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Abstract
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planning systems (TPSs), contouring tools, shapes, and sites have been established for metrics including the
Dice similarity coefficient (DICE) and Hausdorff Distance. High conformity values, e.g. DICEBreast_Shape
= 0.99 ± 0.01, were achieved. Decreasing image resolution decreased contouring conformity.
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Abstract 
 

In this paper, metrics including the Dice similarity coefficient (DICE) and Hausdorff Distance 

determine the highest level of inter- and intra-observer conformity achievable with different 

treatment planning systems (TPSs), contouring tools, shapes, and sites. High conformity 

values, e.g. DICEBreast_Shape=0.99±0.01, are achieved with differing TPSs. Decreasing image 

resolution decreased contouring conformity. 
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INTRODUCTION 

Delineation of radiotherapy structures has direct clinical consequences. Contouring of nodal CTV sub-

volumes in particular,  is critical [1]. Even moderate geometrical differences in small neck Planning Target 

Volumes (PTVs) can impact on the target dose (up to 11 Gy reductions in D99 for DICE above 0.8) [2]. 

For non-small lung cancer variation a CI(%) of 0.66-0.90% has been demonstrated to result in variation in 

Tumour Control Probability (TCP) of 0.19–0.68% [3], highlighting the correlation between contour 

variation and TCP. However, there are no reported contour variation metric baseline values considering 

uncertainties in the process such as different TPSs, importing and exporting processes, contour shapes, 

volumes and image resolution. Knowledge of these baseline values is important for clinical trials which 

commonly occur across multiple centres and TPSs. Current literature does not give clear guidelines for 

reporting contouring variability in inter-observer studies [4] with variation in methodology and metrics 

only enabling comparison between inter-observer studies in a limited fashion [5]. As such, calculating 

multiple metrics including a combination of descriptive statistics, overlap measures and statistical measures 

of agreement  is recommended for multiple observer studies [6].  

The number of studies reporting on auto-segmentation [7, 8], and the inter- [9, 10] and intra- [11] 

observer conformity of volumes is growing. Inadequate definition of the Gross Tumour Volume (GTV) or 

Clinical Target Volume (CTV) leads to systematic uncertainty which may result in geometric miss of the 

tumour throughout the course of patient radiation therapy [5]. As such there has been an increasing trend to 

assess, and reduce, the variability of these target volumes. This study determined the highest concordance 

metrics achievable, and how these metrics (details given in Supplementary Table 1) including; Jaccard 

Index (JI also known as conformity index or concordance index (CI) [6, 12]),  CIpairs the average of all 

possible pairs of the JI (equates to CIgen when mutual variability between all observers is the same [13]), 

Dice Coefficient (DICE or DSC), Volume Overlap Index (VOI), the generalised kappa statistic and 

Hausdorff Distance (HD), may vary in a best case phantom scenario considering: multiple sites, variation 

between TPSs, shapes, volume, tools utilized and adherence to auto-threshold settings within the protocol.  

 

 

METHODS 

Image Datasets  

A Quasar Body phantom (Modus Medical Devices Incorporated, Ontario Canada) was used to 

provide an initial CT dataset. The Quasar phantom was scanned on a Brilliance Big Bore CT (Phillips 

Healthcare, The Netherlands) using a helical abdomen scanning sequence: 1 mm slice spacing, 2 mm slice 

thickness, standard resolution (512×512) and field of view of 350 mm. This phantom had threeinserts 

containing structures providing a range of surface contours and edges. In this study the 20-degree air wedge 

contained in the first insert (referred to as the triangular prism) and the entire empty third insert (an 8 cm 

diameter cylinder with semi-conic top) were used for contouring.  

The Quasar phantom CT dataset was imported into MATLAB R2012a (Mathworks Incorporated, 

Natick USA). Uniform rectangular prisms and a patient breast volume (203 cm
3
) were inserted into the CT 

dataset using a Computational Environment for Radiotherapy Research CERR [14, 15] and MATLAB. 

High intensities were utilised to obtain optimal image contrast. The Quasar phantom with inserted shapes is 

displayed, with inter-observer contours, in Supplementary Fig. 1.  

