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Abstract

The use of Big Data and the development of cloud computing have led to greater dependence on data-intensive
services. Each service may actually request or create a large amount of data sets. The scope, number, and complexity of
data-intensive services are all set to soar in the future. To compose these services will be more challenging. Issues of
autonomy, scalability, adaptability, and robustness, become difficult to resolve. Bio-inspired algorithms can overcome the
new challenging requirements of data-intensive service provision. It is useful for the provision of data-intensive services to
explore key features and mechanisms of biological systems and accordingly to add biological mechanisms to services. In this
paper, we will discuss single-objective and multi-objective data-intensive service provision problems based on bio-inspired
algorithms. Further, we will propose an ant-inspired negotiation approach. Finally, this paper points out future research
topics.

I. INTRODUCTION

Big Data has attracted much research attention. The Gartner Group listed Big Data in the “10 Critical Tech Trends
for the Next Five Years” [1]. Big Data can generate value in every domain and sector. For example, if officials in
our public health agency are to use Big Data creatively and effectively, they could get more useful information and
the sector could save many lives. The data generated by scientific activities, social networking, social media, as well
as commercial applications have increased exponentially. Data-intensive science is emerging as the fourth scientific
paradigm, and new techniques and technologies for the new scientific paradigm are needed [2]. As a result, applications
based on data-intensive services have become one of the most challenging applications in service oriented computing
and cloud computing [3], [4]. A survey of the challenges, techniques, and technologies of data-intensive applications
was presented in [5]. The scope, number, and complexity of data-intensive services are all set to soar in the future. On
the one hand, Big Data provides opportunities and potential values. On the other hand, many challenges are arising with
respect to the data capture, data storage, data analysis, data searching, data sharing, and data visualization [5]. The service
provision, and in particular service composition, will face new challenges such as autonomy, scalability, adaptability, and
robustness. Indeed, new mechanisms are needed to overcome those issues. In the following, we will briefly introduce
the Big Data problem in scientific research fields.

One of the motivations of our work is the Alpha Magnetic Spectrometer (AMS) experiment, which uses cloud computing
to process a huge amount of data. The AMS, also designated AMS-02, is a particle physics experiment module that
is mounted on the International Space Station. The purpose of the AMS experiment is to advance knowledge of the
universe and lead to the understanding of its origin by searching for antimatter and dark matter while performing precision
measurements of cosmic rays composition and flux. The ground AMS lab is based at CERN1 in Switzerland. The key
technology for accessing the data collected from AMS relies on data services based on cloud computing. The AMS-
02 SOC (Science Operation Center) at Southeast University in China (labeled as AMS-02 SOC@SEU) is supported
by the IBM-sponsored Cloud Computing Center with 3500 CPU core and 500TB storage. The AMS-02 SOC@SEU
typically receives 200GB of data from AMS and generates 700GB of data after processing them, on each day. Scientists
and remote users deploy different processes, such as data mining, image processing, thematic map generation, or data
query on a large amount of data at AMS-02 SOC. A set of operations is often necessary to provide an appropriate
solution to complex scientific applications. The use of Web services technologies provides valuable solutions to speed
up the scientific data analysis [6], [7]. A composition of a set of services as a composite service can be reused by other
researchers. For science problems involving a large amount of data, cost-effective mechanisms for data-intensive service
provision are needed.

The authors of [5] explained that bio-inspired computing was one of the underlying techniques to solve data-intensive
problems. The authors stated that biological computing models were better appropriate for Big Data because they had

1http://home.web.cern.ch/about/experiments/ams
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mechanisms with high-efficiency to organize, access, and process data. The authors of [8] already proved that it was
useful for service management and discovery to add biological mechanisms to services. In this paper, we introduce the
comprehensive applications of an ant colony system (ACS) and a genetic algorithm (GA) for cost-aware data-intensive
service provision. We propose an economic model. Further, we investigate an ACS and a GA for the multi-objective
data-intensive service provision. Taking further enhancements in the economic model, this paper proposes an ant-inspired
negotiation approach. Finally, this paper presents an overview of some of remaining problems and opportunities for future
work.

The remainder of this paper is organized as follows. Section II introduces background. Section III investigates how an
ACS and a GA could be used to solve the cost-aware data-intensive service provision problems. Section IV investigates
how an ACS and GA could be used to solve the multi-objective data-intensive service provision problem. Section V
presents an ant-inspired negotiation approach for the problem. Section VI points out future research topics. Finally,
section VII concludes this paper.

II. BACKGROUND

In the context of Web service composition, abstract services are the functional descriptions of services, and concrete
services represent the existing services available for potential invocation of their functionalities and capabilities. The
implementation of a basic service refers to the simple interactions between a client and a server. If the implementation of
a service invokes other services, it is necessary to combine the functionalities of several services and this service is referred
to as a composite service [9]. The process of developing a composite service in turn is called service composition [10].
Given a request of composite service, which involves a set of abstract services and dependency relationships among them,
there is a list of service candidate sets, which includes many concrete services for each abstract service. These concrete
services are developed independently by different service providers, so some services may have same functionality but
differ in quality of service (QoS) attributes as well as other non-functional properties. Web service selection refers to
finding one service candidate to implement each abstract service according to users’ requirements, which is an important
part of Web service composition. For each abstract service of a composite service, the service concretization process is
to bind one of its corresponding concrete services and meet the constraints specified for some of the QoS attributes [11],
[12]. The final goal of the composite service construction is achieved by solving the well-known service concretization
problem. As most of the papers used the terms composition and selection interchangeably, we used the term “service
concretization” in our paper to umbrella them. So far, many service concretization approaches have been designed.

