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Evidence for altered cholesterol metabolism in Huntington's disease post
mortem brain tissue

Abstract
Aims Cholesterol plays an essential role in membrane structure and function, being especially important in
the brain. Alteration of brain cholesterol synthesis and metabolism has been demonstrated in several
Huntington's disease (HD) mouse and cell models; however, less is known about these alterations in human
tissue. This study aimed to identify alterations to cholesterol synthetic and metabolic pathways in human HD
brain tissue. Methods A broad range of cholesterol synthetic precursors, metabolites and oxidation products
were measured by gas chromatography-tandem mass spectrometry in five regions of human post mortem HD
brain and compared with age- and sex-matched control tissues. The level of enzymes that regulate cholesterol
homeostasis, cholesterol 24-hydroxylase and delta(24)-sterol reductase were investigated by Western blotting
and qPCR in putamen. Results The most significant changes were localized to the putamen, where a 60%
decrease in 24(S)-hydroxycholesterol, 30% increase in cholesterol and 100-200% increase in synthetic
precursors (lathosterol, zymosterol and desmosterol) was detected. The enzymes cholesterol 24-hydroxylase
and delta(24)-sterol reductase were also significantly decreased in HD putamen as compared with control
tissues. Free radical-generated cholesterol oxidation products 7-keto cholesterol and 7β-hydroxycholesterol
were also increased by 50-70% in HD putamen. Conclusion Human HD brain has significantly decreased
cholesterol metabolism and disrupted cholesterol homeostasis. Our data also indicate that lipid oxidative
stress accompanies HD pathology.
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Abstract 

 

Aims: Cholesterol plays an essential role in membrane structure and function, being 

especially important in the brain. Alteration of brain cholesterol synthesis and metabolism 

has been demonstrated in several Huntington’s disease (HD) mouse and cell models, however 

less is known about these alterations in human tissue. This study aimed to identify alterations 

to cholesterol synthetic and metabolic pathways in human HD brain tissue.  

Methods: A broad range of cholesterol synthetic precursors, metabolites and oxidation 

products were measured by GC-MS/MS in five regions of human post-mortem HD brain and 

compared to age- and sex-matched control tissues. The level of enzymes that regulate 

cholesterol homeostasis, cholesterol 24-hydroxylase and delta(24)-sterol reductase were 

investigated by Western blotting and qPCR in putamen.  

Results: The most significant changes were localised to the putamen, where a 60% decrease 

in 24(S)-hydroxycholesterol, 30% increase in cholesterol and 100 to 200% increase in 

synthetic precursors (lathosterol, zymosterol and desmosterol) was detected. The enzymes 

cholesterol 24-hydroxylase and delta(24)-sterol reductase were also significantly decreased in 

HD putamen as compared to control tissues. Free radical-generated cholesterol oxidation 

products 7-keto cholesterol and 7β-hydroxycholesterol were also increased by 50 to 70% in 

HD putamen. 

Conclusion: Human HD brain has significantly decreased cholesterol metabolism and 

disrupted cholesterol homeostasis. Our data also indicates that lipid oxidative stress 

accompanies HD pathology. 
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Abbreviations: 

HD = Huntington’ disease, GC-MS = gas chromatography-mass spectrometry, HTT = 

huntingtin, DHCR24 = delta(24)-sterol reductase, BBB = blood brain barrier, 24-OHC = 

24(S)-hydroxycholesterol, CYP46A1 = cholesterol 24-hydroxylase, 27-OHC = 27-

hydroxycholesterol, CYP27A1 = cholesterol 27-hydroxylase, CYP7B1 = 5-

hydroxycholesterol 7-α-hydroxylase, AD= Alzheimer’s disease, PD = Parkinson’s disease, 

ROS = reactive oxygen species, COPs = cholesterol oxidation products, 7β-OH = 7β-

hydroxycholesterol, 7-KC = 7-ketocholesterol, BDNF = brain derived neurotrophic factor.  

 

Introduction 

Huntington’s disease (HD) is an autosomal dominant, progressive neurodegenerative disease 

characterised by the expansion of a glutamine repeat on the N-terminus of the huntingtin 

protein (HTT). Classic symptoms include involuntary movement and cognitive dysfunction. 