Inter-Observer Contouring Protocol 

A contouring protocol set image window levels to Window/Level=400/800 HU and described 

allowable techniques/tools. All eight rectangular prisms were auto-contoured using auto- threshold at 

recommended threshold values or other automated tools (e.g. Oncentra’s magic-wand tool). Rectangular 

prisms 1, 4 and 8 (Supplementary Fig. 1.) were manually contoured. Bounding boxes in auto-contouring 

and zoom functions were allowed. The breast contour was manually delineated; allowing interpolation 

between slices and/or copy to next slice. The triangular prism and cylinder were both delineated using 

automated tools (such as auto-threshold) and manually. All eight observers were blind to others contours. 
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The TPSs used for contouring were; Eclipse Planning System 11.0.64 (Varian Medical Systems, Palo Alto 

Canada): 2 sites, Oncentra (Elekta, Stockholm Sweden): 2 sites, Pinnacle
3
 9.0 (Philips, Netherlands): 2 

sites, and FocalSim 4.80.01 (Elekta, Stockholm Sweden): 2 sites. These contours were then exported and 

collated in CERR.   

Intra-Observer Contouring 

The same original 512×512 data-set was contoured five times by four observers, with a minimal 

24 hour time lapse between contouring. Pairwise analysis CIpairs, VOI and HD’s were calculated for each 

observer and averaged. This was performed for all manually contoured structures. 

 

Inter observer contouring at lowering image resolutions 

Different studies have different image resolutions. As such the Quasar phantom was resampled 

and contoured by 5 different observers, to show the expected inter-observer effects for differing 

sample/dataset pixel size and slice thickness. The resampling was performed in MATLAB with the overall 

volume maintained. Slice thickness was also set to the spacing of 2 mm, 4 mm and 8 mm keeping the 

resolution at 512×512 px (1.463 px/mm) and saved as DICOM. The resampled DICOM data were of the 

following resolutions; 512×512 px
2
 (1.463 px/mm – a typical high resolution CT), 350×350 px

2
 (1.000 

px/mm), 245×245 px
2
 (0.700 px/mm), 175×175 px

2
 (0.500 px/mm), 88×88 px

2
 (0.250 px/mm), and 44×44 

px
2
 (0.125 px/mm). 

Analysis Metrics  

To allow comparison between observers, simultaneous truth and performance level estimation (STAPLE) 

volumes were generated as consensus gold standard reference volumes in CERR, using a 90% confidence 

interval with observers weighted equally. CERR was utilised to calculate the generalized kappa statistic as 

well as the DICE, and JI in three dimensions for all observers comparing to the gold standard STAPLE 

volume (Supplementary Table 1.). The maximal Hausdorff Distance, average Hausdorff Distance, CIpairs 

and VOI was calculated in a pairwise analysis over all volumes in MilxView (Australian e-Health Research 

Centre (AEHRC), Australia) [16, 17] (Supplementary Table 2). 

The JI [18-20], DICE [4], Hausdorff distance [21] and Kappa (κ) statistic [22, 23] outlined in 

Supplementary Table 1, are metrics commonly used to establish inter-observer variation [6].  JI and DICE 

values from CERR were verified in 3D Slicer [24-26] and MILXview and were consistent to within 2 

significant figures. 

 

 

RESULTS 

Eight auto-contoured, inter-observer rectangular prism contours from different TPSs were all within 

two pixels of the true volume on every slice, for every point within the contour (Fig. 1(a)). The maximum 

HD of these contours compared to the STAPLE ranged from 1 pixel width/height (0.68 mm) or 2 pixels 

added in quadrature (0.97 mm), with a maximum of 3 pixels (2.04 mm) for the auto-contoured rectangular 

prisms (Fig. 1(c)). As the STAPLE for square 5 is different to the true volume there are larger HDs and 

discrepancies for this volume. A pairwise HD measure, rather than to the STAPLE, is less sensitive to such 

errors and is used in all following analysis. Fig. 1(b) displays each inter-observer’s DICE compared to the 

STAPLE. Inter- and intra- observer contour variation as measured by maximum HD relative to the STAPLE 

volumes was less than 7 mm for all volumes at normal resolution (1.463 px/mm). There were no observable 

trends between automatically or manually delineated contours. Kappa statistics comparing multiple shapes 

from the Quasar phantom show near perfect agreement for most shapes despite asymmetry from the breast 

contour (Supplementary Fig. 2).  