The literature presents two types of Web service concretization approaches: local optimization approaches and global
optimization approaches. Fig. 1 shows a hierarchical taxonomy of Web service concretization approaches. The local
optimization approaches are not suitable for QoS-based service selection with global QoS constraints, since they can
only guarantee local QoS constraints and cannot satisfy the global QoS constraints. From the viewpoint of computational
time, the local optimization approaches can be appropriate when the global QoS constraints are transformed into local
QoS constraints. The global optimization approaches can solve service selection problem at both local and global service
levels. There are three types of algorithmic methods in the global optimization approaches: optimal methods, sub-optimal
methods, and soft constraints-based methods. These methods should be evaluated with respect to their optimality, their
computational efficiency, and their dynamic complexity. The detailed analysis of each method indicated that the bio-
inspired algorithms, belonging to the sub-optimal methods, could overcome the new challenging requirements of the
data-intensive service provision problem. Then we conducted a systematic review of Web service composition and

Service concretization
approaches

Local optimization

Optimal

Sub-optimal

Heuristic

Metaheuristic Genetic algorithm

Ant colony optimization

Particle swarm optimization

Exhaustive

Bio-inspired algorithms

Global optimization 

Soft constraints based

Constraint programming

Discarding subsets

Bottom-up approximation

Pattern-wise selection

Guarantee local QoS constraints

Guarantee global QoS constraints by using decomposition methods

Mathematical programming

Others

Simulated annealing

Tabu search

Others

Fig. 1: A hierarchical taxonomy of Web service concretization approaches
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selection based on three bio-inspired algorithms, namely, the ant colony optimization (ACO) algorithms, the genetic
algorithms, and the particle swarm optimization (PSO) algorithms [13]. The systematic review based on the three bio-
inspired algorithms helps us re-examine the models, the basic operational flow, the main issues, and the limits of each
algorithm. In the following, we will briefly introduce the three bio-inspired algorithms.

A. Ant Colony Optimization Algorithms

The ant colony optimization algorithms are inspired by the foraging behavior of ant colonies, in which a set of artificial
ants cooperate to find a solution of a problem by exchanging information via pheromone deposited on a graph edges.
When ACO algorithms are used to solve a Web service concretization problem, the problem is modeled as a graph. The
ACO algorithms iteratively perform a loop constitutes the ants’ solution construction and the pheromone update. The
ant colony system is an algorithm inspired by the ant system but differs from it in three main aspects [14]. First, the
state transition rule provides a way to balance between the exploration of new edges and the exploitation of accumulated
knowledge about the problem. Second, a local updating rule is applied while ants construct a path. Third, the global
updating rule is applied only to edges which belong to the best ant path. Thus, we adopted the ACS in our paper.

Many studies have applied ACO algorithms to solve the Web service concretization problems. The study [15] modeled
the Web service selection problem as a multi-objective optimization problem, and proposed a multi-objective chaos ACO
algorithm to solve it. The chaos variable was used to improve the efficiency of the ACO algorithm. The study [16]
used a k-tuple pheromone to represent k objectives. A strategy was adopted to decompose a composite service with a
general composition structure into parallel execution paths. The experimental results showed that the proposed multi-
objective ACO algorithm could find near-optimal solutions. The authors of [17] integrated the max-min ant system into
the framework of culture algorithm to solve the Web service selection problem. A comprehensive evaluation model based
on generic QoS attributes and domain QoS attributes was designed. The generic QoS model was used to evaluate the
QoS attributes of composite services, and the domain QoS model was used to conquer the over-constrained problem.

B. Genetic Algorithms

Genetic algorithms belong to the larger class of evolutionary algorithms, which generate approximate solutions to
optimization and search problems by using techniques inspired by the principles of natural evolution: selection, crossover,
and mutation [18]. In a GA, a population of chromosomes, which are encoded as individuals to the service concretization
problem, evolves toward better solutions. Each individual is associated with a fitness value based on a fitness function that
indicates how close it comes to meeting the overall specification, when compared to other individuals in the population.
The fitness value of an individual is also an indication of its chances of survival and reproduction in the next generation.
When using GA to solve Web service concretization problems, the fitness function always corresponds to QoS attributes.

The authors of [19] conducted an initial population policy and a mutation policy to direct the evolution of genetic
algorithms. The study [20] investigated a novel tree-coding GA for QoS-aware service composition. The tree-coding
GA could simultaneously express multiple types of composite relationships and could re-plan process at runtime. The
study [21] designed a repair GA to address the Web service composition problem in the presence of domain constraints
and inter service dependencies. The authors of [22] adopted an enhanced initial population policy and an evolution policy
to improve the convergence of the GA. The performance was evaluated with regard to the coding scheme, the population
diversity, the enhanced initial population, and the evolution policy. The study [23] considered the dependency constraint
and conflict constraint between Web services in their hybrid GA.

C. Particle Swarm Optimization Algorithms

Particle swarm optimization is one of the evolutionary computational techniques. It has been widely used to solve
service concretization problems because it has strong robustness, a small number of parameters, and it is simple and
easy to implement. In a PSO algorithm, a group of particles flying through d-dimensional search space, evolves toward
optimal solutions. Each particle represents a candidate solution to the problem, and it has a position and a speed. In
addition, the particles have a fitness function to evaluate their best positions.

The study [24] compared a multi-objective discrete PSO algorithm with an exhaustive method. The experimental
results showed that the PSO algorithm could get lower computation cost and higher quality solutions. The authors
of [25] designed a non-uniform mutation strategy, an adaptive weight adjustment strategy, and a local best first strategy
for a PSO algorithm. These strategies were used to enhance the population diversity and to improve the convergence
rate. The authors of [26] proposed an immune optimization algorithm based on a PSO algorithm. An improved local
best strategy and a perturbing global best strategy were also discussed. The proposed algorithm was compared with a
standard PSO algorithm and a genetic algorithm.
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III. COST-AWARE DATA-INTENSIVE SERVICE PROVISION

This section introduces the comprehensive applications of an ACS and a GA to the data-intensive service provision
from the perspective of costs. Due to the explosion in digital data, the distributed nature of cloud computing, as well as
the large increase of providers to the market, providing efficient cost models for composing data-intensive services will
become central to this dynamic market. The location of users, service composers, service providers, and data providers
will affect the total cost of service provision. Different providers need to make decisions about how to price and pay for
resources. Each of them wants to have a good market position maximizing profit. An economic model is proposed for
the data-intensive service provision.

A. An Economic Model

In general, data-intensive service provision will be cooperatively supported by four stakeholders: the data/service users,
the service composers, the service providers, and the data providers. Providers need an approach to regulate and price
their resources, either services or data or their combination. They all want to have a good market position maximizing
their profits. It assumes that an economic model is an accurate representation of the reality, and it will offer a suitable way
to regulate the interactions among the four stakeholders. As shown in Fig. 2, in the downstream market, the data/service
users require data-intensive services from the service composers, and the service composers seek optimal strategies to
select elementary services provided by multiple service providers who compete on the basis of price and QoS attributes.
In the upstream market, the service providers request the data from the data providers. The data/service users specify
their requirements of the data-intensive services. From the service composers’ point of view, it is important to be able
to assess the value of the needed services and how much they want to pay for them to satisfy the data/service users’
requirements as well as to maximize their profit. From the service providers’ perspective, it is important to be able to
analyze their competitors’ position and improve their offers if they are to win contracts with the service composers. The
price of the data may affect the total cost and the price of data-intensive services. Therefore, the prices of both service
and data have a crucial impact on the service composers’ and the service providers’ profits.

