
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Engineering and Information
Sciences - Papers: Part A

Faculty of Engineering and Information
Sciences

1-1-2015

Secure delegation of signing power from factorization Secure delegation of signing power from factorization

Yong Yu
University of Wollongong, yyong@uow.edu.au

Man Ho Au
University of Wollongong, aau@uow.edu.au

Yi Mu
University of Wollongong, ymu@uow.edu.au

Willy Susilo
University of Wollongong, wsusilo@uow.edu.au

Huai Wu
University of Electronic Science and Technology of China, huai@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/eispapers

 Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation Recommended Citation
Yu, Yong; Au, Man Ho; Mu, Yi; Susilo, Willy; and Wu, Huai, "Secure delegation of signing power from
factorization" (2015). Faculty of Engineering and Information Sciences - Papers: Part A. 5030.
https://ro.uow.edu.au/eispapers/5030

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers?utm_source=ro.uow.edu.au%2Feispapers%2F5030&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers%2F5030&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers%2F5030&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers/5030?utm_source=ro.uow.edu.au%2Feispapers%2F5030&utm_medium=PDF&utm_campaign=PDFCoverPages

Secure delegation of signing power from factorization Secure delegation of signing power from factorization

Abstract Abstract
Delegation of signing is a working way common in oce automation work, and is also an important
approach to establish trust. Proxy signature is an important cryptographic primitive for delegating the
signing powers and it has found many real world applications. The existing proxy signature schemes from
factorization assumption are either insecure or inecient. In this paper, we propose a novel, ecient and
provably secure proxy signature scheme from factorization. Our construction makes use of a
factorization based key-exposure free chameleon hash function in the delegation phase and the proxy
signer needs only to nd a collision to a chameleon hash value to generate a valid proxy signature. As a
result, our scheme is highly ecient in terms of the computation of a proxy signature. We also provide a
formal security proof by classifying the adversaries into three categories. Comparisons demonstrate that
the new scheme outperforms the known ones in terms of security, computational eciency and the length
of the public key.

Disciplines Disciplines
Engineering | Science and Technology Studies

Publication Details Publication Details
Yu, Y., Au, M. Ho., Mu, Y., Susilo, W. & Wu, H. (2015). Secure delegation of signing power from
factorization. The Computer Journal, 58 (4), 867-877.

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/5030

https://ro.uow.edu.au/eispapers/5030

Secure Delegation of Signing Power
from Factorization

Yong Yu1,2, Man Ho Au2,∗, Yi Mu2, Willy Susilo2, Huai Wu1

1. School of Computer Science and Engineering, University of Electronic Science and
Technology of China, Chengdu, 610054, PR China

2. Centre for Information and Computer Security Research, School of Computer Science and
Software Engineering, University of Wollongong, Wollongong, NSW 2522, Australia

Email: aau@uow.edu.au

Delegation of signing is a working way common in office automation work, and is
also an important approach to establish trust. Proxy signature is an important
cryptographic primitive for delegating the signing powers and it has found many
real world applications. The existing proxy signature schemes from factorization
assumption are either insecure or inefficient. In this paper, we propose a novel,
efficient and provably secure proxy signature scheme from factorization. Our
construction makes use of a factorization based key-exposure free chameleon hash
function in the delegation phase and the proxy signer needs only to find a collision
to a chameleon hash value to generate a valid proxy signature. As a result, our
scheme is highly efficient in terms of the computation of a proxy signature. We also
provide a formal security proof by classifying the adversaries into three categories.
Comparisons demonstrate that the new scheme outperforms the known ones in

terms of security, computational efficiency and the length of the public key.

Keywords: Digital signature, Proxy signature, Factorization, Provable security

Received 00 January 2013; revised 00 Month 2013

1. INTRODUCTION

The notion of proxy signature [1] was put forth by
Mambo et al., which enables a proxy signer to sign
on behalf of an original signer in the case where the
original signer is unavailable (eg. temporal absence,
lack of computational power etc.). Subsequently, many
proxy signature schemes with their variants, analysis,
improvements and applications have been proposed in
the literature [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19]. Proxy signatures have been suggested
for extensive usage in numerous practical applications
such as in distributed computing, e-commerce, e-cash,
and grid computing where delegation of rights is quite
common [5, 6, 7]. Mambo et al. [1] classified proxy
signatures into two categories: proxy-unprotected and
proxy-protected. A proxy-protected scheme, where
only the proxy signer is able to generate valid proxy
signatures, is more practical since it accommodates
some highly desirable properties such as fairness and
signature ownership. In an orthogonal dimension,
proxy signatures can also be classified according to
their delegation types, including full delegation, partial
delegation, delegation with warrant and threshold
delegation. At present, delegation with warrant is the
most popular choice because of its high security and
flexible delegation policy. Thus, we limit our attention

to proxy-protected proxy signature authorized by using
delegation with warrant in this paper.

The security of the majority existing proxy signature
schemes depends on the discrete logarithm assumption
and some intractable assumptions on elliptic curves.
To avoid putting all eggs in one basket, Shao [19]
proposed two proxy signature schemes based on the
factorization assumption. However, no formal security
analysis was provided. Subsequently, Shao [20] designed
a new proxy signature scheme from factorization and
proved the security in the random oracle model.
Zhou et al.[21] described two efficient proxy-protected
signature schemes based on RSA assumption and the
factoring assumption respectively. Unfortunately, Park
et al. [22] showed that both schemes are vulnerable to
outsider attacks. In 2007, Liu et al. [23] proposed an
improvement of Zhou et al.’s scheme and claimed that
the new construction satisfies all the desirable security
requirements of a secure proxy signature. However, Hu
et al. [24] discovered that Liu et al.’s scheme [23] is not
secure against a malicious original signer’s attack. In
2012, Yu et al. [33] proposed a provably secure proxy
signature scheme from factorization. The construction
in [33] is conceptually simple and elegant: the original
signer issues a standard digital signature on the public
key of the proxy signer together with the delegation
policy under which the proxy signer is authorized to sign

The Computer Journal, Vol. ??, No. ??, ????

2 Y. Yu, M.H. AU, Y. Mu, W. Susilo

on behalf of the original signer. This standard signature
is viewed as a warrant. A proxy signature from this
proxy signer is a standard signature on the message
under the proxy’s public key together with the warrant.
To verify a proxy signature, anyone can check if the
warrant is a valid signature from the original signer on
the public key of the proxy signer and the delegation
policy, followed by the validation of the signature under
the proxy’s public key. Yu et al. [33] instantiated the
above idea based on an improved Rabin-type signature
[25]. The scheme was shown secure against both
outsider attackers and insider attackers.

It is relatively straightforward to construct proxy
signature schemes following the two signature approach
discussed above, and the security of the resulting
scheme depends on the unforgeability of the underlying
digital signature scheme. While this approach is
clever, it imposes a lower bound on the time and
space complexities of the resulting proxy signature
since it can be viewed as a consecutive execution of
two digital signature instances. In this paper, our
goal is to construct an efficient secure proxy signature
scheme that is secure under hardness of factorization,
a fundamental and well-studied intractable problem in
number theory. By efficient we require that the time
and space complexity should be less than the cost
of running two standard signature instances and thus
another approach is adopted.

