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Abstract 

 

The prevalence of obesity is a growing problem since it significantly increases the risk of 

developing type 2 diabetes and associated complications of the brain, liver, heart, and kidneys. 

Therefore, there is an urgency to find novel therapies which can prevent obesity and the 

development of associated complications. This PhD project investigated whether selected 

pentacyclic triterpenes (oleanolic acid (OA), its isomer, ursolic acid (UA), and derivative, 

bardoxolone methyl (BM)) administered at 10 mg/kg daily in drinking water could prevent obesity 

in mice fed a chronic HF diet for 21 weeks. These compounds were chosen based on recent 

studies demonstrating that they have a number of anti-obese and anti-diabetes properties. In 

preliminary studies, BM prevented HF diet-induced body weight gain, while UA and OA had no 

effect. Following this, the molecular mechanisms underlying the ability of BM to prevent HF diet-

induced obesity and associated complications were then examined.  

BM administration for 21 weeks prevented HF diet-induced increases in body weight, energy 

intake, plasma leptin, and peripheral fat (Chapter 2). Furthermore, in the mediobasal and 

paraventricular nuclei regions of the hypothalamus, BM treatment prevented HF diet-induced 

impairments of downstream leptin JAK2-Akt-FOXO1 signalling and increases in the inflammatory 

molecules, pJNK, TNFα and IL-6 . These findings identify a potential novel neuropharmacological 

application for BM to prevent HF diet-induced obesity, hypothalamic inflammation and leptin 

resistance. 

BM administration also prevented HF diet-induced impairments in recognition memory (Chapter 

3). Furthermore, in the hippocampus and prefrontal cortex (PFC), BM treatment prevented HF 

diet-induced decreases in downstream BDNF signalling molecules and increases in the 

inflammatory molecule, PTP1B. In summary, the findings from this chapter suggest that BM 
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prevents HF diet-induced impairments in recognition memory by improving downstream BDNF 

signal transduction, and reducing inflammation in the PFC and hippocampus. 

BM treatment prevented HF diet-induced insulin resistance and hepatic steatosis in mice fed a 

HF diet (Chapter 4). Furthermore, in the livers of mice, BM prevented HF diet-induced 

impairments to hepatic IR-IRS-FOXO1 insulin signalling, ACOX-induced lipid metabolism, 

macrophage infiltration, and inflammation. These findings suggest that BM prevents HF diet-

induced insulin resistance and the development of hepatic steatosis through modulation of 

molecules involved in insulin signalling, lipid metabolism, and inflammation in the liver.  

BM administration prevented HF diet-induced structural changes in the heart and kidneys 

(Chapter 5). Furthermore, in these tissues, BM administration prevented HF diet-induced 

increases in fat accumulation, macrophage infiltration and TNFα gene expression. These findings 

suggest that BM prevents HF diet-induced developments of cardiac and renal pathophysiologies 

in mice fed a chronic HF diet by preventing inflammation.  

Collectively, this thesis is novel in demonstrating that BM treatment prevents HF diet-induced 

obesity and associated leptin resistance, insulin resistance, cognitive deficits, and liver, kidney, 

and heart pathophysiologies in mice fed a HF diet for 21 weeks. These results suggest that these 

therapeutic effects were through anti-inflammatory mechanisms. Overall, these findings highlight 

BM as a potential novel therapeutic for preventing HF diet-induced obesity and a variety of 

associated complications. 
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Chapter One 
 

 
1.1 INTRODUCTION 

Obesity is a growing health problem characterised by excessive fat accumulation and is defined 

as having a body mass index (BMI) exceeding or equal to 30 (WHO 2015). From 2011-12, over 

63% of Australian adults were considered overweight or obese, which was a 5% increase from 

1995 (ABS 2013). The prevalence of obesity globally is reaching epidemic proportions and has 

more than doubled since 1980 (WHO 2015). Worldwide, 1.9 billion people were considered 

overweight and 600 million people obese in 2014 (WHO 2015). Obesity also places economic 

burdens on society, with its estimated costs for 2008 in Australia reaching around $58 billion 

(AccessEconomics 2008). An elevated BMI as a result of excessive fat accumulation is a major 

risk factor for the development of a number of potentially life-threatening diseases such as type 2 

diabetes and cardiovascular disease. This highlights the urgency of the need to find novel 

therapeutics that can prevent the development of high-fat (HF) diet-induced obesity and 

associated complications. Recent research has uncovered the molecular mechanisms 

responsible for the therapeutic properties of the pentacyclic triterpenes, oleanolic acid (OA), 

ursolic acid (UA), and their derivatives such as bardoxolone methyl (BM). In particular, recent 

reports have highlighted the benefits of these compounds in the prevention and treatment of 

obesity, type 2 diabetes, and associated life-threatening complications, such as non-alcoholic 

fatty liver disease, and nephropathy. Findings from in vitro and in vivo studies have demonstrated 

that these compounds improve insulin signalling and reduce hyperglycaemia, reduce oxidative 

stress by upregulating anti-oxidants, and reduce inflammation by inhibiting proinflammatory 

signalling. Therefore, these compounds were chosen for examination in the present PhD in order 
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to investigate their therapeutic effects in a HF diet-induced obese mouse model and to establish 

the most potent treatment for further investigation. In preliminary testing, prevention of body 

weight gain was only found in BM treated mice, and therefore, only this treatment group was 

investigated in detail in subsequent experimentation. Overall, this series of studies aimed to 

understand the molecular mechanisms underlying the therapeutic benefits of BM in preventing 

chronic HF diet-induced obesity, type 2 diabetes, and associated complications of the brain, liver, 

kidneys and heart. A better understanding of these mechanisms and therapeutic targets may 

assist in the use of BM as a future novel pharmaceutical for preventing and treating obesity and 

associated complications. 

1.2 REVIEW OF LITERATURE 

[Most of this literature review is based on: 1) our review: Camer et al. (2014). The molecular 

mechanisms underpinning the therapeutic properties of oleanolic acid, its isomer, and derivatives 

for type 2 diabetes and associated complications. Mol Nutr Food Res 2014, 58(8):1750-1759; and 

2) our invited perspective: Camer et al. (2014). The Endothelin Pathway: A Protective or 

Detrimental Target of Bardoxolone Methyl on Cardiac Function in Patients with Advanced Chronic 

Kidney Disease? Am J Nephrol 2014, 40(3):288-290. (See Appendix 1.1 and 1.2)]. 

1.2.1 Obesity, Type 2 Diabetes, and Associated Complications 

Obesity is a metabolic disorder that is characterised by a deregulation of energy balance, which is 

correlated to an increase in consumption of palatable HF food and reduced energy expenditure. 