Here we make a distinction between cost and other QoS attributes because cost is usually related to other quality
attributes and it becomes more important in the data-intensive service provision. In the traditional service composition,
executable services and their input or output data are usually on the same platform. Thus, the cost for data storage can
be neglected or the cost is a constant determined before execution, and service selection algorithms need not consider it.
However, in data-intensive service composition, service providers charge service requesters depending on the requesters’
location and the amount of transferred data [27]. Each service requests data sets from the storage resources (or data
servers). Each of these data sets may be replicated at several locations that are connected to each other and to the service
platform through networks of varying capability [28]–[30]. When composing data-intensive services, optimizing the cost
of data is a priority, as data plays the dominant role. In one of our earlier studies [31], we have introduced an extensible
QoS model. In the model, we considered the price of data set, the size of data set, the access cost and the transfer cost
of all data sets required by each service.

Data Provider

Service Provider

Service Composer

pay

pay charge

chargeservice

data set

Data/Service User

data servicepay charge

Fig. 2: Service and data set usage and charging relationship
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B. Data-Intensive Service Provision Based on an ACS

As mentioned in subsection II-A, the key to ACS is how to determine the state transition rule, the local updating rule,
and the global updating rule.

1) State Transition Rule: When ant k arrives at vertex i, it will choose successor j to move to by applying the rule
given by (1).

j =

{
arg maxj∈Nki {[τij ][ηij ]

β}, if q ≤ q0;

randomly selected from Nk
i according to pkij , otherwise.

(1)

The variable q is a random number uniformly distributed in [0, 1], and q0 (0 ≤ q0 ≤ 1) is a parameter. If q > q0, j is
randomly selected according to the probability distribution given by (2).

pkij =


[τij ][ηij ]

β∑
j∈Nk

i

[τij ][ηij ]β
, if j ∈ Nk

i ;

0, otherwise.
(2)

The set of unvisited vertices, Nk
i , contains all the direct successors of vertex i when ant k is at it. The variable τij is the

pheromone density on edge (i, j). The variable ηij is the heuristic information and is set as the quality score of vertex
j, which is computed according to the weighting phase described in [32]. The parameter β controls the influence of ηij .

2) Local Updating Rule: When building up a solution to the problem, i.e., a path through the graph, the ants use a
local pheromone updating rule that they apply immediately after having crossed an edge (i, j), which is shown by (3).

τij = (1− ξ)τij + ξτ0,∀(i, j) ∈ E. (3)

The variable ξ (0 < ξ < 1) is used to determine the local evaporation rate. At the beginning of the search process, a
constant amount of pheromone is assigned to all edges, τij = τ0 (∀(i, j) ∈ E, τ0 is a constant). The local updating
rule will reduce the pheromone trail on edge (i, j) after an ant has passed it. In other words, it allows an increase in
the exploration of edges that have not been visited yet and, in practice, has the effect that the algorithm does not show
stagnation behavior [33].

3) Global Updating Rule: In the iteration, after all ants find their paths, a global pheromone updating rule is performed
to the best path found so far, which is given by (4).

τij = (1− ρ)τij + ρ∆τij (4)

The variable ρ (0 < ρ < 1) denotes the global pheromone evaporation rate, and

∆τij =

{
U, if ∀(i, j) ∈ P bs ;

0, otherwise .

U is the overall utility of the best path P bs, which is given in [31]. This rule indicates that both the evaporation and
the new pheromone deposit, only apply to every edge of the best path P bs. There are two types of best paths: the best
path in the current iteration of the trial, called iteration-best, and the best path from the beginning of the trial, called
global-best. Experiments have shown that the global-best is slightly better, which is therefore used in this research.

C. Data-Intensive Service Provision Based on a GA

To use a genetic algorithm to search for a solution of our problem, we need to decide the coding scheme, the initial
population, the selection operator, the crossover operator, and the mutation operator.

1) The integer array coding scheme is chosen, i.e., every chromosome is represented by an integer array with a number
of items. Using the integer array coding scheme, any change in the number of concrete services would not influence
the length of the genome. Also, this type of encoding scheme is human-readable and straightforward to represent
the service composition solution.

2) The initial population is randomly created according to the service composition graph.
3) The selection operator is the combination of the elitism selection and the tournament selection. The elitism selection

involves copying a few best individuals, unchanged, into the next generation. The tournament selection involves
selecting a set of pairs of individuals as parents to breed the remainder of the next generation. Two separate
tournaments were performed to choose father and mother, respectively.

4) The crossover operator is the single point crossover. Suppose there are Npop individuals in the population and the
crossover probability is PC, then there are Npop ∗ PC individuals which are replaced by the new offspring, and
there are Npop ∗ (1 − PC) individuals which are able to survive to the next generation. The crossover point is
created randomly, but must be checked as to whether it will create infeasible solutions.
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5) The mutation policy is proposed as follows. The probability of mutation is PM , which is for the locus. The locus
for each gene represents its own position in the chromosome. Every locus in each chromosome that was created
by the crossover operation is checked for possible mutation by generating a random number between zero and
one. If this random number is less than or equal to the given mutation probability, then the value of the gene
will be replaced by the assignment of another concrete service in the service candidate set, according to the local
selection approach. The local selection approach is based on the utilities of the concrete services. Prior to the
mutation operation, the utility of each concrete service in each service candidate set is computed. Then all the
concrete services in each service candidate set are sorted in descending order according to their utilities. When the
mutation operation is applied, the replacement process will search another service candidate from the beginning of
the service candidate set until the assignment is different from the old assignment, and will then replace it.

D. Experiments and Analysis
The aim of this evaluation is to analyze the performance of the proposed algorithms: 1) comparing the proposed

GA with the proposed ACS; 2) comparing the proposed GA and ACS with the mixed integer programming (MIP)
approach [34], [35]; and 3) comparing the proposed GA with the GA-based random selection approach [20], [23], [36],
[37]. All the experiments are conducted on a computer with Inter Core i5 2500 CPU (3.3GHz and 8 GB RAM).

