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Abstract
BiOBr nanosheets with highly reactive {001} facets exposed were selectively synthesized by a facile
hydrothermal method. The inner strain in the BiOBr nanosheets has been tuned continuously by the pH
value. The photocatalytic performance of BiOBr in dye degradation can be manipulated by the strain effect.
The low-strain BiOBr nanosheets show improved photocatalytic activity. Density functional calculations
suggest that strain can modify the band structure and symmetry in BiOBr. The enhanced photocatalytic
activity in low-strain BiOBr nanosheets is due to improved charge separation attributable to a highly
dispersive band structure with an indirect band gap.
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Abstract 

BiOBr nanosheets with highly reactive {001} facets exposed were selectively synthesized by a 

facile hydrothermal method. The inner strain in the BiOBr nanosheets has been tuned 

continuously by the pH value. The photocatalytic performance of BiOBr in dye degradation can 

be manipulated by the strain effect. The low-strain BiOBr nanosheets show improved 

photocatalytic activity. Density functional calculations suggest that strain can modify the band 

structure and symmetry in BiOBr. The enhanced photocatalytic activity in low-strain BiOBr 
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nanosheets is owing to improved charge separation due to a highly dispersive band structure with 

an indirect band gap.  

KEYWORDS: BiOBr, {001} facets, strain, photocatalysis, density functional calculations  

The ability to continuously control the electronic structures in photocatalysts is highly 

desirable for a wide range of energy and environmental applications, including H2 production by 

water splitting, carbon fixation, and the elimination of pollution.1,2 For example, the absorption 

spectrum and the quantum conversion efficiency of a photocatalyst, which determine its 

performance, can be modulated by tuning the band gap (Eg), the positions of the valence band 

(VB) and the conduction band (CB), and the band dispersion of photocatalysts.3 In a similar way 

to chemical composition, strain is a continuous variable that is capable of altering electronic 

structure. Although strain engineering is a straightforward method, its potential in photocatalysis 

remains largely under-exploited.  

Bismuth oxyhalides BiOX (X = Cl, Br, I) are p-block photocatalysts that have attracted 

considerable attention due to their unique two-dimensional (2D) layered structure and excellent 

photocatalytic properties under visible light.4-9 In BiOX, [Bi2O2]
2+ slabs are interleaved with 

double halogen atoms slabs by strong electrovalent bonds along the [001] direction, while two 

closely adjacent slabs of halogen atoms are connected by van de Waals interactions.10,11 The 

dispersive VB and CB induced by sp hybridization give rise to high mobility of the photo-

induced charge carriers. In addition, the internal electric field resulting from the asymmetric 

charge distribution between [Bi2O2]
2+ and the halogen layers facilitates the effective separation 

of these photo-induced charge carriers, and hence, enables the photocatalytic activity of BiOX.12-

14 Due to their 2D layered structure, the electronic structure of BiOX compounds is highly 
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sensitive to even a subtle inner strain variation.15 It is, however, a practical challenge to modulate 

the photocatalytic properties through fine-tuning the inner strain in nanoscale BiOX.  

In this work, we illustrate experimentally and theoretically that the photocatalytic performance 

of BiOBr nanosheets can be tuned by the inner strain effect. The characterizations of 

photocatalytic degradation and geometric phase analysis (GPA) of the transmission electron 

microscope (TEM) images indicate that the distribution and intensity of the inner strain dominate 

the photocatalytic activity of BiOBr nanosheets. Density functional theory (DFT) calculations 

demonstrate that the strain-modulated photocatalytic properties in BiOBr originate from 

variation of the intrinsic electronic structure of this photocatalyst.  

