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Abstract 

 

Ag triangular nanoplates are known to generate strong plasmonic resonances when excited by both 

light and electron beams. Experimental electron energy-loss spectra (EELS) and maps were 

acquired using an aberration corrected JEOL-ARM microscope. The corner, edge and centre modes 

that are often observed in such structures were also observed in these measurements. In addition, 

novel higher order internal modes were observed and were found to be well-reproduced by 

theoretical calculations using boundary element method (BEM). These modes are “dark modes” so 

are not observed in the optical extinction spectra. They are confined surface propagating modes and 

are analogous to laser cavity modes. 

 

Keywords 

silver nanoparticles, localized surface plasmon resonance, electron energy-loss spectroscopy 

(EELS), boundary element method (BEM) 

 

 

 

Acknowledgements 

This research was supported under Australian Research Council’s Discovery Projects funding 

scheme (Project Number DP120102545) and used equipment funded by the Australian Research 

Council (ARC) – Linkage, Infrastructure, Equipment and Facilities (LIEF) grant LE120100104 

located at the UOW Electron Microscopy Centre. Masashi Watanabe is thanked for providing his 

PCA code. Interpretation of the spectral features was assisted by use of the ACEOS code, written by 

Thomas A. Myles. 

 

  



2 

 

Introduction 

 

Metal nanoparticles of a variety of different shapes and compositions have been investigated in 

recent years for plasmonic applications [1-6]. A material which stands out due to its strong response 

throughout the visible and near-infrared regions is Ag. One particular structure under study is the 

triangular nanoplate, where the frequency of the plasmon response can be readily modified with 

edge length, aspect ratio and tip truncation [7-12]. Along with a relatively straightforward wet 

chemical synthesis route [13], these features make triangular Ag nanoplates attractive for the study 

and application of plasmonics. 

 

Localised surface plasmon resonances (LSPRs) in nanoparticles can be excited via both light and 

electrons, but electron beam excitation is less widely used. The optical characteristics of triangular 

nanoplates have been investigated by many photonic spectroscopic measurements where most 

involve averaging over a population of particles in a solution or on a substrate [7-9,14-21], 

however, it has also been possible to record the optical response of individual particles [10,22-24]. 

 

The extinction spectra of triangular Ag nanoplates are dominated by a long-wavelength peak at 

around 700-800 nm and further smaller peaks at shorter wavelengths. The long-wavelength peak 

has been assigned as the in-plane dipole peak, and the other peaks can, depending on direction of 

electric field and shape of the particle, be assigned as higher order in-plane peaks (quadrupole, 

octapole and decapole) or out-of-plane dipole and quadrupole excitations [21,25,26]. In-plane and 

out-of-plane refers to LSPRs excited by different polarization directions of the incident light 

relative to the plane of the triangular plate. Size, shape effects, the dielectric environment and 

coupling effects between two or more particles have all been observed to alter the plasmon 

response. For triangular nanoplates the aspect ratio has been found to have a strong effect on the in-

plane dipole peak while the higher order peaks show little sensitivity to this [9,10,12,24,25]. 

 

The limits in spatial resolution when using optical excitation of LSPRs can be overcome by using 

the sub-nanometre electron beam available in the electron microscope, in conjunction with electron 

energy-loss spectroscopy (EELS). Using EELS, not only can the plasmon responses from individual 

nanoparticles be measured, but a map of resonances excited at different electron beam positions 

within a nanoparticle can be generated, revealing important connections between geometry and 

plasmon resonances. There have been several EELS investigations of triangular nanoplates which 

have revealed the presence of resonances that occur when the electron beam is located at the corners 

the edges and in the centre of the nanoprism [11,27-33] and these resonances have been correlated 

to peaks found in the optical extinction spectra using theoretical simulations. The corner mode 

corresponds to the dipole resonance, the beam at middle of the edge mode excites a quadrupole 

resonance while a beam positioned at approximately one-quarter of the edge excites a octupolar 

resonance. The centre mode is not excited optically and is a so-called dark mode. 

 

This work presents EELS measurements of the plasmon modes in large Ag triangular nanoplates 

using an aberration corrected, cold-field-emission-gun (CFEG) scanning transmission electron 

microscope (STEM). In addition to the modes excited at the corners and edge of the nanoplate, a 

number of higher order internal modes are observed for the first time. These observations are 

supported by calculations using the boundary element method (BEM) [34-36]. 

 

Methods 

 

Samples of Ag triangular nanoplates were prepared by reacting AgNO3 and polyvinylpyrrolidone 

(the latter as a protective surfactant) with NaBH4 to produce nanoparticle nuclei, and then growing 

these in a solution containing trisodium citrate and H2O2 [13] which produces a solution with a 

vibrant blue colour. Samples for the STEM were prepared by simply dipping a 30 nm thick Si3N4 
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membrane substrate into the solution. The sample was given an air-ion plasma clean of 

approximately 20 minutes to reduce carbon contamination before insertion in the microscope. 

