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A dual deformation mechanism of grain boundary at different stress stages

Abstract
Molecular dynamics (MD) simulation with embedded-atom method (EAM) potential was carried out to
study the structure and shear response of an asymmetric tilt grain boundary in copper bicrystal. A non-planar
structure with dissociated intrinsic stacking faults was observed in the grain boundary. Simulation results
show that this type of structure can significantly increase the ductility of the simulation sample under shear
deformation. A dual deformation mechanism of the grain boundary was observed; the grain boundary can be
a source of dislocation emission and migrate itself at different stress stages. The result of this study can provide
further information to understand the grain boundary mediated plasticity in nanocrystalline materials.
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Abstract: Molecular dynamics (MD) simulation with embedded-atom method (EAM) 

potential was carried out to study the structure and shear response of an asymmetric tilt 

grain boundary in copper bicrystal. A non-planar structure with dissociated intrinsic 

stacking faults was observed in the grain boundary. Simulation results show that this 

type of structure can significantly increase the ductility of the simulation sample under 

shear deformation. A dual deformation mechanism of the grain boundary was observed; 

the grain boundary can be a source of dislocation emission and migrate itself at different 

stress stages. The result of this study can provide further information to understand the 

grain boundary mediated plasticity in nanocrystalline materials. 
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1. Introduction 

Compared with conventional coarse-grained materials, nanocrystalline materials show a 

lot of advanced performances[1, 2], which stimulated widespread interest in the 

mechanical properties and novel deformation mechanisms of nano-sized materials. The 

deformation mechanisms of metals with the average grain size in the nanometer range 

are studied extensively in the past two decades[3, 4]. Grain boundary (GB) has been 

confirmed to play an important role in the mechanical behavior of nanocrystalline 

metals by both experimental observations and atomistic simulations. The identified 

deformation mechanisms in nanocrystalline metals include GB sliding[5, 6], grain 

rotation[7-9], GB migration[10-13], dislocation sink in or nucleate from GBs[14-16]. 

Most of the previous work show that single deformation mechanism can be activated 

for a certain GB. For example, by using molecular dynamics (MD) simulation, Qi and 

Krajewski[6] showed that GB sliding is the primary deformation mechanism in bicrystal 

Al under a shear force. Cahn et al.[9] found that all of the <0 0 1> symmetric tilt GBs in 

Cu can migrate coupled to a shear deformation. Zhang et al.[16] observed that 

dislocation nucleation dominant the mechanism of a deformed Cu with <1 1 0> 

symmetric tilt GBs under tension. By using the quasi-continuum method, Sansoz and 

Molinari[17] correlated individual failure mechanisms to certain GBs. In tension, failure 

of the GBs occurred via partial dislocation nucleation and GB cleavage. In shear, they 

reported three different failure modes depending on the boundary structures: GB sliding 

by atomic shuffling, nucleation of partial dislocations from GB, and GB migration. To 

the best of the author’s knowledge, a dual deformation mechanism of the same GB has 

mailto:chenglu@uow.edu.au


2 

rarely reported previously. Also, the computer modeling of GBs has been mostly 

focused on symmetrical GBs, which possess mirror symmetry of crystallographic planes. 

In contrast, very few atomistic simulations have been conducted on the asymmetric GBs. 

In this study, we reported a Σ11 asymmetric GB with a non-planar structure that can 

play a role as dislocation source and migrate itself at different stress stages under shear 

deformation. 

2. Methodology 

Molecular dynamics simulation was carried out to study Σ11(2 2 5)/(4 4 1) Ф=54.74° 

asymmetric tilt GB in Cu bicrystal. The simulation was carried out using the parallel 

molecular dynamics code LAMMPS[18] with the embedded-atom method (EAM) 

potential for Cu developed by Mishin et al.[19]. A bicrystal model was created by 

constructing two separate crystal lattices with different crystallographic orientation and 

joining them together along the Y axis (see Fig.1). A periodic boundary condition was 

applied in the X and Z directions while a non-periodic boundary condition was applied 

in the Y direction. The equilibrium structure of the GB was obtained by the energy 

minimization procedure and the subsequent MD relaxation in the isobaric-isothermal 

(NPT) ensemble at a pressure of 0 bar and a temperature of 300 K for 20 ps. As shown 

in the atomic configuration in Fig.1, the equilibrium Σ11(Ф=54.74°) asymmetric GB 

shows an obvious non-planar structure with an intrinsic stacking fault that dissociated 

from the boundary plane. 

