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Abstract
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difficulty in conducting clinical trials in these populations dosing information is often extrapolated from adult
populations. As the processes of absorption, distribution, metabolism and excretion of drugs change
throughout growth and development extrapolation presents risk of over or underestimating the doses
required. Information about the development these processes, particularly drug metabolism pathways, is still
limited with weight based dose adjustment presenting the best method of estimating pharmacokinetic
changes due to growth and development. New innovations in pharmacokinetic research, such as population
pharmacokinetic modelling, present unique opportunities to conduct clinical trials in these populations
improving the safety and effectiveness of the drugs used. More research is required into this area to ensure the
best outcomes for our most vulnerable patients.
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Pharmacokinetics in neonatal prescribing: 

evidence base, paradigms and the future.  

Abstract 

Paediatric patients, particularly preterm neonates, present many pharmacological 
challenges. Due to the difficulty in conducting clinical trials in these populations dosing 
information is often extrapolated from adult populations.  As the processes of 
absorption, distribution, metabolism and excretion of drugs change throughout growth 
and development extrapolation presents risk of over or underestimating the doses 
required. Information about the development these processes, particularly drug 
metabolism pathways, is still limited with weight based dose adjustment presenting the 
best method of estimating pharmacokinetic changes due to growth and development.  
New innovations in pharmacokinetic research, such as population pharmacokinetic 
modelling, present unique opportunities to conduct clinical trials in these populations 
improving the safety and effectiveness of the drugs used. More research is required into 
this area to ensure the best outcomes for our most vulnerable patients. 
 



Introduction  

Due to the difficulties of conducting traditional pharmacokinetic studies in children and 

neonates extrapolation of dosing information from adult studies has persisted, despite 

increasing evidence that this is both inappropriate and at times ineffective. Much of the 

difficulty advising clinicians in dosing paediatric patients has come from a lack of 

knowledge of development of physiological processes and the quantification of this at 

each stage of development throughout infancy, childhood and adolescence. Further, the 

lack of an appropriate method to determine drug doses for clinical use from this 

knowledge has made this task more difficult. We propose that urgent investment in 

paediatric pharmacokinetic knowledge, validated against real pharmacodynamic 

outcomes, is required to ensure the best outcome for this vulnerable group of patients.  

 

Both the European Medicines Agency (EMA), as part of the European Unions Paediatric 

Regulation in 2007, and Food and Drug Administration (FDA), by the Best 

Pharmaceuticals for Children Act (last amended 2007) have acknowledged that more 

work is required to ensure the safe use of medicines in children. While improvements 

have occurred, progress has been slow (1). A study conducted by the FDA in the United 

States examined different methods of predicting paediatric clearance of drugs based on 

adult values and concluded that no single method of prediction is suitable for all drugs 

or age groups (2) 

 

Drug doses used in children have generally been extrapolated from adult data on a 

mg/kg basis. However, human growth and development is not a linear process and such 

an approach is known to be problematic (3). Size alone is not adequate for determining 

doses across the range of developmental processes that occur throughout childhood as 

it can not fully explain clearance, even when considered with other variables such as age 

and renal function (4). Despite this, extrapolation from adult data continues to occur for 

the majority of medications (5). Weight-based and surface area-based dosing regimens, 

extrapolated from adult data, are used in most clinical situations. 

 

It is difficult to determine appropriate doses and intervals while still lacking basic 

information on metabolism and excretion in different age groups (6).  This problem is 

particularly compounded in prescribing for neonates. While age and weight are the two 



variables most commonly used when determining doses for neonates it is known that 

there is a non-linear relationship between metabolism and weight (7).  Body surface 

area has been investigated as an appropriate alternative to weight when determining 

neonatal drug doses but has not been shown to increase accuracy or safety (7).  

Unfortunately no current method of dose estimation can replace clinical studies. 