Periodically, before measurements, the sample area was subjected to a beam flooding procedure in 

order to fix any residual carbon contamination in place. 

 

The EELS measurements were performed using a JEOL-ARM 2000F STEM operated at 200 kV 

and fitted with a Gatan GIF Quantum spectrometer. The extraction voltage was lowered in order to 

reduce the energy resolution to ~0:5 eV (as measured by the full width half maximum (FWHM) of 

the zero loss peak (ZLP)). This also resulted in an approximate 10x decrease in emission current. 

The STEM was operated with aberration correction, giving a probe size of ~ 0:1 nm and ~0.015 nA 

of current (after reduction of the source extraction voltage). The convergence and collection angles 

of the beam were ~24.9 mrad and ~8.8 mrad respectively. 

 

EEL spectrum images were captured using 20 acquisitions at each pixel with an acquisition time of 

0.05 to 0.1 s each. The energy dispersion was set to 0.05 eV per pixel and spatial drift correction 

during acquisition was applied. Full on-chip binning was used. Gatan’s post-acquisition dark-

current correction routine was applied and this improves the statistical accuracy via repeated and 

averaged dark current collection. The ZLP was removed using a power-law fitting below the lowest 

energy feature (the dipole resonance) with extrapolation to higher energies. Although this approach 

may mean that the relative intensities of the spectral features may not be quite correct, it avoids the 

introduction of spurious features that is inherent to more sophisticated ZLP extraction processes 

such as subtraction or deconvolution of a nominal ZLP. Principal component analysis (PCA) was 

performed followed by reconstruction with the first ~12 components in order to reduce random 

noise [37]. It was necessary to crop the energy scale down to a maximum of ~8.5 eV in order for the 

PCA analysis to be effective. Maps of the intensity distribution of the LSPR peaks were obtained by 

Gaussian fitting to the features of interest. 

 

Calculations were performed using a Matlab implementation of BEM, the MNPBEM Toolbox and 

its EELS extension [35,36]. The triangle parameters were determined from electron microscopy 

images of the particles and are given in Table 1 below. L1 is the length of the triangle without any 

truncation of the tip, r is the radius of curvature for the tip truncation and z is the thickness of the 

triangle. The parameter cz determines the curvature of the edge of the triangle, cz =0 corresponds to 

flat edges and cz =1 corresponds to a hemispherical shape. The thickness of the substrate is h. The 

substrate thickness was set to the nominal value of 30 nm. The triangle thickness and edge 

curvature were not measured for the particular triangles studied here but separate TEM studies of 

the solution indicated a narrow distribution of these values for nanoparticle solution and the values 

used here are expected to be representative of the actual value. 

 

Table 1. Geometric parameters used in the BEM simulations. 

 L1 r z cz h 

Triangle 1 110 15 6 0.85 30 

Triangle 2 170 16 6 0.85 30 

 

If the particle has a curved edge profile at the interface near the substrate, the two separate surfaces 

are in close proximity and artefacts are produced in the calculations. Therefore, at this interface the 

edge of the triangle was not curved. We have separately studied the effects of edge curvature on 

optical responses and have found the influence is small. Therefore, this approximation is unlikely to 

have a significant effect on the results presented here. A number of other parameters are used to set 

the size of the elements in the surface mesh used in the BEM and these were determined through 

convergence testing. 
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The dielectric function for Ag was taken from Palik [38] and the dielectric function for the substrate 

was taken as a constant of 3.2. The dielectric constant for Si3N4 depends on stoichiometry, which is 

not known for these substrates. The value only influences the energy position of spectral features, 

not their qualitative behaviour. The value chosen is within the known range for Si3N4 and gave the 

best quantitative agreement for spectral positions.  

 

Results and Discussion 

 

EELS spectrum images were obtained from regions that contained nine triangular nanoplates 

altogether and these had a range of tip-to-tip edge lengths from 50 to 200 nm. As has been 

previously observed, the main LSPR resonances decreased in energy as the triangle size increased 

[11]. Examples from two typical triangular nanoplates, having the geometry described by Table 1, 

are given here. Figs. 1 and 3 show the experimental and simulated spectra at the electron beam 

positions as indicated in the inset. Figs. 2 and 4 show experimental and calculated maps of the 

intensity of the LSPR excitation peaks as a function of beam position. 

 
 

 

 

Fig. 1. (a) Experimental and (b) calculated EEL 

spectra for the electron beam positions as 

indicated by the respective insets, for a Ag 

triangular nanoplate having a side length 

(before truncation) of 110 nm. 