 

Fig.1 Schematic of the simulation model. A constant shear velocity Vs=1m/s parallel to the boundary 

plane was applied during the shear deformation. The atomic configuration shows the equilibrium 

structure of the Σ11(2 2 5)/(4 4 1) (Ф=54.74°) asymmetric GB. The images are viewed along the 

[1 1̅ 0] tilt axis and are colored according to the common neighbor analysis (CNA) parameter. Atoms 

with perfect fcc structures are colored with blue, the red atoms represent the GB plane and the 

dislocation core, the light blue atoms represent the stacking fault. 

Once the equilibrium state of GB was reached, a shear deformation was applied to 

bicrystal model. Atoms on the top of grain-A and atoms at the bottom of grain-B were 

fixed, the thickness of each fixed slab was approximate twice the cutoff radius of atomic 

interactions[10], while all the other atoms in the model were set free. A constant shear 

velocity Vs=1m/s (about 4.6×10
7
/s shear strain) parallel to the boundary plane was 
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applied to the fixed area of grain-A in the +X direction. Throughout the MD simulation, 

the NPT ensemble was adopted and the time increment of simulations was fixed at 1 fs. 

Stress and temperature calculations were performed on the dynamic atoms between the 

two fixed slabs. In atomic level, the stress is computed according to the virial theorem 

by the formula: 

𝜎𝑖𝑗 =
1

𝑉
∑ (

1

2
∑ 𝑟𝛼𝛽

𝑖 𝐹𝛼𝛽
𝑗

− 𝑚𝛼𝑁
𝛽=1

𝑁
𝛼=1 𝑣𝑖

𝛼𝑣𝑗
𝛼)     (1) 

Where i, j are Cartesian coordinates and α and β are atom index numbers. m and v 

denote to the mass and velocity of the atom. rαβ and Fαβ are respectively the distance and 

force between two atoms with index α and β. V is the volume of the system and with 

number of total atoms N. 

Generally, if a dislocation is subjected to stress, it tends to move through the crystal. 

This motion is the mechanism for plastic flow in a crystalline solid. The tendency of a 

dislocation to move can be described by Peach-Koehler formula[20], which states that 

the driving force for dislocation motion can be computed from the following equation: 

𝑭𝑳 = (𝒃 ∙ 𝜎𝑖𝑗) × 𝝃                (2) 

where 𝑭𝑳 is the force per unit length of dislocation, this is essentially F/L for a straight 

dislocation where L is the length of the dislocation line; 𝒃 is Burger vector of a given 

dislocation; 𝜎𝑖𝑗 is the stress tensor and 𝝃 is the line vector of the dislocation. For a 

mixed dislocation (with both screw and edge characteristics) of which the tangent to the 

dislocation line is neither parallel or perpendicular to the Burgers vector, let 𝒃 =

(𝑏𝑥  𝑏𝑦  𝑏𝑧), 𝝃 = (𝜉𝑥  𝜉𝑦  𝜉𝑧) and 𝒈 =  𝒃 ∙ 𝝈𝒊𝒋, then: 

𝑔𝑥 = 𝑏𝑥𝜎𝑥𝑥 + 𝑏𝑦𝜏𝑥𝑦 + 𝑏𝑧𝜏𝑥𝑧  

𝑔𝑦 = 𝑏𝑥𝜏𝑦𝑥 + 𝑏𝑦𝜎𝑦𝑦 + 𝑏𝑧𝜏𝑦𝑧  

𝑔𝑧 = 𝑏𝑥𝜏𝑧𝑥 + 𝑏𝑦𝜏𝑧𝑦 + 𝑏𝑧𝜎𝑧𝑧        (3) 

and 

𝑭𝑳 =  𝒈 × 𝝃 =  |

𝑖 𝑗 𝑘
𝑔𝑥 𝑔𝑦 𝑔𝑧

 𝜉𝑥 𝜉𝑦 𝜉𝑧

|      (4) 

This general form of the Peach-Koehler equation is used to calculate the magnitudes of 

the forces on and the forces between dislocations. 

