
model performance. 

Keywords Constitutive model · Fractional order · Fractional 
calculus · Long-term deformation 

1 Introduction 

Static and cyclic stress strain responses of granular soils 
have long been a critical issue that attract many researchers’ 
attention. Lots of experimental and theoretical studies have 
been performed [1-14] to investigate the mechanical 
behaviour of granular soils. For example, Xiao et al. [15] 
conducted a series of true triaxial tests on the rockfill 
material under drained loading condition. Khalili et al. [7] 
and Liu et al. [16] studied the cyclic behaviour of gravelly 
soil under cyclic loading with low frequency. Suiker et al. 
[10] and Indraratna et al. [17, 18] investigated the 
deformation and degradation behaviours of both ballast and 
subballast under static and cyclic loading, from which the 
influences of loading history and confining pressure as well 
as loading frequency were observed. These notable 
contributions provide fundamental tools for further 
constitutive modelling of the cyclic behaviour of granular 
soils.  
 

 

    Up until now, constitutive models have been developed 
based on various concept, including the incremental theory 
[19], fractal theory [20, 21], shear strain and kinematic 
hardening theories [8, 16, 22] , and the bounding surface 
plasticity [7, 12, 23]. Some of the models [8, 14, 23] can 
simulate the real stress strain behaviour but are complex, 
whereas others [6, 12] are relatively simple but cannot take 
into account the deformation and degradation of granular 
soils under complicated loading conditions. Most 
importantly, these models [7, 16] can only simulate the 
cyclic behaviour of granular soils for very limited loading 
cycles, say less than 100 cycles. For the long-term strain 
under high loading cycles (N > 103), these models usually 
failed due to the unintentional accumulation of numerical 
errors and the huge calculation effort, especially in the finite 
element analysis. There is little possibility for these 
theoretical models to be used in practical engineering where 
the loads usually have at least tens of thousands of cycles. 
To overcome this limitation, lots of empirical and semi-
empirical models were proposed. For example, Indraratna et 
al. [22] proposed a sophisticated elasto-plastic model by 
introducing empirical parameters to consider the effect of 
particle breakage, stress ratio, and number of loading cycles. 
In fact, the permanent deformation of granular soils under 
cyclic loading is not only influenced by the current loading 
stress but also affected by previous loading cycles. It is 
indeed a memory-intensive and path-dependent 
phenomenon which might be mathematically represented by 
using the concept of fractional calculus [24-26] . By using 
the fractional calculus theory [27-29], Yin et al. [25, 26] 
successfully proposed a framework for modelling strain 
hardening and softening of geomaterials. The model could 
be easily incorporated in engineering-oriented finite element 
method due to its explicit expression. However, their model 
was just phenomenological, and the physical origin of the 
fractional order still remains unknown and open for 
discussion. Most importantly, the model only dealt with the 
mechanical behaviour under static loading. For soils tested 
under cyclic loading, lots of efforts still need to be done. 

The aim of this paper is to investigate the physical origin 
of the fractional derivative order, and then develop a more 
rigorous constitutive model for granular soils subjected to 
cyclic loading by incorporating the theory of fractional 
calculus. The ability of the proposed model in predicting 
long-term deformation with a large number of loading 
cycles is demonstrated by simulating a series of long-term 
cyclic tests.  
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2 Notations and definitions 

2.1 Notations 

In the model presented, granular soils are assumed to be 
homogeneous. Both the elastic and elastic–plastic responses 
are isotropic. Compression is considered to be positive and 
tension is negative. Each stress notation here represents a 
corresponding effective stress unless otherwise specified. 
For simplicity, the following triaxial stress notations are 
used:  

 ( )31 2
3
1

σσ +=p  (1) 

 31 σσ −=q  (2) 

 [ ]Tqp,=σ  (3) 

where p and q denote the mean principal stress and deviator 
stress, respectively. 1σ  and 3σ  denote the first and third 

principal stresses, respectively. σ  is the effective stress 
tensor. The corresponding volumetric strain vε , generalised 

shear strain sε , and generalised total strain tε  can be given 

as 
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where 1ε  and 3ε  are the first and third principal strains, 

respectively. ε  is the strain tensor. The increments of the 
total strain under each loading step can be decomposed into 
elastic and plastic parts according to  

 pe εεε  +=  (7) 

where a superimposed dot indicates an increment; the 
superscripts e and p denote the elastic and plastic 
components, respectively.  