The prevalence of obesity is a growing problem since it greatly increases the risk of developing 

type 2 diabetes (Kahn, Hull et al. 2006). Type 2 diabetes has reached epidemic proportions 

worldwide. Recent predictions indicate that the prevalence of diabetes globally will increase from 

285 million in 2010 to 439 million in 2030 (Shaw, Sicree et al. 2010). Along with hyperglycaemia 
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and reduced insulin sensitivity, other characteristics featured in type 2 diabetes include 

proinflammation and oxidative stress, which contributes to tissue damage in organs such as the 

brain, liver, kidney, and heart. Obesity and associated type 2 diabetes can lead to the 

development and progression of a number of potentially life-threatening complications, including 

cognitive deficits, hepatic steatosis, chronic kidney disease, and heart disease (Forouhi and 

Wareham 2010). Therefore, identifying new medicinal agents, especially derived from natural 

products, offers exciting possibilities for future development of successful therapeutics to prevent 

diet-induced obesity, type 2 diabetes, and associated complications. 

1.2.2 Obesity-Induced Hypothalamic Leptin Resistance  

Leptin is an adipokine produced by adipocytes in adipose tissue. In a normal functioning state, 

downstream hypothalamic leptin-JAK2-Akt-FOXO1 signalling allows the suppression of hunger 

signals causing satiety (Friedman and Halaas 1998, Elmquist, Elias et al. 1999, Bates and Myers 

2003). In the hypothalamus, leptin binds to long form leptin receptors and functions to regulate 

food intake and energy expenditure via neuronal interactions known as central leptin signalling 

(Friedman and Halaas 1998, Elmquist, Elias et al. 1999, Bates and Myers 2003). Central leptin 

administration via intracerebroventricular (i.c.v) injection results in an increase of janus kinase 2 

(JAK2) and protein kinase b (Akt) phosphorylation (Roman, Reis et al. 2010). However, an i.c.v 

central leptin injection results in an increase in the phosphorylation of Akt in lean mice but not 

obese mice, which suggests that central leptin resistance may be caused by a deregulation in 

phosphorylated (p) Akt and leptin signalling (Metlakunta, Sahu et al. 2008). Furthermore, pAkt 

can subsequently inactivate forkhead box protein O1 (FOXO1), a transcription factor in the 

hypothalamus (Kim, Pak et al. 2006). Inactivation of FOXO1 leads to downregulation of 

neuropeptide Y (NPY) and agouti-related peptide (AgRP) but upregulation of pro-

opiomelanocortin (POMC) expression, therefore leading to negative energy balance (Morton, 
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Gelling et al. 2005, Kim, Pak et al. 2006, Plum, Lin et al. 2009). In obesity, this pathway is largely 

impaired due to accentuated activation of the negative regulators, protein tyrosine phosphatase 

1B (PTP1B) and suppressor of cytokine signalling 3 (SOCS3), which inhibit JAK2 and Akt 

activation respectively (Bence, Delibegovic et al. 2006, Zhang, Zhang et al. 2008). Thus, if there 

is a dysfunction in this pathway, this regulation of food intake and energy expenditure is disabled.  

There is compelling evidence that hypothalamic inflammation is a key characteristic of obesity in 

rodents and humans (Cai and Liu 2011). Recent research has demonstrated that a HF diet 

results in low grade hypothalamic inflammation in rodents (Thaler, Yi et al. 2012). Furthermore, 

within a week of starting a HF diet, rodents have increased mRNA expression of the 

proinflammatory cytokines, tumour necrosis factor alpha (TNFα) and interleukin 6 (IL-6) in the 

hypothalamus (Thaler, Yi et al. 2012). Hypothalamic inflammation leads to the development of 

central leptin resistance through activation of PTP1B, an inhibitor of leptin signalling (Zhang, 

Zhang et al. 2008, Milanski, Arruda et al. 2012). Obesity from a HF diet has been demonstrated in 

both rodents and humans to cause central leptin resistance which limits the clinical effectiveness 

of exogenous leptin administration (Caro, Kolaczynski et al. 1996, Nam, Kratzsch et al. 2001). 

Central leptin resistance has been suggested to occur since it has been found that although leptin 

levels in the cerebrospinal fluid (CSF) is 30% higher in obese individuals than individuals with a 

lean body mass, the CSF NPY levels are not reduced (Caro, Kolaczynski et al. 1996, Nam, 

Kratzsch et al. 2001). Therefore, novel therapeutics that target hypothalamic inflammation and 

downstream leptin signalling may have the potential to prevent the development of obesity and 

leptin resistance.  

1.2.3 Obesity-Induced Cognitive Decline in the Forebrain 

Obesity is a major risk factor for the development of cognitive decline in neurodegenerative 

diseases such as vascular dementia (Hassing, Johansson et al. 2002). A number of studies 
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provide direct evidence demonstrating a link between HF diet-induced obesity and impairments in 

learning and memory performance, including a decline in recognition memory (Greenwood and 

Winocur 1990, Greenwood and Winocur 1996, Heyward, Walton et al. 2012). Furthermore, 

preclinical animal studies have demonstrated that a HF diet reduces synaptic plasticity in the 

prefrontal cortex (PFC) (Val-Laillet, Layec et al. 2011) and hippocampus (Molteni, Barnard et al. 

2002, Wu, Molteni et al. 2003), which leads to learning and memory impairments (Laroche, Davis 

et al. 2000). A HF diet can further induce cognitive decline by promoting neuroinflammation in the 

forebrain (Miller and Spencer 2014). Despite this, therapeutic interventions targeting HF diet-

induced cognitive impairment are lacking.  

Obesity-induced cognitive impairment is attributed to a reduction of synaptic plasticity (Molteni, 

Barnard et al. 2002). Recent evidence has indicated that HF diet-induced impairment in neuronal 

plasticity may be caused by the reduction of brain derived neurotrophic factor (BDNF) protein 

expression in the PFC and hippocampus, which are key brain areas in learning and memory 

(Kanoski, Meisel et al. 2007). BDNF signalling is a critical pathway for promoting long term 

potentiation (LTP), a form of synaptic plasticity associated with long term memory (LTM) 

formation, and neurogenesis in the forebrain (Noble, Billington et al. 2011). Tropomyosin related 

kinase B (pTrkB) receptor phosphorylation and activation by BDNF leads to a downstream 

intracellular cascade resulting in activation and phosphorylation of Akt signalling (Cunha, 

Brambilla et al. 2010). Akt signalling regulates the translation and transport of synaptic proteins in 

order to promote synaptic plasticity in learning and memory (Yoshii and Constantine-Paton 2007).  