3. Result and discussion 

The shear stress of the bicrystal model with Σ11(2 2 5)/(4 4 1) GB as a function of shear 

strain was plotted in Fig.2. The deformation of the bicrystal model occurred in four 

stages: elastic, plastic, strain-hardening and strain-softening. These stages were divided 

by the dashed line in Fig.2. The corresponding deformation configurations were 

presented in Fig.3(a). The Crystal Analysis Tool[21, 22] was used to detect dislocations 
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in this study. The identified dislocations were converted into continuous lines and their 

Burgers vectors were calculated, as shown in Fig.3(b). 
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Fig.2 The shear response of Cu bicrystal model with Σ11(2 2 5)/(4 4 1) Ф=54.74° asymmetric tilt 

GB at 300 K. The four deformation stages are indexed by (1) elastic (2) plastic (3) strain-hardening 

and (4) strain-softening. 

 

Fig.3 Snapshots of Cu bicrystal model at different deformation stages. (a) shows the results from 

MD simulation. The atoms with perfect FCC structure are removed to facilitate the view of the GB 

and dislocation structures. (b) shows the extracted dislocation segment by using the Crystal Analysis 

Tool. 

In the elastic stage, the GB structure kept its initial equilibrium configuration. The 

simulation results indicate that the equilibrium boundary structure can be regarded as 
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being composed of an array of GB dislocations with Burgers vector b=(1/6)[1̅ 1̅ 4̅] and 

b=(1/3)[1 1 1̅], along with the dissociated Shockley partial dislocations extended from 

the boundary plane. With the increasing of shear deformation, the dissociated Shockley 

partial dislocations began to emit from the GB plane with an extension of the intrinsic 

stacking fault behind, resulting in the plastic deformation stage (see Fig.3(a) at ε=2.7%). 

Visual inspection of the simulation results, it can be found that the dissociated Shockley 

partial dislocations from GB plane are nearly pure edges with the dislocation lines along 

the Z direction, and therefore, had Burgers vectors with large y-components and small 

x-components. As a simplification for this case, we consider the simulation as a shear 

force acting on an array of straight edge dislocations with 𝒃 = (0 1 0) and 𝝃 =

(0 0 1), according to Eq.(3), 

𝒈 = 𝑏 |

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 𝜎𝑦𝑦 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧𝑧

| |
0
1
0

| =  𝑏|𝜏𝑥𝑦 𝜎𝑦𝑦 𝜏𝑧𝑦|      (5) 

and according to Eq.(4), taking the cross product of 𝒈 and the line sense 𝝃 we get: 

𝑭𝑳 =  𝒈 × 𝝃 = |
𝑖 𝑗 𝑘

𝑏𝜏𝑥𝑦 𝑏𝜎𝑦𝑦 𝑏𝜏𝑧𝑦

0 0 1

|  

= 𝑏𝜎𝑦𝑦 𝑖 − 𝑏𝜏𝑥𝑦𝑗 = 𝑏𝜎𝑦𝑦 𝑖 + 𝑏𝜏𝑦𝑥𝑗 = 𝐹𝑥 + 𝐹𝑦    (6) 

Eq.(6) indicates that only 𝜏𝑦𝑥  and 𝜎𝑦𝑦  can exert force on these dissociated 

dislocations and that the force acts normal to the dislocation line along its length. 𝐹𝑥 is 

the climbing force in the +X direction while 𝐹𝑦 is the glide force acting in the +Y 

direction. In general, dislocation climb requires higher thermal activation energy, which 

is hard to occur at an ambient temperature. Therefore, it is reasonable to observe the 

dissociated dislocations slip upwards that driven by the applied shear stress (𝜏𝑦𝑥) in 

grain-A. Moreover, the interaction of the parallel edge dislocations has been neutralized 

since both of them have the identical Burgers vector, and the distance between them are 

equal. 

Note that the comparative low yield stress (σy=0.42 GPa) was mainly due to the 

intrinsic GB structure with the embryo dissociated dislocations (see in Fig.1) where 

only a low-level stress can drive them to emit. Also, it is interesting to see that the stress 

curve reached a plateau in the plastic stage, indicating that the slipping of dislocations in 

grain-A played a small role in accommodating the system stress. This was different 

from the previous finding where the stress curve started to drop once the dislocation 

became active[10, 16, 17]. As mentioned previously, these partial dislocations were pure 

edges which have Burgers vectors with large y-components and small x-components. 