1) The Parameters: In the experiments, a trial testing method is adopted to determine the most suitable values for all
parameters of ACS and GA, considering other researchers’ earlier experiments. Finally, the parameters of ACS used in
the experiment are: β = 2, q0 = 0.9, τ0 = 0.1, ρ = 0.1, ξ = 0.1, and the number of ants is 20. The parameters of GA
in the experiment are: PC = 0.7, PM = 0.1, and the number of individuals is 20. The weights for cost and response
time are 0.8 and 0.2, respectively. The loop structure can be unfolded by cloning the vertices involved in the structure as
many times as the maximal loop count [38]. In addition, two termination conditions were defined for both algorithms:
iterate until a maximum iteration numbers (MaxIt = 1000) is reached, alternatively, iterate until the best utility remains
unchanged for a given iteration numbers (EIT = 50).

2) Evaluation Methodology: The performance of the GA and the ACS is affiliated to the size of the problem. The
size of the problem depends on the number of abstract services in the composite service, and the number of concrete
services for each abstract service. Here, the influence of the number of data sets is not considered.

For the purpose of the evaluation, different scenarios are considered where a composite service consists of n abstract
services, and n varies in the experiments between 10 and 50, in increments of 10. There are m concrete services in
each service candidate set, and m varies in the experiments between 100 and 1000, in increments of 100. Each abstract
service requires a set of k data sets, and k is fixed at 10 in the experiments. A scenario generation system is designed
to generate all scenarios for the experiments. The system first determines a basic scenario, which includes sequence,
conditional and parallel structures. With this basic scenario, other scenarios are generated by either placing an abstract
service into it or adding another composition structure as substructure. This procedure continues until the scenario has
the predefined number of abstract services.

Three performance factors were evaluated: 1) the required computation time; 2) the quality of the solution; and 3)
the value of FRIT, which is the number of the iterations when the best utility appeared, and from this iteration the best
utility will not change until the termination condition has been reached. As ACS and GA are sub-optimal, the solutions
obtained by these two bio-inspired algorithms have been evaluated through comparing them with the optimal solutions
obtained by the MIP approach. The overall utility of the solution obtained by ACS or GA is denoted by Ubio, and the
overall utility of the solution obtained by the MIP approach is denoted by Uglobal. Then the optimality of the solution
created by ACS or GA is computed as optimality = Ubio/Uglobal. The open source integer programming system lpsolve
version 5.5 [39] was used for the MIP approach.

3) The Dataset: The synthetic datasets were experimented. For each scenario, the price of a data set, the network
bandwidth (Mbps) between each data server and the service platform, the storage media speed (Mbps), the size (MB) of
a data set, and the number of data requests in the waiting queue were randomly generated from the following intervals:
[1,100], [1,100], [1,100], [1000,10000] and [1,10]. Then every scenario was performed with 50 runs. All runs of the
same scenario use the same data, and the average results over 50 independent runs are reported.

4) Results Analysis: In Fig. 3, the performance of ACS, GA, and MIP are compared with respect to the number of
candidate services and the number of abstract services. In Fig. 3(a), the number of candidate services for abstract service
varies from 100 to 1000, while the number of abstract service is set to 10. The results indicate that the proposed ACS
and GA are faster than the MIP method. By increasing the number of candidate services, the required computation time
of GA increases very slowly, this makes GA be more scalable. In Fig. 3(b), the number of abstract services varies from
10 to 50, while the number of candidate services for each abstract service is fixed at 200. The results of this experiment
indicate that the performance of all three methods degrades as the number of abstract services increases. Again, we
observe that GA outperforms ACS and MIP. The reason is that each ant needs to compute the probability of next vertex
while finding the path, and such computation costs much time. Meanwhile, we observe that ACS outperforms MIP when
the number of abstract services is small, in this case, less than 20.
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Next, the quality of the solutions obtained by ACS and GA is presented. Table I shows that the optimality achieved
by ACS and GA with respect to a varying number of candidate services and a varying number of abstract services. The
results indicate that GA and ACS are able to achieve the optimal solutions, and GA slightly outperforms ACS.

Table II gives the means of FRIT obtained by ACS and GA with respect to a varying number of candidate services
and a varying number of abstract services. The results show that both algorithms need more iterations to get the best
utility value when the number of abstract services increases. When the number of concrete services increases, the values
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Fig. 3: The performance of ACS, GA, and MIP

TABLE I: Means of optimality (%)

Scenarios ACS GA

n is fixed at 10, m varies between
100 and 1000, in increments of 100

100 100
100 100
100 100

99.9908 100
100 100
100 100
100 100

99.9908 100
99.9907 100

100 100

m is fixed at 100, n varies between
10 and 50, in increments of 10

100 100
99.9804 100
99.9111 100
99.8405 100
99.7197 100
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TABLE II: Means of FRIT

Scenarios ACS GA

n is fixed at 10, m varies between
100 and 1000, in increments of 100

1 7
1 7
1 7
1 7
1 7
1 7
1 7
1 7
1 7
1 7

m is fixed at 100, n varies between
10 and 50, in increments of 10

1 7
7 10
11 12
18 13
26 15
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Fig. 4: The optimality of the two types of genetic algorithms

of FRIT of both algorithms does not change and ACS can get the best utility value almost in the first iteration.
The following presents the quality of the solutions obtained by the GA with local selection approach and the GA

with random selection approach. Fig. 4 shows the optimality achieved by the two types of GAs in terms of a varying
number of candidate services and a varying number of abstract services. The results indicate that GA with local selection
approach outperforms GA with random selection approach.

Fig. 5 gives the mean values of FRIT of the two types of GAs in terms of a varying number of candidate services
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Fig. 5: The values of FRIT of the two types of genetic algorithms

and a varying number of abstract services. The results show that when the number of concrete services and the number
of abstract services increase, the values of FRIT of the GA with random selection approach increases more quickly than
the GA with local selection approach. Again, we observe that the GA with local selection approach outperforms the GA
with random selection approach.