The classical neuropathological hallmark of HD is the severe atrophy of the striatum (caudate 

and putamen) [1], with substantial volume loss in the order of 50%. While these brain regions 

are most severely affected, MRI techniques have highlighted that the hippocampus, cerebral 

cortex, globus pallidus and amygdala also have reduced volume in HD patients [2]. Loss of 

neurons is accompanied by progressive astrocytosis and an increased density of 

oligodendrocytes [3]. While it is not fully understood how the polyglutamine expansion 

causes cellular dysfunction in HD, it has been associated with lipids, altering membrane order 

[4] and the interaction with phospholipids [5].  Despite the genotypic identification of mutant 

huntingtin carriers, there is a lack of reliable biomarkers to predict HD progression or 

effectiveness of therapies. Several studies have identified that cholesterol synthesis and 

metabolism in HD cell lines and animal models is significantly disturbed [6-8], but the 
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mechanisms and metabolic pathways affected have not been fully examined in human HD 

brain. 

 

Cholesterol is highly concentrated in the brain, accounting for 25% of total body cholesterol. 

The majority of cholesterol is found in myelin, accounting for 70% of total cholesterol, with 

the remainder found in cellular membranes of neurons and glial cells. Cholesterol has an 

essential role in many neurological processes including synaptogenesis [9], axon growth [10] 

and maintenance of dendrites [11]. Structurally, cholesterol modulates membrane fluidity and 

organisation [12] where it can alter signalling functions, membrane protein organisation and 

lipid raft structure [13-16]. Brain levels of cholesterol are tightly regulated by de novo 

synthesis, a pathway that involves over 20 steps. In the late stage of cholesterol synthesis the 

pathway branches at lanosterol into the Bloch pathway via the precursor desmosterol, or the 

Kandutsch-Russell pathway via lathosterol. Several other post squalene precursors exist in 

these pathways (see Fig. 1). Plasma levels of synthetic precursors have been positively 

correlated to whole body cholesterol synthesis [17, 18], but this does not reflect cholesterol 

synthesis in the central nervous system. Direct measurement of precursor levels in brain 

tissue is therefore necessary to monitor the cholesterol synthetic pathway [7, 8, 19]. Defects 

in the cholesterol synthetic pathway can have severe consequences, especially in the brain 

where tight regulation of cholesterol synthesis is essential for normal neuronal function. 

Mutations in downstream synthetic enzymes such as delta(24)-sterol reductase (DHCR24) 

can cause desmosterolosis [20], a severe developmental and neurological disorder.  

The blood brain barrier (BBB) is impermeable to cholesterol, preventing fluctuations in 

circulating cholesterol affecting brain levels. The hydroxylation of cholesterol to more polar 

oxysterols enables movement across the BBB. 24(S)-Hydroxycholesterol (24-OHC), formed 
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by the brain specific enzyme cholesterol 24-hydroxylase (CYP46A1) has been identified as 

the major route of cholesterol elimination from the human brain [21]. Since CYP46A1 

expression is primarily localised to neurons [22], it has been suggested that generation of 24-

OHC (as measured in plasma) is a marker of metabolically active neurons in the brain [23]. 

Plasma 24-OHC levels are reduced in HD patients [24, 25] and recent evidence suggests that 

changes in CYP46A1 and 24-OHC brain levels may play a role in neurodegeneration [26-29]. 

However, the exact role this might play in HD pathogenesis has not been established. 

Oxysterols formed in peripheral tissue may also enter the brain. C27 hydroxylation of 

cholesterol forms 27-hydroxycholesterol (27-OHC), an enzymatic reaction that occurs in 

many tissues outside the central nervous system. A concentration gradient results in a net 

movement of 27-OHC from circulation into the brain [30], where it is quickly metabolised 

into more polar products (including dihydroxysterols and cholestenoic acids), catalysed by 

the enzymes cholesterol 27-hydroxylase (CYP27A1) and 5-hydroxycholesterol 7-α-

hydroxylase (CYP7B1) [31]. Accumulation of 27-OHC has been described in cases of 

Alzheimer’s disease (AD) [32] as well as patients with hereditary defects in the CYP7B1 gene 

[33], but very little is known regarding 27-OHC changes in HD. 