Along with the activation of TrkB, BDNF also triggers the opening of Na+ gated ion channels, 

resulting in an influx of Ca2+ and the enhancement of glutamate activation of N-methyl-D-

aspartate (NMDA) receptors (Rose, Blum et al. 2004). NMDA receptors also play a crucial role in 

synaptic plasticity with their activation by glutamate, leading to the induction of LTP (Bliss and 
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Collingridge 1993, Cooke and Bliss 2006). A previous study has reported that a HF diet 

desensitises NMDA receptors in the hippocampus in mice causing impairment in NMDA-induced 

long term depression (LTD), suggesting that its alteration may also account for cognitive defects 

(Valladolid-Acebes, Merino et al. 2012). Another important signalling protein that is linked to 

BDNF is phosphorylated AMP-activated protein kinase (pAMPK). Studies have demonstrated that 

pAMPK activation increases BDNF expression in the brain (Gomez-Pinilla, Vaynman et al. 2008, 

Yoon, Oh et al. 2008, Zhao, Shen et al. 2008), suggesting that its activation plays a crucial role in 

promoting synaptic plasticity. Furthermore, it has been reported that a HF diet reduces 

phosphorylation of AMPK in the hippocampus in rats (Wu, Ying et al. 2006).  

It is widely accepted that consumption of a HF diet and obesity leads to obesity-induced chronic 

inflammation in a number of tissues, including the brain (Weisberg, McCann et al. 2003, Xu, 

Barnes et al. 2003). Several rodent studies have demonstrated that chronic inflammation in the 

brain induced by a HF diet is also associated with a decline in cognitive performance (Morrison, 

Pistell et al. 2010, Pistell, Morrison et al. 2010, Singh, Gupta et al. 2012). In the forebrain, 

synaptic plasticity is disrupted by increased expression of the inflammatory mediators, PTP1B 

(Fuentes, Zimmer et al. 2012) and phosphorylated c-Jun N-terminal kinase (pJNK) (Jiang, Yin et 

al. 2013). Therefore, novel therapeutics that target inflammation and promote downstream BDNF 

signalling in the hippocampus and prefrontal cortex has the potential to prevent the development 

of obesity-induced memory decline. 

1.2.4 Obesity-Induced Insulin Resistance and Fat Accumulation in the Liver 

Obesity is a major risk factor for the development of insulin resistance, type 2 diabetes, and 

hepatic steatosis (Kahn, Hull et al. 2006, Forouhi and Wareham 2010). It is widely accepted that 

HF diet-induced obesity causes increased fat accumulation, macrophage infiltration, and chronic 

inflammation in peripheral tissues (Weisberg, McCann et al. 2003, Xu, Barnes et al. 2003). 
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Increased fat accumulation and inflammation promotes insulin resistance and tissue injury in 

peripheral tissues involved in glucose and fat metabolism, such as the liver (Weisberg, McCann 

et al. 2003, Xu, Barnes et al. 2003). A number of studies provide direct evidence demonstrating a 

link between obesity-associated inflammation and insulin resistance, and hepatic steatosis 

(Ginsberg 2006, Qureshi and Abrams 2007, Emanuela, Grazia et al. 2012). However, there is a 

need to develop novel therapeutic approaches targeting hepatic inflammation and to prevent 

obesity-induced insulin resistance and hepatic steatosis.  

The activation of inflammatory pathways can promote the expression of the negative regulators of 

insulin signalling, PTP1B and SOCS3 (Hong, Nguyen et al. 2001, Zabolotny, Kim et al. 2008). 

PTP1B levels are increased in the liver of HF diet-induced obese mice, which contributes to the 

development of insulin resistance by reducing insulin signalling through inhibition of insulin 

receptor (IR) and insulin receptor substrate 1 (IRS-1) activation (Goldstein, Bittner-Kowalczyk et 

al. 2000, Lam, Covey et al. 2006). SOCS3 is another important molecule which impairs insulin 

signal transduction in the liver through its inhibition of the binding of IR to IRS-1 (Ueki, Kondo et 

al. 2004). Furthermore, activation of hepatic insulin signalling results in the inactivation of FOXO1, 

which is a transcription factor that inhibits the transcription of genes such as glucose-6-

phosphatase (G6Pase) for endogenous glucose production via gluconeogenesis (Nakae, 

Kitamura et al. 2001, German, Kim et al. 2009). When insulin signalling is impaired, through 

inhibition by PTP1B or SOCS3, and activation of FOXO1, this leads to the promotion of glucose 

production and a reduction in glucose reuptake, leading to glucose intolerance and insulin 

resistance in obesity (Nakae, Kitamura et al. 2001, German, Kim et al. 2009). BDNF also plays an 

import role in insulin action, as it has been found to modulate hepatic glucose metabolism via its 

actions on glucokinse (GK) in obese insulin resistant rats (Kuroda, Yamasaki et al. 2003). In the 
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liver, GK enhances glycolysis, resulting in reduced blood glucose levels (Hariharan, Farrelly et al. 

1997). 

A HF diet is known to cause fat accumulation in the liver, which can progressively worsen to 

hepatic steatosis (Marchesini, Brizi et al. 2001). Hepatic lipid homeostasis is regulated by a 

number of genes that promote lipogenesis, including acetyl-CoA carboxylase (ACC), fatty acid 

synthase (FAS) and stearoyl-CoA desaturase 1 (SCD1), and β oxidation, such as peroxisomal 

acyl-coenzyme A oxidase 1 (ACOX) (Musso, Gambino et al. 2009). Hepatic fat accumulation 

leads to macrophage infiltration which promotes the production of proinflammatory cytokines, 

such as IL-6, TNFα and interleukin-1 beta (IL-1β) (McArdle, Finucane et al. 2013). Increased IL-6 

has been found to enhance inflammatory signalling by increasing signal transducer and activator 

of transcription 3 (STAT3) levels, which promotes cytokine dependent signalling by increasing the 

expression of inflammatory genes such as IL-6 (Yang, Liao et al. 2007). In addition, inhibitor of 

nuclear factor kappa-B kinase subunit beta (IKKβ), and inhibitor of nuclear factor kappa-B kinase 

subunit epsilon (IKKε) are important proinflammatory signalling molecules upstream of the 

transcription factor, nuclear factor kappa-B (NFκB), which promote PTP1B and SOCS3 activation 

(Hong, Nguyen et al. 2001, Zabolotny, Kim et al. 2008, Napetschnig and Wu 2013). Therefore, 

novel therapeutics that target inflammation, and promote lipid metabolism and downstream 

hepatic insulin signalling in the liver may have the potential to prevent the development of 

obesity-induced insulin resistance and hepatic steatosis. 

1.2.5 Obesity-Induced Development of Cardiorenal Diseases 

Obesity caused by the consumption of a HF diet increases the risk of cardiorenal diseases. 