2.2 Definitions 

The fractional calculus theory deals with both fractional 
derivatives and integrals. In this work, two common 
definitions of the fractional derivative and fractional integral, 
known as the Riemann-Liouville fractional derivative and 
integral, will be used.  
    The Riemann-Liouville fractional derivative can be 
formulated as  
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where D means derivation; α  is the fractional order, 
ranging from 0 to 1. x denotes the independent variable and 
can be regarded as the loading time in static test or the 
loading cycles in cyclic test. Due to its integral definition of 
the derivative, the fractional order derivative has a strong 
memory of the variable, x. Accordingly, there is one 
particular difference between the integer order derivative 
and the fractional order derivative. The integer order 
derivative of a constant is 0, whereas the Riemann-Liouville 
fractional order derivative of a constant C is not equal to 0, 
but 
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where the gamma function ( )•Γ  is defined as 
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    Another important formula, the Riemann-Liouville 
fractional integral is defined as 
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where I means integral. Note that there are two important 
properties for the Riemann-Liouville definition, one is  

 ( ))()( 000 xzIDxzD xxx
ςαςα =−  (13) 

which means that the Riemann-Liouville derivative operator 
is a left inverse to the Riemann-Liouville integral operator 
in current situation. However, the fractional derivative and 
integral do not commute as shown in the following Eq. (14) 
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3 Connections between the fractional order and fractal 
dimension 

3.1 Static loading condition 

To quantify the soil property, laboratory tests, including the 
oedometric, biaxial, and triaxial tests with either constant 
stress rate or constant strain rate, are usually conducted. 
Various constitutive models concerning the stress strain 
behaviours under these conditions were proposed. By 
regarding the soil as an intermediate material, lying between 



the ideal solids which obey Hooke’s law and the Newtonian 
fluids which satisfy Newton’s law of viscosity, Yin et al. 
[26] proposed a general framework for fractional order 
constitutive modelling of soils under static loading. For 
clarification, their work is briefly introduced here. The basic 
constitutive law of an intermediate material can be simply 
defined as 

 10),()( 0 ≤≤= αεθσ αα tDEt t  (15) 

where E and θ  are material constants. Note that the 
Hooke’s law ( 0=α ) and Newton’s law ( 1=α ) are just the 
special cases of Eq. (15). For soils tested under a constant 
strain rate ( 1c ) condition with tct 1)( =ε , Eq. (15) can be 

further derived by using Riemann-Liouville definition as 
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For soils tested under a constant stress rate ( 2c ) 

condition with tct 2)( =σ , Eq. (15) can be further derived 

as 
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Note that for the same soil, the fractional orders in Eqs. (16) 
and (17) should be correlated by 1)1)(1( 21 =+− αα . This is 

because the power law connection between the strain and 
stress should be the consistent, irrespective of the loading 
methods. As already validated by Yin et al. [26], the 
proposed model can well capture the stress strain behaviour 
of different geomaterials under different static loading 
condition even with fewer model parameters, when 
compared with other existing constitutive models. However, 
in their model, the fractional order α  was just regarded as a 
material constant. No physical origins of the fractional order 
were proposed. In the next section, an attempt will be made 
to demonstrate the correlation of the fractional order with 
the fractal dimension of granular soils under static loading.  