1.1. Related Work

Chameleon Hash Our approach in the construction
of proxy signatures involves the use of another crypto-
graphic primitive called Chameleon hash function intro-
duced by Krawczyk and Rabin [34]. Roughly speaking,
chameleon hash, also known as trapdoor hash, is a trap-
door one-way function, which prevents anyone except
the holder of the trapdoor from finding the collisions of
a random input. Specifically, to evaluate the hash of an
input m, a random number r is chosen and the function
takesm, r as input for evaluation. Given the trapdoor of
the chameleon hash function, the original input m and
r, together with another input m′, the trapdoor hold-
er could output another randonness r′ such that (m, r)
and (m′, r′) evaluates to the same hash value. This is a
useful primitive for constructing chameleon signatures
[34], online/offline signatures [35, 36] etc. Ateniese and
Mederious [37] discussed the key exposure problem in
the original formulation of chameleon hash function due
to Krawczyk et al.[34]. Specifically, while the trapdoor
holder can generate collisions (two distinct input that
“hashes” to the same output), the trapdoor can be com-
puted based on any pair of collisions. They mentioned
that this phenomena is undesirable in applications in
which the pair of collisions will be released eventually
and introduced identity-based chameleon hash [37] to
solve the problem. Subsequently, many novel chameleon
hash schemes without the key-exposure problem were

proposed such as in [38, 37, 39, 40].
The use of Chameleon Hash in Proxy

Signatures Mehta and Harn [41] firstly introduced
the idea of using chameleon hash to construct novel
proxy signature schemes where verifiers need not be
aware of the existence of a proxy. However, in
their scheme, the proxy signer can only sign one
time since two valid proxy signatures will lead to the
exposure of his trapdoor. Recently, Chandrasekhar et
al. [42] presented a technique of using trapdoor hash
functions to build proxy signature that does not restrict
the number of signatures a proxy can generate per
delegation. We first review their generic construction
and highlight some of the subtle issues when we describe
their concrete instantiation from the discrete logarithm
assumption. In their generic approach, the trapdoor
hash function is used as the public key of a proxy while
the trapdoor is the secret key. When the delegator
wishes to delegate his signing right to this proxy, he
creates a signature σ on a value h concatenated with the
warrant w, where h is the output of the trapdoor hash
function of the proxy on input w and randomness r.
When the proxy wishes to create a proxy signature on a
message m, it uses his trapdoor to compute randomness
c such that (m, c) also ‘hashes” to h. A proxy signature
then consists of the signature σ from the original signer
on the chameleon hash value h concatenated with the
warrant w, the warrant w, as well as the randomness
r and c. The verification of the proxy signature
involves computing h which is the chameleon hash of
w with randomness r, validating σ on h||w and that
the message m together with randomness c “hashes” to
h. Note that this approach is novel in that it does not
involve operations on two signatures.

Obviously, the approach requires key exposure-free
chameleon hash function since a proxy signatures
consist of a collision. Chandrasekhar et al. proposed
a discrete-logarithm based chameleon hash function for
the purpose. A detailed analysis of their concrete
construction reviewed that their DL-based construction
is not a straightforward instantiation of the above
conceptual idea. Firstly, h is not just the trapdoor
hash of the warrant w. Instead, it is the trapdoor hash
of another value which is the hash of the public key
of the proxy concatenated with the warrant. Secondly,
σ is not a signature on h||w. Rather, it is a Schnorr
signature on the string h||w||r and that the randomness
r is also part of the Schnorr signature. In other words, r
is part of the signature from the original signer as well as
the randomness used in the evaluation of the chameleon
hash. On one hand, this modification from the above
conceptual idea allows the compression of the proxy
signature via safe re-use of randomness. On the other
hand, these deviations from the generic construction
appeared to be necessary to prevent a malicious proxy
from creating another chameleon hash function and
randomness r′ such that (w, r′) also “hashes” to the
same value h for this new chameleon hash function. The

The Computer Journal, Vol. ??, No. ??, ????

Secure Delegation of Signing Power from Factorization 3

use of the same randomness r in the signature and the
chameleon hash function evaluation tied the signature
from the original signer to the specific hash value being
signed. This technique is especially suitable for Schnorr-
type signatures [26], where the randomness used can be
generated before the message to be signed is known.
Thus, it is non-trivial to construct factorization-based
proxy signatures following this conceptual approach. It
involves subtle modifications in addition to choosing
appropriate building blocks that are secure under the
factorization assumption.

Our contributions. To our best knowledge,
there has not been such a factorization-based proxy
signature scheme that achieves provable security,
efficiency and novelty simultaneously. Therefore,
our main contribution of this paper is to fill
this gap by providing a provably secure and non-
consecutive proxy signature scheme from factorization.
Specifically, we propose a new proxy signature scheme
by incorporating factorization-based chameleon hash
function and improved Rabin-type digital signatures
[27] where n = pq is a Williams integer. We
show that our scheme achieves all the desirable
properties a secure proxy signature should possess
and provide formal security proofs as well under
the factorization assumption in the random oracle
model. The theoretical analysis and the experimental
results demonstrate that the new scheme offers stronger
security, higher computational efficiency and shorter
public key simultaneously.

Organization: Section 2 reviews some preliminaries
used in this paper. Section 3 describes the formal model
of proxy signature schemes. Section 4 presents our
proxy signature scheme and the comparisons with other
schemes. Section 5 provides security analysis of the new
scheme. Section 6 concludes the paper.

2. PRELIMINARIES

In this section, we review some basic knowledge
used in this paper, including quadratic residue,
Legendre symbol, Jacobi symbol and the factorization
assumption [28, 29].

2.1. Related definitions and facts

Definition 1. Let a ∈ Z∗n, the multiplicative group
of Zn. a is said to be a quadratic residue modulo n,
if there exists an x ∈ Z∗n such that x2 ≡ a (mod n).
If no such x exists, a is called a quadratic nonresidue
modulo n. The set of all quadratic residues modulo n is
denoted by Qn and the set of all quadratic nonresidues
is denoted by Q̄n.

Fact 1. Let n = pq, a product of two distinct
odd primes p and q. Then a ∈ Z∗n is a quadratic
residue modulo n if and only if a ∈ Qp and a ∈ Qq.

It follows that |Qn| = |Qp| · |Qq| = (p−1)(q−1)
4 and

|Q̄n| = 3(p−1)(q−1)
4 .

Definition 2. Let p be an odd prime and a an

integer. The Legendre symbol
(
a
p

)
is defined by

(
a
p

)
=

 1, if a ∈ Qp,
−1, if a ∈ Q̄p,
0, if p | a.

When the modulo n is a composite number, Jacobi
symbol (an), a generalization of the Legendre symbol,
will be involved.

Definition 3. Let n ≥ 3 be odd with prime
factorization n = pe11 p

e2
2 · · · p

et
t , the Jacobi symbol

(
a
n

)
is defined by the formula

(
a

n
) = (

a

p1
)
e1

(
a

p2
)
e2
· · · (a

pt
)
et
.

Definition 4. A Blum integer is a composite integer
of the form n = pq, where p and q are distinct primes
each congruent to 3 modulo 4.