Cardiovascular disease is the leading cause of death worldwide, with the incidence expected to 

rise from 17.3 million per year in 2008 to over 23.6 million per year by 2030 (Mozaffarian, 

Benjamin et al. 2015). There is increasing evidence that obese individuals have an increased risk 
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of developing cardiovascular disease (Kenchaiah, Evans et al. 2002). In addition, there is direct 

evidence that obesity from a HF diet can cause kidney injury, which also increases the associated 

cardiovascular disease risk (Prasad 2014). Therefore, there is an urgent need to find suitable 

therapeutics that can prevent HF diet-induced obesity-associated complications of the heart and 

kidney, in order to reduce the incidence of global mortality from cardiorenal diseases. 

The endothelin system has been suggested to play an important role in the development of 

cardiovascular pathophysiologies. In the heart, endothelin 1 (ET-1) acts through two receptors, 

endothelin receptor type a (ETA) and endothelin receptor type b (ETB). The key endothelin system 

molecules ET-1, ETA, and ETB play a role in vasoconstriction, with ETB also having an additional 

role in vasodilation (Kedzierski and Yanagisawa 2001). In the cardiac muscle, ET-1 activates ETA 

which results in the promotion of cardiac hypertrophy leading to subsequent heart failure (Nasser 

and El-Mas 2014). Previous studies have demonstrated that there is therapeutic potential in 

targeting the endothelin system with ETA or combined ETA/ETB antagonists in patients with 

congestive heart failure (Krum, Viskoper et al. 1998, Nakov, Pfarr et al. 2002). However, it is 

important to note that in the kidneys the endothelin pathway plays several important roles 

including the regulating sodium and water homeostasis and renal blood flow (Kohan 2006). 

Therefore, over-suppression of the endothelin pathway by antagonistic drugs may lead to other 

complications in the kidneys such as fluid retention, which if not addressed can also lead to heart 

failure (Kohan 2006).  

Obesity from HF diet is known to result in the development of fat accumulation in peripheral 

organs, such as the heart and kidneys (Montani, Carroll et al. 2004). Furthermore, peripheral fat 

accumulation is associated with macrophage infiltration into adipose tissue, which promotes the 

release of proinflammatory cytokines including TNFα (Wellen and Hotamisligil 2005). In a recent 

study, significantly higher levels of inflammatory markers, including TNFα, were found in the 
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cardiac tissue of Tibetan mini pigs as a result of being fed a HF diet for 24 weeks (Yongming, 

Zhaowei et al. 2015). Furthermore, rats fed a HF diet for 10 weeks demonstrated increased TNFα 

levels in the cortex of their kidneys (Elmarakby and Imig 2010). Therefore, novel pharmaceuticals 

that attenuate TNFα levels and appropriately target the endothelin pathway in the heart and 

kidneys is warranted in order to prevent obesity-associated cardiovascular disease and renal 

failure. 

1.2.6 Oleanolic Acid (OA), Its Isomer, and Derivatives 

Both oleanolic acid (OA) and its isomer, ursolic acid (UA) exist widely in nature and can be 

extracted from fruits, herbs and vegetables. OA can be found in olive leaves, olive pomace, 

mistletoe sprouts and clove flowers, whilst UA can be found in apple pomace. A mixture of these 

two triterpenes can also be found in rosemary leaves (Jager, Trojan et al. 2009). Both OA and UA 

are pentacyclic triterpenes, which is a group of widespread natural compounds containing six 

isoprene units, the basic molecular formula C30H48 and with five rings in their skeleton (Jager, 

Trojan et al. 2009, Patočka 2012) (Figure 1.1). Recently, OA and UA have received great 

attention because of their benefits including anti-hyperglycaemic, anti-hyperlipidemic, anti-

inflammatory, and anti-oxidative properties, with potential application for the treatment of obesity, 

type 2 diabetes and associated complications (Huang, Yang et al. 2005, Jayaprakasam, Olson et 

al. 2006, Gao, Li et al. 2009, de Melo, Queiroz et al. 2010, Kela, Srinivasan et al. 2010, Pergola, 

Raskin et al. 2011, Rao, de Melo et al. 2011, Wang, Li et al. 2011). Although they differ only in 

the position of a side chain in their structure, a number of in vitro and animal studies have 

demonstrated that OA and UA exhibit different degrees of potency in particular functions including 

their direct binding to insulin signalling molecules, such as PTP1B (Liu 1995, Huang, Peng et al. 

2005, Wang, Hsu et al. 2010, Ramirez-Espinosa, Rios et al. 2011). 
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Triterpenoids are structurally similar to steroids and may, like steroids, diffuse freely through cell 

membranes to interact with intracellular molecular targets. The semi-synthetic triterpenoid 2-

cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO) has been developed along with 

chemically modified derivatives containing various functional groups on rings A and C (Honda, 

Rounds et al. 1998, Honda, Rounds et al. 2000). These novel compounds are far more potent 

than natural triterpenoids and can affect signalling pathways in mammalian cells that are 

associated with detoxification, inflammation, and apoptosis (Suh, Honda et al. 1998, Yore, Liby et 

al. 2006). These sites can be accentuated and manipulated through chemical modification of the 

natural compound into derivative form. Examples of highly potent synthetic OA derivatives are the 

CDDO derivatives, which are strong anti-oxidant compounds. In particular, the highly potent OA 

CDDO derivative, bardoxolone methyl (BM) highlights the promising potential of these 

compounds (Figure 1.1). BM has successfully completed phases I and II of human clinical trials 

(Pergola, Krauth et al. 2011, Pergola, Raskin et al. 2011) and is currently recruiting patients for 

future clinical studies for patients with type 2 diabetes and chronic kidney disease 

(NCT02316821), and patients with pulmonary arterial hypertension (NCT02036970).  

 
Figure 1.1. The molecular structures of selected pentacyclic triterpenes and a derivative. (A) Oleanolic Acid, 
(B) Ursolic Acid, and (C) Bardoxolone Methyl. 

 
 
1.2.7 Therapeutic Effects of OA, Its Isomer and Derivatives in Body Weight and Blood 

Glucose Regulation 

A. Oleanolic Acid B. Ursolic Acid C. Bardoxolone Methyl
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UA and OA have been found to reduce plasma triglyceride and total cholesterol levels, and 

reduce visceral adiposity and body weight in rodents fed a HF diet (de Melo, Queiroz et al. 2010, 

de Melo, Queiroz et al. 2010, Jang, Kim et al. 2010, Rao, de Melo et al. 2011). Several studies 

have demonstrated the ability of OA and UA in normalising blood glucose levels in rodents with 

diet-induced obesity or diabetes (Jayaprakasam, Olson et al. 2006, Gao, Li et al. 2009, Jang, Yee 

et al. 2009, de Melo, Queiroz et al. 2010, Ramirez-Espinosa, Rios et al. 2011, Rao, de Melo et al. 