Accumulation of unrepaired oxidative damage to biological macro molecules is a major 

component of neurodegenerative diseases, including AD [34] and Parkinson’s disease (PD) 

[35]. Oxidative stress is also observed in HD with markers of lipid peroxidation and DNA 

oxidation elevated [36-38]. Brain lipids represent a major target for oxidation, particularly 

cell membrane cholesterol that is susceptible to reactive oxygen species (ROS) attack and 

formation of cholesterol oxidation products (COPs). 7β-Hydroxycholesterol (7β-OHC) and 7-

ketocholesterol (7-KC) are formed by direct ROS attack at the 5,6 double bond on 

cholesterol, and are elevated in diseases and pathological models that involve oxidative stress 

including atherosclerosis [39, 40], cystic fibrosis [41] and retinal photodamage [42]. Due to 
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the large pool of cholesterol in the brain, COPs represent potentially important biomarkers for 

neurodegenerative diseases. 

Perturbed cholesterol pathways have been previously reported in HD mouse and cell models 

[6, 7, 19, 43]. While these models have described significant alteration of cholesterol 

synthesis and metabolism, the current literature contains very limited data obtained from 

human tissue, which is required for greater understanding of human HD pathophysiology. 

Here we report for the first time the level of cholesterol metabolites, synthetic precursors and 

oxidation products in 13 cases of human HD across 5 brain regions. We have also 

investigated the levels of two key cholesterol synthetic and metabolic enzymes in HD 

putamen.  
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Materials and Methods 

Materials 

Desmosterol-d6, zymosterol-d5, zymosterol and lanosterol-d6 were obtained from Avanti 

lipids (Alabaster, AL, USA). Tert- butylhydroxytoluene (BHT), cholesterol, -cholestane, 

7–hydroxycholesterol, 7-dehydrocholesterol and 7-ketocholesterol and squalene were from 

Sigma (St. Louis, MO, USA). Lathosterol, lanosterol, desmosterol, 27-hydroxycholesterol, 

campesterol, and were obtained from Steraloids (Newport, RI, USA). Campesterol-d3, 7–

hydroxycholesterol-d7, lathosterol-d4 and 7-ketocholesterol-d7 were purchased from CDN 

Isotopes (Quebec, Canada). 27-hydroxycholesterol-d5, 24-hydroxycholesterol and 24-

hydroxycholestero-d7 were from Medical Isotopes , Inc (Pelham, AL, USA). Squalene-d6 and 

24,25-dihydrolanosterol-d6 was obtained from Toronto research chemicals (TRC, Ontario, 

Canada). All standards obtained were of the highest purity (>95%). Methanol, hexane, 

methyl tert-butyl ether (MTBE), acetonitrile, toluene, formic acid and NaOH were purchased 

from Ajax Finechem (Thermo Fisher Scientific, AU). CUQAX223 UCT Clean-Up QAX2 

solid phase extraction columns and BSTFA (N,O-bis(trimethylsilyl) trifluoroacetamide) + 

1% TMCS  (trimethylchlorosilane) was purchased from PM Separations (Qld, Australia). 

 

Human brain tissue 

Frozen brain tissues from five brain regions (putamen, caudate, cerebellum, grey and white 

frontal cortex) were received from the Victorian Brain Bank Network. The cohort contained 

13 cases of HD and 13 controls from each brain region. Tissue was transported on dry ice and 

stored at -80°C until analysis. Demographic and basic clinical data are presented in Table 1. 

The mean age of control cases was 68.9 ± 1.9 y which was not significantly different from 
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the HD cases with mean age of 67.3 ± 2.2 y. Post mortem interval (PMI) of control cases 

(41.5 ± 4 h) and tissue pH (6.4 ± 0.1) was not significantly different to HD PMI (37.5 ± 6.2 

h) or tissue pH (6.4 ± 0.04). All brain tissue was from the left hemisphere of Caucasian 

donors. Ethics approval was from the University of Wollongong Human Research Ethics 

Committee (HE10/327). Control tissue was screened using standardized protocols to confirm 

the absence of degenerative pathologies. The research was carried out in accordance with the 

Declaration of Helsinki (2008) of the World Medical Association. All persons gave their 

informed consent prior to their inclusion in the study. 