IV. MULTI-OBJECTIVE DATA-INTENSIVE SERVICE PROVISION

This section will evaluate ACS and GA for the data-intensive service provision, which is modeled as a multi-objective
optimization problem. Both the algorithms for a multi-objective context will get a set of Pareto-optimal solutions by
considering two objectives at the same time, the total cost and the total execution time of a composite service. Last
section describes two algorithms for the single-objective optimization problem. In the multi-objective algorithms there
are two goals, one is to converge to the Pareto-optimal solutions and second is to maintain the diversity of the Pareto-
optimal solutions. These two goals cannot be measured by one single performance metric. Also, it needs to define all
the algorithmic components in the multi-objective ant colony system (MOACS), and to explore the constraints-handling
approach in the multi-objective genetic algorithm (MOGA).

A. Problem Statement

The goal of the majority of existing multi-objective optimization algorithms is to find Pareto-optimal solutions. The
concept of dominance is used to relate the solutions found in these algorithms.

Definition 4.1 (Dominance): In a minimization problem for all objectives, a solution x1 dominates another solution
x2 (denotes as x1 ≺ x2) if and only if the two following conditions are true: 1) x1 is no worse than x2 in all objectives,
namely Fi(x1) ≤ Fi(x2) (∀i ∈ {1, 2, . . . , N}, N is the number of objective functions), and 2) x1 is strictly better than
x2 in at least one objective, namely Fj(x1) < Fj(x2) (∃j ∈ {1, 2, . . . , N}).
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Definition 4.2 (Cover): In a minimization problem for all objectives, a solution x1 is said to cover another solution
x2 (denotes as x1 � x2) if one of the two following conditions is true: 1) x1 dominates x2, namely x1 ≺ x2, or 2) x1
is equal to x2 in all objectives, namely Fi(x1) = Fi(x2) (∀i ∈ {1, 2, . . . , N}).

Definition 4.3 (Non-dominated set): Among a set of solutions, the non-dominated set of solutions are those that are
not dominated by any member of the set.
A solution is said to be Pareto-optimal if it is not dominated by any other possible solution. Thus, the Pareto-optimal
solutions to a multi-objective optimization problem form the Pareto front or Pareto-optimal set [40]. Pareto-optimal sets
are the solutions that cannot be improved in one objective function without deteriorating their performance in at least
one of the remaining objective functions.

In the service composition, a graph is used to represent the dependencies between services. Fig. 6 presents an
example of a graph in which data sets, as the inputs and outputs of services, are incorporated. The data-intensive
service composition problem with global QoS constraints is an extension of the service composition problem, denoted
as G = {V,E,D, start, end} and is mathematically stated as:

Minimize an objective function F , given:
1) V = {AS1, AS2, . . . , ASn} represents the set of n abstract services, and start and end represent two virtual tasks;
2) csi = {csi,1, csi,2, . . . , csi,m} is the service candidate set of ASi, which includes all concrete services to implement

ASi;
3) qcsi,j = [q1csi,j , q

2
csi,j , . . . , q

r
csi,j ] with r QoS parameters is the QoS vector of concrete service csi,j ;

4) E represents the edges of the graph, which includes all links between concrete services of any two connected
service candidate sets;

5) D = {d1, d2, . . . , dz} represents a set of z data servers;
6) DT i = {dt1, dt2, . . . , dtk} represents a set of k data sets which are required by abstract service ASi, and these

data sets are distributed on a subset of D;
7) Qc = [Q1

c , Q
2
c , . . . , Q

u
c ] (1 ≤ u ≤ r) represents a set of global QoS constraints, which define requirements regarding

the aggregated QoS values of the requested composite service.
In a traditional service composition problem, a single objective function F may be chosen from any of the following
ones:

1) Inverse of overall utility

F1 = 1/

n∑
i=1

m∑
j=1

(
U(csi,j)xi,j

)
where U(csi,j) is the utility of concrete service csi,j . The variable xi,j (

m∑
j=1

xi,j = 1) represents only one concrete

service is selected to implement each abstract service during the process of service composition, where xi,j is set
to 1 if csi,j is selected to implement abstract service ASi and 0 otherwise.

2) Overall Cost

F2 =
n∑
i=1

m∑
j=1

(
Cost(csi,j)xi,j

)
where Cost(csi,j) is the cost of concrete service csi,j .

3) Overall execution time

F3 =

n∑
i=1

m∑
j=1

(
Tet(csi,j)xi,j

)
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Fig. 6: A graph for the data-intensive service composition
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TABLE III: MOACO algorithmic components and values (Adapted from [41])

Components Values Illustration

Ant colony
Single

Multiple colonies can cooperate with each other by exchanging solutions or sharing solutions.
Multiple

Pheromone information
Single matrix The pheromone information associated with each objective are combined.

Multiple matrices Each matrix corresponds to one objective.

Heuristic information
Single matrix The heuristic information associated with each objective is combined.

Multiple matrices Each matrix corresponds to one objective.

Pheromone and heuristic
aggregation

Weighted sum
∑N
f=1 λfη

f
ij ,

∑N
f=1 λf = 1, where N is the number of objectives.

Weighted product
∏N
f=1(η

f
ij)

λf ,
∑N
f=1 λf = 1, where N is the number of objectives.

Random a random objective is selected to be optimized.

Weight setting
Dynamic Each ant may be assigned a different weight from the other ants in the iteration.

Fixed The weights can be set a priori and each objective has the same importance during the entire algorithm
run.

Pheromone update

Elite The iteration-best or best-so-far solution is used to update the pheromone.

Best-of-objective The iteration-best or best-so-far solutions with respect to each objective is used to update the pheromone.

Non-dominated set The solutions in the non-dominated set are allowed to update the pheromone.

All All ants are allowed to update the pheromone.

Pareto archive

Off-line The non-dominated solutions can be stored in an external set used to update the pheromone.

On-line The Pareto set is connected to the pheromone update procedure at any time.

No-archive The Pareto set is not used to update pheromone but it is used as a final solution.