 

Premature birth can result in serious health complications including chronic lung 

disease, necrotizing enterocolitis, retinopathy of prematurity, intraventricular 

haemorrhage and cerebral palsy (8). Neonates born preterm or requiring intensive care 

treatment are frequently prescribed medications from a range of pharmacological 

classes, including analgesics, antimicrobials and diuretics, which are not licensed for use 

in this population (9, 10) .  

 

  

The four major pharmacokinetic processes of absorption, distribution, metabolism and 

excretion each present important differences between the responses of neonates and 

adults to drug treatment. In neonates, these processes reach adult activity at different 

stages of growth and development (6). The developmental changes in absorption, 

distribution, metabolism and excretion will each be addressed below. 

 

Absorption 

Absorption is the ability of drugs administered by extravascular routes to overcome 

chemical, mechanical and physical barriers to be distributed to their site of action. The 

developmental differences in these barriers between neonates and adults can change 

the rate and extent of drug absorption (7). Intravenous administration of drugs is not 

affected by developmental changes in absorption as drugs are delivered directly to the 

bloodstream. However, compared to oral, intravenous administration is associated with 

additional risks, such as infections. Once a neonate has developed a functioning gut and 

is tolerating oral feeds oral administration is commonly used. Gastrointestinal 

absorption can be affected by many factors including gastric pH (11), rate of gastric 

emptying (12) and intestinal motility (13) , and the type of infant milk diet  (14). 
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Bioavailability is also affected by the development of intestinal CYP enzymes and p-

glycoprotein efflux pumps (15). 

 

The absorption of drugs via other routes also changes throughout infancy. For example, 

changes in skin thickness during development can affect topical absorption (16). The 

larger body surface area to weight ratio (17) increases the amount of absorption 

through the skin of children as compared with adults. Extremely low birth weight 

newborn infants have very thin skin which does not provide an effective barrier (16) 

placing these infants at risk of adverse effects from topical exposures (18). Rectal (19), 

pulmonary (20), sublingual  (21) and buccal (22) administration are not well studied in 

neonates and although potentially appealing from an administration perspective are 

likely to lead to unpredictable absorption via these routes.  

 

Distribution 

Body composition is an important determinant of drug distribution. Drugs which are 

hydrophilic mainly distribute into body water, while lipophilic drugs will preferentially 

distribute into fat. The increased percentage of total body water and the ratio of intra to 

extracellular fluid in neonates compared to adults will also influence the distribution of 

drugs into tissues (6). The corresponding decrease in body fat stores with an increase 

total body water in neonates compared with adults results in a change to the 

distribution of both hydrophilic and lipophilic drugs (23). Due to the lower percentage 

of fat and muscle mass in neonates drugs that rapidly distribute into muscle, like 

fentanyl, remain in the plasma compartment for longer (23). Both these factors are 

more pronounced in the premature neonate (7) with the total body water decreasing 

from 85% in preterm neonates to 75% in term neonates (24). Neonates and infants 

have less circulating plasma proteins which, for highly protein bound drugs, influences 

the amount of free drug available for distribution in the body and pharmacological 

effect. Neonates also have higher circulating bilirubin and free fatty acids which can 

displace drugs from albumin binding sites (6).   Changes in the volume of distribution 

are also related to changes in blood flow, tissue perfusion, membrane permeability and 

cardiac output , all affected in conditions such as sepsis (25). 

 



Metabolism 

The metabolism of drugs is an essential step in both drug activity and clearance.  The 

ability to metabolise drugs is present in the fetus and newborn and changes throughout 

early growth and development (26). Inter-individual variation in drug metabolism is 

dependent on a number of factors, including disease, environment and genes (7, 28) 

along with growth and development. Clinically, the development of drug metabolising 

enzymes is an important factor in determining drug selection. For example codeine is 

not commonly used in the first month of life as conversion to morphine via CYP2D6 is 

low, limiting effectiveness (3) while midazolam is cleared by CYP3A4 at a slower rate 

causing increased duration of sedation (29). 