 

Lipid extraction 

Brain lipids were extracted as previously described with minor modifications [44]. Frozen 

brain tissue (~5-10 mg) was weighed directly into a 0.5 mL polypropylene tube containing 5 

Zircosil® ceramic beads (1.3 mm) (Klausen Pty Ltd, NSW, Australia), 150 µL methanol 

(0.01% BHT) and internal standards (4oC). Tissue was homogenised at 4°C using a Precellys 

24 homogeniser (Bertin Technologies) (2 x 20 s at 5,000 rpm) and the homogenate was 

transferred to a clean glass vial. The tube and ceramic beads were washed with 100 µL 

methanol (4°C) and was added to the homogenate with 250 µL of NaOH (1 M). The sample 

was hydrolysed at room temperature for 16 h in the absence of light and then acidified with 

330 µL of 1 M formic acid. The sample was made up to a final volume of 3 mL (8% 

methanol, pH 4.5) by the addition of 2.2 mL milliQ water. Solid-phase extraction (SPE) was 

carried out on a 200 mg mixed C8/anion exchange quaternary amine column (CUQAX223, 

UCT Inc.) that had been preconditioned with 2 mL methanol and then 2 mL 40 mM formic 

acid buffer (pH 4.5). The lipid extract was loaded and the column washed with 2 mL 

methanol in 40 mM formic acid (40:60). The SPE column was dried with N2 gas flow for 5 
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min. Sterols and oxysterols were eluted with 2 mL hexane followed by 2 mL hexane/MTBE 

(50:50).  

 

GC-MS sterol analysis 

GC-MS sterol analysis was performed as previously described with minor modifications [35]. 

The sterol/oxysterol fraction was dried under N2 at 37°C and derivatised by the addition of 20 

µL acetonitrile and 20 µL BSTFA + 1% TMCS  for one hour at 37oC. Samples were dried 

under N2 and immediately reconstituted in 40 µL toluene for GC-MS/MS analysis. Selective 

reaction monitoring (SRM) analysis of sterols/oxysterols was carried out on an Agilent 

7000B triple quadrupole mass selective detector interfaced with an Agilent 7890A GC system 

gas chromatograph. Quantification was performed by Agilent Masshunter Quantitative 

software (V B.05.00) by comparison of specific SRM transitions with their heavy isotopes 

and using relative response factor (RRF) calibration. Cholesterol was quantified using the 

internal standard α-cholestane in a separate injection and chromatographic run.  

 

Western Blotting 

Brain tissue (~20 mg) was added to 250 uL ice cold radio-immunoprecipitation assay (RIPA; 

50 mM Tris, 150 nM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% Triton X 100) buffer 

containing 1% protease inhibitor (P8340, Sigma) and homogenised at 4°C using a Precellys 

24 homogeniser (Bertin Technologies) (2 x 20 s, 6000 rpm). The homogenate was 

centrifuged at 14 000 x g and the soluble fraction taken for SDS-PAGE. Homogenates were 

incubated at 95°C for 10 min with loading dye containing β-mercaptoethanol. Equal amounts 

of protein (90 µg) were loaded onto a 12% acrylamide gel and electrophoresed for 1 h at 
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150V. Proteins were then transferred onto a 0.4 µm nitrocellulose membrane (BIO-RAD, 

Gladesville, NSW, Australia) for 35 min at 100V. Antigen retrieval was performed by adding 

50 mL of boiling phosphate buffered saline + tween 20 (PBST) to the membrane and left to 

cool to room temperature. The membrane was blocked with a 10 mL solution of PBST 

containing 5% skim milk powder, rocking for 1 h at room temperature. Membranes were 

probed with antibodies detecting CYP46A1 1:100 (1F11, Santa Cruz Biotechnology) and 

DHCR24 1:1000 (ab137845, Abcam). Antibodies were diluted in 10 mL PBST 5% skim milk 

powder and incubated with membranes overnight, rocking at 4°C. Membranes were washed 3 

x 10 min with PBST at room temperature before being incubated for 1 h at room temperature 

with a species specific IgG-HRP conjugated secondary antibody (1:3000). Membranes were 

washed 3 x 10 min with PBST before chemiluminescent detection of signal. Membranes were 

stripped, washed and re-probe for β-actin (1:10 000) following the protocol outlined above. 

Signal intensity was quantified using ImageJ software V1.46r (National Institutes of Health, 

USA), and normalised for β-actin. 