Fact 2. If n = pq is a Blum integer, the function
f : Qn → Qn defined by f(x) ≡ x2 (mod n) is a
permutation. The inverse function of f is

f−1(x) ≡ x
(p−1)(q−1)+4

8 (mod n).

2.2. Complexity assumptions

Integer Factorization Problem. Given n, an odd
composite integer with at least two distinct large prime
factors, output a prime number p such that p|n. The
probability that a polynomially bounded algorithm A
can solve the integer factorization problem is defined as
SuccIFA = Pr[p← A(n)].

Integer Factorization Assumption. Given an
odd composite integer n with distinct large prime
factors, SuccIFA is negligible.

3. FORMAL MODELS OF PROXY SIGNA-
TURE SCHEMES

In this section, we briefly review the components and
security model of proxy signature schemes [14, 6].

3.1. The compents of proxy signature schemes

Two participants, namely an original signer Alice and
a proxy signer Bob, are involved in a proxy signature
scheme. The scheme consists of the following five
algorithms: Setup, KeyGen, DelGen, ProxySign and
Verification.

Setup: On input the system security parameter, this
algorithm generates system’s parameters.

KeyGen: On input the system’s parameters, this
algorithm outputs secret-public key pairs for Alice
and Bob.

DelGen: On input the system’s parameters, Alice’s
secret key ska and the warrant w, this algorithm
generates a delegation σw of w.

The Computer Journal, Vol. ??, No. ??, ????

4 Y. Yu, M.H. AU, Y. Mu, W. Susilo

ProxySign: On input the system’s parameters, the
warrant w, the delegation σw, the secret key skb of
the proxy signer and the message m to be signed,
this algorithm generates a proxy signature σ on m
under the warrant w.

Verification: On input the system’s parameters,
original signer’s public key pka, proxy signer’s
public key pkb, the warrant w, the signed message
m and the alleged signature σm, this algorithm
outputs True if σ is a valid proxy signature on the
message m and outputs ⊥ otherwise.

3.2. Security requirements for proxy signature
schemes

Since the invention of proxy signature, several security
requirements of this cryptographic primitive have been
specified to satisfy the different situations. It has been
widely accepted that a secure proxy signature scheme
should provide the following requirements [6, 5].

Verifiability: From a valid proxy signature, a verifier
can be convinced of the original signer’s agreement
on the signed message.

Strong undeniability: Once a proxy signer generates
a valid proxy signature on behalf of the original
signer, the proxy signer cannot deny his signature
generation against anyone else.

Strong identifiability: For a valid proxy signature,
anyone can determine the identity of the corre-
sponding proxy signer.

Strong unforgeability: Only the designated proxy
signer can generate valid proxy signatures on
behalf of the original singer. Namely, any other
third party, including the original signer, can not
generate a valid proxy signature in the name of the
proxy signer.

Prevention of misuse: The proxy signing key cannot
be used for purposes other than generating valid
proxy signatures. In the case of misuse, the
responsibility of proxy signer should be determined
explicitly.

Among all the essential security requirements, the
property of strong unforgeability is the most
desirable, which essentially indicates the undeniability
and prevention of misuse. To capture the nature of
strong unforgeability well, we adopt the security model
of proxy signatures due to Huang et al. [14] to prove
the security of our scheme. Besides outside adversaries,
two types of inside adversaries are also considered in
the model.

Type 1: As an outside adversary, A1 only has the
public keys of Alice and Bob.

Type 2: As a malicious proxy signer, A2 additionally
holds the secret key of the proxy signer Bob.

Type 3: A3 simulates a malicious original signer and
has the secret key of the original signer Alice.

Obviously, if a proxy signature scheme is unforgeable
against Type 2 and Type 3 adversaries, it is unforgeable
against Type 1 adversary as well.

3.3. Security models

Existential unforgeability against adaptive A2

adversary: This notion captures that it is hard for an
adversary to forge a valid proxy signature on message
m under a warrant w, if he does not have the delegation
of w.This property is defined using the following game
between a challenger C and a Type 2 adversary A2.

Setup: The challenger C runs the Setup algorithm
to obtain system’s parameters, and runs KeyGen
algorithm to obtain key pairs (ska, pka) and
(skb, pkb) of the original signer and the proxy
signer. C then forwards (pka, pkb, skb) to A2.

Delegation queries: A2 requests the delegations on
warrants wi adaptively. C runs the DelGen
algorithm to obtain σwi and returns it to A2.

ProxySign queries: A2 requests a proxy signature on
a message mi under a warrant wi adaptively. In
response, C firstly runs DelGen algorithm to obtain
the delegation on w and then, runs the ProxySign
algorithm to get a proxy signature σ and returns
it to A2.

Output: Finally, A2 outputs a triple (m∗, w∗, σ∗), such
that

1. σ∗ is a valid proxy signature on message m∗

under warrant w∗.
2. w∗ has not been queried during the Delegation

queries.
3. (m∗, w∗) has not been queried during the

ProxySign queries phase.

The success probability of an adversary A2 winning
above game is defined as SuccA2 . A2 can (t, qw, qps, ε)
break a proxy signature scheme if it makes at most qw
Delegation queries, qps ProxySign queries, and runs in
time at most t and SuccA2

is at least ε.

Existential unforgeability against adaptive A3

adversary: This notion says that it is difficult for
a malicious original signer to generate a valid proxy
signature on a message m∗ which was not singed by
the proxy signer. It is defined using the following game
between an adversary A3 and a challenger C.

The Computer Journal, Vol. ??, No. ??, ????

Secure Delegation of Signing Power from Factorization 5

Setup: The challenger C runs the Setup algorithm
to obtain system’s parameters, and runs KeyGen
algorithm to obtain key pairs (ska, pka), (skb, pkb)
of the original signer and the proxy signer. C then
sends (pka, pkb, ska) to A3.

ProxySign queries: A3 requests a proxy signature on
the pair (mi, wi) with the original signer Alice and
the proxy signer Bob. In response, C outputs a
valid proxy signature σi and returns it to A3.

Output: Finally, A3 outputs a new triple (m∗, w∗, σ∗),
such that

1. σ∗ is a valid proxy signature on message m∗

under warrant w∗.
2. (m∗, w∗) has not been queried during the

ProxySign queries phase.

The success probability of an adversary A3 winning
above game is defined as SuccA3 . We say that A3 can
(t, qps, ε) break a proxy signature scheme if A3 makes
at most qps proxy signature queries in time at most t
and SuccA3

is at least ε.

4. OUR CONSTRUCTION

In this section, we first describe our design philosophy
and the choice of our building blocks, followed by a
detailed description of our chameleon hash-based proxy
signature scheme based on factorization. Then, we will
compare the performance of the new scheme with the
existing ones in the same style.

4.1. Design Philosophy

Our approach is similar to the approach due to
Chandrasekhar et al. [42] with some minor
modifications. Specifically, we require that the public
key of the proxy signer is included in the warrant. A
delegation is made possible when the original signer
creates a signature on the chameleon hash of the
warrant based on the chameleon hash function of
the proxy. With this minor modification, it is not
necessary for the signature from the original signer
to include the randomness of the chameleon hash nor
the signature itself (as in the DL-based instantiation
of Chandrasekhar et al.) and allows us to use the
efficient Rabin-PDH signature due to Gentry [25], a
deterministic signature scheme with signature size of
one single group element described below.