Auto-contoured rectangular prisms were less conformal (kappa in the range of 0.61-0.80) than manually 

delineated shapes (kappa in the range of 0.81-1), (Supplementary Fig. 2), with other shapes having no 

difference. The contouring tool used did not show any observable effect in contour conformity. Average 
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manual and auto-threshold DICE were in agreement (within the 95% confidence limit) for all shapes. 

 
Fig. 1. Auto-contoured squares; a) Percentage deviation of volume from the true volume. Majority of 

contours are within 1 px
2
 and the rest within 2 px

2
, b) DICE c) maximum HD from the STAPLE volume. 

Observer C display’s the largest deviation from the STAPLE. 
 

The JI, average DICE and kappa for the manually delineated shapes are summarized in Supplementary Table 

2. 

Inter-observer generalized kappa statistics for differing shapes is shown in Fig. 2(a). Decreasing 

image resolution reduces concordance, especially for smaller structure volumes e.g. triangular prism (47 

cm
3
). This is evident in the average DICE compared to the STAPLE volume in each image (Fig. 2(b)) and 
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the average maximal HDs (Fig. 2(c)). The HDs are increasing due to lengthening pixel sizes. This was 

similar to results shown in another study [27]. The breast contour and some rectangular prisms with an image 

resolution of 0.250 px/mm and 0.125 px/mm were excluded as the outline was not visible at recommended 

window levels due to resampling.  

As resolution decreases below 0.250 px/mm, the relative inter-observer DICE also decreases for 

manual contours, despite Fig. 2(b) showing good concordance compared to the STAPLE generated on each 

individual resolution dataset. Supplementary Fig. 3, displays the relative DICE of contours with lowering 

resolution compared to the highest resolution image (1.49).  

 Varying the slice thickness from 1 mm to 2 mm, 4 mm and 8 mm had no significant effect on inter-

observer conformity.  

 

DISCUSSION 

Inter-observer variation is shown to increase with lower resolution. Intra-observer variation is either 

in agreement or smaller than inter-observer variation similarly to previously reported clinical findings [5]. 

Disagreement between the same TPS is evident for contours generated using auto-threshold tools in the same 

TPS by different observers, (Fig.  1(c)). Hounsfield Units (HUs) used for Auto-thresholding were requested, 

and showed significantly different HUs had been used. This ambiguity is likely due to conversion between 

TPSs. We recommend that the conversion between multiple TPSs for inter-observer studies be performed 

and sent out with the study dataset in future studies. The highest achievable values are dependent upon image 

resolution, contour volume, number of observers, image contrast, window level and adherence to the 

protocol.  

Previously reported values in breast radiotherapy CTV inter-observer studies include a JI of; 0.81 

for radiation oncologist breast contouring [9], 0.84 for radiation therapist breast contouring [9], 0.87 for 

glandular breast volumes [12], 0.56 for partial breast volumes [12] and 0.82 for glioblastoma GTV’s (Gross 

Tumour Volumes) [28]. An inter-observer breast contour generalized kappa of 0.97 (p<0.05), maximal HD 

of 3.42 mm, average JI of 0.98±0.01 and average DICE of 0.99±0.01 was found in this study. This 

demonstrates the highest achievable values for future expert clinician contours compared to a STAPLE 

volume, for an acceptable number of observers (five or more, with a recommendation to have as large a 

number of expert observers as possible for small volumes [27]) and a standard CT image resolution 

(512×512). The gold standard STAPLE volume has been generated by the contours assessed here, whilst this 

has minimal effect, in an ideal study the aim would be to have a separate group of contours to generate a gold 
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standard STAPLE and compare to this. To avoid this metrics such as CIpairs or VOI may be utilised instead. 

 
Fig. 2. Manually delineated Inter-observer a) STAPLE parameters with differing image resolution;  Kappa, 

Specificity, Sensitivity and Volume, b) 5 observer average DICE and c) 5 observer average Hausdorff 

Distances. Error bars represent 1SD. The STAPLE in the resampled images have lower specificity and 

sensitivity with lowering resolution. The 95% confidence intervals also become larger, for small volumes, 

with worsening resolution (as the amount of data is reduced).  

