
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Engineering and Information
Sciences - Papers: Part A

Faculty of Engineering and Information
Sciences

1-1-2015

An identity-based multi-proxy multi-signature scheme without bilinear An identity-based multi-proxy multi-signature scheme without bilinear

pairings and its variants pairings and its variants

Maryam Rajabzadeh Asaar
Sharif University of Technology

Mahmoud Salmasizadeh
Sharif University of Technology, salmasi@sharif.edu

Willy Susilo
University of Wollongong, wsusilo@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/eispapers

 Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation Recommended Citation
Rajabzadeh Asaar, Maryam; Salmasizadeh, Mahmoud; and Susilo, Willy, "An identity-based multi-proxy
multi-signature scheme without bilinear pairings and its variants" (2015). Faculty of Engineering and
Information Sciences - Papers: Part A. 3754.
https://ro.uow.edu.au/eispapers/3754

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/37029812?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers?utm_source=ro.uow.edu.au%2Feispapers%2F3754&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers%2F3754&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers%2F3754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers/3754?utm_source=ro.uow.edu.au%2Feispapers%2F3754&utm_medium=PDF&utm_campaign=PDFCoverPages

An identity-based multi-proxy multi-signature scheme without bilinear pairings An identity-based multi-proxy multi-signature scheme without bilinear pairings
and its variants and its variants

Abstract Abstract
The notions of identity-based multi-proxy signature, proxy multi-signature and multi-proxy multisignature
have been proposed to facilitate public key certificate management of these kinds of signatures by
merely employing signer’s identities in place of the public keys and their certificates. In the literature, most
identity-based multi-proxy signature, proxy multi-signature and multi-proxy multi-signature schemes are
based on bilinear pairings. Without incorporating bilinear pairings, Tiwari and Padhye proposed an
identity-based proxy multi-signature scheme in 2011. Subsequently, an identity-based multi-proxy multi-
signature scheme was proposed byTiwari et al. in 2012. First, we review identity-based (multi)-proxy
multi-signature schemes without bilinear pairings and show that unfortunately, they are insecure in their
security models. Secondly, we propose an identity-based multi-proxy multi-signature scheme without
bilinear pairings, where identity-based multi-proxy signature and proxy multi-signature schemes are its
special cases. Then, we prove that they are secure under Rivest, Shamir and Adleman (RSA) assumption
in the random oracle model by presenting a new Forking Lemma. The proposal and its special cases are
the first identity-based multi-proxy signature, proxy multi-signature and multi-proxy multi-signature from
RSA assumption.

Keywords Keywords
variants, bilinear, its, multi, without, pairings, proxy, scheme, signature, identity

Disciplines Disciplines
Engineering | Science and Technology Studies

Publication Details Publication Details
Rajabzadeh Asaar, M., Salmasizadeh, M. & Susilo, W. (2015). An identity-based multi-proxy multi-signature
scheme without bilinear pairings and its variants. The Computer Journal, 58 (4), 1021-1039.

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/3754

https://ro.uow.edu.au/eispapers/3754

An Identity-based Multi-Proxy Multi-Signature Scheme without
Bilinear Pairings and its Variants ?

Maryam Rajabzadeh Asaar1, Mahmoud Salmasizadeh2, and Willy Susilo??3

1 Department of Electrical Engineering,
2 Electronics Research Institute (Center),

Sharif University of Technology, Tehran, Iran.
3 Centre for Computer and Information Security Research,

University of Wollongong, Australia.
asaar@ee.sharif.ir, salmasi@sharif.edu, wsusilo@uow.edu.au

Abstract. The notions of identity-based multi-proxy signature, proxy multi-signature and multi-proxy
multi-signature have been proposed to facilitate public key certificate management of these kinds of
signatures by merely employing signer’s identities in place of the public keys and their certificates.
In the literature, most identity-based multi-proxy signature, proxy multi-signature and multi-proxy
multi-signature schemes are based on bilinear pairings. Without incorporating bilinear pairings, Ti-
wari and Padhye proposed an identity-based proxy multi-signature scheme in 2011. Subsequently, an
identity-based multi-proxy multi-signature scheme was proposed by Tiwari et al. in 2012. First, we
review identity-based (multi)-proxy multi-signature schemes without bilinear pairings and show that
unfortunately, they are insecure in their security models. Second, we propose an identity-based multi-
proxy multi-signature scheme without bilinear pairings, where identity-based multi-proxy signature and
proxy multi-signature schemes are its special cases. Then, we prove that they are secure under RSA
assumption in the random oracle model by presenting a new Forking Lemma. The proposal and its
special cases are the first identity-based multi-proxy signature, proxy multi-signature and multi-proxy
multi-signature from RSA assumption.

Keywords: identity-based multi-proxy signature, identity-based proxy multi-signature, identity-based
multi-proxy multi-signature, random oracle model, RSA assumption.

1 Introduction

The notion of proxy signatures for the first time was introduced by Mambo et al. [1] in 1996. In a proxy
signature scheme, an original signer, Alice, can delegate her signing right for signing messages to another
signer, Bob, called the proxy signer. Since the notion of proxy signatures has been introduced, several variants
of proxy signatures have been proposed. These include proxy signatures from RSA and integer factorization
problem [2–7], identity-based proxy signature schemes based on the bilinear pairings [8–15], designated ver-
ifier proxy signatures [16–18], short proxy signatures [19], proxy verifiably encrypted signatures [20], proxy
signature schemes without random oracles [21], multi-proxy signatures [22–24], proxy multi-signatures [23],
multi-proxy multi-signatures [25, 26], identity-based multi-proxy signatures [13, 27–29], identity-based proxy
multi-signatures [28, 30–33] and identity-based multi-proxy multi-signature schemes [28, 34–37]. In this study,
we focus on identity-based multi-proxy signature, proxy multi-signature and multi-proxy multi-signature
schemes.

In a multi-proxy signature scheme, an original signer can delegate her signing right for signing messages
to a group of n-proxy signers, called the proxy agent, such that only cooperation of all proxy signers in the
proxy group generates the proxy signatures of roughly the same size as that of standard proxy signatures
on behalf of the original signer instead of transmitting n individual proxy signatures. This primitive can be
used in a company when the boss of the company is on a business trip and some important documents have
to be signed. Hence, the boss delegates her signing capability to every department manager of the company
such that only all managers jointly can sign important documents on behalf of the boss. Various multi-proxy
signatures [22–24] have been proposed till now.

? This research was supported in part by the Office of Vice-President for Science and Technology, I.R. Iran.
?? W. Susilo is supported by the ARC Future Fellowship (FT0991397).

2

In a proxy multi-signature scheme [23], a proxy signer can generate the signature on behalf of a group
of d-original signers, called original group, such that only the cooperation of all the original signers in the
original group can authorize the proxy signer to generate a proxy signature of roughly the same size as that
of a standard proxy signature on behalf of the original group instead of transmitting d individual proxy
signatures. This primitive can be used where a company releases a document which needs to be signed by
different managers of that company. These managers can authorize an entity, a proxy signer, to generate
proxy multi-signatures on the document when these managers cannot participate in generating signatures.

Similarly, it is possible to extend the two previous signatures to multi-proxy multi-signature in which
a group of original signers gives signing delegation to a group of proxy signers to generate signatures on
messages on behalf of the original signers. However, a verifier still needs the certified public keys of n + 1
signers in a multi-proxy signature, d + 1 signers in a proxy multi-signature and n + d signers in a multi-
proxy multi-signature to verify the validity of these signatures. If these public keys and their certificates
are transmitted with these signatures, it defeats the main purpose of a multi-proxy signature, proxy multi-
signature or multi-proxy multi-signature, to save bandwidth. On the other hand, these kinds of schemes
in their basic formats require extensive public-key infrastructure for practical use. In order to save band-
width and provide more flexible management of public keys, lots of identity-based multi-proxy signature
schemes [13, 27–29], identity-based proxy multi-signature schemes [28, 30–33] and identity-based multi-proxy
multi-signature schemes [28, 34–37] have been proposed. The notion of identity-based cryptography was in-
troduced by Shamir [38], and since the realization of elliptic curve pairings, there has been a huge increase
in implementations of identity-based signatures. The majority of identity-based multi-proxy signature, proxy
multi-signature and multi-proxy multi-signature schemes proposed have relied on pairings. While extensive
research has led to vast improvements in implementation of pairings, their computational cost is necessarily
higher than for more traditional public key algorithms which use exponentiation in various groups. More-
over, pairing-based cryptosystems rely on newer computational assumptions in their security analysis. There
has been a proliferation of pairing-based assumptions whose difficulty is not widely understood and whose
connection to established assumptions, and to each other, remains unknown. Therefore, when designing new
identity-based multi-proxy signatures, proxy multi-signatures and multi-proxy multi-signatures it is desirable
to diversify the computational assumptions and to use widely accepted assumptions where possible.

Without incorporating bilinear pairings, Tiwari and Padhye proposed an identity-based proxy multi-
signature scheme [33] in 2011, and an identity-based multi-proxy multi-signature scheme [37] was proposed
by Tiwari et al. in 2012. In this study, first we show that identity-based proxy multi-signature [33] and multi-
proxy multi-signature [37] are not secure in their security models. Then, we propose the first identity-based
multi-proxy multi-signature scheme from RSA, without bilinear pairings, where identity-based multi-proxy
signature and proxy multi-signature schemes are special cases of it. The proposal and its special cases are
the sequential aggregation of GQ identity-based signature [39] or GQ identity-based multi-signature with
GQ identity-based multi-signature, which is a different version of identity-based multi-signature from RSA
[40] proposed by Neven and Bellare in the number of interactions and random oracles. Furthermore, we
show that the scheme is secure under one-wayness of the RSA problem in the random oracle model [41]
by proposing a Forking Lemma suitable for our construction. We should highlight that the general Forking
Lemma [42] cannot be applied directly into our scheme since this scheme is the result of sequential aggregation
of two different signatures such that we have two different types of random oracle responses. Hence, we need
to consider the probability of happening some random responses before the forking point in the proposed
forking lemma, and this is the main difference of our Forking Lemma from previous ones.

The rest of this paper is organized as follows. Section 2 presents the RSA complexity assumption employed
as the signature foundation and the model of identity-based multi-proxy signature, proxy multi-signature
and multi-proxy multi-signature schemes including their outline and security properties. Review and security
analysis of the identity-based proxy multi-signature [33] and the multi-proxy multi-signature [37] without
bilinear pairings are given in Section 3. Our proposed scheme and its formal security proof are presented
in Section 4. The generalization of our security proof is given in Section 5. Sections 6 and 7 present the
concluding remarks and conclusion, respectively.

3

2 Background

In this section, we review the RSA assumption and then present the outline and the security properties of
identity-based multi-proxy signature, proxy multi-signature and multi-proxy multi-signature schemes.

2.1 The RSA assumption

An RSA key generator KGrsa is an algorithm that generates triplets (N, e, d) such that N is the product
of two large primes p and q and ed = 1 mod ϕ(N), where ϕ(N) = (p − 1)(q − 1). The advantage of B in
breaking the one-wayness of RSA related to KGrsa is defined as

Advow−rsaKGrsa
(B) = Pr

[
γe = y mod N | (N, e, d)←− KGrsa; y ←− Z∗N ; γ ←− B(N, e, y)

]
(1)

We say that B (t′, ε′)-breaks the one-wayness of RSA with respect to KGrsa if it runs in time at most t′

and has advantage Advow−rsaKGrsa
(B) ≥ ε′. We say that the RSA function associated to KGrsa is (t′, ε′)-one-way

if no algorithm B (t′, ε′)-breaks it.

2.2 Outline of identity-based multi-proxy signature, proxy multi-signature and multi-proxy
multi-signature schemes

An original signer with identity IDo and a group of proxy signers with identities 〈IDp1 , ..., IDpn〉, a group
of original signers with identities 〈IDo1 , ..., IDod〉 and a proxy signer with identity IDp and a group of origi-
nal signers with identities 〈IDo1 , ..., IDod〉 and a group of proxy signers with identities 〈IDp1 , ..., IDpn〉 are
participants of identity-based multi-proxy signature, proxy multi-signature and multi-proxy multi-signature
schemes, respectively. Each warrant-based proxy signature scheme consists of ParaGen, KeyExtract, Stan-
dardSign (MSign), StandardVer (MVer), DelegationGen, MProxySign (ProxyMSign or MProxyMSign) and
MProxyVer (ProxyMVer or MProxyMVer) as follows. We note that 11 is concatenated to each warrant to
differentiate ordinary signatures from delegations, and also 01 is concatenated to each message to differentiate
proxy signatures from aggregate signatures.

– ParaGen: This algorithm takes as input the system security parameter l and outputs system’s parameters
Para and the system’s master key (msk,mpk), i.e. (Para, (msk,mpk))← ParaGen(l).

– KeyExtract: This algorithm takes as input the system’s parameter Para, master public key mpk, mas-
ter secret key msk, and an identity IDu. Then, it outputs the corresponding secret key xu, i.e. xu ←
KeyExtract(Para,mpk,msk, IDu).

– StandardSign: This algorithm takes as input the system’s parameter Para, the master public key mpk,
the signer’s secret key xu and the message m, then, it outputs the standard signature σu, i.e. σu ←
StandardSign(Para,mpk,m, xu).

– StandardVer: This algorithm takes as input the system’s parameter Para, the master public key mpk,
the signer’s identity IDu, the message m and the standard signature σu, then, it outputs 1 if σu is
a valid standard signature of the message m under the identity IDu and outputs 0 otherwise, i.e.
{0, 1} ← StandardV er(Para,mpk, IDu,m, σu).