In STOC 1989, Vallée [30] provided an elegant
analysis of the distribution, in Zn, of integers in
Bn,h,h′ = {x ∈ [1, n) : h ≤ x2 (mod n) ≤ h′} for h′−h ≥
8n

2
3 , i.e., integers with modular squares in a narrow

interval. In Crypto 2002, based on Vallée’s conclusion,
Coron[31] investigated the security of partial-domain
hash signature schemes and showed that for e = 2,

partial-domain hash signature schemes are provably
secure in the random oracle model, assuming that
factoring is hard, if the size of the hash function
is larger than 2/3 of the modulus size. In Crypto
2004, Gentry [25] improved Coron’s results for Rabin-
PDH and proposed a specific variant of the improved
Rabin-PDH. We also developed a new factorization-
based chameleon hash function by introducing double
trapdoor to Shamir’s scheme [35] as a building block of
our construction.

4.2. Description of the new scheme

As mentioned our construction is inspired by Gentry’s
signature scheme [25], together with our new Harn-
like chameleon hash function [36], and is described as
follows.

Setup: The original signer Alice randomly picks two
large primes p0 and q0 satisfying p0 ≡ 3 mod 8,
q0 ≡ 7 mod 8 as her private key and computes
n0 = p0q0 as her public key. The proxy signer picks
two safe primes p1, q1 and computes n1 = p1q1.
Compute p′1 = p1−1

2 , q′1 = q1−1
2 and λ(n1) =

lcm(p1 − 1, q1 − 1) = 2p′q′. Choose an element
g ∈ Z∗n1

of order λ(n1). LetH1, H2 andH3 be three
secure hash functions where H1 : {0, 1}∗ → [h, h′)

with h′′ = h′ − h (mod n0) ≥ 8n
2
3
0 , H2 : {0, 1}∗ →

Zn1
and H3 : {0, 1}∗ → Zn1

. The public chameleon
hash key of the proxy signer is (n1, g) and the
private trapdoor key is (p1, q1).

Delegation: The original signer delegates her signing
power to a proxy signer, say Bob, as follows.

1. Alice makes a warrant w specifying her
public key, the public chameleon hash key
of the proxy signer, a period of validity, and
restrictions on the messages the proxy signer
is allowed to sign.

2. Bob picks a random integer k1, computes
r1 ≡ gk1 (mod n1) and forwards r1 to Alice.

3. Alice chooses a random integer t0, computes
hw = H1(r1g

H2(w,r1)||t0 (mod n1), w) and
a0, b0 as follows.

a0 =

{
0, if (hwn0

) = 1,

1, if (hwn0
) = −1.

b0 =

{
0, if (2−a0hw

p0
) = (2−a0hw

q0
) = 1,

1, if (2−a0hw
p0

) = (2−a0hw
q0

) = −1.

4. Alice computes s0 using her private key p0, q0,

s0 ≡ (2−a0hw)
n0−p0−q0+5

8 (mod n0)

and sends (w, t0, s0, a0, b0) to Bob via a secure
channel.

The Computer Journal, Vol. ??, No. ??, ????

6 Y. Yu, M.H. AU, Y. Mu, W. Susilo

5. Receiving (w, t0, s0, a0, b0), Bob computes
h′w = H1(r1g

H2(w,r1)||t0 (mod n1), w) and
verifies the delegation by checking if s20 ≡
2−a0 · h′w · (−1)b0 (mod n0) holds.

ProxySign: Bob signs a message m ∈ {0, 1}∗ on
behalf of Alice according to the warrant with his
chameleon hash trapdoor as follows.

1. Check whether m conforms to the warrant w.
If the check fails, output “invalid” and abort.
Otherwise, go to the next step.

2. Pick a random k2 ∈ Zλ(n1) and compute

r2 ≡ gk2 (mod n1).
3. Compute t1 ≡ t0 + (k1 − k2) +

2λ(n1)(H2(w, r1)−H3(m, r2)) mod λ(n1).
4. The final proxy signature on m under the

warrant w is σ = (a0, b0, s0, t0, r1, r2, t1).

Verification: To check whether σ =
(a0, b0, s0, t0, r1, r2, t1) is a valid proxy signa-
ture on m under the warrant w, a verifier performs
the following operations.

1. Check whether m conforms to w. If the check
fails, output “invalid” and abort. Otherwise,
go to the next step.

2. Check whether r1g
H2(w,r1)||t0 ?≡

r2g
H3(m,r2)||t1 (mod n1).

3. Compute h′m = H1(r2g
H3(m,r2)||t1 mod n1, w)

and verify whether s20
?≡ 2−a0 · h′m · (−1)b0

(mod n0). If it holds, the proxy signature is
valid; Otherwise, invalid.

4.3. Correctness

The correctness of the scheme is not self-evident and
we interpret it in detail. The integer n0 = p0q0 where
p0 ≡ 3 mod 8, q0 ≡ 7 mod 8 is called Williams integer.
Obviously, a Williams integer is also a Blum integer.
Assume p0 = 8t1 + 3 and q0 = 8t2 + 7 where t1, t2 ∈ Z,
we can observe that

(
2

p0
) = (−1)

p2
0
−1

8 = (−1)
64t2

1
+48t1+8

8 = −1,

(
2

q0
) = (−1)

q2
0
−1

8 = (−1)
64t2

2
+112t2+48

8 = 1,

thus, (2
n0

) = (2
p0

) · (2
q0

) = −1. Therefore, if

h′w = H1(r1g
H2(w,r1)||t0 mod n1, w) equals hw and

(w, t0, s0, a0, b0) is a valid delegation, then

((2−a0hw)
n0−p0−q0+5

8)
2

=

{
2−a0hw, if 2−a0hw ∈ Qn,
−2−a0hw, if 2−a0hw ∈ Q̄n.

Therefore, the verification of delegation s20 ≡ 2−a0 ·
h′w · (−1)b0 (mod n0) always holds.

Regarding the correctness of the proxy signature,
since Delegation and ProxySign share the same
signature algorithm, we just show the chameleon hash
of the message m is identical to that of the warrant w.

r2g
H3(m,r2)||t1

≡ gk2gH3(m,r2)||t0+(k1−k2)+2λ(n1)(H2(w,r1)−H3(m,r2))

≡ gk2+2λ(n1)H3(m,r2)+t0+k1−k2+2λ(n1)(H2(w,r1)−H3(m,r2))

≡ gk1+t0+2λ(n1)H2(w,r1)

≡ r1g
H2(w,r1)||t0 (mod n1)

We can conclude that h′w = h′m, and as a consequence,
s20 ≡ 2−a0 · h′m · (−1)b0 (mod n0) also holds. �

4.4. Performance comparisons and experimen-
tal results

We compare the security and efficiency of the new
scheme with those of existing ones in the same style[21,
20, 23, 33], i.e., whose security is related to the integer
factorization problem or the RSA problem. Several
expensive cryptographic operations are considered. We
denote by mul, exp, and inv the multiplication, the
modular exponentiation and the inversion computation
respectively. root is denoted as the operation to find
the solutions of x2 ≡ a (mod n) when the factor of
n is given. The comparisons of six known schemes
are summarized in Table 1. The Delegation column,
Proxysign column and Verify column demonstrate
the computation costs of each scheme. Security
column denotes the intractable assumptions that the
schemes rely on. Against A2 and Against A3 columns
show whether the scheme is secure against the attacks
mounted by malicious proxy signers and malicious
original signers respectively. The symbol N means that
the scheme is vulnerable to this kind of attack while
Y indicates that it is secure against the attack. The
schemes in [21] are insecure because they can resist
neither a malicious proxy signer’s attack nor a malicious
original signer’s attack. Although the scheme in [23]
is secure against a malicious proxy signer’s attack, it
suffers a malicious original signer’s attack. Thus, this
scheme is also insecure. The constructions in [20, 33]
and our new proposal are secure against all kinds of
adversaries. Our scheme outperforms the one in [20] in
terms of security, computational efficiency and length of
the public key. Specifically, the unforgeability of Shao’s
proxy signature [20] depends on RSA problem while
the unforgeability of our scheme relies on factorization.
Consequently, our scheme is at least as secure as Shao’s
scheme, but possibly more secure [27]. Furthermore,
our scheme is a bit more efficient than the scheme in [20]
because 1 exponentiation, the most expensive operation
in the schemes, is less required. The employment of
Williams integer helps to avoid searching an integer a
satisfying Jacobi symbol (an) = −1 and including it in

The Computer Journal, Vol. ??, No. ??, ????

Secure Delegation of Signing Power from Factorization 7

TABLE 1. Comparisons of six proxy signature schemes from factorization.
Schemes Delegation Proxysign Verify Security Against A2 Against A3

ZCL1[21] 1 exp 2 exp+1 mul 2 exp+1 inv+1 mul RSA N N

ZCL2[21] 1 root 1 exp+2 mul+1 root 5 mul+1 inv Factorization N N

LWLH[23] 2 mul+1 root 2 exp+2 mul+1 root 2 exp+5 mul+2 inv Factorization Y N

Shao[20] 2 exp+1 inv 3 exp+1 mul 3 exp+1 mul RSA Y Y

Yu[33] 1 exp+1 mul 3 exp+1 mul 1 exp+4 mul+1 inv Factorization Y Y

Ours 4 exp+1 mul 1 exp+1 mul 2 exp+2 mul Factorization Y Y

TABLE 2. Experimental results of the new proxy signature
scheme

Setup Delegation ProxySign Verification

512.658 ms 90.297 ms 25.633 ms 28.462 ms

the public key because 2 is just such an integer. As a
result, the length of the public key of the new scheme
is shorter than the existing constructions. Although
three more exponentiations are needed in delegation
generation than that of the scheme in [33], the new
scheme achieves higher efficiency in proxy signature and
proxy signature verification, which is highly essential for
two reasons. Firstly, in many applications, delegation is
a one-time process while proxy signing and verification
will be executed frequently. Secondly, in some real-
world scenarios, proxy signatures are often deployed
in the environments such as agent-based computing
systems [5], smart card applications [7], where the proxy
has limited processing capability.

Experimental results: We also evaluate the
performance of our new construction by conducting an
experiment to assess the running time of our scheme
on personal computers. An implementation of the
algorithms was realized on a computer with CPU T8100
@ 2.10 GHz and 2.0 GB memory, and the operating
system is Windows 7.0. All the public key operations
were built with Miracle Library [44] which implements
multiprecision integer and rational data-types, and
provides the routines to perform basic arithmetic on
them. According to the security requirements of
factoring, we employed 1024-bit modulus n0 and n1,
and the corresponding large prime factors p0, q0, p1, q1
are 512 bits. We preformed the experiment 1000 times
and the average running time of each sub-algorithm is
shown in Table 2. We can observe that it takes 512.658
ms to setup the system, which is the most expensive
operation but runs only one time. The delegation phase
costs 90.297 ms, while the proxysign and verification
cost 25.633 ms and 28.462 ms respectively. The
implementing results demonstrate that the new scheme
is highly efficient.

5. SECURITY PROOFS

The new proxy signature is warrant-based, and a
delegation is the original signer’s signature on the
warrant which contains information regarding proxy
signer’s identity, a period of validity, and restrictions
on the messages for which the warrant is valid,
etc. Therefore, the properties of identifiability,
undeniability, verifiability and prevention of misuse can
follow naturally due to the security of improved Rabin
signature scheme. In this section, we will focus on the
unforgeability of the new construction and demonstrate
the security against adaptive chosen message attacks of
Type 2 and Type 3 adversaries in the random oracle
model.

Existential unforgeability against type 2
adversary

Theorem 5.1. If there exists a Type 2 adversary A2

that can (t, qw, qps, ε) breaks the unforgeability of the
new proxy signature scheme, then there exists another
algorithm B that can use A2 to solve an instance of the
factoring problem with probability

SuccIFB ≥
ε2 · (1− 1/8n

2
3
0)2

8 · q2w
.

Proof.The security proof is by contradiction.
Assume there exists a polynomial-time adversary A2

that is able to produce a forgery with non-negligible
success probability, we then use A2 to build an
algorithm B to factorize a Williams integer. Assume
B receives a random instance of factorizing a Williams
integer: given a large Williams number N with |N | ≥
1024 bits, output a factor of N .

Setup: B sets N , the input of the factorization
problem, as n0, the public key of the original
signer. Then, B picks two large safe primes p1, q1,
computes n1 = p1q1, λ(n1) = lcm(p1 − 1, q1 − 1)
and choose an element g ∈ Z∗n1

of order λ(n1).
The hash functions H1 : {0, 1}∗ → [h, h′) with

h′ − h (mod n0) ≥ 8n
2
3
0 , H2 : {0, 1}∗ → Zn1

and
H3 : {0, 1}∗ → Zn1

are treated as random oracles.
The public chameleon hash key of the proxy signer
is (n1, g) and the private trapdoor key is (p1, q1).
B returns (N, p1, q1) to A2.

H2 queries: A2 can make at most qH2
queries on the

hash function H2 for the input (wi, ri) adaptively.

The Computer Journal, Vol. ??, No. ??, ????

8 Y. Yu, M.H. AU, Y. Mu, W. Susilo

B maintains a hash list called L2 to store the
answers for the consistency of a hash function. If B
has received an identical query before, it responds
as it did before. Otherwise, B picks a random
value hi ∈ Zn1

, returns hi to A2 and logs the tuple
(wi, ri, hi) into L2.

H3 queries: A2 can make at most qH3 queries on the
hash function H3 for the input (mj , rj) adaptively.
B maintains a hash list called L3 to store the
answers for the consistency of a hash function. If B
has received an identical query before, it responds
as it did before. Otherwise, B picks a random
h′j ∈ Zn1 , returns h′j to A2 and adds the tuple
(mj , rj , h

′
j) into L3.

H1 queries: A2 can make at most qH1
queries on the

hash function H1 for the input (vi, wi) adaptively.
B maintains a hash list L1 to store the answers for
the consistency of a hash function. For each request
on (vi, wi), if B has received the same query before,
it returns the previous answer to A2. Otherwise, B
picks a random li ∈ Zn1

, returns li to A2 and adds
(⊥,⊥,⊥,⊥,⊥, vi, wi, li) into L1 list.