3.2 Cyclic loading condition 

There are three common approaches in modelling the cyclic 
behaviour of granular soils. The first is the traditional 
theoretical method, including the elasto-plastic [7, 16] and 
elasto-visco-plastic models [30, 31], where the deformation 
of each loading cycle is strictly counted. This method 
reveals the deformation mechanism of soils subjected to 
cyclic loading. However, it cannot be used to predict the 
long-term deformation with large amount of loading cycles, 
due to the intrinsic accumulation of numerical errors with 
increasing loading steps. The second is the semi-empirical 
method [2, 22, 32, 33], where the theoretical models are 
modified by incorporating empirical equations to provide a 
better simulation of the cumulative deformation for a large 

number of cycles. However, these models usually have a lot 
of model parameters and therefore are hardly to be used in 
practical engineering. The third is the pure empirical 
method, which is usually problem targeted and flexible for 
engineering application. However, it does not reflect the 
essential mechanism behind the deformation phenomenon 
of granular soils. The cyclic behaviour of granular soils is 
actually a history-dependent phenomenon where the current 
soil deformation is often influenced by the previous loading 
history. The fractional derivative may be acted as an 
alternative way in modelling the cyclic behaviour of soils 
considering its definition in an integral form.  

100 101 102 103 104
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of cycles N

de
1/d

N
 (%

)

 

 

s3 = 30kPa

s3 = 60kPa

s3 = 120kPa

s3 = 240kPa

(a)

 

100 101 102 103 104
10-5

10-4

10-3

10-2

10-1

100

101

Number of cycles N

de
1/d

N
 (%

)

 

 

s3 = 30kPa

s3 = 60kPa

s3 = 120kPa

s3 = 240kPa

Best-fit line

(b)

 

Fig. 1 Variation of the strain accumulation rate with number of 
loading cycles : (a) normal scale and (b) log-scale (modified after 
[44]) 

In the context of cyclic tests, the loading cycles N 
instead of the time t is used [3, 34], as the cumulative strain 
rate during cyclic loading means a derivative with respect to 
the number of N. Fig. 1(a) shows the variation of the axial 
strain accumulation rate with the number of loading cycles, 
where the strain accumulation rate for one close cycle of 
loading decreases significantly at first and then approaches 
stable with increasing number of loading cycles. However, 



by rephrasing the strain accumulation rate and number of 
loading cycles in a log-log form as shown in Fig. 1(b), a 
simple linear variation depicted by Eq. (18) can be observed.  

 10,logloglog 1 <<+−= ββε bN  (18) 

where β  and b are fitting parameters, which remain as 
constant for a given loading state. As will be demonstrated 
later, b is more likely dependent on the loading stress state, 

for example, p and q in triaxial loading condition. 1ε  

denotes the strain accumulation rate with respect to N, 
which is scale invariant and obeys the power law in relation 
to the number of loading cycles. Note that soil deformation 
only initiated when the external load applies. Therefore, the 
soil strain at N = 0 is regarded as zero. By performing 
fractional differentiation on both sides of Eq. (18), one has 
the following simple and yet useful expression:  

 )(1 α
ε
α

α
Γ= b
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d
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where the fractional derivative order βα −= 1 .  

To represent how the fractal dimension of soils 
determines the fractional order α  in Eq. (19) during cyclic 
loading, let us assume that the plastic deformation of 
granular soils is only attributed to the compression and 
expansion of the internal pores formed by the skeleton 
particles within the sample.  