– MSign: This interactive protocol is run by a group of signers with identities 〈IDu1
, ...IDud

〉 who intend
to sign the same message m, each signer takes as input the system’s parameter Para, the master public
key mpk, the signer’s secret key, xuj , 1 ≤ j ≤ d, the identity set 〈IDu1 , ...IDud

〉 of all participated signers
in the protocol, and additional inputs Inpco−us generated by other co-signers, then, it outputs the multi-
signature σu after a number of interactions, i.e. σu ←MSign(Para,mpk,m, xuj

, 〈IDu1
, ...IDud

〉, Inpco−us).

– MVer: This algorithm takes as input the system’s parameter Para, the master public key mpk, the sign-
ers’ identities 〈IDu1 , ..., IDud

〉, the message m and the multi-signature σu, then, it outputs 1 if σu is a
valid multi-signature of the message m under the identities 〈IDu1 , ..., IDud

〉 and outputs 0 otherwise, i.e.
{0, 1} ←MV er(Para,mpk, 〈IDu1

, ..., IDud
〉,m, σu).

4

– DelegationGen: This algorithm employs the StandardSign or MSign algorithm depending on the type of
signature scheme to generate a delegation after some interactions between original signer(s) and proxy
signer(s). In case of having (multi)-proxy multi-signature, the delegation is a multi-signature generated
by original signers in the original group, otherwise, it is a standard signature of an original signer on
the warrant. In case of StandardSign algorithm, xu is the secret key of the original signer, xo, and the
message m is warrant (w||11), while in case of MSign algorithm xuj is the secret key of an original signer
xoj , for 1 ≤ j ≤ d, the message m is warrant (w||11) and additional inputs Inpco−os generated by other
co-original signers, where w includes the identity (identities) of proxy signer(s), the type of the delegated
information and the period of delegation.

– The three following pairs of interactive protocols (algorithms) and algorithm are MProxySign and MProx-
yVer for identity-based multi-proxy signature scheme, ProxyMSign and ProxyMVer for proxy multi-
signature or MProxyMSign and MProxyMVer for multi-proxy multi-signature scheme, depending on the
type of signature scheme.

• MProxySign: This is an interactive protocol in which each proxy signer with identity IDpi , 1 ≤ i ≤ n
takes as input the system’s parameter Para, the master public key mpk, the proxy signers’ identities
〈IDp1 , ..., IDpn〉, original signer’s identity IDo, the warrant w, the delegation σo, its secret key xpi ,
additional inputs Inpco−ps of other proxy signers in the proxy agent and the message m to be signed,
then, it outputs the identity-based multi-proxy signature θ on behalf of the original signer after a num-
ber of interactions with other proxy signers, i.e. θ ←MProxySign(Para,mpk, IDo, 〈IDp1 , ..., IDpn〉,
w, σo, xpi , Inpco−ps,m||01).

• MProxyVer: This algorithm takes as input the system’s parameter Para, the master public key mpk,
the original signer’s identity IDo, the proxy signers’ identities 〈IDp1 , ..., IDpn〉, the warrant w, the
signed message m and the multi-proxy signature θ, then, it outputs 1 if θ is a valid identity-based
multi-proxy signature of the messagem and outputs 0 otherwise, i.e. {0, 1} ←MProxyV er(Para,mpk,
IDo, 〈IDp1 , ..., IDpn〉, w,m||01, θ).

• ProxyMSign: This algorithm takes as input the system’s parameter Para, the master public key
mpk, original signers’ identities 〈IDo1 , ..., IDod〉, proxy signer’s identity IDp, the warrant w, the del-
egation σo, secret key xp of the proxy signer with identity IDp and the message m to be signed,
then, it outputs the identity-based proxy multi-signature θ on behalf of the original signers, i.e.
θ ← ProxyMSign(Para,mpk, 〈IDo1 , ..., IDod〉, IDp, w, σo, xp,m||01).

• ProxyMVer: This algorithm takes as input the system’s parameter Para, the master public key mpk,
the original signers’ identities 〈IDo1 , ..., IDod〉, the proxy signer’s identity IDp, the warrant w, the
signed messagem and the proxy multi-signature θ, then, it outputs 1 if θ is a valid identity-based proxy
multi-signature of the messagem and outputs 0 otherwise, i.e. {0, 1} ← ProxyMV er(Para,mpk, 〈IDo1 ,
..., IDod〉, IDp, w,m||01, θ).

• MProxyMSign: This is an interactive protocol in which each proxy signer with identity IDpi , 1 ≤
i ≤ n takes as input the system’s parameter Para, the master public key mpk, original sign-
ers’ identities 〈IDo1 , ...IDod〉, proxy signers’ identities 〈IDp1 ..., IDpn〉, the warrant w, the delega-
tion σo, its secret key xpi , additional inputs Inpco−ps of other proxy signers in the proxy group
and the message m to be signed, then, it outputs the identity-based multi-proxy multi-signature
θ on behalf of original signers after a number of interactions with other proxy signers, i.e. θ ←
MProxyMSign(Para,mpk, 〈IDo1 , ...IDod , IDp1 ..., IDpn〉, w, σo, xpi , Inpco−ps,m||01).

• MProxyMVer: This algorithm takes as input the system’s parameter Para, the master public key
mpk, the original signers’ identities 〈IDo1 , ..., IDod〉, the proxy signers’ identities 〈IDp1 , ..., IDpn〉,
the warrant w, the signed message m and the multi-proxy multi-signature θ, then, it outputs 1 if θ
is a valid identity-based multi-proxy multi-signature of the message m and outputs 0 otherwise, i.e.
{0, 1} ←MProxyMV er(Para,mpk, 〈IDo1 , ...IDod , IDp1 ..., IDpn〉, w,m||01, θ).

5

2.3 Security models of identity-based multi-proxy signature, proxy multi-signature and
multi-proxy multi-signature schemes

In a warrant-based identity-based multi-proxy signature, proxy multi-signature and multi-proxy multi-signature,
the delegation is the original signer’s standard signature (original signers’ multi-signature) on the warrant
w which contains information regarding the proxy agent such as the proxy agent’s identity (identities), the
period of validity, the restriction on the class of messages for which the warrant is valid. Therefore, the
properties of strong identifiability, strong undeniability, verifiability, and prevention of misuse are satisfied
naturally. Therefore, the signature scheme should be secure against existential forgery under an adaptive-
chosen-message, an adaptive-chosen warrant and chosen identity attack.

To have the strongest security notion possible and at the same time avoid making security proof unnec-
essarily complicated, we use single-signer setup, in which each signing oracle simulates the role of only one
honest signer, with only one honest signer in the security model as it is a folklore and well-accepted in the
literature [13, 29–33, 36, 37]. The adversary A can choose the identities on which it wants to forge a proxy
signature and can request the secret keys corresponding to them (corrupted users) except for the honest
signer, and also A can make delegation and proxy signature queries on arbitrary warrants and messages
under arbitrary identities including only one honest identity.

To achieve existential unforgeability, three types of potential adversaries are considered. Adversaries of
type I which only have identities of original and proxy signers, adversaries of type II which have secret keys
of all proxy signers in addition to capabilities of adversaries of type I and adversaries of type III which have
secret keys of all original signers in addition to identities of original and proxy signers.

Since an identity-based proxy signature scheme secure against type II (or type III) adversaries is also
secure against type I adversaries we will henceforth only consider type II and type III adversaries. To have
a formal definition for strong unforgeability, the following game between the challenger C and the adversary
A is considered to be played [13].

1. Setup: C runs the ParaGen algorithm with a security parameter l to obtain system’s parameter para
and the master key (mpk,msk), then it sends (mpk, para) to A.

2. The adversary A issues a polynomially bounded number of queries to the following oracles adaptively.

– KeyExtract queries: A can ask for the secret key corresponding to an identity IDu, then C returns
the private key xu with running the KeyExtract algorithm.

– DelegationGen queries: If the scheme is proxy multi-signature or multi-proxy multi-signature, this
kind of query is MSign query, otherwise, this kind of query is StandardSign query.

• StandardSign queries: Adversary A can request the StandardSign algorithm under the identity
IDu on the message m of its choice. Then, C returns σu ← StandardSign(Para,mpk,m, xu)
to A. Especially, if IDu = IDo, A can choosem = (w||11) to attain a delegation σo on a warrant w.

• MSign queries: AdversaryA can request the multi-signature σu ofm w.r.t. identities 〈IDu1
, ..., IDud

〉
to C. In response, C firstly runs the KeyExtract algorithm to obtain the secret key, xut

, corre-
sponding to the identity of the honest signer, IDut

. Next, C runs MSign protocol to generate a
multi-signature σu ← MSign(Para,mpk,m, xut , 〈IDu1 , ...IDud

〉, Inpco−us) for 1 ≤ t ≤ d, and
returns σu to the adversary A, where Inpco−us is generated by A since it is assumed that other
signers are corrupted. Especially, if the multi-set of identities are identities of original signers, A
can choose m = (w||11), and also plays the role of other co-original signers to attain a delegation
σo on a warrant w under identities 〈IDo1 , ..., IDod〉.

– In case of multi-proxy signature, proxy multi-signature and multi-proxy multi-signature, we have
items (a), (b) and (c), respectively.

(a) MProxySign queries: Adversary A can request the multi-proxy signature of (w,m) w.r.t. original
signer’s identity IDo and proxy signers’ identities 〈IDp1 , ..., IDpn〉 including one honest proxy

6

signer, where m and identities of proxy signers are in the warrant w. In response, C firstly runs
the KeyExtract algorithm to obtain the secret key, xpt , corresponding to the identity of the honest
proxy signer with identity IDpt . Next, C receives σo from A (A obtains it from DelegationGen
oracle or simulates it by itself), and runs MProxySign protocol for the honest proxy signer to
generate θ ←MProxySign(Para,mpk, IDo, 〈IDp1 , ..., IDpn〉, w, σo, xpt , Inpco−ps,m||01) after a
number of interactions, where Inpco−ps is generated by A since it is assumed that other proxy
signers are corrupted. Then C returns θ to the adversary A.

(b) ProxyMSign queries: Adversary A can request the proxy multi-signature of (w,m) w.r.t. original
signers’ identities 〈IDo1 , ..., IDod〉 and honest proxy signer’s identity IDp, where m and the proxy
signer’s identity are in the warrant w. In response, C firstly runs the KeyExtract algorithm to
obtain the secret key, xp, corresponding to the identity of the proxy signer.
In addition, C receives σo from A (A obtains it from DelegationGen oracle or simulates it by itself),
then, C generates proxy multi-signature θ ← ProxyMSign(Para,mpk, 〈IDo1 , ..., IDod〉, IDp, w,
σo, xp,m||01) and returns it to the adversary A.

(c) MProxyMSign queries: Adversary A can request the multi-proxy multi-signature of (w,m) w.r.t.
original signers’ identities 〈IDo1 , ..., IDod〉 and proxy signers’ identities 〈IDp1 , ...IDpn〉 including
one honest user, where m and proxy signers’ identities are in the warrant w. In response, C firstly
runs the KeyExtract algorithm to obtain the secret key, xpt , corresponding to the identity of the
honest proxy signer with identity IDpt .
In addition, C receives σo from A (A obtains it from DelegationGen oracle or simulates it
by itself), then, C runs MProxyMSign protocol for the honest proxy signer to generate θ ←
MProxyMSign(Para,mpk, 〈IDo1 , ...IDod , IDp1 ..., IDpn〉, w, σo, xpt , Inpco−ps,m||01), where
Inpco−ps is generated by A since it is assumed that other proxy signers are corrupted. Then, C
returns θ to the adversary A.

3. Finally, A outputs a valid identity-based proxy signature (m∗, w∗, θ∗) w.r.t. original signers’ identities
(original signer’s identity) and proxy signers’ identities (proxy signer’s identity), and wins the game if
the following conditions hold.

– In case of having identity-based multi-proxy signature scheme :

1. For adversaries of type II, we have

• E0: Identity of the original signer in the warrant w∗ has not been requested to the KeyExtract
algorithm.

• E1: The warrant w∗ has not been requested as one of the DelegationGen queries under the identity
of the original signer.

2. For adversaries of type III, we have

• E0: One of the identities of the proxy signers in the warrant w∗ has not been requested to the
KeyExtract algorithm.

• E1: The pair (m∗, w∗) has not been requested as one of the MProxySign queries under the identity
set of the proxy signers in the warrant w∗.

– In case of having identity-based proxy multi-signature scheme :

1. For adversaries of type II, we have

• E0: One of the identities of the original signers in the warrant w∗ has not been requested to the
KeyExtract algorithm.

• E1: The warrant w∗ has not been requested as one of the DelegationGen queries under the original
signer’s identity set.

2. For adversaries of type III, we have
• E0: Identity of the proxy signer in the warrant w∗ has not been requested to the KeyExtract

algorithm.
• E1: The pair (m∗, w∗) has not been requested as one of the ProxyMSign queries under the identity

of the honest proxy signer in the warrant w∗.

– In case of having identity-based multi-proxy multi-signature scheme:

7

1. For adversaries of type II, we have

• E0: One of identities of the original signers in the warrant w∗ has not been requested to the
KeyExtract algorithm.

• E1: The warrant w∗ has not been requested as one of the DelegationGen queries under the original
signers’ identity set.

2. For adversaries of type III, we have

• E0: One of the identities of the proxy signers in the warrant w∗ has not been requested to the
KeyExtract algorithm.