Fig. 2. (a) Experimental and (b) calculated EEL 

plasmon excitation maps from a Ag triangular 

nanoplate having a side length (before truncation) of 

110 nm. The maps have been generated for the 

spectral features as labelled in Fig. 1. 
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A number of distinct plasmon modes are observed in the triangular nanoplates. The lowest energy 

mode is the in-plane dipole mode (D) which is excited by an electron beam located at the tips of the 

triangles and this is also the dominant mode in optical extinction spectra from these nanoparticles. 

When the electron beam is located in the centre of the edge of the triangle the lowest order edge 

mode (E1) is excited and this mode has previously been identified as corresponding to the optically 

excited quadrupole mode. Higher order edge modes (E2, E3) and an optically dark centre mode (C1) 

are also observed which is consistent with previous measurements [11,27-33]. 

 

Fig. 3. (a) Experimental and (b) calculated EEL 

spectra for the electron beam positions as 

indicated by the respective insets, for a Ag 

triangular nanoplate having a side length 

(before truncation) of 170 nm. 

Fig. 4. (a) Experimental and (b) calculated EEL 

plasmon excitation maps from a Ag triangular 

nanoplate having a side length (before truncation) of 

170 nm. The maps have been generated for the 

spectral features as labelled in Fig. 3. 
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However, new modes are also observed when the electron beam is located on the particle. These are 

higher order centre modes (C2, C3 and so on) which are seen in both particles. Furthermore, in the 

larger particle (Figs. 3, 4) another mode (H) with three-fold symmetry is excited and this appears to 

be a hybrid between the edge mode (E1) and the centre mode (C1). This H mode was only observed 

in the larger particles. However, its appearance is believed to be connected to the triangular 

geometry rather than size. Smaller particles generally have more rounded tips and this breaks the 

symmetry conditions for the formation of the hybrid mode. 

 

The centre modes of different orders are similar to the “breathing modes” previously observed in 

nanodisks [32,39,40] but altered by the triangular geometry. They can be thought of as propagating 

surface plasmons that are instead confined to the triangular shape. They are entirely analogous to 

the laser modes in triangular cavities described by Chang [41]. Wavevectors derived from 

description of Chang were used with a calculated dispersion relation for propagating surface 

plasmons on thin Ag films [42] and gave the energies observed for these higher order centre modes, 

thus verifying this interpretation. These modes correspond to modes with a symmetric charge 

distribution on the two faces. There is evidence in the calculations that the weaker, higher energy 

anti-symmetric modes are also present, however these cannot be distinguished in the experimental 

spectra. 

 

There is a small quantitative discrepancy between the experimental and calculated mode energies. 

This is not surprising given the assumptions made about the substrate (dielectric function and 

thickness) and the assumptions about the thickness and geometry of the particle. The particles do 

not show a perfect triangular shape and their thickness is likely to be slightly different from the 

value used in the calculations. There is also evidence in the images for the early onset of the 

corrosion process, perhaps accelerated by the plasma cleaning. Any residual carbon contamination 

is also not accounted for in the calculations. 

 

The limited experimental energy resolution means that there is considerable overlap between the 

different modes. For the smaller particle, although there is a distinct shift upwards in the energy of 

the edge mode as the beam moves from the centre of the edge towards the tip, it was not possible to 

reliably extract a map of the higher order edge modes (E2, E3). In the larger particle E2 can be 

mapped because the peaks become more separated in energy, but there remains an overlap between 

E3 and C1. Similarly, the higher order centre modes (C2+) cannot be individually distinguished and 

extracted in the experimental data, but their presence is clear in the spectra where it is observed that 

the centre mode moves up in energy as the beam moves from the centre of the particle towards the 

edge. The H mode cannot be separated in the experimental data but there is a clear shift down in 

energy as revealed by the dotted vertical line in Fig. 3a. Despite the limitations in experimental 

energy resolution, the new modes revealed by the BEM calculations are clearly supported by the 

experimental data. 

 

Conclusion 

 

It has been shown that a variety edge and internal (centre) plasmonic modes can be excited on Ag 

triangular nanoplates. These modes have been observed experimentally using an aberration 

corrected JEOL-ARM microscope and theoretically verified with calculations using the BEM. A 

novel centre-edge hybrid mode occurs in triangles with sharp tips. Higher order internal modes are 

also observed for the first time and these can be interpreted as planar surface modes that are 

confined to the triangular shape. These higher order internal modes are entirely analogous to 

triangular laser cavity modes and have wave-vectors that can be described in the same manner. The 

internal modes are expected to be optically dark under conventional illumination but could be 

revealed using oblique optical illumination [43] or a nano-antennae [26]. 
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