 

qPCR 

The quantitative PCR of human brain tissue was performed as previously described [45] with 

minor modifications. Briefly, human tissue (~30mg) was added to 10 volumes of TRIzol 

reagent (wt:vol) and homogenised in a Precellys 24 homogeniser at 2 x 20 s at 5500 rpm. The 

RNA concentration and purity was determined spectrophotometrically with a Nanodrop 1000 

(Thermo Scientific). Following the manufacturer’s protocol, 2 µg of total RNA was used to 

synthesise cDNA using a Tetro cDNA synthesis kit (Oligo dT18) (Bioline, Sydney, Australia). 

Quantitative PCR was performed using a Roche Lightcycler 480 using SensiFAST SYBR 

No-ROX kit (Bioline) following the manufacturer’s instructions. Analyses were carried out in 
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triplicate and gene of interest mRNA was normalised to GAPDH and U6 mRNA levels. Gene 

expression was calculated using the comparative threshold cycle (Ct) value method using the 

formula 2-ΔΔCt (ΔΔCt = ΔCt sample – ΔCt reference) as described [46]. All primers were 

purchased from Sigma Aldrich (Sydney, Australia). The primer sequences used are as 

follows: CYP46A1 (F: TTCTAGGACACCTCCCCTGC and R: 

CAGGTCCATACTTCTTAGCCCAAT) DHCR24 (F: TGTTCGTGTGCCTCTTCCTC and 

R: ATTCCCGCACCTGCTTCTG) GAPDH (F: GAGCACAAGAGGAAGAGAGAGACCC 

and R: GTTGAGCACAGGGTACTTTATTGATGGTACATG) U6 (F: 

CTCGCTTCGGCAGCACA and R: AACGCTTCACGAATTTGCGT). 

 

Statistical analysis  

Statistical analyses were performed using GraphPad Prism software V5.00 (Graphpad 

Software Inc., USA). An unpaired t-test was used to test for significantly different means, an 

F-test was used to determine if variances were significantly different. Welch’s correction for 

unequal variances was used when variances were found to be significantly different. 

Additional post hoc adjustments for multiple comparisons were conducted using the 

Benjamini and Hochberg method [47] in JMP software V12.1.0 (SAS Institute Inc., USA). 

All results are expressed as mean ± SEM with an adjusted P < 0.05 considered significant. A 

full list of P-values and adjusted P-values can be found in Supplemental Table 1. 

 

Results 

Human HD post mortem brain tissue from putamen, caudate, frontal cortex (grey and white) 

and cerebellum was analysed using mass dilution GC-MS/MS. Cholesterol metabolites, 
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oxidation products and synthetic precursors are presented as percent relative change 

compared to control (Fig. 2). Absolute values of sterols measured are provided in 

Supplemental Table 2. 

 

Cholesterol metabolites 

The most significant changes were detected in HD putamen, a region that is severely affected 

in HD. The brain specific cholesterol metabolite 24-OHC, was reduced close to 3-fold (p = 

0.0011) in HD putamen (Fig. 2A). Caudate was the only other region to show changes in this 

metabolite with a 3-fold reduction (p = 0.0099) of 24-OHC in HD tissue compared to control 

tissue (Fig. 2A). 27-OHC, a peripheral cholesterol metabolite was significantly increased by 

3-fold in HD putamen (p = 0.0196). 

Cholesterol oxidation products 

HD putamen was the only brain region to show evidence of oxidative stress, with a 50 to 70% 

increase in the cholesterol oxidation products 7-KC (p = 0.00495) and 7β-OH (p = 0.0355) 

(Fig. 2B). 

 

Cholesterol synthetic precursors 

Altered cholesterol synthesis was evident in HD putamen which exhibited increases in the 

cholesterol synthetic precursors, desmosterol (3-fold, p = 0.0140), lathosterol (2-fold, p = 

0.0495), zymosterol (3-fold, p = 0.0145) and 24, 25 dihydro lanosterol (2-fold, p = 0.0140) 

(Fig 2C). Total cholesterol levels were also significantly increased by 30% in HD putamen (p 
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= 0.0470) (Fig. 2D). No other brain regions were found to have significant changes in 

cholesterol precursors, or cholesterol levels. 

 

Metabolic and synthetic enzymes 

To further investigate pathways that may contribute to changes in brain cholesterol 

metabolism and synthesis observed in putamen, we examined two major enzymes involved 

by western blotting. The protein level of CYP46A1 in HD was reduced 10-fold compared to 

control (p = 0.0027) (Fig. 3A). We also detected a significant (10-fold) reduction (p = 

0.0014) of DHCR24 protein levels (Fig. 3B), which is in agreement with the accumulation of 

desmosterol seen in HD putamen (Fig. 2B). 