• E1: The pair (m∗, w∗) has not been requested as one of the MProxyMSign queries under the
identity set of the proxy signers in the warrant w∗.

The formal definition of existential unforgeability for adversaries of type II is expressed in Definition 1.

Definition 1. An identity-based proxy signature is (t, qh, qH , qE , qd, ε)- existentially unforgeable against
adaptive chosen message (chosen warrant) attack and chosen identity attack if there is no adversary which
runs in time at most t, (makes at most qH + qh queries to hash functions), makes at most qE KeyExtract
queries, qd DelegationGen queries can win the aforementioned game with probability at least ε.

The formal definition of existential unforgeability for adversaries of type III is expressed in Definition 2.

Definition 2. An identity-based proxy signature is (t, qh, qH , qE , qs, ε)- existentially unforgeable against
adaptive chosen message (chosen warrant) attack and chosen identity attack if there is no adversary which
runs in time at most t, (makes at most qH + qh queries to hash functions), makes at most qE KeyExtract
queries and qs MProxyMSign (MProxySign or ProxyMsign) queries, can win the aforementioned game with
probability at least ε.

3 Identity-based (multi)-proxy multi-signature schemes without bilinear
pairings

In this section, first we review efficient identity-based (multi)-proxy multi-signature schemes [33, 37] without
bilinear pairings, then, we show that these schemes are not secure in their security model.

3.1 Overview of Tiwari et al.’s identity-based multi-proxy multi-signature scheme

In 2012, Tiwari et al. [37] proposed an identity-based multi-proxy multi-signature without bilinear pair-
ings to improve the efficiency of these kinds of schemes. This scheme includes a set of d original signers
〈IDo1 , ..., IDod〉, a set of n proxy signers 〈IDp1 , ..., IDpn〉 and a clerk. Their scheme consists of following
algorithms:

1. Setup: The system parameters are as follows. Let H1 : {0, 1}∗×G→ Z∗α and H2 : {0, 1}∗ → Z∗p be random
oracles, where p is a l-bit prime determining tuples Fp, E/Fp, G, P , where E/Fp denotes an elliptic curve
E over a prime finite field Fp defined by equation y2 = x3 + ax + b for a and b ∈ Fp and discriminant
∆ = 4a3 + 27b2 6= 0. Let G be a cyclic additive group with order α, and P be the generator of G. The
key distribution center chooses x ∈R Z∗α and computes the master public key Ppub = xP . It publishes
mpk = Ppub as the master public key, and keeps the master secret key msk = x secret. Therefore, public
parameters are Para = {H1, H2, Fp, E/Fp, G, P} and mpk.

2. KeyExtract: On input master secret key msk = x and the user identity IDu, the key distribution center
chooses at random ru ∈ Z∗α, computes Ru = ruP , hu = H1(IDu, Ru) and xu = ru + hux, and sends the
user secret key (xu, Ru) over a secure and authenticated channel to the user with identity IDu.

3. DelegationGen: Let w be the warrant to be signed by all original signers with identities 〈IDo1 , ..., IDod〉
who want to delegate their signing right to a group of proxy signers with the identities 〈IDp1 , ..., IDpn〉,
the delegation is ((Koj , Roj), (Kpi , Rpi),K, σ), 1 ≤ i ≤ n and 1 ≤ j ≤ d, which is generated as follows.

8

– For 1 ≤ j ≤ d, the original signer with identity IDoj chooses koj
$← Z∗α, computes Koj = kojP , and

broadcasts Koj to d − 1 original signers, n proxy signers and the clerk C. Similarly, for 1 ≤ i ≤ n,

the proxy signer with identity IDpi chooses kpi
$← Z∗α, computes Kpi = kpiP , and broadcasts Kpi to

n− 1 proxy signers, d original signers and the clerk C.
– The clerk C and all signers compute K =

∑n
1 Kpi +

∑d
1 Koj .

– For 1 ≤ i ≤ n, the proxy signer with identity IDpi computes σpi = epixpi + kpi , where epi =
H1(w,Kpi ,K), and broadcast σpi to the clerk C. Similarly, for 1 ≤ j ≤ d, the original signer with
identity IDoj computes σoj = eojxoj + koj , where eoj = H1(w,Koj ,K), and broadcast σoj to the
clerk C.

– The clerk checks if σpiP = epi [Rpi +hpiPpub]+Kpi for 1 ≤ i ≤ n and if σojP = eoj [Roj +hojPpub]+Koj

for 1 ≤ j ≤ d. If all of them are valid, the clerk C computes σ =
∑n

1 σpi +
∑d

1 σoj , and broadcasts σ
to all original and proxy signers. Therefore, the delegation is ((Koj , Roj), (Kpi , Rpi),K, σ), 1 ≤ i ≤ n
and 1 ≤ j ≤ d.

4. MProxyMSign: The proxy agent with identities 〈IDp1 , ...IDpn〉 can sign a message m under the warrant
w and the delegation ((Koj , Roj), (Kpi , Rpi),K, σ), 1 ≤ i ≤ n and 1 ≤ j ≤ d as follows:

– For 1 ≤ i ≤ n, the proxy signer with identity IDpi chooses ai
$← Z∗α, computes Ni = aiP , and

broadcasts Ni to n− 1 proxy signers.
– For 1 ≤ i ≤ n, the proxy signer with identity IDpi first computes N =

∑n
1 Ni, h = H2(m,N,K),

si = hσ + ai, and sends (Ni, si) to the clerk.
– For 1 ≤ i ≤ n, a proxy signer with identity IDpi sends the delegation ((Koj , Roj), (Kpi , Rpi),K, σ),

1 ≤ i ≤ n and 1 ≤ j ≤ d on the warrant w to the clerk, the clerk first verifies the validity of the
delegation by checking if σP =

∑d
1 eoj (Roj + hojPpub) + K +

∑n
1 epi(Rpi + hpiPpub) holds. If so, it

continues; otherwise, it rejects the delegation ((Koj , Roj), (Kpi , Rpi),K, σ), 1 ≤ i ≤ n and 1 ≤ j ≤ d.

– The clerk C computes N =
∑n

1 Ni, then checks if siP = h[
∑d

1(eoj (Roj +hojPpub))+K+
∑n

1 (epi(Rpi +
hpiPpub))] +Ni holds for 1 ≤ i ≤ n. When all individual proxy signatures are valid, the multi-proxy
multi-signature can be generated as θ = ((Koj , Roj), (Kpi , Rpi),K, σ,N, s), 1 ≤ i ≤ n and 1 ≤ j ≤ d
by computing s =

∑n
1 si.

5. MProxyMVer: Given identities 〈IDo1 , ...IDod〉 of original signers and identities 〈IDp1 , ...IDpn〉 of proxy
signers, a warrant w, a message m, and a signature θ = ((Koj , Roj), (Kpi , Rpi),K, σ,N, s), a verifier
operates as follows:

– Checks if the message m conforms to the warrant w, otherwise, it stops.
– Checks if n proxy signers with identities 〈IDp1 , ..., IDpn〉 are authorized by original signers with

identities 〈IDo1 , ..., IDod〉 in the warrant w, otherwise, it stops.

– Accepts the multi-proxy multi-signature if and only if sP = hn[
∑d

1(eoj (Roj + hojPpub) + Koj) +∑n
1 (epi(Rpi + hpiPpub) + Kpi)] + N holds, where eoj = H1(w,Koj ,K), epi = H1(w,Kpi ,K), hoj =

H1(IDoj , Roj), hpi = H1(IDpi , Rpi) and h = H2(m,N,K).

3.2 Security analysis of Tiwari et al.’s identity-based multi-proxy multi-signature scheme

Tiwari et al.’s scheme is forgeable by original signers, the clerk or everyone who has a valid delegation. Note
that delegations are public in the scheme. This security drawback is the result of not employing proxy signers’
secret keys in MProxyMSign algorithm to generate multi-proxy multi-signatures on different messages in the
warrant w.

The scenario of this attack is as follows. Original signers, the clerk or an adversary with having a valid dele-
gation ((Koj , Roj), (Kpi , Rpi),K, σ), 1 ≤ i ≤ n and 1 ≤ j ≤ d can generate valid multi-proxy multi-signatures
on arbitrary messages in the warrant w. The adversary first chooses a′ ∈R Z∗α, then, computes N ′ = a′P ,
h′ = H2(m′, N ′,K) and s′ = a′ + nh′σ. The forged signature is θ′ = ((Koj , Roj), (Kpi , Rpi),K, σ,N

′, s′),
1 ≤ i ≤ n and 1 ≤ j ≤ d under the warrant w on the message m′ in the warrant w. Hence, the first two

9

conditions in the MProxyMVer algorithm are held since the forgery was performed for the arbitrary mes-
sage m′ in the warrant w, and also the valid delegation shows authorization of proxy signers with identities
〈IDp1 , ..., IDpn〉 by original signers with identities 〈IDo1 , ..., IDod〉 in the warrant w. Furthermore, the verifi-

cation equation s′P = (a′+nh′σ)P = N ′+nh′[
∑d

1(eoj (Roj +hojPpub)+Koj)+
∑n

1 (epi(Rpi +hpiPpub)+Kpi)]
holds for the the forged signature θ′ since it is generated according to the scheme, where eoj = H1(w,Koj ,K),
epi = H1(w,Kpi ,K), hoj = H1(IDoj , Roj), hpi = H1(IDpi , Rpi) and h′ = H2(m′, N ′,K). Note that in the

verification equation, we have σP =
∑d

1(eoj (Roj +hojPpub) +Koj) +
∑n

1 (epi(Rpi +hpiPpub) +Kpi) since the
delegation is valid and was obtained by the adversary or the clerk, or was generated by the original signers.

If we consider a condition in MProxyMVer algorithm such that each verifier checks if N equals the
summation of Ni to prevent from the aforementioned attack, where Ni indicates the identity of each proxy
signer through an authenticated broadcast primitive, we cannot make the scheme resistant against this attack.

With this condition in the verification of each multi-proxy multi-signature, the clerk can still forge valid sig-
natures on different messages in the warrant after generation of a valid multi-proxy multi-signature. Since for
this forgery attack the clerk needs some components (si, N), 1 ≤ i ≤ n of a valid multi-proxy multi-signature
in addition to the delegation. After creation of a valid multi-proxy multi-signature, the clerk knows the tuple
(m,N, σ,K, si). Next, the clerk computes ai = si − σH2(m,N,K) for 1 ≤ i ≤ n. Then, it can generate valid
multi-proxy multi-signatures on arbitrary messages in the warrant w with computing a =

∑
i ai,N = aP , h′ =

H2(m′, N,K) and s′ = a+ nh′σ. Hence, the forged signature is θ′ = ((Koj , Roj), (Kpi , Rpi),K, σ,N, s
′). Sine

the delegation is valid, we have σP =
∑d

1(eoj (Roj +hojPpub)+Koj)+
∑n

1 (epi(Rpi +hpiPpub)+Kpi) and conse-

quently, the verification equation s′P = (a+nh′σ)P = N+nh′[
∑d

1(eoj (Roj +hojPpub)+Koj)+
∑n

1 (epi(Rpi +
hpiPpub) + Kpi)] holds for the forged signature θ′, where eoj = H1(w,Koj ,K), epi = H1(w,Kpi ,K),
hoj = H1(IDoj , Roj), hpi = H1(IDpi , Rpi) and h′ = H2(m′, N,K). Since previous Ni of a valid signature are
used by the clerk to generate a forgery, the new condition is held. Therefore, with the condition of checking if
N in the signature equals the summation of Ni, where Ni indicates the identity of each proxy signer through
an authenticated broadcast primitive, the proposed scheme cannot be secure against the mentioned forgery
attack.

3.3 Overview of Tiwari and Padhye’s identity-based proxy multi-signature scheme

In 2011, Tiwari and Padhye [33] proposed an identity-based proxy multi-signature without bilinear pairings
to improve efficiency of these kinds of schemes. This scheme includes a set of d original signers with identities
〈IDo1 , ..., IDod〉, a proxy signer with identity IDp and a clerk. Their scheme consists of following algorithms:

1. Setup: The system parameters are as follows. Let H1 : {0, 1}∗ → Z∗α and H2 : {0, 1}∗×G→ Z∗p be random
oracles, where p is a l-bit prime determining tuples Fp, E/Fp, G, P , where E/Fp denotes an elliptic curve
E over a prime finite field Fp defined by equation y2 = x3 + ax + b for a and b ∈ Fp and discriminant
∆ = 4a3 + 27b2 6= 0. Let G be a cyclic additive group with order α, and P be the generator of G. The
key distribution center chooses x ∈R Z∗α and computes the master public key Ppub = xP . It publishes
mpk = Ppub as the master public key, and keeps the master secret key msk = x secret. Therefore, public
parameters are Para = {H1, H2, Fp, E/Fp, G, P} and mpk.

2. KeyExtract: On input master secret key msk = x and an identity IDu, the key distribution center chooses
at random ru ∈ Z∗α, computes Ru = ruP , hu = H1(IDu, Ru) and xu = ru + hux, and sends the user
secret key (xu, Ru) over a secure and authenticated channel to the user with identity IDu.

3. DelegationGen: Let w be the warrant to be signed by all original signers with identities 〈IDo1 , ..., IDod〉
who want to delegate their signing right to a proxy signer with identity IDp, the delegation is y =
{σoj ,Koj}, 1 ≤ j ≤ d which is generated as follows.

– For 1 ≤ j ≤ d, the original signer with identity IDoj chooses koj
$← Z∗α, and computes Koj = kojP .