Figure 1a and 1d shows two typical morphologies of BiOBr nanosheets, square-shaped 

(BiOBr-1) and circle-shaped BiOBr (BiOBr-4), which were fabricated by hydrothermal reaction 

with different pH values (also see the Supporting Information for synthesis procedure andthe 

samples synthesized with the other pH values). We found that the BiOBr nanosheets underwent a 

morphology transition from square-like to circle-like when the pH value was decreased. The 

BiOBr nanosheets are several micrometres in size. The thicknesses of the BiOBr-square and 

BiOBr-circle nanosheets are 31 nm and 22 nm, respectively, as revealed by TEM in Figure 1b 

and 1e. The insets demonstrate the layered structure of the BiOBr nanosheets. The interlayer 

distance is approximate 0.8 nm for both samples. As shown in Figure 1c and 1f, the d-spacing of 

0.27 nm indicates that the (110) face is along the in-plane BiOBr nanosheets. The corresponding 

insets show the selected area electron diffraction (SAED) patterns, in which the marked spots 

can be indexed as (200) face, (110) face and (1-10) face. Hence, the exposed surfaces can be 

identified as {001} facets for both the BiOBr-square and the BiOBr-circle nanosheets.  
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By carefully examining the XRD patterns, obvious diffraction peak shifts could be identified 

(Figure S1 in the Supporting Information). It indicates that the inner strain strength varies with 

different samples. In order to reveal the details of the morphology dependence of the inner strain, 

we carried out TEM characterization and GPA simulation based on the HRTEM images, as 

shown in Figure 2.16-18 The in-plane wrinkles observed in the TEM images of the BiOBr-square 

nanosheets reflect the existence of a large inner strain, while the BiOBr-circle sample exhibits a 

relatively strain-free character, as shown in Figure 2a and 2c. Figure 2b and 2d show the inner 

strain distribution maps of the BiOBr nanosheets in the xy-direction (Exy), the x-direction (Exx), 

and the y-direction (Eyy), respectively, as obtained by strain simulation. The inhomogeneous 

compressive strain distribution in the BiOBr-square nanosheets is reflected by the severe local 

lattice distortions across the whole surface in Figure 2b. In contrast, the BiOBr-circle nanosheets 

exhibit a quite uniform strain distribution, and this sample shows much less lattice distortion in 

the strain maps in Figure 2d. It should be noted that the strain difference across the BiOBr-

square nanosheets is higher than that across the BiOBr-circle nanosheets. For example, the strain 

in the BiOBr-square sample varies from 0.73 to 1.29 (Exy), from 0.78 to 1.21 (Exx), and from 

0.80 to 1.16 (Eyy), while in BiOBr-circle, it varies from 0.88 to 1.17 (Exy), from 0.87 to 1.10 (Exx), 

and from 0.93 to 1.08 (Eyy). These results confirm that the inner strain of the BiOBr nanosheets 

can be varied by the morphology, which can be precisely tuned by the fabrication conditions 

(also see the Supporting Information).  

Figure 3a shows the UV-Vis diffuse reflectance spectra of the BiOBr nanosheets with 

different strains. It reveals a clear absorption edge at the wavelength of 460 nm for BiOBr-square 

and 440 nm for BiOBr-circle, which verifies that both BiOBr nanosheets could effectively 

absorb visible light. The Eg values of BiOBr-square and BiOBr-circle are estimated to be 2.68 
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eV and 2.82 eV, respectively, as determined by the Tauc formula and shown in the inset of 

Figure 3a. This indicates that the inner strain has a significant effect on the band gap of BiOBr. 

As shown in Figure 3b, the BiOBr samples exhibit excellent photocatalytic performance in 

rhodamine B (Rh. B) degradation. Their photocatalytic activities are higher than for N-doped 

P25 TiO2 nanopowders. The low-strain BiOBr-circle sample shows the highest activity among 

all the samples, and it demonstrates almost 100 % degradation of Rh. B within 30 min. As 

demonstrated in Figure 3c, the apparent first-order rate constant (k) for BiOBr-circle is almost 

twice those for BiOBr-square and the N-doped P25 TiO2 nanopowders. Similar results were also 

observed for degradation of other dyes, such as methyl orange (MO), as shown in Figure 3d and 