The mRNA levels of the genes coding for cholesterol 24-hydroxylase (CYP46A1) and 

delta(24)-sterol reductase (DHCR24) were also measured in putamen using quantitative PCR. 

mRNA levels did not reflect protein levels and were not significantly changed between HD 

and control tissue in both CYP46A1 and DHCR2 (Fig. 4). mRNA levels normalised to 

individual house keeper genes can be found in Supplemental Figure 1. 

Discussion 

Alteration of cholesterol metabolism has been recently linked to several neurodegenerative 

diseases including AD, PD and HD [35, 43, 48]. In particular, the elimination pathway where 

24-OHC is formed by the hydroxylation of cholesterol has been suggested as a contributing 

factor in neurodegeneration [49]. Neuronal 24-OHC has a major role in the turn-over of 

cholesterol in the brain [21], and the level of 24-OHC in plasma has been suggested as a 

measure of CYP46A1 enzymatic activity and thus metabolically active neurons [23].  
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Previous studies have found that the plasma levels of 24-OHC in HD patients correlate with 

disease severity and brain volume measured by MRI [24, 25]. Here for the first time we 

report the levels of 24-OHC in human HD post-mortem brain tissue. A significant reduction 

of 24-OHC was found in HD putamen along with a large (10-fold) reduction in the protein 

level of CYP46A1, the enzyme responsible for 24-OHC formation. Reduced enzyme levels 

may be due to neuronal loss, the location which CYP46A1 is primarily located. Alterations in 

post-transcriptional regulation may also play a role since no change in mRNA expression was 

detected between control and HD. This is potentially relevant as protein turnover is known to 

be dysregulated in HD cell models [50]. Caudate (another striatal region affected in HD) also 

had reduced levels of 24-OHC, while grey and white frontal cortex and cerebellum showed 

no change. Although the cerebral cortex is affected in later stages of HD [2, 51], the degree of 

volume loss and astrocytosis is substantially less compared to the striatum [2, 52, 53]. 

Reduced 24-OHC levels in HD striatum supports previous human studies that reported 

reduced plasma levels of this metabolite in HD patients [24, 25]. Our data indicates that 

decreased circulating 24-OHC levels are likely the result of reduced 24-OHC production in 

affected regions and not an aberration of BBB 24-OHC flux. In the mature brain, delivery of 

cholesterol synthesised in the astrocyte is required for normal neuronal function [9, 10, 54].  

It has been hypothesised that 24-OHC production in neurons acts as a feedback molecule to 

initiate the delivery of cholesterol from astrocytes to neurons therefore maintaining 

homeostasis [55]. There is also evidence to suggest that CYP46A1 may have neuroprotective 

properties, being upregulated near plaques [27] and in glia of human AD brain [56]. Whether 

reduced levels of CYP46A1 in HD is a secondary event reflecting active neuron loss, or is a 

pathogenic factor altering cholesterol metabolism and synthesis remains to be established. 

A defect in cholesterol synthesis has been previously described in several cell and mouse 

models of HD. Specifically; a reduction in the cholesterol synthetic precursors lathosterol and 
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lanosterol as well as cholesterol in the YAC128 mouse [19], reduced levels of lathosterol and 

lanosterol but not cholesterol in the R6/2 mouse model [7], reduced mRNA levels of 

cholesterol synthetic enzymes in R6/2 mouse and human HD fibroblasts [6] and reduced 

cholesterol synthetic enzymes in a transgenic HD cell model [43]. In contrast to these 

findings, our data in end stage human HD putamen describes an increase in cholesterol 

synthetic precursors from both the Bloch (desmosterol and 24,25 diHydro lanosterol) and 