– For 1 ≤ j ≤ d, the original signer with identity IDoj computes σoj = eojxoj + koj mod α, where
eoj = H1(w,Koj , IDp), and sends y = {σoj ,Koj}, 1 ≤ j ≤ d to the proxy signer with identity IDp.

10

4. PKGen. The proxy signer with identity IDp generates the proxy signing key Dp with computing Dp =∑d
1(σoj + xpepj), where epj = H1(w,Koj , IDoj).

5. ProxyMSign: The proxy signer with identity IDp can sign a message m under the warrant w with his
secret key Dp as follows:

– The proxy signer with identity IDp chooses b
$← Z∗α, computes R = bP and h = H2(m,R), and checks

if gcd(b+ h, α) = 1 holds. If it does, the proxy signer continues; otherwise, chooses another b.
– The proxy signer with identity IDp computes s = (b+ h)−1Dp mod α and the resulting signature is
θ = (Roj ,Koj , Rp, R, s), 1 ≤ j ≤ d.

6. ProxyMVer: Given the identities 〈IDo1 , ..., IDod〉 of the original signers and identity IDp of the proxy
signer, a warrant w, a message m, and a signature θ = (Roj ,Koj , Rp, R, s), 1 ≤ j ≤ d, a verifier operates
as follows:

– Checks if the message m conforms to the warrant w, otherwise, it stops.
– Checks if the proxy signer with identity IDp is authorized by the original signers with identities
〈IDo1 , ..., IDod〉 in the warrant w, otherwise, it stops.

– Accepts the proxy multi-signature if and only if s(R+hP) =
∑d

1 eoj (Roj +hojPpub)+K+
∑d

1(epj (Rp+
hpPpub)) holds, where eoj = H1(w,Koj , IDp), epj = H1(w,Koj , IDoj), hoj = H1(IDoj , Roj), hp =

H1(IDp, Rp), K =
∑d

1 Koj and h = H2(m,R).

3.4 Security analysis of Tiwari and Padhye’s identity-based proxy multi-signature scheme

Tiwari and Padhye’s scheme is forgeable in their proposed security model [33]. Since in their security model
[33] they assumed that adversaries (original signers) in addition to having access to the KeyExtract algorithm
on input IDu, the DelegationGen algorithm on input (w, IDp, 〈IDo1 , ..., IDod〉) and the ProxyMSign algo-
rithm on input (w,m, IDp, 〈IDo1 , ..., IDod〉), have access to the proxy signing key generation oracle, PKGen,
of proxy signers on input (IDp, y

′, .) to obtain D′p, where IDp is proxy signer’s identity, 〈IDo1 , ..., IDod〉 are
identities of original signers, y′ is a valid delegation, and w and m are the warrant and the message in the
warrant, respectively. Note that outputs of the KeyExtract, DelegationGen and ProxyMSign algorithm are
xu, y and θ, respectively. They also assumed that for a forged proxy multi-signature θ′ under identities IDp

and 〈IDo1 , ..., IDod〉 including a delegation y, the adversaries (the original signers) that do not have proxy
signer’s long term secret key xp, are not allowed to make query to the proxy signing key generation oracle,
PKGen, on input (IDp, y, .) to obtain Dp, make KeyExtract query on input IDp to obtain xp, and make a
ProxyMSign query on input (w,m, IDp, 〈IDo1 , ..., IDod〉) to attain θ′. Note that the delegation y is generated
by original signers or adversaries obtained it with making query to the DelegationGen oracle.

To forge the proxy multi-signature θ′ including the delegation y regarding to adversary’s capabilities in
having access to oracles in their security model, the adversaries (the original signers) first make a query to
the proxy signing key generation oracle, PKGen, on input (IDp, y

′, .) to obtain D′p, where y′ = {σ′oj ,K
′
oj},

1 ≤ j ≤ d is a valid delegation on w′ and y 6= y′. Next, the adversaries (the original signers) can extract long

term secret key, xp, of the proxy signer with identity IDp with computing xp =
D′p−

∑
1≤j≤d σ

′
oj∑

1≤j≤d e
′
pj

, where D′p is

the response of PKGen on input (IDp, y
′, .) and e′pj = H1(w′,K ′oj , ID

′
oj), 1 ≤ j ≤ d.

Then, the original signers or the adversaries with having the delegation y and long term secret key,
xp, of the proxy signer with identity IDp can generate valid identity-based proxy multi-signatures on
different messages in the warrant as follows. The original signers or the adversaries with the delegation
y = {σoj ,Koj}, 1 ≤ j ≤ d generate the proxy signing key with computing Dp =

∑d
1(σoj + xpepj), where

epj = H1(w,Koj , IDoj) for 1 ≤ j ≤ d. Next, they choose b′
$← Z∗α, and computeR′ = b′P and h′ = H2(m′, R′),

then check if gcd(b′+h′, α) = 1 holds. If it does, they continue, otherwise, they choose another b′. Then, they
compute s′ = (b′ + h′)−1Dp mod α and the resulting signature is θ′ = (Roj ,Koj , Rp, R

′, s′), 1 ≤ j ≤ d which
passes the verification equation since it is generated according to the scheme. Note that in the proposed
forgery attack the original signers or the adversaries with the delegation y = {σoj ,Koj}, 1 ≤ j ≤ d did
not make a query to the proxy signing key generation oracle, PKGen, on input (IDp, y, .) to obtain Dp, did

11

not make KeyExtract query on input IDp to obtain xp, and did not make a ProxyMSign query on input
(w,m, IDp, 〈IDo1 , ..., IDod〉) to attain θ′.

4 Our identity-based multi-proxy signature, proxy multi-signature and
multi-proxy multi-signature schemes

In this section, we present an identity-based multi-proxy multi-signature scheme based on the GQ identity-
based signature scheme [39]. Since identity-based proxy multi-signature and multi-proxy signature schemes
are special cases of the proposed scheme such that d = 1 for the former and n = 1 in the latter, we omit
their details. Then, we prove that the identity-based multi-proxy multi-signature scheme is secure under one-
wayness of RSA in the random oracle model. Similarly, one may show that its special cases are secure in the
random oracle model. To give some intuition into our schemes, we briefly recall the GQ scheme [39] here. The
key distribution center generates an RSA module N and exponents (e, d) such that ed = 1 mod ϕ(N). The
master public key is the pair (N, e), while d is the master secret key. The signature on a message m by identity
IDu is a pair (Ru, su) such that Ru = reu mod N , where ru is a random number, and seu = RuH(IDu)c mod N ,
where c = H1(Ru,m). Functions {H,H1} are random oracles.

Our scheme employs GQ identity-based multi-signature scheme, which is a different version of identity-
based multi-signature from RSA [40] proposed by Neven and Bellare in the number of interactions and
random oracles, as a building block such that the delegation is the original signers’ GQ multi-signature on a
warrant and the proxy signature is sequential aggregation of delegation and proxy agent’s GQ identity-based
multi-signature on a message m.

4.1 Details of identity-based multi-proxy multi-signature scheme

In this section, we present the details of identity-based multi-proxy multi-signature scheme. There are n+d+1
participants in the system, a group of original signers with identity set ÎDo = 〈IDo1 , ..., IDod〉, a group of

proxy signers with identity set ÎDp = 〈IDp1 , ..., IDpn〉 and a clerk, where d is the number of original signers
in the original signers’ group and n is the number of proxy signers in the proxy group. Our scheme consists
of seven algorithms as follows.

1. Setup: The system parameters are as follows. Let l1 and lN ∈ N and let H1 : {0, 1}∗ → {0, 1}l1 , and
H : {0, 1}∗ → Z∗N be random oracles, where H depends on the master public key of the scheme. Let
KGrsa be a RSA key pair generator that outputs triplets (N, e, d) such that ϕ(N) > 2lN and with prime
encryption exponent e of length strictly greater than l1 + 2 logn2 + logd2 bits. The key distribution center
runs KGrsa to generate RSA parameters (N, e, d). It publishes mpk = (N, e) as the master public key,
and keeps the master secret key msk = d secret. Therefore, public parameters are Para = {H1, H} and
mpk.

2. KeyExtract: On input master secret key msk = d and the user identity IDu, the key distribution cen-
ter computes xu = H(IDu)d mod N , and sends the user secret key xu over a secure and authenticated
channel to the user with identity IDu.

3. MSign: Let m be a message to be signed with signers whose identity set is ÎDu = 〈IDu1
, ..., IDud

〉, the
signature σu is generated as follows:

– For 1 ≤ j ≤ d, the signer with identity IDuj
chooses rj

$← Z∗N , computes Rj = rej mod N , and
broadcasts Rj to d− 1 signers and the clerk.

– For 1 ≤ j ≤ d, the signer with identity IDuj
computes Ru =

∏d
j=1Rj and c0 = H1(Ru||ÎDu||m),

and computes sj = rj(xuj
)c0 mod N .

– For 1 ≤ j ≤ d, the signer with identity IDuj
sends (c0, sj) to the clerk as her partial signature on the

message m.

12

– The clerk checks if Rj = sejH(IDuj)−c0 holds for 1 ≤ j ≤ d.

When all the partial signatures are valid, the identity-based multi-signature of the message m
w.r.t. identity set ÎDu = 〈IDu1

, ..., IDud
〉 of signers is generated as σu = (Ru, su) by computing

su =
∏d
j=1 sj .

4. MVer: Given the identity set ÎDu of signers, the message m and a signature σu = (Ru, su), a verifier

checks if seu = Ru[
∏d
j=1H(IDuj

)]c0 mod N holds, where c0 = H1(Ru||ÎDu||m).

5. DelegationGen: Let w be a warrant to be signed by original signers with identity set ÎDo = 〈IDo1 , ..., IDod〉
who want to delegate their signing right to a proxy agent with identity set ÎDp = 〈IDp1 , ..., IDpn〉, the
delegation σo is generated with employing MSign algorithm on the message m = (w||11), where the

identity set of signers in the algorithm are identity set ÎDo of original signers.

6. MProxyMSign: The proxy agent with identity set ÎDp can sign a message m under the warrant w with
having a valid delegation σo = (Ro, so) as follows:

– For 1 ≤ i ≤ n, the proxy signer with identity IDpi chooses ri
$← Z∗N , computes Ri = rei mod N , and

broadcasts Ri to n− 1 proxy signers and the clerk.
– For 1 ≤ i ≤ n, the proxy signer with identity IDpi computesRp =

∏n
i=1Ri, c1 = H1(Rp||Ro||ÎDo||ÎDp

||w||m||01), si = ri(xpi)
c1 mod N and ŝi = siso mod N .

– For 1 ≤ i ≤ n, the proxy signer with identity IDpi sends (c1, ŝi, Ro) to the clerk as his partial proxy
signature on the message m under the warrant w.

– The clerk checks if Ri = ŝi
e([H(IDpi)]

c1Ro[
∏d
j=1H(IDoj)]c0)−1 holds for 1 ≤ i ≤ n, where c0 =

H1(Ro||ÎDo||w||11).

When all partial proxy signatures are valid, the identity-based multi-proxy multi-signature of the
message m under the warrant w w.r.t. identity sets ÎDo for original signers and ÎDp for proxy signers
is generated as θ = (Rp, Ro, sp) by computing sp =

∏n
i=1 ŝi.

7. MProxyMVer: Given identity set ÎDo of original signers and identity set ÎDp of proxy signers, a warrant
w, a message m, and a signature θ = (Rp, Ro, sp), a verifier operates as follows:

– Checks if the message m conforms to the warrant w, otherwise, it stops.
– Checks if n proxy signers with identity set ÎDp are authorized by original signers with identity set

ÎDo in the warrant w, otherwise, it stops.
– Accepts the multi-proxy multi-signature if and only if sep = Rp[

∏n
i=1H(IDpi)]

c1(Ro[
∏d
j=1H(IDoj)]c0)n

holds, where c1 = H1(Rp||Ro||ÎDo||ÎDp||w||m||01) and c0 = H1(Ro||ÎDo||w||11).

4.2 Analysis of the proposed schemes

In this section, we verify the correctness and prove existential unforgeability of the new identity-based multi-
proxy multi-signature scheme in the random oracle model (see [41] for the background). Note that one may
similarly verify the correctness and prove unforgeability of other schemes, namely proxy multi-signature and
multi-proxy signature schemes, since they are special cases of the identity-based multi-proxy multi-signature
scheme.

In order to prove unforgeability of the proposed scheme, we need to show that it is unforgeable against
adversaries of types II and III (as defined in Section 2.3). Since our security proofs are quite similar in both
cases, we have parameterized these proofs to prevent unnecessary repetitions of arguments. Hence, just for
notational settings, we refer to the adversary as A(1−k)II+kIII in which the parameter k ∈ {0, 1} makes the
difference between adversaries of types II and III (i.e. notationally we assume that we have an adversary of
type II, AII , when k = 0 and an adversary of type III, AIII , when k = 1). Note that, the proofs for different
values of k are independent.

In the security proof, it is assumed that there is only one honest signer, and note that, this does not have
any effect on the generality of our proof. Also, this assumption in different security models is in coherence

13

with what is usually considered in the current literature (e.g. see [13, 29–33, 36, 37] for similar issues) since
security of the general case of having multiple honest signers follows from the security of the extreme case
of having only one honest signer in a more or less straightforward way. Although, this fact is not usually
explicitly stated in this literature, to be precise, we have decided to elaborate on the details of this proof in
Section 5.