 
Fig. 2 Schematic representation of the equivalent pore size of 
granular soils under compression 

As shown in Fig. 2, the pore size of a loose sample is 
relatively large (lpL) while it reduces to a small value (lpD) 
once the external loads apply. It is hardly to evaluate the 
true pore size distribution of a three dimensional material. 
However, a two dimensional theoretical approach similar to 
the determination of constriction (pore) size distribution of 
granular soils [35, 36] can be used to give an approximate 
analysis of the pore size distribution of a given granular soil. 
The diameter of an equivalent circle that has the same area 
as the shaded region shown in Fig. 2, represents the size of 
the pore formed by surrounding skeleton particles.  
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The theoretical concepts were therefore incorporated into 
a comprehensive computer subroutine to compute the pore 
size distribution. Fig. 3 illustrates two specific pore size 
distributions corresponding to a given particle size 
distribution. As expected, the pore sizes of a loose sample 
are generally larger than those of a dense one. It should be 
noted that the calculated pore size distribution is only a 
qualification of the distribution of pores in the soil sample. 
The actual pore size distribution can only be quantified by 
laboratory measurement, which is not within the scope of 
this study. However, bear in mind that the densest pore size 
distribution (with relative density equal to unit) is observed 
to be an almost parallel shifting from an initially loose pore 
size distribution.  
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Fig. 3 Loosest and densest pore size distributions of the 
corresponding particle size distribution 

    The three dimensional pores are usually distributed in 
fractal law [37-39], which can be well characterized by the 
following formula: 

 p
ppp BllLN ∆−=> )(  (21) 

where Np denotes the number of pores with diameters larger 
than lp. B is a constant of proportionality and p∆  is the 

fractal dimension of the internal pores. Therefore, the total 
surface area and volume of the internal voids can be 
obtained by using Eq. (21). 
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where pγ  and pγ ′  denote the surface and volume shape 

factors of the internal pores, respectively; lpM and lpm are the 
current maximum and minimum pore sizes, respectively. It 
is assumed that the total surface areas of particles and pores 
are equal, given that the combined contact area of touching 



particles is very small compared to the total surface area. 
The following relationship between fractal dimension of soil 
particles, s∆ , and the fractal dimension of the internal 

pores, p∆ , can be given as [39]: 
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where lsM and lsm are the maximum and minimum particle 
sizes, respectively. As already proved in Fig. 3, both the 
maximum and minimum pore sizes should decrease with 
soil compression. The change of the total pore volume 
should be attributed to the change of the overall pore sizes. 
As this topic was rarely reached, a special case of the 
oedometric test where vεε  =1  is considered here. Therefore, 

the increment of axial strain accumulation can be 
determined by 
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where Vs and e0 are the total volume of the internal particles 
and the initial void ratio, respectively. Due to the parallel 
shifting of the pore size distribution, the maximum and 
minimum particle sizes should vary simultaneously by 
decreasing k times from their initial values. This can be also 
validated by ensuring the equality of Eq. (24), supposing the 
fractal dimensions of both the pores and particles are 
invariable. Eq. (25) can be further derived as 
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where the material constant µ  is expressed as 
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in which 
0pMl  and 

0pml  are the initial maximum and 

minimum pore sizes within the sample. The decreasing rate 
k changes with the number of loading cycles. By recalling 
the relationship shown in Eq. (18), and comparing the 
exponent with that of Eq. (26), an explicit expression for k 
can be obtained as  

 [ ] )3/(11 1)3(
−∆− +∆−= pNk p

αα  (28) 

As can be observed in Eq. (28), both the fractional 
derivative order α  and the fractal dimension p∆  influence 

the performance of k. Fig. 4 represents the evolution of the 
function k and the normalized total volume of the internal 
pores. The function k is observed to increase significantly 
when the number of loading cycles is small. However, the 
total volume of internal pores decreases rapidly at the initial 
thousands of loading cycles and soon becomes stable, 

implying that large cumulative deformation usually occurs 
at the initial loading stage. This is in accordance with the 
experimental observations by Suiker et al. [10, 32].  
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Fig. 4 Variation of the function k and normalized total volume of 
internal pores 

The physical connection between the fractional 
derivative order (α ) and the fractal dimension ( s∆ ) can be 

obtained by using Eqs. (24) and (28) with N equal to 1.  