Consequently, the region swept by this array in grain-A had undergone a tilt rotation and 

suffered a misfit strain. This distortion significantly altered the local stress distributions, 

causing the stress distribution to become very nonuniform. Once this had occurred, the 

stress-strain curve in stage-2 bears essentially no physical significance in depicting the 

stresses within the models. Therefore, the dislocation movement did not reduce the 
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stress value. Instead, the stress curve plateaued in the plastic stage. To visually display 

the stress distribution in the bicrystal system, the Von Mises stress of each atom in the 

simulation system was calculated by using Eq.(7) and the results were shown in Fig.4. 

Atoms with the stress value less than 1.5 GPa were removed to facilitate the view of 

stress change within the simulation system.  

𝜎𝑖𝑗 = √1/2[(𝜎𝑥𝑥 − 𝜎𝑦𝑦)2 + (𝜎𝑦𝑦 − 𝜎𝑧𝑧)2 + (𝜎𝑧𝑧 − 𝜎𝑥𝑥)2 + 6(𝜎𝑥𝑦
2 + 𝜎𝑦𝑧

2 + 𝜎𝑧𝑥
2)     (7) 

Figs.4(a) and (b) show the snapshots of the simulation model before and after the 

emission of the Shockley partial dislocations. It is clear to see that the grain boundary 

area shows the largest concentration of stress. The slipping of the dislocation array did 

not fundamentally change the stress level in the boundary area, and it shows no obvious 

effect on the stress distribution in the bicrystal system. Therefore, it is reasonable to see 

a stress plateau at stage-2 in Fig.2. The result has an implication that the non-planar GB 

structure with dissociated partial dislocations can increase the ductility of the simulated 

sample under shear. During the emission process in stage-2, the boundary plane 

rearranged itself by adjusting positions of local atoms. As shown in Fig.3(b), this 

rearrangement can be regarded as a combination of GB dislocations that described by 

(1/6)[1̅ 1̅ 4̅] + (1/3)[1 1 1̅] → (1/6)[1 1 6̅]. 

 

Fig.4 Snapshots of Cu bicrystal model at different deformation stages. Atoms are colored by the 

value of Von Mises stress where atoms with the stress value less than 1.5 GPa are removed to 

facilitate the view of stress change within the simulation system. 

The propagation of dislocations was blocked when they reached the top fixed area in 

grain-A. After that, the stress curve reached the strain-hardening stage with a continuous 



7 

stress increase without any new deformation mechanisms to release the system stress 

(see Fig.3(a) at ε=5%). We understand that the blocking of dislocation movement is a 

limitation of the model size in MD simulations. However, recall that the primary role of 

grain boundary in ultra-fine or nanocrystalline materials is to block the propagation of 

the dislocations, which causes the dislocation pile-ups at the grain boundary and result 

in the increased strength of materials. Therefore, from a physical perspective, the fixed 

area in the simulation model can be regarded as another grain boundary that blocked the 

dislocation slipping. This blocking always happens in nanocrystalline materials where 

the grain boundaries hinder the transmission of dislocations at the boundary and thereby 

make the materials hard to deform[23, 24]. 

The strain-hardening stage finished, i.e. the maximum shear stress (σm=1.61 GPa) had 

been reached, when the grain boundary began to migrate, leading to the strain-softening 

stage. A coupled GB motion was clearly observed at this stage, i.e. the boundary plane 

moved downwards under the applied shear deformation. At this deformation stage, it is 

interesting to see that the GB exhibit in a ‘stop-and-go’ mechanism (see in the 

supplementary video). As the shear deformation proceeds the GB position remains 

unchanged for a period (‘stop’ period), but when the increment of shear strain reaches a 

certain value, the GB suddenly moves (‘go’ period). This process is corresponding to the 