Algorithm 1 Multi-objective data-intensive service composition based on MOACS

1: step = 0; // iteration counter
2: GP = ∅; // the global non-dominated set
3: while 1 do
4: step = step+ 1;
5: P = ∅; // The solutions found by ants in each iteration
6: set all ants at the start vertex;
7: for each ant k do
8: while ant k is not at the end vertex do
9: construct a solution according to the state transition rule described in [42];

10: record the solution to P ;
11: apply the local updating rule described in [42];
12: end while
13: end for
14: when all ants arrive at the end vertex, find the non-dominated set from P ;
15: update the global non-dominated set GP ;
16: apply the global updating rule described in [42] to GP ;
17: if step > MaxIt then
18: break; // MaxIt is the maximum number of iterations
19: end if
20: end while
21: output all solutions in the global non-dominated set.

where Tet(csi,j) is the execution time of concrete service csi,j .
It should be noted that other composition structures and their aggregation functions can also be used in the objective
functions. Here, we only list the sequential structure. For the multi-objective context of the present work, the objective
function F is considered as a two-dimensional vector, considering the overall cost and execution time, with no objective
considered as more important than the other. In this case, a set of Pareto-optimal solutions may be found.

B. Multi-Objective Ant Colony Optimization Algorithms

Various alternatives to the implementation of multi-objective ant colony optimization (MOACO) algorithms have been
proposed in the literature. They usually differ from each other with respect to the single-objective ACO algorithms on
which they are based, such as the ant system, the ant colony system, and the max-min ant system, as well as the variations
in their algorithmic components. The authors of [41] provided a comprehensive review of the use of ACO algorithms in
the realm of multiple-objective problems, which is illustrated in Table III.

In this paper, the proposed MOACS used a unique ant colony to simultaneously minimize all functions. All objectives
share the same pheromone trails. We need to redesign the state transition rule (1), the local updating rule (3), and the
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Algorithm 2 Multi-objective data-intensive service composition based on MOGA

1: iga = 0; //generation counter
2: randomly create an initial Population with Npop individuals;
3: apply the fast non-dominated sort procedure to Population; //get the non-dominated fronts and the fitness value of

each individual
4: calculate the crowding-distance value of each individual in Population;
5: while 1 do
6: iga = iga+ 1;
7: select parents from Population using binary tournament selection strategy;
8: perform the single-point crossover operator and the mutation operator to the selected parents to create an Offspring

Population;
9: combine Population and Offspring Population to get a Combined Population;

10: apply the fast non-dominated sort procedure to the Combined Population;
11: calculate the crowding-distance value of each individual in the Combined Population;
12: use the elitism mechanism to select Npop individuals from the Combined Population according to the fitness value

and the crowding-distance value of each individual;
13: the new selected individuals create a new Population;
14: if iga > MaxIg then
15: break; //MaxIg is the maximum number of generations
16: end if
17: end while
18: output all individuals after removing the duplication from Population.

global updating rule (4) in order to solve the multi-objective data-intensive service provision problem. The details of the
new rules for MOACS were described in [42]. The implementation of our proposed MOACS is given in Algorithm 1.

C. Multi-Objective Genetic Algorithms

Multi-objective genetic algorithms (MOGAs) belong to the class of multi-objective evolutionary algorithms, which
are stochastic optimization methods and usually use a population-based approach to find Pareto-optimal solutions [43].
The non-dominated sorting genetic algorithm (NSGA) was one of the first multi-objective evolutionary algorithms [44].
The NSGA was not an efficient algorithm because of 1) the high computational complexity of non-dominated sorting,
2) its lack of elitism, and 3) the need for specifying the sharing parameter. Several years later, an improved version
of NSGA, called NSGA-II, was proposed to solve the problems of NSGA [45]. The three new mechanisms of NSGA-
II are the fast non-dominated sorting procedure, the crowded-comparison procedure, and the elitism mechanism. The
authors of [45] also proposed a constraint-handling method for NSGA-II, which was based on the tournament selection
algorithm and it separated the constraints and objectives. The tournament selection algorithm is much better than a
number of other existing constraint-handling approaches, as confirmed in other studies [46], [47]. In the MOGA of this
paper, this constraint-handling method was adopted.

In the proposed MOGA, the integer array coding scheme is used to encode chromosomes. The initial population is
randomly created. The binary tournament selection operator and the single-point crossover operator are adopted in the
proposed MOGA. The mutation operator for each chromosome replaces the value of the gene with the assignment of
another concrete service in the service candidate set randomly. The implementation of the proposed MOGA is given
in Algorithm 2. At the end of the algorithm, it needs to remove the duplication and then output the remainder of the
population. This is because it is possible that the crossover operator is applied to an individual and to itself.

D. Experiments and analysis

To evaluate the proposed MOACS and MOGA, different scenarios were considered where a composite application
comprises services from n abstract services, and n varies in our experiments between 10 and 50, in increments of 10.
There are m concrete services in each service candidate set, and m varies in our experiments between 10 and 100, in
increments of 10. Each abstract service requires a set of k data sets, and k is fixed at 10 in our experiments.

The following five performance metrics were chosen: 1) the computation time, 2) the overall non-dominated vector
generation (ONVG), 3) the comparison metric (C metric), 4) the size of the dominated space, and 5) the summary
attainment surface. The first four metrics measure the convergence of the Pareto-optimal solutions, while the fifth metric
measures the distribution of the Pareto-optimal set obtained by a multi-objective optimization algorithm. The details of
these metrics were given in [42]. A comprehensive comparison of the two algorithms were provided in the following.
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Table IV shows the means of the computation time of each scenario. In the upper half of Table IV, the second column
indicates that the MOACS needs more computation time when the number of concrete services increases, while the third
column shows the computation time of MOGA remains almost steady as the number of concrete services increases. This
is because, by using the integer array coding scheme, the change in the number of concrete services will not influence the
length of the genome. The computation time of both MOACS and MOGA increases when the number of abstract services
increases, which is indicated by the lower half of Table IV. The upper half of Table IV indicates that when the number
of abstract services and concrete services is small, MOACS is better than MOGA since the means of the computation
time of MOACS are lower than those of MOGA except in the scenario where n = 10 and m = 100. Meanwhile, the
lower half of Table IV indicates that MOGA is more scalable than MOACS when there is a large number of concrete
services and abstract services.

Table V gives the means of ONVG. By comparing the second and third column of the upper half of Table V, we
conclude that MOGA can get more non-dominated solutions than MOACS except in the scenario where n = 10 and
m = 10. On the other hand, the lower half of Table V indicates that MOACS can find more non-dominated solutions
than MOGA when the number of abstract services increases except in the scenario where n = 10 and m = 50.

Table VI provides the means of PS(A). By comparing the second and third column of Table VI, we conclude that
MOACS is better than MOGA since MOACS always leads to a higher value of PS(A).