 

Complexity of shape showed no observable effect in conformity, as the complicated breast contour achieved 

a higher average DICE, average JI and Kappa than the cylinder and rectangular prism, of similar volumes. 

However an assessment of more complicated irregular shapes than rounded breast contours still needs to be 

undertaken. 

Multi-observer results from multiple TPSs, differing TPS tools, image resolution, image slice 

thickness, contour shapes and volumes has been established for average DICE, average JI, CIpairs, VOI, 

kappa, average HD and maximum HD. Values obtained in this phantom study suggest that multiple sites and 

systems do not have significant impact on concordance metrics for these particular volumes. Values 

presented here may provide an upper bound as to what is achievable in future studies. Alternatively if images 

are of significantly different image resolution, extremely small volumes (such as a head and neck study), of 

more irregular shape, or with less observers, future studies might consider including another object/dataset to 

determine their highest achievable kappa, average DICE or  average JI under these circumstances. This could 

be undertaken on a study by study basis.  
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Supplementary material 

Supplementary . Table 1. Concordance measures and tools.  

Metric Equation/Outline Description Metric 

Advantages/Disadvantages 

Jaccard Index 

(JI) 
𝐽𝐼 =

𝐴 ⋂ 𝐵

𝐴 ⋃ 𝐵
 

Relative Overlap method 

between two volumes. In this 

case the JI between each 
observers contour (A) is taken 

with the STAPLE contour (B) 

and an average calculated.  

As an overlap metric, is not 

sensitive enough to large 

deviations of small volume that 
may significantly alter beam 

coverage if the structure was a 

target volume. Provides no 

quantitative information on contour 

variation in terms of size, shape or 

location. 

Dice Coefficient 

(DICE) 
𝐷𝐼𝐶𝐸 =

2(𝐴 ⋂ 𝐵)

(𝐴 + 𝐵)
 

Overlap method, similar to JI. An 

average is taken of every 

observers contour (A) with the 
STAPLE volume (B). 

An overlap metric with same issues 

as JI. This metric places double 

value to overlap area and may give 
false interpretations of high 

agreement. 

CIpairs (pairwise 

analysis) 
𝐶𝐼𝑝𝑎𝑖𝑟𝑠 =

2

𝑘(𝑘 − 1)
∑

|𝐴𝑖 ⋂ 𝐵𝑗|

|𝐴𝑖 ⋃ 𝐵𝑗|𝑝𝑎𝑖𝑟𝑠 𝑖𝑗
 

Conformity Index (CI) pairs is an 
overlap calculated by taking the 

JI over all possible observers 

pairs (A1-i) and (B1-j), where k is 
the number of delineations. 

An overlap metric with same issues 
as JI. This metric does not require a 

gold standard reference volume to 

compare to and is performed over 
all possible contour pairs.  

VOI (pairwise 

analysis) 
𝑉𝑂𝐼 = ∑

2|𝐴𝑖 ⋂ 𝐵𝑗|

|𝐴𝑖 ⋃ 𝐵𝑗|𝑝𝑎𝑖𝑟𝑠 𝑖𝑗
 

Volume Overlap Index (VOI) is 

an overlap metric calculated by 
taking the DICE over all possible 

observers pairs (Ai) and (Bj). 

An overlap metric with same issues 

as JI. This metric does not require a 
gold standard reference volume to 

compare to and is performed over 

all possible contour pairs. This 
metric places double value to 

overlap area and may give false 

interpretations of high agreement, 
As such CIpairs is preferred. 

Kappa  𝐾𝑎𝑝𝑝𝑎

=
(𝐴𝑝𝑝𝑎𝑟𝑒𝑛𝑡𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 − 𝐶ℎ𝑎𝑛𝑐𝑒𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡)

(1 − 𝐶ℎ𝑎𝑛𝑐𝑒𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡)
 

In the range of 0.81-1 for almost 

perfect agreement, 0.61-0.8 
substantial agreement, 0.41-0.60  

moderate agreement, 0.21-0.4 fair 

agreement, 0.01-0.20 slight 
agreement, and 0 is poor 

agreement. 

Is clearly defined what any output 

means. Will tend to overestimate 
agreement due to the difference in 

actual measured data compared to 

intended use (categorical data). The 
probability of agreement between 

observers will be low, thus making 

this metric high. This metric is also 
sensitive to the number of 

observers. 