 χϑα +−∆= )2( s  (29) 

where parameters )ln(/)(ln pMpmsMsm llllχϑ −=  and 

3
1

1 1 −∆− −= pkχ ; k1 corresponds to the decreasing rate of 

the first loading cycle. Therefore, the fractional derivative 
order decreases with the increasing fractal dimension of a 
given granular soil, indicating that soils with higher fractal 
dimensions are more hardly to be compacted when 
compared with those with lower fractal dimensions. The 
changing rate depends on the value of ϑ .  

4 Constitutive model incorporating fractional calculus 

4.1General constitutive equations 

The total increments of strains can be decomposed into the 
incremental plastic strain and elastic strain, respectively. 
Following the traditional elastic theory, the incremental 
elastic stress can be expressed as 

 σε  ee C=  (30) 

where Ce is the elastic compliance matrix, which can be 
defined by the the bulk and shear moduli of the sample: 
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where K and G are expressed as 
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in which ν  is the Poisson ratio. As demonstrated before, 
the strain accumulation behaviour can be better described by 
using fractional order derivatives. The strain accumulation 
rate remains scale invariant when represented in the scale of 

1−αN . Therefore, instead of the traditional incremental 
definition of the accumulation rate [32, 34], the cumulative 

soil strain pε  can be fractionally defined as 

 mp
α

pα

εd
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d
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ε
 (33) 

where m denotes the flow direction of the cumulative strain, 

which can be derived from a loading function. pdε  is the 
flow intensity. Note that Eq. (33) degrades to the form of 
the high-cycle accumulation model [3, 33] with 1=α . 
During triaxial cyclic loading, the deformation of granular 

soils ( pε ) is usually decomposed into a shearing-related 

component p
sε  and a compaction-related component p

vε , 
which yields 
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where g is the loading function and λd  is the modified 
plastic multiplier that can be related to the flow intensity as 
follows 
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•  represents the module of a tensor. Determination of the 

plastic multiplier and flow intensity will be given in the 
following section. 

4.2 Loading function and flow direction 

As granular soils, such as the rockfill and ballast, usually 
undergo internal particle breakage during loading, a loading 
surface function considering the effect of particle breakage 
on the mechanical response is used [40]: 
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where parameter a ( 0≥ ) reflects the effect of particle 
breakage. 0p  denotes the size of the current loading surface. 

M denotes the critical state friction parameter and can be 
obtained by using )3/(sin6 φφ SinM −=  where φ  is the 
critical state friction angle. Detailed derivations of Eq. (36) 
can be found elsewhere in McDowell [40]. By recalling Eq. 
(18), σ∂∂ /gdλ  should remain as constant for a given 
loading state. Therefore, applying the derivation of α−1  
order to both sides of Eq. (34), one has 
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which can be regarded as the cyclic flow rule of granular 
soils. pq /=η  is the stress ratio. Similar concepts of the 
cyclic flow rule can be found elsewhere in [2]. Accordingly, 
the flow direction can be defined as 
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4.3 Hardening rule 

Applying the consistency condition at the loading surface 
and assuming isotropic hardening of the loading surface 
with the plastic volumetric compression, the derivative of 
the loading surface can be obtained as 
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    By recalling Eq. (34), the plastic volumetric strain p
vε  

can be rewritten as  
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    Substituting Eq. (40) into (39), the plastic multiplier λd  
can be derived as 
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where the relationship between 0p and p
vε  under isotropic 

loading condition can be formulated as 
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where λ′  and κ  are gradients of the critical state and swell 
lines, respectively. e0 denotes the initial void ratio. However, 



considering the effect of loading history (N), Eq. (42) can be 
further modified by using Eq. (16), which yields 
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Note that Eq. (43) reduces to Eq. (42) at virgin loading 
condition with N = 1. Strictly speaking, the effect of cyclic 
loading history should be represented by internal soil 
variables. However, to avoid excessive complexity in 
constitutive equations and especially the application in 
numerical simulation, N is included in the model 
formulation. A similar phenomenological approach was also 
used by Liu and Carter [41] and Chen et al. [42]. Fig. 5 
shows the ability of the proposed model in characterising 
the entire stress strain response of granular soils under 
cyclic loading. The rate of cyclic densification can be well 
captured by varying the fractional derivative order, α . The 
shear strain is observed to densify more quickly with a 
smaller value of α . 
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Fig. 5 Schematic representation of the effect of fractional order in 
modelling cyclic response 