2011). In particular, in two preventative studies where mice were administered OA or UA at a 

dosage of 10 mg/kg in conjunction with being fed a HF diet for 15 weeks, blood glucose levels 

were significantly lower compared to non-triterpene HF diet-fed controls by 37% and 42% 

respectively (de Melo, Queiroz et al. 2010, Rao, de Melo et al. 2011).  

Recent evidence suggests that OA, UA, and a number of their derivatives can improve insulin 

signalling by enhancing IR β subunit phosphorylation and Akt in vitro (Zhang, Hong et al. 2006, 

Jung, Ha et al. 2007, Lin, Zhang et al. 2008). Insulin regulates glucose homeostasis through 

binding of its receptor to initiate a signalling cascade; activation and phosphorylation of the IRS 

proteins, and mediation of the phosphatidylinositol 3-kinase-dependent/Akt (PI3K/Akt) pathway. 

The activation of the Akt pathway can 1) mediate the translocation of glucose transporter 4 

(GLUT4) to the plasma membrane, thereby facilitating glucose uptake into adipose tissue, cardiac 

muscle and skeletal muscle (Haruta, Morris et al. 1995, Cong, Chen et al. 1997, Hajduch, Alessi 

et al. 1998, Charron, Katz et al. 1999, Wang, Somwar et al. 1999, Smith, Carvalho et al. 2000), 

and 2) inhibit glucose production via gluconeogenesis by glucose 6 phosphate (G6P) and FOXO1 

in the liver.  

OA and UA promote glucose uptake from the bloodstream into peripheral tissues through 

upregulation of GLUT4 [27-32]. In an in vitro study, UA promoted glucose uptake by enhancing 

the translocation of GLUT4 to the plasma membrane in 3T3-L1 adipocytes (Jung, Ha et al. 2007). 
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3T3-L1 adipocytes treated with an OA derivative, NPLC441, had increased GLUT4 mRNA and 

protein expression compared to untreated cells indicating increased glucose uptake into the cells 

(Lin, Zhang et al. 2008, Zhang, Zhang et al. 2008). A glucose uptake assay in L6 myotubes 

revealed that a 1 µM dose of an OA derivative increases basal glucose uptake by 40% (Lin, 

Zhang et al. 2008, Zhang, Zhang et al. 2008).  

Another mechanism of OA and UA in lowering blood glucose is by the reduction of endogenous 

glucose production via inhibition of gluconeogenesis in the liver. Glucose production via 

gluconeogenesis can exacerbate hyperglycaemic states, and favours the development and 

progression of type 2 diabetes. Key molecules in the gluconeogenic pathway are G6Pase and 

FOXO1 (Yunoki, Sasaki et al. 2008, Jang, Kim et al. 2010). A 0.05% UA supplement decreased 

G6Pase activity and significantly elevated the hepatic glycogen content in the livers of 

streptozotocin and HF diet-induced diabetic mice (Yunoki, Sasaki et al. 2008, Jang, Kim et al. 

2010). Adding 0.05% OA extracted from dietary wine pomace in HF diet significantly 

downregulated the mRNA expression of G6P (49%) and FOXO1 (52%) in liver of rats (Yunoki, 

Sasaki et al. 2008, Jang, Kim et al. 2010).  

PTP1B has been proposed as a novel target whose inhibition would specifically address insulin 

resistance. PTP1B is a molecule that negatively regulates insulin signalling (Na, Oh et al. 2006, 

Lin, Zhang et al. 2008, Ramirez-Espinosa, Rios et al. 2011). Several in vitro studies have 

provided evidence that OA, UA and a number of their derivatives can directly inhibit PTP1B and 

improve insulin sensitivity (Na, Oh et al. 2006, Lin, Zhang et al. 2008, Ramirez-Espinosa, Rios et 

al. 2011). In particular, a PTP1B inhibition assay concluded that OA and UA adhered to the linear 

mixed type inhibition model in their interaction with PTP1B (Ramirez-Espinosa, Rios et al. 2011). 

Interestingly, the binding site of PTP1B targeted by OA and UA was uncovered to be a secondary 

region, known as site B rather than the typical catalytic binding site A (Ramirez-Espinosa, Rios et 
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al. 2011). This suggests that compounds that have high specificity for this region should be 

developed, such as through modifying OA and UA to derivative forms in order to achieve strong 

PTP1B inhibition and subsequent maximal improvement to insulin signal transduction. In addition, 

the OA and UA derivatives (C-28 addition) were more potent than their natural structures by 22 

and 10 fold in inhibition of PTP1B activity respectively (Zhang, Hong et al. 2006, Zhang, Zhang et 

al. 2008). PTP1B can inhibit the PI3K/Akt signalling pathway to induce insulin resistance by 

inhibition of the translocation of GLUT4 to the plasma membrane. This causes disinhibition of 

FOXO1, thereby promoting reduction of glucose reuptake and gluconeogenesis (Sun, Wang et al. 

2007). Therefore, the direct inhibition of PTP1B by OA, UA and their derivatives enables signal 

transduction of insulin and thus improves insulin sensitivity. 

In addition to insulin sensitisation, inhibition of PTP1B also has the potential to promote weight 

loss, which is a benefit since obesity largely contributes to the type 2 diabetes pathology. Oral 

administration of OA, UA and their derivatives decreased body weight gain in HF diet-induced 

obese rodents (Jayaprakasam, Olson et al. 2006, Gao, Li et al. 2009, Jang, Yee et al. 2009, de 

Melo, Queiroz et al. 2010, Ramirez-Espinosa, Rios et al. 2011, Rao, de Melo et al. 2011). 

PTP1B-deficient mice were resistant to weight gain and remained insulin-sensitive when 

subjected to a HF diet, while the amount of food consumed was not different (Bence, Delibegovic 

et al. 2006). The increased insulin sensitivity of PTP1B knockout mice cannot explain the reduced 

weight gain on a HF diet (Bence, Delibegovic et al. 2006). Several in vitro studies demonstrated 

that PTP1B is a negative regulator of the leptin-JAK2-STAT3 signalling pathway. Therefore, 

competitive inhibitors of PTP1B, such as OA, UA and their derivatives might have the potential as 

a future novel therapeutic for obesity and type 2 diabetes. A summary of the effects of UA and 

OA on PTP1B inhibition of PI3K/Akt insulin signalling is presented in Figure 1.2. 
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Figure 1.2 Ursolic acid (UA) and oleanolic acid (OA) effects on insulin signalling and glucose uptake in the 
target cell. Insulin binds to the insulin receptor (IR) at the α subunits resulting in a conformational change. Tyrosine 
residues on the β subunits phosphorylate resulting in downstream insulin signalling. PTP1B inhibits insulin signalling. 
Insulin receptor substrate (IRS) proteins are activated resulting in subsequent activation of phosphoinositide 3 kinase 
(PI3K) and protein kinase B (Akt). In peripheral tissues including cardiac muscle, skeletal muscle and adipose tissue, 
Akt activates the translocation of glucose transporter 4 (GLUT4), which is sequestered in vesicles before activation, 
into the plasma membrane. GLUT4 facilitates glucose uptake into the cell. Oleanolic acid (OA) and ursolic acid (UA) 
treatment inhibits PTP1B by directly binding to site B. This causes improved insulin signal transduction. 
 