3e. As shown in Figure S4, both the BiOBr-square and the BiOBr-circle samples can degrade 

phenol under visible light. Again, the BiOBr-circle nanosheets show better visible-light 

photocatalytic degradation performance on phenol than the BiOBr-square nanosheets. The 

photocurrent response of the BiOBr samples were measured for several On-Off cycles under 

visible light irradiation. As shown in Figure 3f, the photocurrent of the BiOBr samples exhibits a 

quick response to light irradiation, with the photocurrent sharply decreasing to zero as soon as 

the light is turned off, while the photocurrent quickly reaches stable values when the light is 

turned on. The stable photocurrents measured on the BiOBr-square and BiOBr-circle samples 

under visible light are 0.7 µA and 1.5 µA, respectively. The higher photocurrent of BiOBr-circle 

than BiOBr-square under visible light suggests that more efficient photoexcited charge carrier 

separation and less recombination of electron-hole pairs were possibly achieved by decreasing 

the inner strain in the BiOBr nanosheets.  

We carried out DFT calculations in order to the reveal the strain effect (both compressive and 

tensile strains) on the electronic structure of BiOBr, which dominates the photocatalytic 
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properties.19-21 The strain-free and compressive-strained BiOBr show the typical electronic 

features of an indirect-band-gap semiconductor. It changes to a direct band-gap semiconductor, 

however, if tensile strain is present in BiOBr. With a 9.1% tensile strain in the BiOBr lattice, the 

valence band maximum (VBM) of BiOBr moves from the R point to the Z point, while the 

conduction band minimum (CBM) is still located at the same high symmetry point (Z point) in k-

space. It is found that the Eg of BiOBr can be modulated by the strain effect, as shown in Figure 

4a. For example, the band gap varies between 1.94 eV, 2.12 eV, and 1.27 eV in BiOBr which 

has 8.8% compressive strain, is free of strain, and has 9.1% tensile strain, respectively. Both 

compressive and tensile strains lead to a narrowed band gap, which is also observed in the other 

indirect-band-gap semiconductors.22 Figure 4b shows the calculated density of states (DOS). It 

is found that the bottom of the CB of strain-free BiOBr is mainly contributed by Bi 6p, and the 

top of the VB is dominated by Br 3p, O 2p, and Bi 6s orbitals. While under tensile strain, the 

contribution of Bi 6s to the VBM is suppressed. 

Several key factors can affect the photocatalytic activity of BiOBr nanosheets in 

photocatalytic reactions, which include photon absorption, separation of photoexcited carriers, 

and surface area. Our UV-Vis diffuse reflectance spectra results demonstrate that the band gap of 

BiOBr-square (Eg = 2.68 eV) is smaller than that of BiOBr-circle (Eg = 2.82 eV). BiOBr-square 

is, therefore, expected to have a broader range of light absorption, in contrast to BiOBr-circle. 

BET measurements reveal that the BiOBr-square sample exhibits a larger surface area of 7.03 

m3/g compared to BiOBr-circle (4.49 m3/g) (See Supporting Information). It is interesting, 

however, that the photocatalytic measurements indicate that the photocatalytic activity of BiOBr-

sqaure is much lower than that of BiOBr-circle. This is because the photoexcited charge 

separation in BiOBr determines the overall photocatalytic activity in the photocatalytic process, 
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which was also reported in previous works.23,24 As shown in Figure 3f, the photocurrent 

measurements suggest that the charge separation is indeed more efficient in BiOBr-circle 

nanosheets than in BiOBr-square nanosheets. Based on the DFT calculation results, we believe 

that the electronic structure of the BiOBr-circle sample may facilitate the separation of 

photoexcited charge carriers. It was found that the interactions between Br atoms and [Bi2O2]
2+ 

slabs mediated by weak van de Waals coupling are tunable by the strain effect. In other words, 

the band symmetry of BiOBr can be modulated by strain through tuning the electronic 

interaction between the Br atoms and the [Bi2O2]
2+ slabs. The dramatic changes in the band 

symmetry, e.g. from direct to indirect band gap or the change of energy dispersion due to the 

strain, would affect the separation of photoexcited charge carriers. The electron-hole 

recombination occurring in indirect semiconductors typically requires the emission of multiple 

phonons to accommodate the energy and momentum differences between the CB and the VB. 