    The above theoretical formula is an extension of the 
fractional order constitutive theory proposed by Yin et al. 
[26]. It incorporates the fractional calculus theory in 
traditional plasticity theory. Empirical models with 3/1=α  
by Indraratna et al. [22] and Liu and Carter [41] are just 
special cases based on our proposed theory. The distinct 
difference between the proposed fractional order 
constitutive model and the traditional constitutive ones is its 
simplicity and yet vigorous in modelling the long-term 
deformation of granular soils.  

4.4 Explicit formula for predicting long-term deformation 

Under the triaxial testing condition, the increments principal 
mean stress, p, and deviator stress, q, can be linked to each 
other as pq  3= . Accordingly, combining Eqs. (33), (35), 
(41), and (43), the explicit expressions for the flow intensity 
can be given as 
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where )(1 κλξ −′=  and 
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    In traditional plasticity model, the long-term deformation 
is implicitly calculated by accumulating the plastic strain of 
each loading cycle. However, due to the numerical errors 
built up during each step of iteration, the predictions are 
usually far from the experimental observations. To avoid 
complexity in predicting the long-term deformation of 
granular soils under drained triaxial loading condition, the 
plastic strain is supposed to be only induced by loading and 
unloading is totally elastic. The increment (e.g., p∆ ) of a 
cyclic load from its minimum value, pmin, to its maximum 
value, pmax, is regarded as one complete loading step. 
Moreover, according to the research by Wichtmann et al. [2, 
3], the cyclic plastic flow of the long-term strain of granular 
soils can be approximately characterised by the modified 
Cambridge model consisting of the average principal 
loading stresses. Therefore, a general flow potential formed 
by the averaged mean principal stress 

2/)( maxmin
av ppp +=  and the averaged deviatroic stress 

2/)( maxmin
av qqq += , is used to capture the cyclic flow in 

relation to the cumulative strain of each loading cycle. The 
superscript av means arithmetic average. The flow intensity 
can be rewritten as 
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where avavav pq=η . ξ  is found to depend on the 
loading condition, which can be expressed as 

42 )/()/( av
3

av
1

bb ppbqqb ∆+∆=ξ . Substituting Eq. (46) 



into Eq. (33) yields the explicit formula for granular soils 
under long-term cyclic loading. 

 

ξ
ηη

α
εε

α

α

)1(
31

)(

0

1

αv

αvαv

1

ε
N

p
p

MM

Nmd

α

p
pp

v

+
∆


























−
+=

Γ
=

−

−


 (47a) 

 

ξ

η

ηη

α
εε

α

α

)1(
1

31

)(

0

1

αv1

αv

αvαv

1

ε
N

q
q

M

MM

Nmd

α

α

q
pp

s

+
∆

−



































−
+

=

Γ
=

−

+

−


 (47b) 

5 Model validation 

5.1 Model parameters  

There are nine parameters, i.e., G0, ν , φ , a, α , b1, b2, b3, 
and b4, in the current model. Two elastic parameters, G0 and 
ν , can be determined by performing resonant column test 
or measuring the initial stress-strain gradient of the sample 
subjected to static triaxial loading ( %001.0≤ε ).The critical 
state friction angle φ  can be obtained by static triaxial test 
or from the reposed angle of the cone of the corresponding 
material deposited by slow centric lifting of a funnel. 
Parameter a defines the flow direction and can be 
determined by using 0=sv εε   or by representing the 

relationship between sv εε   and avη . The fractional 

derivative order α  determines the rate of strain 
accumulation and can be determined by fitting the 
relationship between εln and lnN. Parameters, b1, b2, b3, 
and b4, can be obtained by regressing the plastic strain of the 
first loading cycle. Values of the model parameters along 
with the test conditions are listed in Table 1. As only the 
permanent deformation is evaluated in this study, elastic 
parameters are omitted here for clarity. 