 

Drug metabolism enzymes are divided into phase I and phase II enzymes. Phase I 

enzymes are involved with primary oxidation, reduction and hydrolysis processes (30). 

Phase II enzymes conjugate drug molecules to allow excretion (30). The most important 

group of enzymes involved in phase I metabolism are cytochrome (CYP) P450 enzymes 

(7). A lack of activity of these enzymes can be responsible for the extreme toxicity 

syndromes that have been seen in premature infants, such as grey sickness or grey baby 

syndrome with chloramphenicol and gasping syndrome with benzyl alcohol(18, 31, 32).  

 

Some CYP450 enzymes are active in-utero while others do not demonstrate activity 

until some time after birth. When corrected for weight the content of CYP enzymes in 

fetal livers is 30-60% of adult values (7) and full CYP activity is usually achieved by 2 

years of age (6)..  

 

Maturation rates are difficult to generalise and enzyme-specific information needs to be 

determined for an accurate estimate of drug metabolism (7).  Polymorphisms, diseases, 

such as sepsis, and complex surgery can all increase the variability of drug metabolism 

(33).  A diet based on infant formula rather than breast-milk (14) and antenatal 

exposure to cigarette smoke (34) can increase the rate of CYP enzyme development . 

Further, the routes of metabolism seen in adults may not be mirrored in neonates due 

to the activity or inactivity of particular CYP enzymes (3), summarized in Table 1. 

 



Looking specifically at CYP enzymes known to be important in drug metabolism 

pathways, CYP1A2 has been shown to have negligible activity before birth suggesting 

that postnatal events are required to stimulate development of this enzyme (14).  Using 

caffeine metabolism as a marker of CYP1A2 activity, increases are seen over the first 

eight months of life. Adult metabolism patterns are seen between 7 and 8 months of age 

(35). CYP1A2 is induced rapidly after birth with postnatal age rather than 

postmenstrual age correlating with changes in half-life and clearance (36). This rapid 

induction fits clinically with the lack of toxicity to caffeine seen in even the most 

premature infants started on caffeine for the prevention or treatment of apnoea of 

prematurity (37). 

 

CYP2C9 has been detected in fetal livers from 8 weeks of gestation and in increasing 

amounts from 24 weeks (28).  CYP2C9 begins to increase, to 10% of adult values, during 

the third trimester remaining constant throughout gestation until birth when levels 

increase to approximately 25% of adult values during the first month after birth. No 

further increases are seen in the next year of life (38). 

 

CYP2C19 is also detected in fetal livers from 8 weeks of gestation with levels remaining 

constant throughout gestation (28). CYP2C19 reached 20% of adult values by the end of 

the second trimester and is the dominant CYP2C enzyme during gestation.  At birth and 

during the neonatal period there is no significant change to the level of expression. (38). 

Increases are seen after 5 months of age when mature levels are reached (28).  

 

CYP2D6 enzyme maturation is thought to be complete after 1 year with significant 

increases in the first month of life. Activity, using tramadol metabolism as a marker, has 

been shown to increase from 27 weeks postmenstrual age to reach 84% of mature 

values by one month of age (39).  CYP2D6 is subject to genetic differences in activity 

levels.  Toxicities from drugs metabolised via this pathway can be related to 

development of the pathway along with genetic predisposition to being a poor or ultra 

rapid metaboliser (33). The poor metaboliser genotype has been thought to be in part 

responsible for toxicities shown following perinatal exposure to paroxetine (40).  

Differences in toxicity related to codeine exposure in via breast milk have been linked to 

genetic polymorphisms in CYP2D6 activity (41). 



 

CYP2E1 has not been detected in the first trimester of pregnancy. In some samples it 

was detected during the second trimester but only in very low levels, around 1% of 

adult values (38).  Levels increase throughout the third trimester (42). During the 

neonatal period there is a rapid increase to around 25% of adult values. Adult values 

have been reached around 1 year of age (38) but possibly earlier, within 90 days of life 

(42).  