Table VII presents the means of the C metric. The value in the second column is equal to the value in the third column
of Table VII. The results indicate that the convergence of the Pareto-optimal solutions of MOACS and MOGA has never
been different, so we cannot say one is better than the other with respect to the C metric.

Fig. 7 gives an example of the median summary attainment surface of MOACS and MOGA. The regions where no
difference between the points of the median attainment surfaces of the two algorithms could be found were indicated in
gray dots, whereas those regions where the points of the two surfaces were found to differ from each other are plotted in
stars and squares, respectively. In the regions where the points of the two surfaces were found to differ from each other,
there are three situations: 1) if the points of the median attainment surfaces of MOACS dominate those of MOGA, then
the label MOACS is put near the points, 2) if the points of the median attainment surfaces of MOGA dominate those

TABLE IV: Means of Computation Time

Scenarios MOACS MOGA

n is fixed at 10, m varies
between 10 and 100, in
increments of 10

22.3333 29.6667
23.6190 30.0952
24.4762 29.8571
25.0952 31.3333
26.5238 29.9524
27.1905 31.2857
27.6667 31.1429
29.5238 30.9048
30.6667 30.7143
30.4286 30.2381

m is fixed at 50, n varies
between 10 and 50, in in-
crements of 10

26.5238 29.9524
61.2381 30.7143
98.9048 30.2381

141.9524 31.1905
285.5714 31.7143
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TABLE V: Means of ONVG

Scenarios MOACS MOGA

n is fixed at 10, m varies
between 10 and 100, in
increments of 10

14.9048 14.8571
32 36.0476

27.4762 34.4286
22.0952 27.5714
35.8571 49.8045
25.3333 28.0952
20.1905 27.4286
38.5238 46.0476
34.8095 38.3333
15.3333 16.5714

m is fixed at 50, n varies
between 10 and 50, in in-
crements of 10

35.8571 49.8045
75.4762 69.6196
90.7619 83.1905

114.9524 82.3810
131.5714 84.1429

TABLE VI: Means of PS(A) (%)

Scenarios MOACS MOGA

n is fixed at 10, m varies
between 10 and 100, in
increments of 10

82.65 82.64
84.86 84.77
85.29 85.25
84.65 84.61
85.88 85.87
86.30 86.12
86.17 86.02
86.12 85.92
86.72 86.38
86.33 86.28

m is fixed at 50, n varies
between 10 and 50, in in-
crements of 10

85.88 85.87
68.96 68.31
51.77 49.81
38.01 35.96
24.74 21.90

TABLE VII: Means of C Metric

Scenarios C(MOACS,MOGA) C(MOGA,MOACS)

n is fixed at 10, m varies
between 10 and 100, in
increments of 10

0.9524 0.9524
0.6298 0.6298
0.6037 0.6037
0.8429 0.8429
0.8311 0.8311
0.5982 0.5982
0.6219 0.6219
0.5127 0.5127
0.4523 0.4523
0.5189 0.5189

m is fixed at 50, n varies
between 10 and 50, in in-
crements of 10

0.8311 0.8311
0.4530 0.4530
0.4452 0.4452
0.2338 0.2338
0.2094 0.2094

of MOACS, then the label MOGA is put near the points, 3) if the points of the median attainment surfaces of MOACS
are not dominated by those of MOGA and the points of the median attainment surfaces of MOGA are not dominated
by those of MOACS, then no label is put. The details of all the median summary attainment surface of MOACS and
MOGA were given in [42]

The lessons learned from the experimental results are that, when we have a large number of concrete services available
for each abstract service, a multi-objective genetic algorithm can achieve better solutions. On the other hand, whenever
the number of concrete services available is small, such as in some simple and repetitive scientific computation, a
multi-objective ant colony system is to be preferred to a multi-objective genetic algorithm.

V. ANT-INSPIRED NEGOTIATIONS IN THE DATA-INTENSIVE SERVICE PROVISION

Negotiation has been adopted in service provision in order to get better QoS attributes. An iterative negotiation approach
for a service composition was presented in [48]. The aim of the approach was to select services for the service-based
systems in the scenarios where the QoS constraints were severe. The authors of [49] designed a framework in which
the service level agreements for a service composition were established through autonomous agent negotiation. A new
negotiation protocol was also proposed to support coordinated negotiation. The study [11] introduced an approach for the
Web service selection problem with large scale processes and severe QoS constraints. The Web service selection problem
was formalized as a mixed integer programming problem and loop peeling was adopted for optimization in that paper.
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The authors of [50] incorporated trust to manage the life cycle of scientific workflow, and applied a genetic algorithm
to assign task for autonomous service agent.

However, the negotiation approaches in the above studies are not able to effectively solve the problem in this paper,
in which the data plays the dominant role. The cost and response time of services largely depend on the accessing cost
and response time of data sets. As described in section III, the decisions of the service composers, the service providers,
and the data providers depend on each other. The data provider sells data sets to multiple service providers in order to
maximize the data usage and the profit. The cost and response time of data sets for one service provider are affected by
the demand of the others. The service providers also play the requester role with respect to the data sets. Thus, service
providers will have two aims, one is to lower the access cost and response time of data sets and the other is to maximize
their profit and service usage. Also, the service providers compete with other service providers to initiate or maintain a
contract with the service composers and are invariably interested in cost saving. The actual usage of services typically
encourages the composers to have a long term contract with the service providers. They also select concrete services
that best match the QoS requirements. Meanwhile, data-intensive services are typically used in a dynamic and changing
environment, and different providers typically have conflicting objectives. In order to automate the process of reaching
an agreement in the problem of this paper, a group of agents was exploited to establish agreeable service contracts.

The lifetime of the problem framework was described in [13]. In the lifetime, two-stage negotiation processes were
used. In the first stage, a service composer negotiates with multiple service providers over each service in a structured
one-to-many negotiation process. In the second stage, each service provider negotiates with a data provider over a set of
data sets in a structured one-to-one negotiation process. A multi-phase, multi-party negotiation protocol for the problem
was also presented [13]. A negotiation process is the interplay of offers and counter-offers between a buyer and a seller,
with different criteria and goals, working to identify a mutually acceptable solution. The decision making model was
designed for each agent in order to prepare an offer and a counter-offer.