To prove the security of our proposed scheme, and by contradiction, assuming an adversary A(1−k)II+kIII ,
we show that there is a solver (algorithm B) that can solve a random instance of the RSA problem with a
nonnegligible probability. To do this, we first show that there exists a simulator called CA(1−k)II+kIII

(see Algo-
rithm 2) that can simulate the signature scheme without knowing the secret key of the honest signer, and runs
the adversary A(1−k)II+kIII as its sub-routine. In this regard, we compute the run-time and a lower-bound
for the success (returning a useful output (Rp, Ro, sp, ck, c1−k, xo, xp,m,w) (see Definition 3)) probability of
this simulator in terms of the run-time and success (returning a valid forgery θ = (Rp, Ro, sp, ck, c1−k) on a

message m under the warrant w with respect to the original signers’ identity set ÎDo and the proxy signers’
identity set ÎDp) probability of the adversary and the number of queries to the oracles (see Lemma 1).

At the final stage, we use a forking strategy to solve an instance (N, e, y) of the RSA problem, using a
useful pair (see Definition 4) of the simulator CA(1−k)II+kIII

when the random string used in both simulations
are the same. Hence, we concentrate on computing a lower bound for the probability of producing such a
useful pair and solving the RSA instance as the main body of the solver algorithm B (see Lemma 3). We
should highlight that the general Forking Lemma [42] cannot be applied directly into our scheme since this
scheme is the result of sequential aggregation of two different signatures such that we have two different types
of random oracle responses. Hence, we need to consider the probability of happening some random responses
before the forking point in the proposed forking lemma, and this is the main difference of our Forking Lemma
from previous ones.

Our main result on the security of the proposed scheme is summarized in Theorem 1, where the parameter
k is used to code the result for both adversaries of types II and III.

To start let us verify the correctness of the proposed scheme. Note that, all computations are done modulo
N , but we omit this for simplicity.

sep = [
∏n
i=1 ŝi]

e

=
∏n
i=1[rei xpi

ec1 [
∏d
j=1 r

e
jxoj

ec0]]

= [
∏n
i=1 r

e
i][
∏n
i=1H(IDpi)]

c1([
∏d
j=1 r

e
j][
∏d
j=1H(IDoj)]c0)n

= Rp[
∏n
i=1H(IDpi)]

c1(Ro[
∏d
j=1H(IDoj)]c0)n.

(2)

Definition 3. Let k ∈ {0, 1} be a constant and the algorithm CA(1−k)II+kIII
return (Rp, Ro, sp, ck, c1−k, xo, xp,

m,w) derived from a valid forgery ((ÎDo, ÎDp,m,w), θ = (Rp, Ro, sp, ck, c1−k)) produced by an adversary
A(1−k)II+kIII when CA(1−k)II+kIII

simulates the signature scheme. The tuple (Rp, Ro, sp, ck, c1−k, xo, xp,m,w)

is a useful output if sep = Rp[x
e
py
k]c1(Ro[x

e
oy

1−k]c0)n holds.

Lemma 1. Let k ∈ {0, 1}, n ≥ 1 and d ≥ 1 be constants and lN be a security parameter. Assuming the
existence of an adversary, A(1−k)II+kIII , with success probability at least ε and run-time t, there exists
a simulator CA(1−k)II+kIII

for the signature scheme that does not use the secret key of the honest signer,
and produces a useful output (Rp, Ro, sp, ck, c1−k, xo, xp,m,w) (see Algorithm 2 for the pseudocode and the
definitions) such that,

a) the success probability of CA(1−k)II+kIII
is greater than

ε
def
=

ε

4qE
− (2(1− k)q2

d + 2kq2
s + ((1− k)qd + kqs)qH)2−lN ,

b) the run-time of CA(1−k)II+kIII
is less than

τ
def
= t+ (1qE + 1qh + 2(1− k)dqd + 2k(n+ 1)qs)texp,

where texp is the time of one exponentiation in Z∗N , and qH , qh, qE, qd and qs are the number of queries to
the oracles H1, H, KeyExtract, DelegationGen and MProxyMSign, respectively.

14

Proof. Assume the existence of an adversary A(1−k)II+kIII on the public data mpk = (N, e) which runs in
time at most t, makes qH queries to the random oracle H1, qh queries to the random oracle H, qE queries
to the KeyExtract, (1− k)qd queries to the DelegationGen and kqs queries to the MProxyMSign algorithm,
and can win the unforgeability game with probability at least ε. The algorithm CA(1−k)II+kIII

maintains
initially empty associative arrays T1[.] and T [.], and answers A(1−k)II+kIII ’s oracle queries as described
below (see Algorithm 2 and note that this algorithm uses the adversary A(1−k)II+kIII and Algorithm 1 as
its sub-routines).

– H1(Q) queries: If T1[Q] is defined then CA(1−k)II+kIII
returns its value, otherwise CA(1−k)II+kIII

chooses

T1[Q]
$← {0, 1}l1 , and returns T1[Q] to A(1−k)II+kIII . Note that, in DelegationGen Q = (Ro||ÎDo||w||11)

and in MProxyMSign Q = (Rp||Ro||ÎDo||ÎDp||w||m||01).

– H(IDu) queries: We employ Coron’s technique [43] to obtain a tighter security bound when simulating H.

If T [IDu] = (b, xu, Xu) then CA(1−k)II+kIII
returns Xu. If this entry is not yet defined, it chooses xu

$← Z∗N
and tosses a biased coin b so that b = 0 with probability β and b = 1 with probability 1−β. If b = 0, then
CA(1−k)II+kIII

sets Xu = xeu mod N ; if b = 1, it sets Xu = xeuy mod N . It stores T [IDu] ← (b, xu, Xu)
and returns Xu to A(1−k)II+kIII . Note that, the value of β is determined later.

– KeyExtract queries for IDu: The algorithm CA(1−k)II+kIII
looks up T [IDu] = (b, xu, Xu), if this entry is

not yet defined, it performs a query H(IDu). If b = 0, then CA(1−k)II+kIII
returns xu; otherwise, it sets

badKE ← true and aborts the execution of A(1−k)II+kIII and returns ⊥.

– DelegationGen queries for a warrant w w.r.t. the multi-set ÎDo of original signers including one honest
original signer whose identity is denoted as IDot : The algorithm CAII

first makes query to H oracle

to obtain H(IDoj) = Xoj for 1 ≤ j ≤ d, next, CAII
chooses c0

$← {0, 1}l1 and st
$← Z∗N , computes

Rt ← set (Xot)
−c0 mod N , and broadcasts the value of Rt of the honest original signer. The algorithm

CAII
at the same time receives Rj , 1 ≤ j 6= t ≤ d, of other corrupted original signers from AII (the

adversary plays the role of the corrupted co-original signers with having their secret keys in the group of
original signers), and computes Ro =

∏d
j=1Rj . If T1[Ro||ÎDo||w||11] has already been defined, then CAII

sets badDG ← true and halts returning ⊥; otherwise, it sets T1[Ro||ÎDo||w||11] ← c0. After having re-
ceived sj , 1 ≤ j 6= t ≤ d from adversary AII , CAII

checks if Rj = sejH(IDoj)−c0 holds for 1 ≤ j 6= t ≤ d.

If not, it ends the signing protocol. Otherwise, it computes so =
∏d
j=1 sj , and returns the signature

σo = (Ro, so, c0) as a delegation to the adversary AII .

– MProxyMSign queries for a messagem under the warrant w w.r.t. proxy signers’ identity set ÎDp including

one honest proxy signer whose identity is denoted as IDpt such that m and ÎDp are in the warrant w:
The algorithm CAIII

receives σo = (Ro, so, c0) as a delegation from AIII , which generates it by itself
since it has secret keys of all original signers. Next, if the delegation is valid, CAIII

makes query to the

H oracle to obtain H(IDpi) = Xpi for 1 ≤ i ≤ n. Then, CAIII
chooses c1

$← {0, 1}l1 and st
$← Z∗N ,

computes Rt ← (stso)
eX−c1pt mod N for the honest proxy signer, and broadcasts Rt. The algorithm

CAIII
at the same time receives Ri, 1 ≤ i 6= t ≤ n, of corrupted proxy signers from AIII , which has

their secret keys, and plays the role of the corrupted co-proxy signers, and computes Rp =
∏n
i=1Ri.

If T1[Rp||Ro||ÎDo||ÎDp||w||m||01] has already been defined, then, CAIII
sets badMP ← true and halts

returning⊥; otherwise, it sets T1[Rp||Ro||ÎDo||ÎDp||w||m||01]← c1. After having received ŝi for corrupted

proxy signers from AIII , CAIII
verifies that if Ri = ŝi

e(H(IDpi)
c1Ro[

∏d
j=1H(IDoj)]c0)−1 holds for

1 ≤ i 6= t ≤ n. If not, it ends the signing protocol. Otherwise, it computes sp =
∏n
i=1 ŝi, and returns the

signature θ = (Rp, Ro, sp, ck, c1−k) on the message m under the warrant w w.r.t. ÎDo and ÎDp to the
adversary AIII .

To lower-bound the probability that CA(1−k)II+kIII
does not abort at answering to queries of A(1−k)II+kIII ,

we need to compute η = Pr[¬badKE]((1 − k) Pr[¬badDG|¬badKE] + kPr[¬badMP |¬badKE]), where events
badKE , badDG and badMP indicate that CA(1−k)II+kIII

aborts in signature simulation as a result of any of

15

Algorithm 1 H(IDu) (Global variables (N, e, y))

Choose xu
$← Z∗N and toss a biased coin b (b = 0 with probability β and b = 1 with probability 1 − β) and compute Xu (i.e.

Xu = xe
u mod N for b = 0, Xu = xe

uy mod N for b = 1 and set T [IDu]← (b, xu, Xu)

Algorithm 2 CA(1−k)II+kIII
(N, e, y)

1: Done = 0.
2: (Done, ξ1 = (Question,Oracle), ξ2)← A(1−k)II+kIII(N, e)

3: while ¬Done do
4: if ξ1 = (Q,H1) and ξ2 = ⊥ then
5: if T1[Q] is defined then
6: return T1[Q]
7: else

8: Set T1[Q]
$← {0, 1}l1 and

9: return T1[Q]
10: end if
11: end if
12: if ξ1 = (IDu, H) and ξ2 = ⊥ then
13: if T [IDu] = (b, xu, Xu) is defined then
14: return Xu

15: else
16: Run H(IDu) and
17: return Xu

18: end if
19: end if
20: if ξ1 = (IDu, KeyExtract) and ξ2 = ⊥ then
21: if T [IDu] = (b, xu, Xu) is not defined then
22: Run H(IDu)
23: if b = 0 then
24: return xu

25: else
26: Set badKE ← true and
27: return ⊥
28: end if
29: end if
30: end if
31: if ξ1 = ((w, ÎDo), DelegationGen) and ξ2 = ⊥ then
32: Run H(IDoj

) for 1 ≤ j ≤ d

33: Choose c0
$← {0, 1}l1 , st

$← Z∗N , compute Rt ← set (Xot)−c0 mod N (broadcast Rt and receive Rjs for 1 ≤ j 6= t ≤ d from

AII) and compute Ro =
∏d

j=1 Rj .

34: if T1[Ro||ÎDo||w||11] has already been defined then
35: Set badDG ← true and
36: return ⊥
37: else
38: Set T1[Ro||ÎDo||w||11] ← c0 and compute so =

∏d
j=1 sj (sjs for 1 ≤ j 6= t ≤ d are received from AII and checks their

correctness through relation Rj = sejH(IDoj
)−c0) and

39: return σo = (Ro, so, c0) on w w.r.t. ÎDo

40: end if
41: end if
42: if ξ1 = ((m,σo, ÎDp),MProxyMSign) and ξ2 = ⊥ then
43: Run H(IDpi

) for 1 ≤ i ≤ n

44: Choose c1
$← {0, 1}l1 and st

$← Z∗N , compute Rt ← (stso)eX−c1
pt

mod N (broadcast Rt and receive Ris for 1 ≤ i 6= t ≤ n

from AIII) and compute Rp =
∏n

i=1 Ri.

45: if T1[Rp||Ro||ÎDo||ÎDp||w||m||01] has already been defined then
46: Set badMP ← true and
47: return ⊥
48: else
49: Set T1[Rp||Ro||ÎDo||ÎDp||w||m||01] ← c1 and compute sp =

∏n
i=1 ŝi (ŝis for 1 ≤ i 6= t ≤ n are received from AIII and

their correctness are checked through relation Ri = ŝi
e(H(IDpi

)c1Ro[
∏d

j=1H(IDoj
)]c0)−1) for 1 ≤ i 6= t ≤ n and

50: return θ = (Rp, Ro, sp, ck, c1−k) on m under w w.r.t. ÎDo and ÎDp

51: end if
52: end if
53: end while
54: if Done then
55: A(1−k)II+kIII returns (ξ1 = ⊥, ξ2 = ((ÎDo, ÎDp,m,w)), θ = (Rp, Ro, sp, ck, c1−k))

56: Look up T [IDpi
] for 1 ≤ i ≤ n and T [IDoj

] for 1 ≤ j ≤ d and compute xo =
∏d

j=1 xoj
and xp =

∏n
i=1 xpi

and

57: return (Rp, Ro, sp, ck, c1−k, xo, xp,m,w)
58: end if

16

A(1−k)II+kIII ’s KeyExtract, DelegationGen and MProxyMSign queries, respectively. These probabilities are
computed as follows.

Claim 1. Pr[¬badKE] ≥ βqE .