 

The CYP3A family of enzymes is important in the metabolism of a large number of drugs 

and endogenous substances including steroids (43). CYP3A4 is expressed at low levels 

within the liver throughout gestation (38). CYP3A4 is functionally immature after birth 

and begins to increase after 2 weeks postnatal age (29). CYP3A4 begins to develop after 

birth to reach 30-40% of adult values by 4 weeks of age.  Changes in expression of 

CYP3A4 are not seen in the first year of life and is thought to reach adult levels by 

around three years of age (38).   

 

CYP3A7 activity is most prominent in perinatal life and at birth. Its activity declines 

rapidly following birth throughout the first year of life. This pattern of enzyme 

development is different to that of other CYP enzymes (7). CYP3A7 is active during the 

antenatal period reaching a peak in the first week after birth following which it begins 

to decline to reach the very low levels found in fully developed adult livers (44). 

Oestrogen and progesterone at birth increases activation of CYP3A4 enzymes (45). 

While CYP3A7 activity halves in the neonatal period it is still the most abundant CYP3A 

enzyme expressed at this time.  

 

Less is known about the development of phase II enzymes in the immature liver (6). 

Phase II reactions include glucuronidation, sulphation, methylation and acetylation and 

so are an important part of drug metabolism and the biotransformation of endogenous 

compounds including steroids and bilirubin. The largest group of enzymes involved in 

these reactions are uridine diphosphate glucuronosyltransferase (UDP) isoenzymes 

(46). The development of UDP-glucuronosyltransferase (UGT) has both 

pharmacokinetic (as in chloramphenicol toxicity) and pharmacodynamic (as part of 

morphine glucuronidation) importance to newborn care (7). While postmenstrual age 



seems to be the most important factor in the development of the cytochrome pathways 

both postmenstrual and postnatal age are relevant to the development of 

glucuronidation pathways, as demonstrated by the metabolism of tramadol (47).   

 

Glucuronidation reactions are not thought to reach adult levels for at least three years 

(27). Conjugation, however, increases from minimal levels to almost adult levels within 

two weeks post birth in most cases.  Conjugation is important for detoxifying products 

of both metabolism and drugs, particularly lipophilic compounds. Delays in achieving 

normal levels are seen in septic and preterm babies (48).  

 

The activity of UGT1A1 can be measured using bilirubin conjugation as a marker. 

Factors affecting the development of this pathway include: postnatal and postmenstrual 

age, other medications, genetic polymorphisms, co-morbidities and maternal smoking 

status (46). Phenobarbitone administration has been reported to induce UGT1A1 

activity (49). 

 

UGT2B7 activity has been demonstrated, based on morphine glucuronidation, from 24 

weeks post-menstrual age.  Activity remains low in the first ten days of postnatal life 

and then begins to increase in both term and preterm babies (50).  Again co-

morbidities, surgery and gene polymorphisms can affect this pattern of development 

(46).  The capacity of morphine metabolism by UGT2B7 is closely related to body 

weight as opposed to surface area and postnatal age after the first ten days of life. 

During the first two weeks of life capacity increases quickly followed by 2 years of 

gradual increases to adult levels (50).  

 

Sulphation pathway enzymes have been found in fetal livers with SULT1A1 activity 

appearing to be expressed at consistent levels through antenatal and postnatal life with 

other enzymes (SULT1A3 and SULT1E1) declining in activity at the end of gestation 

(51). Sulphation is an effective metabolic pathway from birth (52). 

 



N-acetyltransferases consist of 2 different enzymes NAT1 and NAT2. Genetic 

polymorphisms are known to affect NAT2 activity.  Low levels are seen in fetal and 

newborn livers and only limited acetylation is possible.  Development continues to 

between two (53) and four years of age (54).  

 
Table 1: Summary of cytochrome P450 enzyme expression, substrates, inhibitors and inducers.  