 

Table 1 Model parameters and test conditions for different granular soils 

Test material 
p (kPa) q (kPa) φ (o) α  a b1 b2 b3 b4 min max min max 

B1 [22] 75 

184.7 

45 

374 

46.4 0.12 0 0.0246 25.46 39.6 -26.47 
202.7 428 
220.7 482 
238.7 536 

B2 [43] 
45 106.7 

45 230 46.4 0.06 0 22.42 61.38 20833 7.151 75 136.7 
135 196.7 

B3 [43] 
75 226.7 

45 500 46.2 0.06 0 27.83 69.86 3955 9.573 135 286.7 
255 406.7 

B4 [43] 
135 370 

45 750 46.7 0.06 0 0 0 3231.6 5.043 
255 490 

S1,2 [44] 70 96.7 0 80 32.3 0.10 0 22.08 6.57 3.262 -7.161 

SG3,4 [44] 100 
201.7 0 200 

38.0 0.13 
0 
0 18.91 10.78 2349 -4.767 

451.7 0 500 
SW6,7,8 [44] 0 120 0 300 43.8 0.12 0 -18.23 11.32 58216 -8.617 

SS1 [3] 
190 210 120 180 

32.0 0.22 0.25 0.00752 -5.387 541.4 -0.285 193.3 206.7 130 170 
196.7 203.3 140 160 

SS3 [3] 

173.3 226.7 110 190 

32.9 0.21 0.25 371.6 -0.692 0.081 14.46 
180 220 120 180 

187.6 213.3 130 170 
193.3 206.7 140 160 

SS4 [3] 

173.3 226.7 110 190 

33.1 0.27 0.25 1.108 -3.503 780 -0.027 
180 220 120 180 

187.6 213.3 130 170 
193.3 206.7 140 160 

SS2 [3] 

187.6 213.3 130 170 

34.2 0.37 0.25 0.006 -3.472 4.802 -0.293 
190 210 135 165 

193.3 206.7 140 160 
195.7 204.3 143.5 156.5 

SS5 [3] 186.7 213.3 

30 70 

32.7 0.21 0.25 174.9 -1.014 134.1 -0.563 

80 120 
130 170 
155 195 
180 220 
205 245 



5.2 Model performance 

The model is validated with laboratory experimental results 
reported by Wichtmann et al. [3], Indraratna et al. [22], 
Lackenby [43], as well as Lekarp and Dawson [44]. Test 
conditions can be found in Table 1.  
    Figs. 6 to 10 shows the long-term deformation of 
different sands [3] tested under different cyclic loading 
conditions. All the sands used were natural sub-angular 
quartz aggregates taken from a sand pit near Dorsten, 
Germany. Detailed physical properties can be found 
elsewhere in [3] and are omitted here for simplicity. Figs. 6 
to 9 present the prediction results of the permanent 
deformation of different sands (SS1, SS2 SS3, SS4) under 
different deviator stress amplitudes. With the increase of the 
number of loading cycles the residual strain increases 
rapidly and then approach stable. Higher stress amplitude is 
observed to cause higher sand deformation. Good 
agreements between the model predictions and the 
corresponding experimental results are observed. Fig. 10 
shows the permanent deformation of sand No. SS5 with 
different deviator stresses. With the increase of the deviator 
stress, a higher permanent deformation is observed, which 
can be well captured by the proposed model. 
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Fig. 6 Permanent deformation of sand (SS1) tested under different 
stress amplitudes  
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Fig. 7 Permanent deformation of sand (SS2) tested under different 
stress amplitudes  
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Fig. 8 Permanent deformation of sand (SS3) tested under different 
stress amplitudes  
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Fig. 9 Permanent deformation of sand (SS4) tested under different 
stress amplitudes  
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Fig. 10 Permanent deformation of sand (SS5) tested under different 
deviatoric stresses  