Proof. Pr[¬badKE] is the probability that CA(1−k)II+kIII
does not abort as a result of A(1−k)II+kIII ’s

KeyExtract queries. The algorithm CA(1−k)II+kIII
aborts at answering to a KeyExtract query when badKE

is set to true (Algorithm 2, Line 26) which means that b = 1 for a given identity. The probability of this
event is 1− β, so the probability that CA(1−k)II+kIII

does not abort for one KeyExtract query is β. Since
A(1−k)II+kIII makes at most qE KeyExtract queries, the probability that CA(1−k)II+kIII

does not abort
as a result of qE KeyExtract queries is at least βqE .

Claim 2. Pr[¬badDG|¬badKE] ≥ 1− qd((qd + qH)2−lN)− q2
d2−lN .

Proof. Events ¬badKE and ¬badDG are independent, so Pr[¬badDG|¬badKE] = Pr[¬badDG]. The value
of Pr[¬badDG] is the probability that CAII

does not abort as a result of DelegationGen queries. The algo-
rithm CAII

aborts at answering to a DelegationGen query if badDG is set to true (Algorithm 2, Line 35)
which means that there is a conflict in the table T1[.] for these kinds of queries. The probability of finding

a conflict in T1[.] for one DelegationGen query (w, ÎDo) equals the probability that (Ro||ÎDo||w||11)
generated in a DelegationGen simulation has been occurred by chance in a previous query to the oracle
H1. Since there are at most qH + qd entries in the table T1[.] for these kinds of queries and the number
of Ro, uniformly distributed in ZN , is 2lN , the probability of this event for one DelegationGen query is
at most (qd + qH)2−lN . Hence, the probability of this event for qd queries is at most qd(qd + qH)2−lN . In
addition, this probability includes the probability that CAII

previously used the same randomness Rt,
uniformly distributed in ZN , in one DelegationGen simulation. Since there are at most qd DelegationGen
simulations, this probability is at most qd2

−lN . Therefore, for qd DelegationGen queries the probability
of this event is at most q2

d2−lN .

Claim 3. Pr[¬badMP |¬badKE] ≥ 1− qs((qs + qH)2−lN)− q2
s2−lN .

Proof. Events ¬badKE and ¬badMP are independent, so Pr[¬badMP |¬badKE] = Pr[¬badMP]. The value
of Pr[¬badMP] is the probability that CAIII

does not abort as a result of MProxyMSign queries. The
algorithm CAIII

aborts at answering to a MProxyMSign query if badMP is set to true (Algorithm 2, Line
46) which means that there is a conflict in table T1[.] for these kinds of queries. The probability of finding

a conflict in T1[.] for one MProxyMSign query equals the probability that (Rp||Ro||ÎDo||ÎDp||w||m||01)
generated in MProxyMSign simulation has been occurred by chance in a previous query to the oracle
H1. Since there are at most qH + qs entries in the table T1[.] for these kinds of queries and the number
of Rp, uniformly distributed in ZN , is 2lN , the probability of this event for one MProxyMSign is at most
(qs + qH)2−lN . Hence, the probability of this event for qs queries is at most qs(qs + qH)2−lN . In addition,
this probability includes the probability that CAIII

previously used the same randomness Rt, uniformly
distributed in ZN , in one MProxyMSign simulation. Since there are at most qs MProxyMSign simula-
tions, this probability is at most qs2

−lN . Therefore, for qs MProxyMSign queries the probability of this
event is at most q2

s2−lN .

Finally, it is assumed that A(1−k)II+kIII outputs a valid forgery θ = (Rp, Ro, sp, ck, c1−k) on a message

m under a warrant w w.r.t. original signers’ identity set ÎDo and proxy signers’ identity set ÎDp with
probability at least ε in time bound t. Since the forgery is valid, we have

sep = Rp[
∏n
i=1H(IDpi)]

c1(Ro[
∏d
j=1H(IDoj)]c0)n, (3)

and AII has not asked the warrant w from DelegationGen algorithm under original signer’s identity set
ÎDo and AIII has not asked the message m from MProxyMSign algorithm under proxy signer’s identity
set ÎDp. In addition, a valid forgery has to contain at least one uncorrupted identity. The probability that
A(1−k)II+kIII outputs a valid forgery containing at least one uncorrupted identity is computed as follows.

17

Claim 4. The probability that A(1−k)II+kIII outputs a valid forgery including at least one uncorrupted
identity is at least ε(1− β).

Proof. It is assumed that A(1−k)II+kIII outputs a valid forgery with probability at least ε. The proba-
bility that a valid forgery contains at least one uncorrupted identity is at least 1 − β. The probability
of existence of one honest identity with b = 1 is 1 − β, and for adversaries of type II the probability of
existence of at least one uncorrupted identity among d+ n identities is 1− βd (since AII has secret keys
of n proxy signers, we have at most d uncorrupted identities in the forgery). Since we have 1−β ≤ 1−βd
for d ≥ 1, this probability is at least 1 − β. Similarly we have the same claim for AIII . Therefore, the
probability that A(1−k)II+kIII outputs a valid forgery containing at least one uncorrupted identity is at
least ε(1− β).

Therefore, the probability that CA(1−k)II+kIII
returns a useful output is at least ε(1−β)η ≥ ε(1−β)βqE −

((1− k)qd((2qd + qH)2−lN) + kqs(2qs + qH)2−lN). The value of βqE (1− β) is maximized for β = qE
qE+1 . With

substituting the value of β, we obtain βqE (1− β) = (qE
qE+1)qE 1

qE+1 = 1
qE

(1− 1
qE+1)1+qE . If qE = 0, this value

is 1 and (1 − 1
qE+1)1+qE is a monotonically increasing sequence for qE ≥ 1. Therefore, the lower bound of

βqE (1− β) is 1
4qE

.

To estimate the required time of CA(1−k)II+kIII
in returning a useful output, the required time tC in which

CA(1−k)II+kIII
answers A(1−k)II+kIII ’s queries is computed as follows. Since it is assumed that a (multi-)

exponentiation in ZN takes time texp, while all other operations take zero time, each random oracle or
KeyExtract query takes at most one exponentiation, a delegation simulation takes 2d exponentiations, and a
multi-proxy multi-signature simulation takes 2(n+ 1) exponentiations, we therefore have tC ≤ (1qE + 1qh +
2(1− k)dqd + 2k(n+ 1)qs)texp.

Finally, CA(1−k)II+kIII
performs additional random oracle queries H(IDu) for identities in the forgery to

find T [IDu] = (b, xu, Xu) for them, computes xo =
∏d
j=1 xoj and xp =

∏n
i=1 xpi , and returns (Rp, Ro, sp, ck,

c1−k, xo, xp, w,m) with probability at least ε = ε
4qE
− (2(1− k)q2

d + 2kq2
s + ((1− k)qd + kqs)qH)2−lN in time

bound τ = t + (1qE + 1qh + 2(1 − k)dqd + 2k(n + 1)qs)texp. Substituting the values of H(IDu) = xeu for
corrupted identities and H(IDu) = xeuy for the honest identity in Equation 3, we obtain

sep = Rp([

n∏
i=1

(xpi)
e]yk)c1(Ro([

d∏
j=1

(xoj)e]y1−k)c0)n.

Since xo =
∏d
j=1 xoj and xp =

∏n
i=1 xpi , the above relation converts to

sep = Rp[x
e
py
k]c1(Ro[x

e
oy

1−k]c0)n.

�

Also, in what follows we will be needing the following splitting lemma.

Lemma 2. [44] Let A ⊂ X × Y such that Pr[(x, y) ∈ A] ≥ δ. For any α < δ, define B = {(x, y) ∈
X × Y |Pry′∈Y [(x, y′) ∈ A] ≥ δ − α} and B̄ = (X × Y) \B, then the following statements hold:

– Pr[B] ≥ α
– ∀(x, y) ∈ B,Pry′∈Y [(x, y′) ∈ A] ≥ δ − α}
– Pr[B|A] ≥ α

δ .

Definition 4. Let k ∈ {0, 1} be a constant. A pair of useful outputs (Rp, Ro, sp, ck, c1−k, xo, xp,m,w) and
(R′p, R

′
o, s
′
p, c
′
k, c
′
1−k, x

′
o, x
′
p,m

′, w′) is said to be a useful pair if Rp = R′p, Ro = R′o, sp 6= s′p, ck 6= c′k,
c1−k = c′1−k, xo = x′o, xp = x′p, m = m′ and w = w′ hold.

18

Definition 5. The probabilistic polynomial time algorithm CA(1−k)II+kIII
at each run proceeds based on a

random string ω and answers ρ
def
= (ρ1, ..., ρqt) to the queriesQ def

= (Q1, ..., Qqt) made to the random oracleH1.
A pair of (ω, ρ) is said to be a successful pair if CA(1−k)II+kIII

produces a useful output (Rp, Ro, sp, ck, c1−k,
xo, xp, w,m) based on them.

Lemma 3. (A Forking Lemma). Let k ∈ {0, 1} be a constant, l1 be a security parameter, H1 be a random
oracle, and qt be the total number of queries to H1. It is assumed that CA(1−k)II+kIII

returns a useful output
(Rp, Ro, sp, ck, c1−k, xo, xp,m,w) with probability at least ε in time bound τ . Then, a replay of CA(1−k)II+kIII

with the same random string and a different random oracle gives a useful pair in time t′ ≤ 2τ with probability

ε′ ≥ ε21(1−2−l1)
8qt(qt−1) , where ε1 ≥ (ε− 2−(l1−1)).

Proof. Consider the probabilistic polynomial time Turing machine CA(1−k)II+kIII
with a random string ω,

that answers to the queries Q def
= (Q1, ..., Qqt) made to the random oracle H1, and stores these queries and

the corresponding answers ρ
def
= (ρ1, ..., ρqt) in the table T1[.]. For a given query Q, let index of Q be defined

as Ind(Q)
def
= min{i|Qi = Q}. By hypothesis, for a random choice of (ω, ρ), CA(1−k)II+kIII

produces a useful
output (Rp, Ro, sp, ck, c1−k, xo, xp, w,m) with probability at least ε in time bound τ .

Since H1 is a random oracle, the probability of the event

ck = H1((1− k)(Ro||ÎDo||w||11) + k(Rp||Ro||ÎDo||ÎDp||w||m||01))

and
c1−k = H1(k(Ro||ÎDo||w||11) + (1− k)(Rp||Ro||ÎDo||ÎDp||w||m||01))

is less than 2−(l1−1), unless they are asked during the attack. Hence, in what follows it is likely that queries

(1− k)(Ro||ÎDo||w||11) + k(Rp||Ro||ÎDo||ÎDp||w||m||01)

and
k(Ro||ÎDo||w||11) + (1− k)(Rp||Ro||ÎDo||ÎDp||w||m||01)

are asked during a successful attack. We assume that i2 and i1 are indices of these queries, respectively, and
if these queries are never asked, we set i1 =∞ and i2 =∞.

We define set Υ as the set of successful pairs (ω, ρ), Υ = {(ω, ρ)| CA(1−k)II+kIII(ω) produces a useful output

& (i1, i2) 6= (∞,∞)}. The lower bound of probability of producing a useful output is ε1 = Pr[Υ] ≥ ε−2−(l1−1).
Since CA(1−k)II+kIII

makes query to the random oracle H1 for Qi1 and Qi2 for a successful pair (ω, ρ) ∈ Υ ,
then we define set Υi1,i2 as a subset of Υ in which query Qi1 was made to the oracle H1 before query Qi2
which means i1 < i2.

This gives us a partition of Υ in exactly (qt)(qt−1)
2 classes. Let I be the set consisting of most likely indices

(i1, i2), I = {(i1, i2)|Pr[Υ ′i1,i2 |Υ] ≥ 1
2

2
(qt)(qt−1)}. Hence, for each (i1, i2) ∈ I, Υi1,i2 is denoted as Υ ′i1,i2 , we

have Pr[Υ ′i1,i2] = Pr[Υ ′i1,i2 |Υ] Pr[Υ] ≥ ε1
(qt)(qt−1) .

With splitting the randomness ρ related to the oracle H1 as (ρ′, ck), where ρ′ denotes answers of all queries
to oracle H1 except for query Qi2 , whose answer is denoted as ck (c1−k is assigned to the response of Qi1).
We employ splitting lemma, taking X = (ω, ρ′), Y = ck, A = Υ ′i1,i2 , δ = ε1

(qt)(qt−1) and α = ε1
2(qt)(qt−1) . This

lemma ensures the existence of a subset of executions Ωi1,i2 such that Pr[Ωi1,i2 |Υ ′i1,i2] ≥ α
δ = 1

2 and for each
(ω, ρ) ∈ Ωi1,i2 , Prc′k [(ω, ρ′, c′k) ∈ Υ ′i1,i2] ≥ δ − α = ε1

2(qt)(qt−1) .

Since Υ ′i1,i2 are disjoint, we have

Pr(ω,ρ)[∃(i1, i2) ∈ I s.t. (ω, ρ) ∈ Ωi1,i2 ∩ Υ ′i1,i2 |Υ] =
∑

(i1,i2)∈I Pr[Ωi1,i2 ∩ Υ ′i1,i2 |Υ]

=
∑

(i1,i2)∈I Pr[Ωi1,i2 |Υ ′i1,i2] Pr[Υ ′i1,i2 |Υ]

≥
∑

(i1,i2)∈I Pr[Υ ′i1,i2
|Υ]

2 ≥ 1
4 .

Let (ĩ1, ĩ2) denote indices of a successful pair with probability at least 1
4 , (ĩ1, ĩ2) ∈ I and (ω, ρ′) ∈

Ωi1,i2 ∩ Υ ′i1,i2 . If B replays the attack with fixed (ω, ρ′) and a randomly chosen c′k ∈ {0, 1}l1 , it gets another

successful pair ((ω, ρ′), c′k) such that ck 6= c′k with probability ε1(1−2−l1)
2(qt)(qt−1) .