 

Enzyme Becomes 

active at 

Substrates Inhibitors Inducers 

CYP 1A2 1-3 months Caffeine 

Paracetamol 

Ciprofloxacin Tobacco 

Insulin 

Omeprazole 

CYP 2D6 Hours-days Amphetamines 

Codeine 

Flecainide 

Lignocaine 

Metoclopramide 

Cocaine 

Methadone 

Ranitidine 

Phenobarbitone 

Phenytoin 

CYP 2C9 First weeks Ibuprofen 

Phenytoin 

Fluconazole 

Sulfamethoxazole 

Rifampicin 

CYP 2C19 First weeks Omeprazole 

Phenytoin 

Indomethacin 

Omeprazole 

Indomethacin 

Carbamazepine 

Prednisone 

CYP 3A4 First weeks Steroids 

Clarithromycin 

Midazolam 

Fluconazole  

Grapefruit Juice 

Phenobarbitone 

Phenytoin 

CYP 2E1 Hours Ethanol 

Paracetamol 

 Ethanol 

Isoniazid 

 

  



Pharmacogenetics influences the development of drug metabolism pathways.  Genetic 

polymorphisms are well documented to result in drug metabolism variability in adults, 

and similar effects are expected in neonates although observations of these are 

currently limited (3, 7). The maturation of drug metabolism pathways can make it 

difficult to determine the effects of genetic polymorphisms. The phenotype may not be 

immediately apparent, as the gene may not be fully expressed or the pathway too poorly 

developed to discriminate differences. Despite this, genetic differences may be 

important from very early on in antenatal life and have been implicated in changes in 

drug metabolism resulting in birth defects or malformations (51). For all these reasons 

the impact of individual polymorphisms on drug metabolism in neonates is dependant 

on the rate of maturation of the enzyme pathway (55).   

 

Finally, non-enzyme dependant mechanisms can influence the extent of drug 

metabolism, for example the rate of hepatic blood flow affecting the rate of hepatic drug 

metabolism. Hepatic blood flow increases throughout neonatal development. This is 

particularly important for drugs with a high hepatic extraction ratio (23) such as 

propranolol. Following birth blood flow through the liver changes rapidly, with the 

ductus venous closing .  Following the first feed, within hours of birth, portal blood flow 

increases and bacterial colonisation of the gut begins, leading to a rapid rise in hepatic 

processing functions required and thus induction of a number of enzyme groups (48).  

These acute changes make standard pharmacological models of hepatic extraction, 

metabolism and blood flow initially invalid in neonates. These models can only be used 

once the ductus venosus is fully closed (45), up to a week after birth (56). 

 

 

Excretion 

Excretion is the important step of final removal of a drug and/or its metabolites from 

the body. Excretion is usually via renal or hepatic routes but it is possible for drugs to 

leave the body by many other routes.   

 

Nephrogenesis is complete at 34 weeks of gestation although growth retardation, 

nephrotoxic drugs administered during pregnancy and congenital renal malformations 



can have a negative effect on kidney development (57, 58). Drugs that affect kidney 

function, such as ibuprofen, given in the neonatal period can have ongoing effects 

beyond the period of administration (59, 60). Glomerular filtration rate increases to half 

adult value by three months of age and reaches adult levels by 2 years of age (23). 

Premature neonates have a slower rate of kidney development (61) and smaller kidney 

volume (62) although the administration of betamethasone has positive effects on 

kidney development (63). Babies who are born small for gestational age have been 

shown to have lower renal excretion than appropriate for gestational age counterparts 

(64). Creatinine at birth is not a reliable marker of glomerular filtration rate and largely 

reflects maternal renal function for the first few hours. It becomes a more accurate 

marker of renal function during the first weeks of postnatal life (65).  