1.2.8 Therapeutic Effects of OA, Its Isomer, and Derivatives in Reducing Inflammation 

Overnutrition leads to an accentuated proinflammatory state in several tissues including the liver 

and the hypothalamic region of the brain (Osborn and Olefsky 2012). Inflammation of these 

tissues contributes to hyperglycaemia, insulin resistance, and type 2 diabetes (Osborn and 

Olefsky 2012). On a molecular level, proinflammatory signalling is mediated by NF-κB activation. 

The proinflammatory NF-κB signalling pathway in the target cell is summarised in Figure 1.3. 

Briefly, NF-κB remains inactive when bound to and inhibited by nuclear factor kappa b inhibitor 

alpha (IκB) in the cytoplasmic region of the cell. NF-κB is activated by IKK, which stimulates its 

translocation into the nucleus. Once NF-κB is in the nucleus, it regulates the expression of a 

variety of molecules such as the cytokine, TNFα. The secretion of TNFα due to the activation of 
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NF-κB can also increase the production of reactive oxygen species (ROS), contributing to the 

development and progression of co-morbidities associated with obesity and type 2 diabetes, such 

as cardiovascular disease (Gao, Belmadani et al. 2007). This proinflammatory signalling pathway 

is a positive feedback loop since TNFα can bind to TNF receptor (TNFR) resulting in the 

phosphorylation and activation of IKK then subsequent NF-κB interaction. NF-κB activation can 

also promote the expression of the negative regulators of insulin signalling, PTP1B and SOCS3, 

thereby reducing insulin sensitivity and subsequent glucose regulation [61-64].  

OA and UA have been found to reduce proinflammation by inhibiting proinflammatory signalling 

molecules and cytokines (Feingold, Soued et al. 1989, Grunfeld and Feingold 1991, Zhang, 

Zhang et al. 2008). A summary of OA and UA’s effects on proinflammatory signalling in the target 

cell is summarised in Figure 1.3. OA reduced NF-κB signalling by inhibiting lipopolysaccharide 

(LPS) induced phosphorylation of IkB, and subsequently the expression of the cytokines TNFα 

and IL-1β (Suh, Jin et al. 2007, Yunoki, Sasaki et al. 2008). UA administration in mice fed a HF 

diet also inhibited signalling through the NF-κB pathway (Lu, Wu et al. 2011). The OA derivative, 

BM has been found to directly influence proinflammatory signalling in Human U-937 myeloid 

leukaemia cells by inhibiting IKK which causes blocking of the NF-κB pathway (Ahmad, Raina et 

al. 2006). This OA derivative has also been found to suppress LPS-induced inflammation in 

normal human PBMC cells by reducing the expression of the cytokines IL-6 and TNFα 

(Thimmulappa, Fuchs et al. 2007). However, a very high concentration of BM was required to 

suppress NF-κB in macrophages, suggesting that NF-κB signalling is not the only target by this 

compound and that its effects may occur through another pathway, possibly through nuclear 

factor like 2 (Nrf2) (Ahmad, Raina et al. 2006, Liby and Sporn 2012). Therefore, UA, OA and their 

derivatives such as BM appear to be promising compounds in targeting obesity-induced 

inflammation. 
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Figure 1.3. Ursolic acid (UA) and oleanolic acid (OA) effects on proinflammatory signalling in the target cell.  
Tumour necrosis factor alpha (TNFα) binds to the TNF receptor (TNFR). IκB kinase (IKK) is phosphorylated causing 
nuclear factor kappa b inhibitor alpha (IκB) phosphorylation. Disassociation of IκB from nuclear factor kappa B (NF-
κB) and subsequent degradation. NF-κB is translocated into the nucleus where it functions to activate the 
transcription of a variety of molecules. NF-kB regulates the expression of TNFα, protein tyrosine phosphatase 1B 
(PTP1B) and suppressor of cytokine signalling 3 (SOCS3), which are negative regulators of insulin signalling. TNFα 
can then bind to the TNFR causing a detrimental feedback loop. UA has been found to inhibit NF-κB activation in 
mice whilst OA has been found to reduce NF-κB translocation into the nucleus by inhibiting IκB phosphorylation.  
 
 

1.2.9 Therapeutic Effects of OA, Its Isomer, and Derivatives in Reducing Oxidative 

Stress and Tissue Damage 

In type 2 diabetes, hyperglycaemia promotes an increase in free radicals and decrease in anti-

oxidants causing increased lipid peroxidation. Free radicals such as ROS can be detrimental 

since they can diffuse into cells causing damage to the mitochondrial enzymes and DNA, which 

subsequently leads to cellular dysfunction (Gao, Li et al. 2009). ROS are generated by oxidative 
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stress such as the conversion of sorbitol to fructose in the polyl pathway (Jang, Kim et al. 2010). 

In particular, ROS have been found to play a role in kidney fibrosis (Dendooven, Ishola et al. 

2011, Truong, Gaber et al. 2011). A study has shown that damaged tubular cells in kidneys 

exacerbate ROS leading to apoptosis following unilateral ureteral obstruction (Chung, Yoon et al. 

2014).  

One of the complications of type 2 diabetes is hepatocellular enzyme leakage, indicated by an 

increase in plasma enzyme activity of aspartate aminotransferase (AST) and alkaline 

phosphatase (ALP), which eventually results in severe liver damage (Wang, Li et al. 2011). A 

hepatoprotective effect of OA has been observed in mice with diabetes through a reduction in the 

activity of ALP and AST, suggesting a reduction in hepatoxicity (Wang, Li et al. 2011). In animal 

studies, OA and UA treatment decreased liver damage caused by oxidative stress-inducing 

chemicals, such as carbon tetrachloride (CCl4) (Liu, Liu et al. 1994). OA and UA also increased 

the activities of the anti-oxidant enzymes superoxide dismutase (SOD) and glutathione 

peroxidase (GSHpx) (Ma, Zhao et al. 1986, Liu, Liu et al. 1994, Wang, Li et al. 2011). Increased 

levels of these anti-oxidant enzymes reduced the levels of free radicals and lipid peroxidation 

(Wang, Li et al. 2011). The anti-oxidative effects of these compounds appear to be beneficial for 

the treatment and prevention of associated complications of obesity and type 2 diabetes, 

including oxidative stress-induced liver damage.  