Kandutsch-Russell (lathosterol and zymosterol) pathways and an increase in total cholesterol 

levels. No significant changes in squalene levels were observed (Suppl. Table 2) suggesting 

that the earlier mevalonate pathway did not influence the changes that we measured later in 

the pathway. The increase in cholesterol and synthetic precursors was only observed in the 

putamen; a region that degenerates early and severely in the human disease [57]. In contrast 

to macro and microscopic classification of disease pathology which sees the caudate 

degenerate consistently with the putamen [53, 57], we did not observe any cholesterol 

synthetic alterations in this region.  While the cholesterol synthetic changes observed in the 

putamen may suggest an overall increase of cholesterol synthesis utilising both pathways, we 

believe this is not the case for the Bloch pathway. In our study, HD putamen had significantly 

higher levels of desmosterol, an immediate synthetic precursor of cholesterol and a substrate 

of DHCR24. Significantly depleted protein levels of DHCR24 in human HD putamen (10-

fold) provides convincing evidence to explain the reduced DHCR24 activity and subsequent 

accumulation of desmosterol. Unaltered mRNA levels of DHCR24 in putamen again suggests 

enzyme levels are being affected post-transcription. Previous in vitro examination of 

cholesterol synthesis in specific cell types found astrocytes utilise the Bloch pathway via 

desmosterol, while neurons primarily utilised 7-dehydro cholesterol and other precursors 

from the Kandutsch-Russell pathway [58]. This suggests that in late stage human HD, 

desmosterol accumulates in astrocytes due to down regulated DHCR24. An increased density 
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of oligodendrocytes and activated astrocytes is known to be present in HD [3] and is believed 

to be a compensatory response to demyelination in HD [59]. While the specific cell type/s 

exhibiting elevated Kandutsch-Russell synthetic precursors is yet to be determined, increased 

oligodendrocytes attempting remyelination in affected tissue may contribute to this.  

 

Previous studies in HD mouse brain reported a significant reduction of the cholesterol 

precursor lathosterol, which is found in the Kandutsch-Russell pathway. In contrast, the 

Bloch pathway precursor desmosterol, was either unchanged [19] or not reported [7] in these 

previous HD mouse studies. Examining precursors from both arms of the cholesterol 

synthetic pathway in these mouse models enables greater insight into the alterations occurring 

in different cell types, and their possible response to HD pathology / neurodegeneration. The 

differences seen between HD mouse models, in vitro cell models, and human post-mortem 

tissue may reflect a difference in the homeostatic response to mutant HTT between organisms 

and cell types. The differences in the data derived from our current study and previous mouse 

models and cell culture models may also reflect that in this study we examined end stage HD 

where a significant number of vulnerable neurons are predicted to have been lost. Examining 

earlier stages of the disease in brain tissue is therefore important to consolidate the role of 

cholesterol synthesis and metabolism in the early stages of HD in humans. 

 

27-Hydroxycholesterol, a metabolite of cholesterol that is produced predominantly in 

peripheral tissue, was increased in the putamen of human HD brain as compared to controls. 

A trending increase was observed in grey cortex and cerebellum; however this lost 

significance after P-value adjustment. While an increased flux of 27-OHC into the brain may 

be caused by a disrupted BBB, we believe this is not the case in this tissue since sterols that 
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are present in higher peripheral abundance such as campesterol (a dietary derived 

phytosterol) were not significantly different between HD and control brain tissues (data not 

shown). As there is a net movement of 27-OHC from circulation into the brain [30], 27-OHC 

accumulation may be the result of a decrease in the activity of enzymes (such as CYP27A1) 

that further metabolises this oxysterol to cholestenoic acids [31]. Accumulation of 27-OHC is 

potentially important in neurodegeneration as in vitro studies have shown 27-OHC promotes 

β-amyloidogenesis [60] as well as being elevated in human AD brain and transgenic mice 

[32, 61]. While there is little direct in vivo physiological evidence that cholesterol metabolites 

promote neuronal damage, further studies are required to investigate the hypothesis that 

preventing the accumulation of 27-OHC in the brain reduces neurodegeneration in AD and 

HD. 

 

Along with measuring cholesterol metabolites and precursors, our GC-MS method was able 

to sensitively detect oxidation products of cholesterol, and use these as markers of oxidative 

stress in HD brain tissue. Oxidative stress has been previously shown in HD [36], and in 

several other neurodegenerative diseases [34, 35, 62]. Similar to changes seen in other 

sterols, significant increases in 7-KC and 7β-OH were only observed in putamen. The 

specific increase in oxidation products in the putamen is consistent with this region being 

affected early and severely in HD [57]. 7-KC and 7β-OH have been shown to be stable, and 

previously used as markers of oxidative stress in plasma [40] and CSF [63]. Measurement of 

cholesterol oxidation in HD plasma together with other sterols may represent a convenient 

tool to follow progression, quantify severity, and assess therapeutic effectiveness in patients. 