 

Organic anion transporters in the kidney are responsible for the final excretion of 

compounds formed during stage II biotransformation. Organic anion transporters have 

low activity at birth then increase rapidly to high levels, higher than those seen in 

adults, over the first few weeks of life and then begin to decline to adult levels. This 

change in secretion happens independently of changes in renal mass.  Exposure to some 

hormones (66) and substrates, such as penicillin (67) also increase organic anion 

transporter activity.  

 

Excretion is particularly important for drugs that do not undergo any 

biotransformation, such as gentamicin. In order to limit the toxicity of gentamicin the 

dose is adjusted according to the kidney development of each stage of growth 

throughout childhood.  

 

The excretion of excipients, which are co-administered with drugs, is often not 

considered. Excipients have been associated with adverse effects and large amounts can 

be administered to hospitalised neonates (68-70) and are difficult to study (71). The 

neonatal administration of propylene glycol (72) and benzyl alcohol (32) in injectable 

drug formulations has been associated with serious adverse effects, including death.  



Population Pharmacokinetic Models 

The development of dosing information in children is more difficult than in adults and 

has been hampered by a lack of suitable methods for investigating pharmacokinetics in 

these populations. Most early clinical trial data comes from young, healthy adult males 

who are usually different from the target population for a drug (73). Children, especially 

neonates, are unable to provide the large number of blood samples required to produce 

individual pharmacokinetic models (74).  Allometric scaling has been suggested as a 

method of estimating paediatric dosing from adult studies, however, no single method 

of allometric scaling has been shown to work for all drugs or all age groups (2). 

Population pharmacokinetic modelling is particularly useful in the neonatal population 

(75, 76), where repeat sampling of blood is too high a volume for the infant and ethically 

inappropriate (74). Population modelling also allows the study of more co-variates than 

allometric scaling which only takes into account size. Anti-infectives are the most 

common drugs studied in this population using this method (77). 

 

Population pharmacokinetic models use concentration time points from a number of 

clinical subjects to determine the pharmacokinetics of drugs in that population. Data 

from patients who are receiving the drug clinically further strengthens the model by 

taking into account disease-specific changes in pharmacokinetics that may influence 

drug dosing. This is important in neonates for whom small dose changes may have large 

clinical effects. The data required include, but are not limited to, age (both postnatal and 

postmenstrual), weight, height and renal function. There are a number of ways to 

perform these studies in children including the naïve pooled data approach, standard 

two-stage approach and mixed effect models (78).  

 

Adherance to specific sampling times is not important for population pharmacokinetic 

studies and samples taken as part of routine clinical care can be used (73). This limits 

the number of samples required from each subject. This is an important ethical 

consideration when working with neonates. The fact that these studies are conducted 

under real life conditions is an additional benefit (77).  The use of population 

pharmacokinetic models in preterm neonates is limited by the knowledge of the 

development of drug metabolism pathways and physiological changes following birth.  



This can limit the ability of the model to predict inter-patient variability and 

pharmacodynamic effects (79). 

 

 

The introduction of these modelling techniques can reduce the burden to the patient of 

being involved in a pharmacokinetic study. While not perfect and still an evolving field 

population pharmacokinetic modelling has allowed prediction of the effects of drugs on 

the very smallest of neonates.  Currently it appears that population pharmacokinetic 

studies are not followed up by the clinical studies required to fully evaluate the safety 

and effectiveness of dose recommendations made (77) and this remains a clear area of 

research need. 

 

Conclusion 
 
More information about the maturation of pharmacokinetic processes is required to 

ensure safe and effective use of drugs in children. The development of population 

pharmacokinetic modelling systems, which reduce the burden to test subjects, 

represent a significant improvement and offer large areas of future research. We 

suggest that neonatal population pharmacokinetic studies be conducted for commonly 

used drugs as an immediate research priority. Particularly they need to be developed by 

linking pharmacology, medicine and mathematics to ensure accurate, clinically relevant 

endpoints and correlations are measured. The models will need to be continually 

revised and updated as new physiological and pharmacological information becomes 

apparent to ensure the best possible outcome for these vulnerable patients. 
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