An appropriate rearrangement of the electronic symmetry, for instance, in the BiOBr-circle 

sample, may tune the momentum mismatch and improve electron-hole separation. Moreover, the 

VB and CB in strain-free BiOBr are more dispersive, which is expected to lead to a high 

mobility of photoexcited charge carriers. In the case of the BiOBr-square nanosheets, their 

electronic structure modifications by the strain effect might depress the separation of 

photoexcited charge carriers, and consequently, weaken the photocatalytic performance. In 

addition, strain also leads to the formation of structural defects in 2D materials. In BiOBr-square 

nanosheets, a large strain of 1.8 % is verified by the XRD and GPA results (Figure S1 and 

Figure 2). It is believed that strain-induced defects will act as recombination centres for 

photoexcited electrons and holes, and also depress the quantum conversion efficiency of strained 

BiOBr-square nanosheets.  
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In summary, the strain effect on the photocatalytic activity of BiOBr nanosheets with highly 

reactive {001} facets exposed was studied. The XRD, TEM, and strain tensor simulation results 

reveal that the intensity and distribution of inner strain in the BiOBr nanosheets can be 

modulated by adjusting the pH value in the synthesis reaction. It is found that the strain effect 

can effectively tune the photocatalytic activity of BiOBr nanosheets in dye degradation. Our 

work suggests that strain engineering could be an effective approach to controlling the electronic 

structure of semiconductors for further enhancement of their efficiency in converting light into 

other forms of energy. 
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Figures and figure captions 

Figure 1 

 

Figure 1. SEM images of (a) BiOBr-square and (d) BiOBr-circle (scale bar is 1 m). Cross-

sectional TEM images of (b) BiOBr-square and (e) BiOBr-circle (scale bar is 200 nm); insets are 

the HRTEM images of the cross-sections, where both samples show layer structure along the c-

axis (scale bar is 10 nm). HRTEM images of (c) BiOBr-square and (f) BiOBr-circle, with the 

corresponding SAED patterns as the insets, indicating that both samples have the (001) face 

exposed (scale bar is 10 nm and 5 nm-1 for the insets). 
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Figure 2 

  
Figure 2. TEM images of (a) BiOBr-square and (c) BiOBr-circle (scale bars are 1000 nm). 

Strain simulation of (b) BiOBr-square and (d) BiOBr-circle based on HRTEM (scale bars are 10 

nm). The internal strain distributions are in the xy-direction (Exy), the x-direction (Exx) and the y-

direction (Eyy), with the scale for the whole image area.  
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Figure 3 

 

Figure 3. (a) UV-Vis diffuse reflectance spectra of BiOBr-square and BiOBr-circle; inset shows 

the derivation of the band-gap values for BiOBr. (b) Degradation experiments on Rh. B by P25, 

BiOBr-square, and BiOBr-circle under visible light irradiation, and (c) the corresponding 

apparent rate constants. (d) Degradation experiments on MO by BiOBr-square and BiOBr-circle 

under visible light irradiation, and (e) the corresponding apparent rate constants. (f) Current 

density transient with light on/off for BiOBr powders under light irradiation.   
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Figure 4 

 

Figure 4. DFT calculations of the band structure of BiOBr with biaxial strain. (a) The left panel 

models compressive strain, the central panel is for a strain-free sample, and the right is for tensile 

strain. (b) Calculations of the DOS of BiOBr with different kinds of strain.  
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