Excess glucose in the blood promotes renal and hepatic tissue damage, and the polyl pathway is 

a major contributor to this damage. The function of this pathway is to metabolise unused glucose 

and it is activated during hyperglycaemic states. The key enzymes in this pathway are aldose 

reductase (AR) and sorbitol dehydrogenase (SDH), which facilitate the production of sorbitol and 

fructose. The elevated sorbitol and fructose levels that occur due to the polyl pathway results in 

an increase in advanced glycation end product (AGE) formation and glycative injury (Kawasaki, 
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Fujii et al. 1999, Takeuchi and Yamagishi 2004, Tokita, Hirayama et al. 2005). AGEs such as 

glycated haemoglobin (HbAlc), Nε-(carboxymethyl) lysine (CML), and glycated albumin are 

thought to be involved in the development of diabetic nephropathy, with CML and glycated 

albumin shown to contribute to its progression (Gugliucci and Bendayan 1996, Schleicher, 

Wagner et al. 1997, Ziyadeh, Mogyorosi et al. 1997, Dunlop 2000). OA and UA administration in 

mice with diabetes has been found to reduce the renal and liver activity of AR and SDH and 

mRNA expression of AR causing suppression of the polyl pathway via decreased sorbitol and 

fructose production and AGE formation (Jang, Kim et al. 2010, Wang, Hsu et al. 2010). OA 

treatment can also upregulate mRNA expression of glyoxalase I, an enzyme that metabolises the 

AGE precursor methylglyoxal (Beisswenger, Howell et al. 2003, Wang, Hsu et al. 2010). The 

suppression of these molecules integral to the polyl pathway and inhibition of AGEs, including 

precursors, by OA and UA ameliorates liver and kidney injury (Jang, Kim et al. 2010). This may 

hinder the progression of type 2 diabetes related complications of the liver and kidneys, including 

diabetic nephropathy, chronic kidney disease (CKD), and non-alcoholic fatty liver disease 

(NAFLD).  

Nrf2 promotes the transcription of many anti-oxidant genes (Chen and Kunsch 2004, Li and Nel 

2006, Wang, Ye et al. 2010), and its intracellular interactions are summarised in Figure 1.4. Nrf2 

is usually bound to its inhibitor kelch-like ECH-associated protein 1 (Keap1) in the cytoplasm. An 

increase in oxidative or electrophillic stress-inducing agents such as ROS causes Keap1 to lose 

its ability to inhibit Nrf2 which results in the disassociation of Nrf2 from Keap1 (Itoh, Tong et al. 

2004). Nrf2 can then be translocated into the nucleus where it binds to the anti-oxidant response 

element (ARE) to stimulate the transcription of anti-oxidant genes (Nguyen, Yang et al. 2004, Yu 

and Kensler 2005, Wei, Gong et al. 2011). The activation of Nrf2 and concurrent inactivation of 

Keap1 results in a reduction of oxidative stress and inflammation in a variety of tissues including 
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the kidneys, liver and retina. Nrf2 activation results in a reduction of blood urea nitrogen levels 

and the amelioration of glomerular and tubular injury in the kidneys (Wu, Wang et al. 2011). In the 

livers of knockout and knockdown Keap1 mice, Nrf2 activation causes reduced expression of 

hepatic inflammatory genes including IL-1β, IL-6 and TNFα (Liu, Wu et al. 2013). Following 

induced retinal ischemia reperfusion, Nrf2 knockout mice have been found to have increased 

inflammatory cells, increased inducible nitric oxide synthase (iNOS) and oxidative stress 

compared to wild type mice (Wei, Gong et al. 2011). In addition, Keap1 has been shown to 

promote a proinflammatory response through binding with the p65 subunit of NF-κB in HepG2 

and HEK293 cells (Yu, Li et al. 2011). Furthermore, Nrf2 has been found to be activated as a 

result of NF-κB-induced inflammation and ROS production as a defensive response (Kim, Cha et 

al. 2010, Singh, Vrishni et al. 2010). This suggests that Nrf2 activation influences both 

inflammation and oxidative stress. OA, UA and derivatives have been found to have anti-

inflammatory and anti-oxidative effects, which may be credited to Nrf2 activation. Briefly, the 

mechanisms behind this effect include inhibition of proinflammatory signalling and increasing the 

transcription of anti-oxidants; both of which are associated with Nrf2 activation.   

OA and a number of synthetic derivatives of OA including BM, CDDO-TFEA, CDDO-Im and 

CDDO-Ea have been found to activate Nrf2 signalling [15,72, 74]. OA has been found to increase 

Nrf2 activation and heme oxygenase 1 (Hmox1) expression causing a reduction in fibrosis and 

apoptosis in mice with unilateral ureteral obstruction (Chung, Yoon et al. 2014). BM and CDDO-

TFEA attenuate retinal damage, such as in diabetic retinopathy, via Nrf2 activation and 

subsequent transcription of several anti-oxidant genes including Hmox1, NADPH dehydrogenase 

quinone 1 (Nqo1) and glutamate cysteine ligase catalytic subunit (GCLC) (Pitha-Rowe, Liby et al. 

2009, Wei, Gong et al. 2011). The treatment of retinal ischemia reperfusion-induced mice with 

BM increased retinal superoxide levels and reduced capillary degeneration by 60%. In addition to 
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decreasing retinal damage, CDDO-Im has been found to induce the phosphorylation of Akt in 

retinal epithelial cells. On inhibition of the PI3K/Akt pathway, CDDO-Im treatment had no effect in 

inducing Hmox1 transcription, reiterating the relationship between Akt activation and Hmox1 

expression (Pitha-Rowe, Liby et al. 2009). This demonstrates a link between Nrf2 and Akt 

signalling pathways, and supports the previously described effect of these compounds on insulin 

signalling. This also suggests that the anti-oxidative and anti-inflammatory effects of Nrf2 

activation may also be influenced by the activity of the PI3K/Akt pathway, perhaps through 

inhibition of PTP1B. Therefore, Nrf2 activation by OA derivatives appears to be a promising target 

for reducing oxidative stress in type 2 diabetes and associated complications, such as diabetic 

nephropathy and liver dysfunction.  
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Figure 1.4. The effects of oleanolic acid (OA) CDDO derivatives on nuclear factor like 2 (Nrf2) activation. 
Oxidative stress such as reactive oxygen species (ROS) reduces the inhibitory activity of Kelch-like ECH-associated 
protein 1 (Keap1) on Nrf2. Nrf2 disassociates from Keap1 resulting in subsequent translocation of Nrf2 into the 
nucleus. Nrf2 binds to the anti-oxidant response element (ARE) to promote the transcription of a number of anti-
oxidant genes such as Hmox1. Anti-oxidant enzymes transcribed by Nrf2 can inhibit ROS. The OA CDDO 
derivatives, CDDO-Im, CDDO-TFEA, CDDO-EA and CDDO-Me (Bardoxolone methyl) activate Nrf2 by reducing 
Keap1 inhibition of Nrf2. 