‘stick-slip’ behavior of the shear stress, as shown in stage-4 in Fig.2. During the ‘stop’ 

period of GB motion, the shear stress increases with the shear strain. An almost linear 

relationship between the shear stress and shear strain was observed. When the GB 

moves (‘go’ period), the shear stress suddenly drops from the peak value to the local 

minimum value. Figs.4(c) and (d) show the stress distribution of the bicrystal system 

before and after the first jump of GB migration. Obviously, the GB migration played a 

significant role in accommodating the system stress. The coupled GB motion caused 

grain-A to grow and grain-B to shrink while once again increasing the length of the 

intrinsic stacking fault. Fig.3(a)(at ε=9.2%) shows a snapshot of bicrystal configuration 

after two jumps of GB migration. The original GB position is indicated by the dashed 

line for comparison. 

It is worth noting that, based on the classic theory proposed by Read and Shockley, 

the non-uniform structure of asymmetric GBs consist of more than two types of 

dislocations, which can block each other when gliding on the intersection planes and 

prevent a coupled motion. Therefore, the migration of asymmetric GBs was thought to 

be impossible, but recent observations of coupled GB motion in bicrystal 

experiments[25, 26] has suggested that this may not be true. However, the geometric 

rules of coupling or migration mechanisms of asymmetric GBs are less known. Recently, 

Trautt et al.[27] studied the stress-driven motion of asymmetrical GBs between cubic 

crystals over the entire range of inclination angles. Their MD simulations indicated that 

the dislocations can find a way to glide past each other without completely blocking 

themselves, so they proposed two mechanisms by which the dislocations could avoid 

blocking each other, i.e. dislocation reactions and dislocation avoidance[27]. The 

migration of Σ11(Ф=54.74°) asymmetric GB in the present simulation study also 

confirmed this view. Simulation result indicates that the GB dislocations could avoid 



8 

blocking each other while preserving the total Burgers vector by dislocation reactions. 

As shown in Fig.3(b)(at ε=9.2%), the GB migrating process was accompanied by the 

GB dislocation decomposition and combination. This process can be described by: 

(1/6)[1 1 6̅] ←→ (1/3)[1 1 2̅] + (1/6)[ 1̅  1̅  2̅]. 

4. Summary 

Molecular dynamics simulation in this study reported a dual accommodation 

mechanisms of the Σ11(Ф=54.74°) asymmetric tilt GB at different stress stages, i.e. the 

emission of dissociated partial dislocations from GB plane and GB migration coupled to 

shear deformation. The result of this study can provide further information to 

understand the mechanical behavior of nanocrystalline materials, which is determined 

by the competition between dislocation activity and GB accommodation of the strain. In 

addition, the result has a strong implication that the non-planar GB structure with 

dissociated dislocations can help to increase ductility while retaining the high strength 

of the nanocrystalline materials. This finding provides the theoretical basis for grain 

boundary engineering to attain certain bulk polycrystalline properties. 

Acknowledgement 

This work was supported by Australian Research Council Discovery Projects 

(DP130103973). The authors would like to acknowledge the financial support from the 

China Scholarship Council (CSC). 

References 

[1] Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Progress in 

Materials Science. 2006;51:427-556. 

[2] Dao M, Lu L, Asaro RJ, De Hosson JTM, Ma E. Toward a quantitative understanding of mechanical 

behavior of nanocrystalline metals. Acta Materialia. 2007;55:4041-65. 

[3] Wolf D, Yamakov V, Phillpot SR, Mukherjee A, Gleiter H. Deformation of nanocrystalline materials 

by molecular-dynamics simulation: Relationship to experiments? Acta Materialia. 2005;53:1-40. 

[4] Farkas D. Atomistic simulations of metallic microstructures. Current Opinion in Solid State and 

Materials Science. 2013;17:284-97. 

[5] Van Swygenhoven H, Derlet PM. Grain-boundary sliding in nanocrystalline fcc metals. Physical 

Review B - Condensed Matter and Materials Physics. 2001;64:2241051-9. 

[6] Qi Y, Krajewski PE. Molecular dynamics simulations of grain boundary sliding: The effect of stress 

and boundary misorientation. Acta Materialia. 2007;55:1555-63. 

[7] Ke M, Hackney SA, Milligan WW, Aifantis EC. Observation and measurement of grain rotation and 

plastic strain in nanostructured metal thin films. Nanostructured Materials. 1995;5:689-97. 