19

After two successful executions of CA(1−k)II+kIII
, B obtains ((ω, ρ′), ck) and ((ω, ρ′), c′k), ck 6= c′k which

means that it obtains a useful pair ((Rp, Ro, sp, ck, c1−k, xo, xp,m,w), (Rp, Ro, s
′
p, c
′
k, c1−k, xo, xp,m,w)) in

time t′ ≤ 2τ with probability ε′ ≥ ε21(1−2−l1)
8(qt)(qt−1) , where ε1 ≥ ε − 2−(l1−1). Note that since query Qĩ1 was made

to the oracle H1 before query Qĩ2 , we also have c1−k = c′1−k.
�

Theorem 1. If the RSA function associated to Kgrsa is (t′, ε′)-one-way, then the proposed scheme is (t, qh,
qH , qE , (1− k)qd, kqs, ε)-secure against the adversary A(1−k)II+kIII for a constant k ∈ {0, 1} such that

ε′ ≥ ε21(1−2−l1)
8(kqs+(1−k)qd+qH)(kqs+(1−k)qd+qH−1) ,

t′ ≤ 2t+ 2(1qE + 1qh + 2d(1− k)qd + 2k(n+ 1)qs)texp,
(4)

where ε1 ≥ (ε
4qE
− 2−(l1−1) − (2(1− k)q2

d + 2kq2
s + ((1− k)qd + kqs)qH)2−lN), texp, l1 and lN are the time of

one exponentiation in Z∗N and two security parameters, respectively. In addition, qH , qh, qE, qd and qs are
the number of queries to oracles H1, H, KeyExtract, DelegationGen and MProxyMSign, respectively.

Proof. In the proof, we consider two cases for the forgery depending on the type of adversaries. In the first
case, without loss of generality it is assumed that there is one honest original signer (type II adversary plus
d− 1 corrupted original signers), while in the second one there is one honest proxy signer (type III adversary
plus n− 1 corrupted proxy signers). Then, we show that the algorithm B can solve a random instance of the

RSA problem (N, e, y) such that γ = y
1
e mod N .

Case 1. In this case, we consider adversaries of type II (i.e., k = 0). According to Lemma 1, CAII
re-

turns a useful output (Rp, Ro, sp, c0, c1, xo, xp,m,w) in time bound τ = t + (1qE + 1qh + 2dqd)texp
with probability at least ε = ε

4qE
− (2q2

d + qdqH)2−lN , where xo =
∏d
j=1 xoj and xp =

∏n
i=1 xpi .

Then, the algorithm B, the RSA solver, will produce a useful pair of ((Rp, Ro, sp, c0, c1, xo, xp,m,w) and

(Rp, Ro, s
′
p, c
′
0, c1, xo, xp,m,w)) in time t′ ≤ 2τ with probability ε′ ≥ ε21(1−2−l1)

8qt(qt−1) , where ε1 ≥ (ε− 2−(l1−1))

and qt = qd + qH (see Lemma 3). Since a useful pair contains two useful outputs, we have

Rp = sep(x
e
p)
−c1(Ro(x

e
oy)c0)−n

and
Rp = s′ep (xep)

−c1(Ro(x
e
oy)c

′
0)−n.

By dividing the two aforementioned equations, we have

(
sp
s′p

(xo)
n(c′0−c0))e = yn(c0−c′0).

Since c0 6= c′0 ∈ {0, 1}l1 , and e is a prime of length strictly greater than l1+logn2 , we have e > n(c0−c′0) and
therefore gcd(e, n(c0− c′0)) = 1. Using the extended Euclidean algorithm, one can find a, b ∈ Z such that
ae+bn(c0−c′0) = 1. Hence, we have y = yae+bn(c0−c′0) mod N = (ya(

sp
s′p

(xo)
n(c′0−c0))b)e mod N . Therefore,

B can output ya(
sp
s′p

(xo)
n(c′0−c0))b mod N as the RSA inversion of y in time t′ ≤ 2t+2(1qE+1qh+2dqd)texp

with probability ε′ ≥ ε21(1−2−l1)
8(qd+qH)(qd+qH−1) , where ε1 ≥ (ε

4qE
−2−(l1−1)− (2q2

d + qdqH)2−lN). Note that, since

AII has secret keys of all proxy signers, there is no need to make any query to the MProxyMSign oracle.

Case 2. In this case, we consider adversaries of type III (i.e., k = 1). According to Lemma 1, CAIII
re-

turns a useful output (Rp, Ro, sp, c0, c1, xo, xp,m,w) in time bound τ = t+ (1qE + 1qh + 2(n+ 1)qs)texp
with probability at least ε = ε

4qE
− (2q2

s + qsqH)2−lN , where xo =
∏d
j=1 xoj and xp =

∏n
i=1 xpi .

Then, the algorithm B, the RSA solver, produces a useful pair of ((Rp, Ro, sp, c0, c1, xo, xp,m,w) and

(Rp, Ro, s
′
p, c0, c

′
1, xo, xp,m,w)) in time t′ ≤ 2τ with probability ε′ ≥ ε21(1−2−l1)

8qt(qt−1) , where ε1 ≥ (ε− 2−(l1−1))

and qt = qs + qH (see Lemma 3).
Since a useful pair contains two useful outputs, we have

Rp = sep(x
e
py)−c1(Ro(x

e
o)
c0)−n

20

and

Rp = s′ep (xepy)−c
′
1(Ro(x

e
o)
c0)−n.

By dividing the two aforementioned equations, we have

(
sp
s′p

(xp)
(c′1−c1))e = y(c1−c′1).

Since c1 6= c′1 ∈ {0, 1}l1 , and e is a prime of length strictly greater than l1, we have e > (c1 − c′1) and
therefore gcd(e, (c1 − c′1)) = 1. Using the extended Euclidean algorithm, one can find a, b ∈ Z such that
ae + b(c1 − c′1) = 1. Hence, we have y = yae+b(c1−c

′
1) mod N = (ya(

sp
s′p

(xp)
(c′1−c1))b)e mod N . Therefore,

algorithm B can output ya(
sp
s′p

(xp)
(c′1−c1))b mod N as the RSA inversion of y in time t′ ≤ 2t+2(1qE+1qh+

2(n+ 1)qs)texp with probability ε′ ≥ ε21(1−2−l1)
8(qs+qH)(qs+qH−1) , where ε1 ≥ (ε

4qE
− 2−(l1−1) − (2q2

s + qsqH)2−lN).

Note that, since AIII has secret keys of all original signers, there is no need to make any query to the
DelegationGen oracle. �

5 Security extension to multiple honest signers

In general, one may consider two scenarios in the security analysis of our schemes for the single signer setup:
security analysis with one honest signer and with multiple honest signers. At first glance, it seems that the
latter is a stronger security model than the former, however, in what follows we show that for our schemes
both of them are equivalent.

In the security proof with having multiple honest signers, assuming an adversary A(1−k)II+kIII , with
success probability at least ε and run-time t in returning a forgery containing knmax + (1 − k)dmax honest
signers (1 ≤ dmax ≤ d and 1 ≤ nmax ≤ n), we need to estimate the run-time and a lower-bound for the success
probability of a simulator in returning a useful output in terms of the run-time, the success probability of the
adversary and the number of oracles’ queries. Then, using the forking strategy, there exists an algorithm that
can solve the RSA problem with a non-negligible probability, which is a function of the number of queries
and the simulator’s success probability.

In what follows, we examine if having multiple honest signers in the forgery has any effect on the number
of oracle queries and the simulator’s run-time.

In the single-signer setup, either one of the oracles DelegationGen or MProxyMSign simulates the role of
one single honest signer, and the adversary plays the role of other co-signers. In the second scenario, since
other co-signers are not necessarily assumed to be corrupted, the adversary has to play the role of other honest
signers without knowing their secret keys. Since the adversary can engage in each of these oracles with any
honest identity that it chooses, the adversary can interact concurrently by DelegationGen under each honest
original signer’s identity with the same original signers’ identity set and the warrant to simulate the role
of other co-original signers, or it can interact concurrently by the MProxyMSign under each honest proxy
signer’s identity with the same proxy signers’ identity set, the warrant and the same message to simulate the
role of other co-proxy signers.

We note that

– In both cases (k = 0 or k = 1), communication of the adversary with oracles (DelegationGen or MProx-
yMSign) is simulated in parallel (i.e. concurrent) time. Since the required time of signature simulation
is the same as that in the first scenario, we have no extra penalty in the timing of returning a useful output.

– In both cases (k = 0 or k = 1), the result of making any number of queries to either one of the oracles
DelegationGen or MProxyMSign on the same input under the identities of honest signers in the input to
return a valid final output (a delegation or a proxy signature) to the adversary will give rise to at most
one new entry in table T1[.], and consequently in the total number of queries. Since the number of queries
are the same as those in the first scenario, we will have no extra penalty in the success probability of
returning a useful output.

21

– Note that, the effect of having knmax + (1− k)dmax honest signers is only reflected in a useful output

(Rp, Ro, sp, ck, c1−k, xo, xp, w,m, (1− k)dmax + knmax)

and consequently a useful pair

((Rp, Ro, sp, ck, c1−k, xo, xp,m,w, (1− k)dmax + knmax),

(Rp, Ro, s
′
p, c
′
k, c1−k, xo, xp,m,w, (1− k)dmax + knmax))

and parameters of the RSA problem (e > l1 + logn2 +k lognmax
2 +(1− k) logdmax

2).
It has essentially noting to do with the time and the success probability of returning a useful pair, since
the simulator’s probability and the total number of queries in the second scenario are the same as those
in the first scenario, and with the RSA solutions, and one may verify them as follows.
A useful pair contains two useful outputs, we have

Rp = sep(x
e
py
knmax)−c1(Ro(x

e
oy

(1−k)dmax)c0)−n

and
Rp = s′ep (xepy

knmax)−(kc′1+(1−k)c1)(Ro(x
e
oy

(1−k)dmax)(1−k)c′0+kc0)−n.

By dividing the two aforementioned equations, we have

(
sp
s′p

(xp)
((kc′1+(1−k)c1)−c1)(xo)

n((1−k)c′0+kc0−c0))e = yknmax(c1−(kc′1+(1−k)c1))+(1−k)dmaxn(c0−(1−k)c′0−kc0).

Since kc1 + (1 − k)c0 6= kc′1 + (1 − k)c0 ∈ {0, 1}l1 , and e is a prime of length strictly greater than
l1 + 2 logn2 + logd2, nmax ≤ n and dmax ≤ d, we have e > k2nmax(c1 − c′1) + (1 − k)2ndmax(c0 − c′0) and
therefore gcd(e, k2nmax(c1− c′1) + (1− k)2ndmax(c0− c′0)) = 1. Using the extended Euclidean algorithm,
one can find a, b ∈ Z such that ae+ bk2nmax(c1 − c′1) + b(1− k)2ndmax(c0 − c′0) = 1. Hence, we have

y = yae+bk
2nmax(c1−c′1)+b(1−k)2ndmax(c0−c′0) mod N =

(ya(
sp
s′p

(xp)
((kc′1+(1−k)c1)−c1)(xo)

n((1−k)c′0+kc0−c0))b)e mod N.

As a consequence, the RSA solutions are ya(
sp
s′p

(xo)
n(c′0−c0))b mod N and ya(

sp
s′p

(xp)
(c′1−c1))b mod N for

k = 0 and k = 1, respectively.

6 Concluding remarks

In this section, first we discuss about the practicality of the scheme, and then compare it with existing
schemes to show its efficiency.

Practicality. First, note that in our security proof, the probability estimates are far from being sharp.
Hence, we expect higher security guarantees in real applications. However, to get a feeling about our
main Theorem (Theorem 1), we analyze a real setup in what follows.
Considering adversaries of type III who can corrupt two users (i.e., qE = 2 and n = d = 3), the security

result becomes ε′ ≥ ε2(1−2−l1)
29(qs+qH)(qs+qH−1) . This result gives the exact relation between the security of the

scheme and hardness of the RSA problem. This relation helps us choose the length of the keys to imple-
ment the scheme securely w.r.t. the best known algorithm which solves the RSA problem. The best way
to solve the RSA problem is by factoring and the expected time to factor a lN−bit integer with Number
Field Sieve, NFS, is O(exp((64lN

9)
1
3 (ln lN)

2
3)). Consider an attacker that runs in time t ' 246 and makes

at most 246 random oracle and MProxyMSign queries, and can violate unforgeability of the scheme with
probability at least 2−5. According to Theorem 1, if such an adversary exists, the RSA problem can be

solved in time t′

ε′ '
2.246.292.29

2−10 = 2158 which contradicts the best known result for factoring if the length
of the RSA module is at least 212 = 4096 bits (the required time by NFS is 2167). Therefore, to ensure
that there is no adversary against the scheme with t ' 246, ε ' 2−5, qH ' 246 and qs ' 246, we should
take the RSA module around 4096 bits which is a recommended key length.

22

Comparison. The comparison for some identity-based multi-proxy signature, proxy multi-signature and
multi-proxy multi-signature schemes is summarized in Table 1. The comparison is in terms of DeleGen-
Cost, DeleVer-Cost, PSign-Cost and PVer-Cost, dominating computational cost in delegation generation
per an original signer, delegation verification per a verifier, proxy signature generation per a proxy signer
and proxy signature verification per a verifier, respectively. In Table 1, P , ET , mGT

, mG, E and MPS,
PMS and MPMS denote the pairing evaluation, exponentiation in group GT , multiplication in GT , scalar
multiplication in G, exponentiation in ZN , multi-proxy signature, proxy multi-signature and multi-proxy
multi-signature, respectively. Note that, in comparison, it is assumed that other operations take zero
time, n and d are the size of the proxy and original group, respectively, and also computational cost of
the clerk is considered for users (original and proxy signers).