Delegation queries: A2 can make at most qw
delegation queries adaptively. When A2 queries on
a warrant wi, B picks a random ki and computes
ri = gki . B then searches the L2 list to check
whether there is an item (wi, ri, hi). If there does
not exist such an item, B picks a random hi ∈ Zn1

and logs (wi, ri, hi) into L2 list. Then B picks
a random ti, computes rig

hi||ti (mod n1) → vi,
picks ai, bi ∈ {0, 1}, si ∈ BN,h,h′ with uniform
distribution, sets H(vi, wi) = s2i · 2ai · (−1)−bi

(mod N) and logs (ai, bi, ki, ri, ti, vi, wi, li) into L1

list. Finally, B responds (ti, si, ai, bi) to A2.

Proxy signature queries: A2 can make at most qps
proxy signature queries. For each query on
(wi,mi), B searches the L1 list to check whether
the tuple (ai, bi, ki, ri, ti, vi, wi, si) exists in the list.
If there is no such a tuple, B picks a random ki
and computes ri = gki . Then B picks a random ti,
computes rig

hi||ti (mod n1) → vi, picks ai, bi ∈
{0, 1}, si ∈ BN,h,h′ with uniform distribution, sets
H(vi, wi) = s2i · 2ai · (−1)−bi (mod N) and logs
(ai, bi, ki, ri, ti, vi, wi, si) into L1 list. B searches
the L2 list to find if there is an item (wi, ri, hi). If
there is no such an item, B picks a random value
hi ∈ Zn1 , and logs the tuple (wi, ri, hi) into L2.
Then, B chooses a random kpi ∈ Zλ(n1

), computes

rpi ≡ gkpi (mod n1). B searches if there exists
an item (mi, rpi, h

′
i) in L3 list. If there is no such

an item, B selects a random h′j ∈ Zn1
, and adds

the tuple (mi, rpi, h
′
i) into L3. Finally, B computes

tpi ≡ ti + (ki − kpi) + 2λ(n1)(hi − h′i) mod λ(n1)
and response (ai, bi, si, ti, ri, rpi, tpi) as a proxy
signature of mi under the warrant wi to A2.

Solving IF problem: It’s easy to check that in the
random oracle model, the outputs of the simulated
proof are indistinguishable from those in the real
attacks. Finally, A2 produces a proxy signature
forgery σ∗ = (a∗0, b∗0, s∗0, t∗0, r∗1 , r∗2 , t∗1) on a
message m∗ under warrant w∗ with probability ε.
A2 outputs a valid proxy signature after querying

H1 oracle with probability ε′ = ε · (1 − 1/8n
2
3
0)

because si is randomly picked from [h, h′). We can
solve the factorization problem instance by using
the oracle replay technique[32]. We firstly guess a
fixed index 1 ≤ j ≤ qw and expect that w∗ happens
to be the warrant of which A2 forges a valid proxy
signature on m∗. The probability that we make a
correct guess is denoted by Pr[luck]= 1

qw
.

Equipped with the same system parameters and
public key N,n1, the game is played again. For
the same sequences of random bits to the two
copies of A2, B responds with the same answers
to the oracle queries until A2 asks the H1 query
for wj = w∗. At that point, B answers
two random answers (ai, bi, ki, ri, ti, vi, wi, si) and
(a′i, b

′
i, k
′
i, r
′
i, t
′
i, v
′
i, w
′
i, s
′
i) . Thus, we have

s2i · 2ai · (−1)−bi ≡ s′2i · 2a
′
i · (−1)−b

′
i (mod N).

Since ai, bi are randomly chosen from {0, 1}, ai =
a′i and bi = b′i with probability 1/4. As a result,
s2i ≡ s′2i (mod N) holds with probability 1/4. Now
GCD(si− s′i, N) or GCD(si + s′i, N) is a nontrivial
factor of N [29].

The simulator’s probability of success can be assessed
using the technique of splitting lemma[32]. Let X be
the set of possible sequences of random answers up to
the point that A2 queries the H1 oracle for (v∗, w∗) and
Y be the set of possible sequences of random answers
after that point. For any x ∈ X and y ∈ Y , given the
sequences of random answers of random oracles (x||y),
the probability that B obtains a valid proxy signature

is ε · (1− 1/8n
2
3
0)/qw. Following the splitting lemma,

there exists such a “good” subset Ω ∈ X such that
the probability that the probability that x ∈ Ω is at

least ε · (1− 1/8n
2
3
0)/2qw, and for any s ∈ Ω, y ∈ Y ,

the probability that B gets a valid proxy signature is at

least ε · (1− 1/8n
2
3
0)/2qw with the sequences of random

answers (s||y). Therefore, the probability that B can
solve the factorization problem is

SuccIFB ≥ 1

4
· ε · (1− 1/8n

2
3
0)/qw · ε · (1− 1/8n

2
3
0)/2qw

=
ε2 · (1− 1/8n

2
3
0)2

8 · q2w
.

�
Existential unforgeability against Type 3

Adversary

The Computer Journal, Vol. ??, No. ??, ????

Secure Delegation of Signing Power from Factorization 9

Theorem 5.2. If there exists a type 3 adversary A3

that can (t, qps, ε) break the proxy signature scheme,
there exists another algorithm B that can use A3 to solve
an instance of factoring problem with probability

SuccIFB ≥
1

4q2H1

· ε3 · (1− 1

n
)3.

Proof. The adversary A3 possesses the public keys
of the original signer and the proxy signer and the
private key of the original signer, thus, A3 can generate
delegations on any warrant. As a result, delegation
queries are not required here. Assume B is given a
large composite number N with |N | ≥ 1024 bits, B’s
goal is factoring N . B will simulate the challenger and
response A3’s queries in the following way.

Setup: B sets N , the input of the factorization
problem, as n1, the public key of the proxy
signer, retaining H1 : {0, 1}∗ → [h, h′) with h′ −
h (mod n0) ≥ 8n

2
3
0 , H2 : {0, 1}∗ → Zn1 and

H3 : {0, 1}∗ → Zn1 for use as random oracles.
Then, B picks two large primes p0, q0 as the original
signer’s secret key and the corresponding public
key is n0 = p0q0. B delivers (N, p0, q0, n0) to A3.

H2 queries: A3 can make at most qH2
queries on the

hash function H2 for the input (wi, r
′
i) adaptively.

B maintains a hash list called L2 to store the
answers for the consistency of a hash function. If B
has received an identical query before, it responds
as it did before. Otherwise, B picks a random
value hi ∈ Zn1

, returns hi to A2 and logs the tuple
(wi, r

′
i, hi) into L2.

H3 queries: A3 can make at most qH3 queries on the
hash function H3 for the input (mj , rj) adaptively.
B maintains a hash list called L3 to store the
answers for the consistency of a hash function. If B
has received an identical query before, it responds
as it did before. Otherwise, B picks a random
h′j ∈ Zn1 , returns h′j to A3 and adds the tuple
(mj , rj , h

′
j) into L3.

H1 queries: A3 can make at most qH1 queries on the
hash function H1 for the input (vi, wi) adaptively.
B maintains a hash list L1 to store the answers for
the consistency of a hash function. For each request
on (vi, wi), if B has received the same query before,
it returns the previous answer to A2. Otherwise, B
picks a random li ∈ Zn1 , returns hi to A2 and logs
(⊥,⊥,⊥, vi, wi, li) into L1 list.