The details of the evaluation of the ant-inspired negotiation approach were given in [13]. The performance of the
negotiation approach was evaluated with respect to three factors: 1) the success rate of finding an optimal solution, 2) the
number of negotiation rounds, and 3) the computation time in each negotiation round. To evaluate the effectiveness of our
negotiation approach, we compared the success rate of our approach with that of the MIP approach. In our experiments,
the success rate of the MIP approach remained zero in all scenarios, while our negotiation approach maintained a
higher success rate compared with the MIP approach. Meanwhile, our experimental results indicated that the number of
negotiation rounds increased when the number of concrete services increased. When the number of abstract services or
the number of data sets increased, the number of negotiation rounds, on the other hand did not exact increase. Also,
our results indicated that the time consumption per round increased when the number of abstract services, the number
of concrete services, or the number of data sets increased. The experimental results showed that our negotiation-based
approach, compared with the traditional non-dynamic method, could facilitate the data-intensive service provision with
a better outcome.

VI. REMAINING PROBLEMS

The explosion of raw data and the dependence on data services are expected to be further amplified, as a result
of the enormous proliferation of data-intensive services, for example, in critical areas such as disaster management
and health care. Now cloud infrastructure and platforms have become viable mainstream solutions for data accessing,
processing, analyzing, storage and distribution. Because the primary motivation for moving to the cloud is to minimize
cost (or maximize earnings), i.e., for economic reasons, we should attempt to find approaches to supporting economic
data-intensive services provision from holistic perspectives.

A. Strategies to Lower the Total Cost
In the ant-inspired negotiation with severe global QoS constraints, the service providers and the data providers improve

their offers based on their predefined ranges [13]. This subsection outlines the strategies that may be used by the service
providers and the data providers to lower the total cost of the composite service.

1) Data Pricing Strategy for Service Providers: For each service provider, one strategy to decrease the cost of a
service is to choose different data pricing models. The data provider offers the usage-based pricing model, the package-
based pricing model, and the subscription-based pricing model [51]. In the subscription-based pricing model, the data
requesters need to pay once for the data set and afterwards they can access the data set for a period of time. The access
cost of the data set in this period is independent of the number of usages. One service might require many data sets
and one data set might also be required by many services. A service provider can choose different pricing model based
on the demands. For example, a service provider will prefer to choose the subscription-based pricing model rather than
a usage-based and package-based pricing model if the combination of usage and package-based pricing model is not
attractive anymore. During the service concretization, the data provider will package the data sets based on the requests.
If some data sets are always used together by many services, the data provider will package them and give a discount
to the service providers.
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2) Data Placement Strategy for Data Providers: The data provider may improve the quality of data by changing data
placement policies. The data placement policies are about how data can be organized physically in order to minimize the
cost and access latency of data sets. For example, the data providers may place data near the services or partition a large
amount of data sets into several portions (or replicas if necessary). Before the negotiations, we may assume that the data
provider places all data sets in a data center, and all service providers access data from this data center. Fig. 8 illustrates
the data placement before the negotiation. During the negotiations, the data provider needs to effectively store all data
sets in order to maximize the data usage and the profit. In order to prevent data gathering to one data center and reduce
the access response time of data sets, the data provider partitions all data sets and distributes these partitions to different
data centers, and replicates portions of the data sets. Fig. 9 illustrates the data placement after the negotiation. The data
provider makes decisions based on the access frequency and update rate of the data sets as well as the locality of service
providers. The service providers prefer the data sets to be placed in the closest data center as much as possible, as this
will efficiently minimize the total data movement. If the service cannot find the required data sets from the closest data
center, it needs to access them from the other data centers. The data placement problem is very similar to the minimum
K-median problem, especially from a facility location perspective [52]. By investigating the data placement policies, the
data providers could lower the total cost of the composite service.

B. Economic Mechanisms for Data-Intensive Service Provision

The economic model described in our earlier work [31] may be extended to include the network providers, since the
cost of transferring data and the response time of accessing data depend on the network bandwidth. Various providers need
a standardized yet adaptive way to regulate and price their resources, which are specified by the utility of the stakeholders.
Hence, the composite service should be constructed by achieving the Pareto optimum under the Nash equilibrium for
the data-provider utility, the network-provider utility, the service-provider utility, and the service-composer utility.

As mentioned in [51], if a data set has more than one data replica, the service provider needs a data replica selection
strategy to select data replicas, since mass data-moving influences the effectiveness and efficiency of the application
execution. The literature has presented static replica selection approaches and dynamic replica selection approaches.

Service provider

Original data

Fig. 8: Before data partition and replication takes place

Data center 1

Data center 2

Data center 3

Service provider

Fig. 9: After data partition and replication has taken place
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Only very few studies proposed replica selection strategies based on bio-inspired algorithms. In order to achieve an
economic solution for data-intensive service provision problems, novel mechanisms are needed to be developed for
selecting data replicas.

We have presented an ant-inspired negotiation approach for the data-intensive service provision [13], [53]. In the real
negotiation processes, it is useful for a service composer releases information about the status of the competition to
the service providers, enabling them to make decisions about how to purchase the data and how to price their services.
More complicated decision making tactics are needed to be investigated to generate counter-proposals for each provider.
The overall objective is to build an economic model to ensure enhanced configuration for big data service provision,
potentially saving money, energy and space for maintaining huge amount of data in future information infrastructures.

VII. CONCLUSION

Data-intensive service provision faces new challenges with the rapid proliferation of services and the development of
cloud computing. The outcomes of our earlier studies confirmed the applicability and efficiency of bio-inspired algorithms
to solve data-intensive service provision problems. We created a hierarchical taxonomy of Web service concretization
approaches. And we also conducted a systematic review of Web service concretization based on the three bio-inspired
algorithms. The findings from the systematic review had been the basis for solving the problems. An economic model was
established to represent and regulate the interactions among the end users, the service composers, the service providers,
and the data providers. An extensible QoS model was also constructed to show the service and data set usage and charging
relationship. Then this paper applied an ant colony system and a genetic algorithm to compose data-intensive services.
It also evaluated the two algorithms and compared them with other traditional methods. Both algorithms were proposed
to optimize the total cost of a composite service. The paper then investigated a multi-objective ant colony system and
a multi-objective genetic algorithm for the problem. Further, we proposed an ant-inspired negotiation approach. The
lifetime of the data-intensive service provision and the two-stage negotiation processes were described. We also designed
a multi-phase, multi-party negotiation protocol, where an ant colony system was applied to select services. Finally, this
paper presents the opportunities for future work.
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