Hausdorff 

Distance (HD) 

𝐻(𝐴, 𝐵) = 𝑚𝑎𝑥(ℎ(𝐴, 𝐵), ℎ(𝐵, 𝐴))                        

where, ℎ(𝐴, 𝐵) = 𝑚𝑎𝑥𝑎∈𝐴𝑚𝑖𝑛𝑏∈𝐵‖𝑎 − 𝑏‖ 

Measure of the resemblance of 

two contours (A and B) to each 

other. Where A is an observers 

contour and B the STAPLE 
contour. 

Gives a measure of any large 

deviations in the structure, which 

complements overlap metrics. 

However, this metric does not 
describe where this deviation is, 

and is limited to one single value. 
Average HDs are less sensitive to 

outliers than maximum HDs. 

 STAPLE  STAPLE is an expectation-maximization 
algorithm that computes a probabilistic 

estimate of the true segmentation and a 

measure of the performance level represented 
by each segmentation. 

The source of each segmentation 
is an expert’s contour.  

Provides a good gold standard 
contour, but varies in use across 

system, number of observers, and 

observer weighting. 

 

 

 

 

 



11 
 

 

 

Supplementary Fig.2 1. The eight manually drawn inter-observer contours are displayed for a) the transverse quasar 

phantoms triangular prism and cylinder, b) the transverse inserted breast contour and squares 1,4 and 8, and c) 

inserted breast contour, square 8, triangular prism and cylinder on  coronal slice. 
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Supplementary Table 2. Manually delineated Inter –observer indices for all 8 observers (±1SD), including average 

JI, CIpairs, average DICE, VOI, kappa statistics, maximum HD’s and average HD’s. The intra-observer indices for 5 

observers 5 times each in shown in italics for CIpairs and HDs. 

Manual 

Contour 

Breast Triangular 

prism 

Cylinder Square 1 Square 4 Square 8 

Volume (cm3) 

 

203.3±3.5 46.6±2.0 185.0±6.5 2.8±0.1 26.8±0.6 258.1±1.1 

JI (Mean±1SD) 0.975±0.009 0.944±0.019 0.948±0.040 0.973±0.038 0.990±0.021 0.998±0.007 

CIpairs (Inter-) 

CIpairs (Intra-) 

0.961±0.009 
0.976±0.007 

0.904±0.026 
0.946±0.021 

0.914±0.039 
0.965±0.016 

0.901±0.081 
0.977±0.043 

0.970±0.019 
0.962±0.031 

0.988±0.006 
0.993±0.006 

DICE 

(Mean±1SD) 

0.987±0.005 0.971±0.010 0.973±0.021 0.986±0.020 0.995±0.011 0.998±0.003 

VOI  0.980±0.005 0.950±0.015 0.955±0.021 0.946±0.045 0.985±0.010 0.994±0.003 

Kappa 

(p<0.05) 

0.972 0.921 0.923 0.880 0.865 0.872 

Sensitivity 

(Mean±1SD) 

0.985±0.010 0.962±0.028 0.972±0.032 0.998 

±0.006 

1.000±0.000 0.999±0.000 

Specificity 

(Mean±1SD) 

0.996±0.004 0.985±0.014 0.981±0.017 0.910±0.141 0.879±0.240 0.898±0.139 

Maximum HD 

(mm)  

3.42 (Inter-) 

 
3.49 (Intra-) 

3.52 

 
3.42 

4.19 

 
2.46 

1.37 

 
1.21 

0.97 

 
1.39 

0.97 

 
1.53 

Average HD 

(mm)  

2.77±0.41 (Inter-) 

 
2.06±0.38(Intra-) 

2.49±0.72 

 
1.60±0.45 

2.89±0.65 

 
1.74±0.44 

0.81±0.26 

 
0.72±0.12 

0.74±0.19 

 
0.92±0.22 

0.80±0.14 

 
0.83±0.16 

 

Supplementary Fig. 2. Kappa statistic for all shapes, calculated over all 8 inter-observers. 

 

 
Supplementary Fig. 3. DICE comparing normal resolution (resolution=1.49 pixels/mm) STAPLE contours to those 

of lowering resolution. 
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