Proxy signature queries: A3 can make at most qps
proxy signature queries. For each proxy signature
query on (wi,mi), B firstly generates a delegation
(ai, bi, si, ti) for wi since he has original signer’s
secret key (p0, q0). B searches the L2 list to check
if there exists an item (wi, r

′
i, hi). If there is

no such an item, B picks r′i, hi ∈ ZN randomly

and logs (wi, r
′
i, hi) into L2 list. Then, B picks

a random ri ∈ Zn1
and checks whether there

exists an item (mi, ri, h
′
i) in L3 list. If there is

no such an item, B picks a random h′i ∈ Zn1 ,
and adds the tuple (mi, ri, h

′
i) into L3. B selects

a random t′i, computes vi = rig
h′i||t

′
i and sets

H1(vi, wi) → s2i · 2ai · (−1)−bi . Finally, B logs
(⊥,⊥,⊥, vi, wi, s2i · 2ai · (−1)−bi) into L1 list and
transmits (ai, bi, si, ri, r

′
i, ti, t

′
i) to A3 as the answer

to his proxy signature query.

Solving IF problem: The simulated outputs are
indistinguishable from those in the real attacks in
the random oracle model. Therefore, after a series
of queries, A3 will output a new proxy signature
σ = (a∗0, b

∗
0, s
∗
0, t
∗
0, r
∗
1 , r
∗
2 , t
∗
1) on the message m∗

under the warrant w∗ with probability ε. If A3

has not queried H3(m∗, r∗2), the probability that
σ is valid is less than 1/n1 since the answers
to the H3 hash functions are picked randomly
from Zn1

. Thus, A3 will produce a valid forgery
after querying the H3 oracle with probability ε′ =
1 − 1/n1 and the answer to H3(m∗, r∗2) is h′.
Then, based on the well-known oracle replay attack
and the forking lemma [32], A3 uses the oracle
replay technique by a polynomial replay of the
attack with the same random salts and a different
oracle called H ′3 to get another forgery σ′ =
(a′0, b

′
0, s
′
0, t
′
0, r
′
1, r
∗
2 , t
′
1) on the message m∗ under

the warrant w∗, and the answer to H ′3(m∗, r∗2) is
h′′. Now, we have

r∗2g
h′||t∗1 ≡ r∗2gh

′′||t′1 (mod n1).

Thus, t∗1+2kh′ ≡ t′1+2kh′′ mod (λ(n1)) where k =
|λ(n1)| denotes the bit length of λ(n1). Therefore,
λ(n1) divides t∗1− t′1 + 2k(h′−h′′), which indicates
that φ(n1) divides 2(t∗1−t′1+2k(h′−h′′)). Following
the conclusion due to Miller [43], knowing such
a multiple of φ(n1) is equivalent to factoring n1,
which contracts the factoring assumption. The
probability that B can solve the factorization
problem instance is

SuccIFB ≥
1

4q2H1

· ε3 · (1− 1

n
)3.

�

6. CONCLUSION

In this paper, we put forward a novel construction of
proxy signature whose unforgeability can be reduced
to the integer factorization problem. The new scheme
employed improved Rabin-type digital signature and a
factorization based key-exposure free chameleon hash
function. We proved that the scheme is secure against
all adversaries, in the random oracle model. Our scheme
compares favorably with existing schemes based on the

The Computer Journal, Vol. ??, No. ??, ????

10 Y. Yu, M.H. AU, Y. Mu, W. Susilo

RSA assumption or the factorization assumption. How
to construct a proxy signature scheme with tighter
reductions to factorization without using forking lemma
is our future work.

Acknowledgement: The first author is supported by
the University of Wollongong Vice Chancellor Fellow-
ship and the fourth author is supported by Australian
Research Council Future Fellowship FT0991397. This
work is supported by the NSFC of China under Grants
61003232, 61103207, U1233108, the National Research
Foundation for the Doctoral Program of Higher Educa-
tion of China under Grant 20100185120012, the NSFC
of China for International Young Scientists under Grant
61250110543, and the Fundamental Research Funds for
the Central Universities under Grants ZYGX2010J066
and ZYGX2011J067.

REFERENCES

[1] Mambo, M., Usuda, K., Okamoto, E. (1996) Proxy
signature: delegation of the power to sign messages.
IEICE Trans. Fundamentals, E79-A (9), 1338–1353.

[2] Tan, Z. (2011) An off-line electronic cash scheme based
on proxy blind signature. The Computer Journal, 54
(4), 505–512.

[3] Yu, Y., Mu, Y., Wang, G., Sun, Y. (2011)
Cryptanalysis of an off-line electronic cash scheme
based on proxy blind signature. The Computer Journal,
54 (10), 1645–1651.

[4] Zhang, J., Liu, C., Yang, Y. (2010) An efficient secure
proxy verifiably encrypted signature scheme, Journal of
Network and Computer Applications, 33(1), 29–34.

[5] Lee, B., Kim, H., Kim, K. (2011) Secure mobile
agent using strong non-designated proxy signature. In
Mu, Y., Varadharajan, Vijay.(eds), Proc. of ACISP
2001, Sydney, Australia, July 11–13, Lecture Note in
Computer Science 2119, pp. 474–486. Springer, Berlin.

[6] Lee, B., Kim, H., Kim, K. (2001) Strong proxy
signature and its applications, in: The 2001 Symposium
on Cryptography and Information Security Oiso,
Japan, January 23-26, 603–08.

[7] Okamoto, T., Tada, M., Okamoto, E. (1999) Extended
proxy signatures for smart cards. In: Mambo,
M., Zheng Y. (eds.), Information Security, Second
International Workshop, ISW’99, Kuala Lumpur,
Malaysia, Nov 1999, Lecture Note in Computer Science
1729, pp. 247–258. Springer, Berlin.

[8] Boldyreva, A., Palacio, A., Warinschi, B. (2012) Secure
proxy signature scheme for delegation of signing rights.
Journal of Cryptology. 25(1), 57–115.

[9] Lee, J. Y., Cheon, J. H., Kim, S. (2003) An analysis
of proxy signatures: is a secure channel necessary? In
Joye, M. (eds.), Topics in Cryptology - CT-RSA 2003,
San Francisco, CA, USA, April 13-17, 2003, Lecture
Note in Computer Science 2612, pp. 68–79. Springer,
Berlin.

[10] Kim, S., Park, S., Won, D. (1997) Proxy signatures,
revisited. In Han, Y., Okamoto, T., Qing, S.
(eds.), Information and Communication Security, First
International Conference, ICICS’97, Beijing, China,
Nov 11–14, 1997. Lecture Note in Computer Science
1334, pp. 223–232. Springer, Berlin.

[11] Wang, G., Bao, F., Zhou, J., Deng, R. H. (2003)
Security analysis of some proxy signatures. In Qing,
S., Gollmann, D., Zhou J. (eds.), Information
and Communications Security, 5th International
Conference, ICICS 2003, Huhehaote, China, Oct 10-
13, 2003. Lecture Note in Computer Science 2971, pp.
305–319. Springer, Berlin.

[12] Shao,Z. (2009) Improvement of identity-based proxy
multi-signature scheme. Journal of Systems and
Software. 82(5), 794–800.