Importantly, these markers can be measured sensitively and reliably by GC-MS techniques. 

 



  18

Homeostasis of cholesterol is essential for neurological function however the precise role of 

cholesterol in HD neurodegeneration is still debated. Evidence suggests that cholesterol 

accumulation in HD alters membrane organisation and cell signalling, enhancing the 

susceptibility of striatal neurons to excitotoxicity [4]. Another hypothesis suggests that 

impaired cholesterol synthesis drives neurodegeneration by limiting the supply of cholesterol 

to neurons [19]. As a result synaptogenesis and dendrite outgrowth is impaired [9, 11], and 

neurotransmission is disrupted [64]. It is also believed that a reduction of brain derived 

neurotrophic factor (BDNF) in HD [65] may play a significant role in neurodegeneration 

[66]. BDNF is a neurotrophin expressed by neurons which promotes cell survival, 

differentiation and growth [67]. Among these properties, BDNF has been shown to promote 

DHCR24 expression [68]. Therefore, a loss of BDNF action may also contribute to the 

cholesterol homeostatic imbalance we have detected in HD putamen. 

Our study identifies for the first time that several cholesterol synthetic and metabolic 

pathways are disturbed in multiple brain regions of human HD, particularly putamen which 

plays a central role in HD pathophysiology. These data provide evidence to support previous 

studies that link altered cholesterol synthesis, metabolism and oxidative stress with the 

neuropathological process involved in HD. Since HD shares similar sterol disturbances as 

other late-onset neurodegenerative diseases, we believe these changes represent potential 

biomarkers for neurodegenerative disease and elucidating cholesterol related mechanisms of 

neuropathology may provide targets for therapeutic intervention. The key finding of reduced 

CYP46A1 in human HD brain confirms previous studies in HD patient plasma that indicate 

24-OHC as a promising peripheral biomarker to monitor the development of HD 

neuropathology. 
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Figure legends 

Fig. 1 Simplified pathway showing cholesterol synthesis, metabolism and free radical 

oxidation relevant to this study. Major post squalene cholesterol synthetic precursors shown 

follow a branched pathway, the Kandutsch-Russell pathway or Bloch pathway. Cholesterol 

can be oxidised enzymatically to form 24(S)-hydroxycholesterol (24-OHC) or 27-

hydroxycholesterol (27-OHC) by cholesterol 24-hydroxylase (CYP46A1) and cholesterol 27-

hydroxylase (CYP27A1). Reactive oxygen species (ROS) can oxidise cholesterol to form 7-

ketocholesterol and 7β-hydroxycholesterol. The position of delta(24)-sterol reductase 

(DHCR24), a cholesterol synthetic enzyme is also shown. Broken lines indicate intermediates 

that have not been shown in this simplified scheme 

Fig. 2 Sterol levels in human HD putamen, caudate, grey cortex, white cortex and 

cerebellum. (A) Cholesterol metabolites (B) Cholesterol oxidation products (C) Cholesterol 

synthetic precursors (D) Cholesterol were measured by GC-MS/MS.  Levels are expressed as 

a percentage change against control tissue. n = 12-13 per group, error bars represent +SEM 

**p < 0.005, *p < 0.05 

Fig. 3 Protein level of cholesterol synthetic and metabolic enzymes in human putamen. Brain 

tissue homogenates from HD and control were probed for (A) cholesterol 24-hydroxylase 

(CYP46A1) and (B) delta(24)-sterol reductase (DHCR24) by western blotting. 

Representative blots are shown (n = 3 per group). Integrated optical density for all blots (n = 

9 per group) is represented as relative abundance compared to control (assigned a value of 

1.0). Blots were normalised to β-actin level. Error bars represent +SEM. **p < 0.005 

Fig. 4 mRNA levels of genes coding for cholesterol synthetic and metabolic enzymes in 

human putamen. The level of CYP46A1 (coding for cholesterol 24-hydroxylase) and 

DHCR24 (coding for delta(24)-sterol reductase) in brain tissue was determined by qPCR (n = 
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9 for control and HD). The genes of interest were normalised to GAPDH and U6 mRNA 

levels and expressed relative to control (assigned a value of 1.0). Error bars represent +SEM 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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