Scheme DeleGen DeleVer PSign PVer Signature Hard Type of
Cost Cost Cost Cost Size problem the scheme

Ours 2E 2E 2nE 4E 3Z∗
N RSA MPS

[13, 29] 2mG 2P + 1mGT n(4P + 1ET + 2mG) 4P 3G Pairing MPS

Ours 2dE 2E 2E 3E 3Z∗
N RSA PMS

[32] 4mG + (d− 1) 3P + 1mGT 4mG 3P+ 3G Pairing PMS
(3P + 1mG) +dmG (d + 1)mG

Ours 2dE 2E 2nE 4E 3Z∗
N RSA MPMS

[36] (1mGT 3P + 1mGT (n− 1)(5P + 1ET 5P + 3mGT 3G Pairing MPMS
+2P) (d− 1) + 2mG +3mGT) + 2mG +1ET

Table 1. Comparison between our schemes and some existing schemes

In Table 1, comparison of our schemes with some corresponding constructions, the latest provable secure
schemes is given. As shown in Table 1, our identity-based multi-proxy signature, proxy multi-signature
and multi-proxy multi-signature schemes are more efficient than identity-based multi-proxy signature
schemes [28, 13, 29], identity-based proxy multi-signature schemes [28, 30–32] and identity-based multi-
proxy multi-signature schemes [28, 34–36], respectively since the previous ones rely on elliptic curve
pairings which are relatively expensive to implement (from [40], we know that the cost of each pairing is
roughly that of 6− 20 exponentiations).
In addition, our schemes rely on well-understood assumption (RSA assumption), while previous schemes
are based on recently derived computational assumptions.
Without incorporation bilinear pairings, two identity-based (multi)-proxy multi-signature schemes [33,
37] were proposed, while they are not secure in their security models as shown before, and also they are
not efficient in terms of signature size.

7 Conclusion

In this paper, we showed that previous identity-based proxy multi- signature and multi-proxy multi-signature
schemes without bilinear pairings are indeed insecure in their security models. Then, we presented the first
provably secure identity-based multi-proxy multi-signature schemes from RSA assumption, without bilinear
pairings, where identity-based multi-proxy signature and proxy multi-signature schemes are its special cases.
To analyze security of our schemes, we proved a new Forking Lemma since the general Forking Lemma cannot
be applied to them. These schemes are suitable for usage in resource-constraint devices to improve energy
consumption which is a crucial factor for them.

Acknowledgements

The authors would like to appreciate anonymous referees, Prof. Amir Daneshgar and Dr. Reza Reyhanitabar
for their valuable comments on this work.

23

References

1. Mambo, M., Usuda, K., and Okamoto, E. (1996) Proxy signatures: Delegation of the power to sign messages.
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 79, 1338–1354.

2. Shao, Z. (2009) Provably secure proxy-protected signature schemes based on RSA. Computers & Electrical
Engineering, 35, 497–505.

3. Shao, Z. (2003) Proxy signature schemes based on factoring. Information Processing Letters, 85, 137–143.
4. Zhou, Y., Cao, Z., and Lu, R. (2005) Provably secure proxy-protected signature schemes based on factoring.

Applied Mathematics and Computation, 164, 83–98.
5. Park, J. H., Kang, B. G., and Han, J. W. (2005) Cryptanalysis of Zhou et al.’s proxy-protected signature schemes.

Applied Mathematics and Computation, 169, 192–197.
6. Liu, Y.-C., Wen, H.-A., Lin, C.-L., and Hwang, T. (2007) Proxy-protected signature secure against the undelegated

proxy signature attack. Computers & Electrical Engineering, 33, 177–185.
7. Hu, X., Xu, H., and Si, T. (2010) Analysis and improvement of proxy-protected signature secure against the

undelegated proxy signature attack. Computational Information Systems, 6, 2997–3002.
8. Gu, C. and Zhu, Y. (2005) Provable security of ID-based proxy signature schemes. Proc. of the 3rd Int. Conf. on

Networking and Mobile Computing (ICCNMC 2005), Zhangjiajie, China, 2-4 August, pp. 1277–1286. Springer-
Verlag, Berlin.

9. Zhang, J. and Zou, W. (2007) Another ID-based proxy signature scheme and its extension. Wuhan University
Journal of Natural Sciences, 12, 33–36.

10. Wu, W., Mu, Y., Susilo, W., Seberry, J., and Huang, X. (2007) Identity-based proxy signature from pairings.
Proc. of the 4th Int. Conf. on Autonomic and Trusted Computing, Hong Kong, China, 11-13 July, pp. 22–31.
Springer-Verlag, Berlin.

11. Gu, C. and Zhu, Y. (2008) An efficient ID-based proxy signature scheme from pairings. Proc. of 3rd SKLOIS
Conf. on Information Security and Cryptology (Inscrypt 2007), Xining, China, 31 August- 5 September, pp. 40–50.
Springer-Verlag, Berlin.

12. Ji, H., Wang, Y., Han, W., and Zhao, L. (2009) An identity-based proxy signature from bilinear pairings. WASE
Int. Conf. on Information Engineering (ICIE 2009), Taiyuan, Shanxi, 10-11 July, pp. 14–17. IEEE Xplore, NY.

13. Cao, F. and Cao, Z. (2009) A secure identity-based multi-proxy signature scheme. Computers & Electrical
Engineering, 35, 86–95.

14. Xu, J., Zhang, Z., and Feng, D. (2005) ID-based proxy signature using bilinear pairings. Proc. of Parallel and
Distributed Processing and Applications-ISPA 2005 Workshops, Nanjing, China, 2-5 November, pp. 359–367.
Springer-Verlag, Berlin.

15. Shim, K. (2006) An identity-based proxy signature scheme from pairings. Proc. of 8th Int. Conf. on Information
and Communications Security (ICICS 2006), Raleigh, NC, USA, 4-7 December, pp. 60–71. Springer-Verlag, Berlin.

16. Lu, R. and Cao, Z. (2005) Designated verifier proxy signature scheme with message recovery. Applied Mathematics
and Computation, 169, 1237–1246.

17. Yu, Y., Xu, C., Zhang, X., and Liao, Y. (2009) Designated verifier proxy signature scheme without random oracles.
Computers & Mathematics with Applications, 57, 1352–1364.

18. Shim, K.-A. (2011) Short designated verifier proxy signatures. Computers & Electrical Engineering, 37, 180–186.
19. Huang, X., Mu, Y., Susilo, W., Zhang, F., and Chen, X. (2005) A short proxy signature scheme: efficient authen-

tication in the ubiquitous world. Proc. of Embedded and Ubiquitous Computing–EUC 2005 Workshops, Nagasaki,
Japan, 6-9 December, pp. 480–489. Springer-Verlag, Berlin.

20. Zhang, J., Liu, C., and Yang, Y. (2010) An efficient secure proxy verifiably encrypted signature scheme. Journal
of Network and Computer Applications, 33, 29–34.

21. Huang, X., Susilo, W., Mu, Y., and Wu, W. (2006) Proxy signature without random oracles. Proc. of 2nd Int.
Conf. on Mobile Ad-hoc and Sensor Networks (MSN 2006), Hong Kong, China, 13-15 December, pp. 473–484.
Springer-Verlag, Berlin.

22. Hwang, S. and Shi, C. (2000) A simple multi-proxy signature scheme for electronic commerce. Proc. of the 10th
National Conf. on Information Security, Hualien, Taiwan, China, 15-18 March, pp. 57–67. Springer-Verlag, Berlin.

23. Li, X., Chen, K., and Li, S. (2005) Multi-proxy signature and proxy multi-signature schemes from bilinear pairings.
Proc. of 5th Int. Conf. on Parallel and Distributed Computing: Applications and Technologies (PDCAT 2005),
Singapore, Singapore, 8-10 December, pp. 61–62. Springer-Verlag, Berlin.

24. Wang, Q., Cao, Z., and Wang, S. (2005) Formalized security model of multi-proxy signature schemes. Proc. of
the 5th Int. Conf. on Computer and Information Technology (CIT 2005), Shanghai, China, 21-23 September, pp.
668–672. IEEE Xplore, NY.

25. Hwang, S.-J. and Chen, C.-C. (2004) New multi-proxy multi-signature schemes. Applied Mathematics and Com-
putation, 147, 57–67.

26. Guo, L. and Wang, G. (2007) Insider attacks on multi-proxy multi-signature schemes. Computers & Electrical
Engineering, 33, 88–93.

24

27. Chen, X., Zhang, F., and Kim, K. (2003) ID-based multi-proxy signature and blind multisignature from bilinear
pairings. Proc. of 6th Int. Conf. of Korea Institute on Information Security and Cryptology (KIISC 2003), Seoul,
Korea, 27-28 November, pp. 11–19. Springer-Verlag, Berlin.

28. Li, X. and Chen, K. (2005) ID-based multi-proxy signature, proxy multi-signature and multi-proxy multi-signature
schemes from bilinear pairings. Applied Mathematics and Computation, 169, 437–450.

29. Xiong, H., Hu, J., Chen, Z., and Li, F. (2011) On the security of an identity based multi-proxy signature scheme.
Computers & Electrical Engineering, 37, 129–135.

30. Wang, Q. and Cao, Z. (2007) Identity based proxy multi-signature. Journal of Systems and Software, 80, 1023–
1029.

31. Cao, F. and Cao, Z. (2009) A secure identity-based proxy multi-signature scheme. Information Sciences, 179,
292–302.

32. Shao, Z. (2009) Improvement of identity-based proxy multi-signature scheme. Journal of Systems and Software,
82, 794–800.

33. Tiwari, N. and Padhye, S. (2011) An ID-based proxy multi signature scheme without bilinear pairings. Proc. of
the First Int. Conf. on Security Aspects in Information Technology (InfoSecHiComNet 2011), Haldia, India, 19-22
October, pp. 83–92. Springer-Verlag, Berlin.

34. Guo, S., Cao, Z., and Lu, R. (2006) An efficient ID-based multi-proxy multi-signature scheme. Proc. of the 1st
Int. Multi-Symp. on Computer and Computational Sciences (IMSCCS 2006), Hangzhou, China, 20-24 June, pp.
81–88. IEEE Xplore, NY.

35. Sahu, R. and Padhye, S. (2010) An ID-based multi-proxy multi-signature scheme. Proc. of Int. Conf. on Computer
and Communication Technology (ICCCT 2010), Allahabad, Uttar Pradesh, 17-19 September, pp. 60–63. IEEE
Xplore, NY.

36. Sahu, R. A. and Padhye, S. (2011) Efficient ID-based multi-proxy multi-signature scheme based on CDHP. Journal
of Applied Mathemtics and Informatics, 5, 275–282.

37. Tiwari, N., Padhye, S., and He, D. (2013) Efficient ID-based multiproxy multisignature without bilinear maps in
ROM. Annals of Telecommunications - Annales des tlcommunications, 68, 231–237.

38. Shamir, A. (1985) Identity-based cryptosystems and signature schemes. Proc. of 4th Annual Int. Cryptology Conf.
on Advances in Cryptology-CRYPTO 1984, Santa Barbara, CA, USA, 19-22 August, pp. 47–53. Springer-Verlag,
Berlin.

39. Guillou, L. and Quisquater, J. (1990) A paradoxical identity-based signature scheme resulting from zero-
knowledge. Proc. of 8th Annual Int. Cryptology Conf. on Advances in Cryptology-CRYPTO 1988, Santa Barbara,
CA, USA, 21-25 August, pp. 216–231. Springer-Verlag, Berlin.

40. Bellare, M. and Neven, G. (2006) Identity-based multi-signatures from RSA. Proc. of the 7th Cryptographers’
Track at the RSA Conf. on Topics in Cryptology (Topics in Cryptology–CT-RSA 2007), San Francisco, CA, USA,
5-9 February, pp. 145–162. Springer-Verlag, Berlin.

41. Bellare, M. and Rogaway, P. (1993) Random oracles are practical: A paradigm for designing efficient protocols.
Proc. of the 1st ACM Conf. on Computer and Communications Security (CCS 1993), Fairfax, VA, USA, 3-5
November, pp. 62–73. ACM, New York, NY.

42. Bellare, M. and Neven, G. (2006) Multi-signatures in the plain public-key model and a general forking lemma.
Proc. of the 13th ACM Conf. on Computer and Communications Security (CCS 2006), Alexandria, VA, USA, 30
October-3 November, pp. 390–399. ACM, New York, NY.

43. Coron, J. (2000) On the exact security of full domain hash. Proc. of the 20th Annual Int. Cryptology Conf. on
Advances in Cryptology-CRYPTO 2000, Santa Barbara, CA, USA, 20-24 August, pp. 229–235. Springer-Verlag,
Berlin.

44. Pointcheval, D. and Stern, J. (2000) Security arguments for digital signatures and blind signatures. Journal of
Cryptology, 13, 361–396.

	An identity-based multi-proxy multi-signature scheme without bilinear pairings and its variants
	Recommended Citation

	An identity-based multi-proxy multi-signature scheme without bilinear pairings and its variants
	Abstract
	Keywords
	Disciplines
	Publication Details

	tmp.1429768086.pdf.gR4Bg