[13] Sun, Y. , Xu, C., Yu, Y., Mu, Y. (2011) Strongly
unforgeable proxy signature scheme secure in the
standard model. Journal of Systems and Software.
84(9), 1471–1479.

[14] Huang, X., Mu, Y., Susilo, W., Zhang, F. (2005) A
short proxy signature scheme: efficient authentication
in the ubiquitous world. In Callaghan, V., Enokido, T.,
Jin, H. (eds), Proc. of UISW2005, Nagasaki, Japan, Dec
6–7, 2005. Lecture Note in Computer Science 3823, pp.
480–489. Springer, Berlin.

[15] Zhang, F., Naini, R., Lin, C. (2004) Some new
proxy signature schemes from bilinear pairings. In
Progress on Cryptography: 25 years of Cryptography
in China, Kluwer International Series in Engineering
and Computer Science, 769, 59–66.

[16] Lu, R., Cao, Z. (2005) Designated verifier proxy
signature scheme with message recovery. Applied
Mathematics and Computation. 169(2), 1237–1246.

[17] Yu, Y., Xu, C., Zhang, X., Liao, Y. (2009) Designated
verifier proxy signature scheme without random oracles,
Computers and Mathematics with Applications. 57(8),
1352–1364.

[18] Schdult, J., Matsuura, K., Paterson, K. (2008) Proxy
signatures secure against proxy key exposure. In
Cramer R. (ed.), Proc. of PKC 2008, Barcelona, Spain,
March 9–12. Lecture Note in Computer Science 4939,
pp. 344–359. Springer, Berlin.

[19] Shao, Z. (2003) Proxy siganture schemes based on
factoring. Information Processing Letters, 85, 137–143.

[20] Shao, Z. (2009) Provably secure proxy-protected
signature schemes based on RSA. Computers and
Electrical Engineering. 35(3), 497–505.

[21] Zhou, Y., Cao, Z., Lu, R. (2005) Provably secure
proxy-protected signature schemes based on factoring.
Applied Mathematics and Computations. 164, 83–98.

[22] Park,J. H. B., Kang, G., Han, J. W. (2005)
Cryptanalysis of Zhou et al.’s proxy-protected signature
schemes, Applied Mathematics and Computations. 169,
192–197.

[23] Liu, Y. C., Wen, H. A., Lin,C. L., Hwang, T.
(2007) Proxy-protected signature secure against the
undelegated proxy signature attack. Computers and
Electrical Engineering. 33, 177–185.

[24] Hu, X., Xu, H., Si, T. (2010) Analysis and
improvement of proxy-protected signature secure
against the undelegated proxy signature attack. Journal
of Computational Information System. 6(9), 2997–
3002.

[25] Gentry, C. (2004) How to compress Rabin ciphertexts
and signatures. In. Franklin M. K.(ed.), Advances
in Cryptology - CRYPTO 2004, Santa Barbara,
California, USA, August 15–19, 2004, Lecture Note in
Computer Science 3152, pp. 179–200. Springer, Berlin.

The Computer Journal, Vol. ??, No. ??, ????

Secure Delegation of Signing Power from Factorization 11

[26] Schnorr, C. P. (1989) Efficient identification and
signatures for smart cards. In Brassard G. (Ed.), Proc.
of CRYPTO 1989, Santa Barbara, California, USA,
August 20-24, 1989, 239-252

[27] Rabin, M. O. (1979) Digitalized signatures and
public key functions as intractable as factorization,
MIT/LCS/TR-212, MIT Laboratory for computer
Science, 1979.

[28] Hoffstein, J., Pipher, J., Silverman, J. H. (2008) An
introduction to mathematical cryptography, Springer
Science+Business Media.

[29] Shoup, V. (2008) A computational introduction to
number theory and algebra, Cambridge University
Press.

[30] B, Valle’e (1998) Provably fast integer factoring with
quasi-uniform small quadratic residues. in: Proc. of
STOC 1989, 98–106.

[31] Coron,J. S. (2002) Security proof for partial-domain
hash signature schemes. In. Yung M. (ed.), Proc.
of CRYPTO 2002, Santa Barbara, California, USA,
August 18-22, 2002, Lecture Notes in Computer Science
2442, pp. 613–626. Springer, Berlin.

[32] Pointcheval, D., Stern, J. (2000) Security arguments
for digital signatures and blind signatures. Journal of
Cryptology. 13(3), 361–396.

[33] Yu, Y., Mu, Y., Susilo, W., Sun, Y., Ji, Y.
(2012) Provably secure proxy siganture scheme from
factorization, Mathematical and Computer Modelling.
55, 1160–1168.

[34] Krawczyk, H., Rabin, T. (2000) Chameleon hashing
and signatures. Network and distributed system
security symposium, 143–54.

[35] Shamir, A., Tauman, Y. (2001) Improved On-line/Off-
line Signature Schemes. In Kilian J. (ed.), Proc.
of CRYPTO 2001, Santa Barbara, California, USA,
August 19–23, 2001, Lecture Notes in Computer
Science 2139, pp. 355–367. Springer, Berlin.

[36] Harn, L., Hsin, W., Lin, C. (2010) Efficient On-
line/Off-line Signature Schemes Based on Multiple-
Collision Trapdoor Hash Families. Comput. J., 53(9),
1478–1484.

[37] Ateniese, G., Medeiros, B. (2004) Identity-based
chameleon hash and applications. In Juels A. (Ed.),
Proc. of Financial Cryptography 2004, Key West, FL,
USA, February 9–12, 2004 Lecture Notes in Computer
Science 3110, pp. 164–180. Springer, Berlin.

[38] Ateniese, G., Medeiros, B. (2004) On the key exposure
problem in chameleon hashes. In Blundo, C., Cimato S.
(eds.), Proc. of SCN 2004, Amalfi, Italy, Sep 8–10, 2004,
Lecture Notes in Computer Science 3352, pp. 165–179.
Springer, Berlin.

[39] Chen, X., Zhang, F., Tian H. et al.(2008), Efficient
generic on-line/off-line (threshold) signatures without
key exposure, Information Sciences. 178 (21), 4192–
4203.

[40] Chen, X., Wu, Q., Zhang, F., Tian H. et al. (2011)
New receipt-free voting scheme using double-trapdoor
commitment, Information Sciences. 181(8), 1493–1502.

[41] Mehta, M., Harn, L.(2005) Efficient one-time proxy
signatures, IEE Proc.-Commun. 152 (2), 129–133.

[42] Chandrasekhar,S., Chakrabarti, S., Singhal, M.,
Calvert, K. L. (2010) Efficient proxy signatures based

on trapdoor hash functions. IET Information Security.
4(4). 322–332.

[43] Miller, G. (1976) Reimann’s hypothesis and tests for
primality. Journal of Computer System Science. 13,
300–317.

[44] Shamus Software Ltd., Miracle library. Available
from: http://www.shamus.ie/index.php?page=home.
(accessed April 10, 2010)

The Computer Journal, Vol. ??, No. ??, ????

	Secure delegation of signing power from factorization
	Recommended Citation

	Secure delegation of signing power from factorization
	Abstract
	Disciplines
	Publication Details

	tmp.1456791447.pdf.EM1ml