[8] Wang YB, Ho JC, Liao XZ, Li HQ, Ringer SP, Zhu YT. Mechanism of grain growth during severe 

plastic deformation of a nanocrystalline Ni-Fe alloy. Applied Physics Letters. 2009;94. 

[9] Cahn JW, Taylor JE. A unified approach to motion of grain boundaries, relative tangential translation 

along grain boundaries, and grain rotation. Acta Materialia. 2004;52:4887-98. 

[10] Cahn JW, Mishin Y, Suzuki A. Coupling grain boundary motion to shear deformation. Acta 

Materialia. 2006;54:4953-75. 



9 

[11] Winning M. In-situ observations of coupled grain boundary motion. Philosophical Magazine. 

2007;87:5017-31. 

[12] Legros M, Gianola DS, Hemker KJ. In situ TEM observations of fast grain-boundary motion in 

stressed nanocrystalline aluminum films. Acta Materialia. 2008;56:3380-93. 

[13] Zhang L, Lu C, Michal G, Tieu K, Cheng K. Molecular dynamics study on the atomic mechanisms 

of coupling motion of [0 0 1] symmetric tilt grain boundaries in copper bicrystal. Materials Research 

Express. 2014;1:015019. 

[14] Bachurin DV, Weygand D, Gumbsch P. Dislocation-grain boundary interaction in 〈1 1 1〉 textured 

thin metal films. Acta Materialia. 2010;58:5232-41. 

[15] Zhang L, Lu C, Tieu K. Atomistic Simulation of Tensile Deformation Behavior of ∑5 Tilt Grain 

Boundaries in Copper Bicrystal. Scientific Reports. 2014;4. 

[16] Zhang L, Lu C, Tieu K, Pei L, Zhao X, Cheng K. Molecular dynamics study on the grain boundary 

dislocation source in nanocrystalline copper under tensile loading. Materials Research Express. 

2015;2:035009. 

[17] Sansoz F, Molinari JF. Mechanical behavior of Σ tilt grain boundaries in nanoscale Cu and Al: A 

quasicontinuum study. Acta Materialia. 2005;53:1931-44. 

[18] Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of 

Computational Physics. 1995;117:1-19. 

[19] Mishin Y, Mehl MJ, Papaconstantopoulos DA, Voter AF, Kress JD. Structural stability and lattice 

defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Physical Review B - 

Condensed Matter and Materials Physics. 2001;63:2241061-22410616. 

[20] Peach M, Koehler JS. The forces exerted on dislocations and the stress fields produced by them. 

Physical Review. 1950;80:436-9. 

[21] Stukowski A. Structure identification methods for atomistic simulations of crystalline materials. 

Modelling and Simulation in Materials Science and Engineering. 2012;20. 

[22] Stukowski A, Bulatov VV, Arsenlis A. Automated identification and indexing of dislocations in 

crystal interfaces. Modelling and Simulation in Materials Science and Engineering. 2012;20. 

[23] Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H. Dislocation processes in the 

deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nature materials. 

2002;1:45-8. 

[24] Van Swygenhoven H, Weertman JR. Deformation in nanocrystalline metals. Materials Today. 

2006;9:24-31. 

[25] Molodov DA, Gorkaya T, Gottstein G. Dynamics of grain boundaries under applied mechanical 

stress. Journal of Materials Science. 2011;46:4318-26. 

[26] Syed B, Catoor D, Mishra R, Kumar KS. Coupled motion of [1010] tilt boundaries in magnesium 

bicrystals. PHILOSOPHICAL MAGAZINE. 2012;92:1499-522. 

[27] Trautt ZT, Adland A, Karma A, Mishin Y. Coupled motion of asymmetrical tilt grain boundaries: 

Molecular dynamics and phase field crystal simulations. Acta Materialia. 2012;60:6528-46. 

 

 


	University of Wollongong
	Research Online
	2016

	A dual deformation mechanism of grain boundary at different stress stages
	Liang Zhang
	Cheng Lu
	Jie Zhang
	A Kiet Tieu
	Publication Details

	A dual deformation mechanism of grain boundary at different stress stages
	Abstract
	Disciplines
	Publication Details


	tmp.1458693281.pdf.5UEe9