Figs. 11 to 14 present the long-term deformation of 
different crushed rocks tested under different mean principal 
and deviator stresses. The crushed rock is a dark-coloured 
volcanic (igneous) rock containing plagioclase, feldspar, 
and augite. The physical and durability properties of the 



crushed rocks can be found in [43]. Four test results under 
different loading frequency are presented in Fig. 11. The 
corresponding stress amplitudes were calculated in 
accordance with Esveld [45] for 30 ton axle loading. As 
illustrated, with the increase of the loading stress, the 
permanent deformation increases, which can be well 
characterised by the proposed model. Figs. 12 to14 presents 
the comparison between the model prediction and the 
experimental results obtained under different average mean 
principal stresses. The proposed model is also capable of 
characterising the long-term deformation of the crushed 
rocks under various mean principal stresses. 
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Fig. 11 Permanent deformation of ballast (B1) tested under mean 
principal and deviator stresses  
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Fig. 12 Permanent deformation of ballast (B2) tested under various 
mean principal stresses  
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Fig. 13 Permanent deformation of ballast (B3) tested under various 
mean principal stresses  

2

4

6

8

10

12

C
um

ul
at

iv
e 

sh
ea

r s
tra

in
  e sp  (%

)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

2

4

6

8

10

12

14

Number of loading cycles

R
es

id
ua

l s
tra

in
  e

tp  (%
)

 

 

pav = 252.5 kPa
pav = 372.5 kPa
Model prediction

(a)

(b)

a = 0.06

 
Fig. 14 Permanent deformation of ballast (B4) tested under 
different mean principal stresses 

Permanent axial strains of three different pavement 
materials are also simulated in Fig. 15. The material types 
include Leighton Buzzard sands (S), the sand and gravel 
(SG), and the slate waste (SW). The SG and SW were tested 
in a triaxial apparatus, while the S was tested in a hollow 
cylinder apparatus. As can be seen, the permanent 
deformation of different pavement materials tested under 
different loading conditions can also be well represented 
using the current model. 
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Fig. 15 Permanent deformation of pavement materials tested under 
different loading stresses 

6 Conclusions  

Fractional derivatives were found to be a powerful 
instrument in characterising the memory-intensive 
phenomena, such as the soil deformation and chemical 
diffusion, etc. Previous work [26] has demonstrated the 
flexible ability of fractional derivatives in modelling the 
static deformation of geomaterials. However, the physical 
origin of the fractional derivative order has not yet been 
explored. In this study, an attempt has been made to 
investigate the connection between the fractional derivative 
order and the fractal dimension of granular soils. Then a 
modified elasto-plastic constitutive model was proposed for 
granular soils by incorporating the theory of fractional 
calculus, and was further supplemented by experimental 
data. In the current model, a cyclic flow rule considering the 
effect of particle breakage was also proposed. The concept 
introduced for modelling long-term deformation was 
simplified, and it was an extension of a monotonic loading 
model proposed earlier by Yin et al. [26]. Deformation 
under the first loading cycle was considered as virgin 
loading, and the deformation under subsequent loading 
cycles was considered a function of the first loading cycle. 
The effect of the stress history has been taken into account 
by using the fractional derivative order. The proposed 
model degrades to the traditional plasticity model with the 
fractional derivative order equal to unit. With the decrease 
of the fractional derivative order, the model was observed to 
exhibit an increasing rate for reaching cyclic densification. 

Predicted results have been compared with the experimental 
data to validate the model accuracy. It was observed that the 
proposed model can well characterise the long-term 
deformation of various granular soils under different cyclic 
loading conditions. 
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