 
1.2.10 Clinical Applications of OA and an OA Derivative, Bardoxolone Methyl (BM) 

OA is currently used as a dietary supplement in traditional Chinese medicine for treating liver 

injuries, inflammatory diseases, various types of cancers, and diabetes (Liu 1995, Sultana and 

Ata 2008, Petronelli, Pannitteri et al. 2009, Wang, Li et al. 2011, Pollier and Goossens 2012). 

However, investigation of highly potent OA derivatives, including the OA CDDO derivative, BM, is 
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still currently undergoing several human clinical trials to test its potential future use in a clinical 

setting. BM has successfully completed phase I and II of human clinical trials for treating CKD in 

individuals with type 2 diabetes, and phase I clinical trials for the treatment of leukaemia and solid 

tumours (Liby, Yore et al. 2007), indicating its potential in treating multiple diseases. The phase 

IIb human clinical trial study, in 227 patients with type 2 diabetes and CKD, showed that BM 

improved kidney function with no sign of hepatic injury (Pergola, Raskin et al. 2011). The 

therapeutic effects of BM were through upregulation of Nrf2 and Hmox1 expression in various 

regions of the kidneys (Wu, Wang et al. 2011). Since BM has successfully completed phase II of 

human clinical trials with positive benefits in patients with CKD and type 2 diabetes, this 

compound has potential clinical applications in the treatment of kidney disease in type 2 diabetes. 

The ability of BM to activate Nrf2 may reduce oxidative stress and inflammation in other tissues 

such as the liver, thereby ameliorating tissue damage in individuals with obesity-induced type 2 

diabetes and prevent the development of associated microvascular and macrovascular 

complications. Further scientific investigation of the effect of BM is needed in the future to 

determine if this drug has a similar effect in promoting Nrf2 activation in other tissues and organs 

and whether another molecular target, such as PTP1B is responsible for its therapeutic effects. 

Despite the number of benefits of OA and the OA derivative BM, caution for specific populations 

should be taken when applied to patients with severe chronic kidney, hepatic and/or heart 

diseases. In a clinical setting, the dose of OA can be as high as 80mg three times per day in 

humans (Lu, Wan et al. 2013). However, caution must be taken since it has been reported that 

OA can cause hepatotoxicity in long term use or if the dose is too high (>500μmol/kg per day) in 

mice (Lu, Wan et al. 2013). Phase III of human clinical trials testing BM in patients with end stage 

chronic kidney disease (stage 4 and up) was terminated due to a higher incidence of 

cardiovascular events compared to the placebo group (de Zeeuw, Akizawa et al. 2013). The 
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mechanisms contributing to these adverse events in the clinical trial were speculated to be via the 

modulation of the endothelin pathway (Chin, Reisman et al. 2014). However, this pathway was 

not investigated in the heart tissue and in the kidney following chronic BM treatment, suggesting 

that further investigation into this drug was vital (Camer and Huang 2014). Therefore, future 

human clinical trials using BM should monitor blood pressure and heart function of participants, 

and overall caution should be taken in patients with a higher risk of cardiovascular events. 

Recruitment for a human clinical trial in patients with pulmonary arterial hypertension 

(NCT02036970) is currently being undertaken in order to determine the efficacy and safety of BM 

in this population, which is proposed to be completed by April 2016. This will aim to address 

safety issues in the phase III human clinical trials in advanced chronic kidney disease patients. 

1.2.11 Therapeutic Effects of BM in Obesity and Associated Complications 

OA is a natural compound that has shown a number of therapeutic benefits in the treatment and 

prevention of obesity and associated complications such as type 2 diabetes (Camer, Yu et al. 

2014). In several in vitro studies, OA has been found to improve leptin signalling by activating the 

phosphorylation of Akt and reducing the leptin signalling inhibitor, PTP1B (Na, Oh et al. 2006, 

Jung, Ha et al. 2007, Lin, Zhang et al. 2008, Ramirez-Espinosa, Rios et al. 2011). However, 

derivatives of OA have been found to be significantly more potent and have a higher 

bioavailability than in their natural form (Zhang, Zhang et al. 2008). An example of a highly potent 

OA synthetic derivative is BM, which has attracted wide attention due to its anti-inflammatory 

effects and its potential application in a wide variety of diseases (Ahmad, Raina et al. 2006, 

Wang, Garvin et al. 2011, Liby and Sporn 2012, Reisman, Chertow et al. 2012, Camer and 

Huang 2014, Camer, Yu et al. 2014). In recent years, BM has been extensively studied in both 

preclinical rodent studies and human clinical trials, and shows promise for the treatment of renal 

diseases such as chronic kidney disease, and colitis-induced colon cancer due to its anti-
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inflammatory effects (Liby, Yore et al. 2007, Pergola, Krauth et al. 2011, Pergola, Raskin et al. 

2011, Hong, Kurzrock et al. 2012, NIH 2012, de Zeeuw, Akizawa et al. 2013, Camer, Yu et al. 

2014, Choi, Kim et al. 2014).  

Interestingly, a decrease in body weight and appetite were reported as side effects of BM in the 

phase II human clinical trials in a population with CKD and type 2 diabetes (Pergola, Raskin et al. 

2011, NIH 2012). Furthermore, a recent study demonstrated that 2 week acute administration of 

BM decreased body weight in diet-induced obese mice (Saha, Reddy et al. 2010). In addition, 

previous studies have demonstrated that oral administration of a derivative of BM, 1-[2-cyano-

3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im), prevents HF diet-induced obesity 

and attenuates diabetes in mice (Shin, Wakabayashi et al. 2009, Uruno, Furusawa et al. 2013). 

However, the mechanisms behind these effects and whether it can prevent obesity-induced 

associated complications have not been investigated previously. Therefore, in Chapters 2 and 4 

of this study, it was examined whether chronic treatment with BM could also prevent body weight 

gain, increased food intake and insulin resistance in mice fed a chronic HF diet. Furthermore, in 

Chapters 2 and 4 it was investigated whether BM could also prevent the development of 

hypothalamic leptin resistance and hepatic insulin signalling as potential mechanisms to explain 

its anorexigenic and blood glucose lowering effects respectively. 

Although beneficial effects of BM have been demonstrated in animal models and human clinical 

trials in a variety of tissues (Pitha-Rowe, Liby et al. 2009, Pergola, Raskin et al. 2011), no study 

has investigated the effects of BM on the brain in vivo. It has been demonstrated that 

administration of OA has been found to reverse recognition memory impairments in mice (Park, 

Lee et al. 2014). Moreover, a recent study found that BM can promote dopaminergic 

neuroprotection via attenuation of the inflammatory mediator, TNFα, and ROS production in vitro 

(Tran, McCoy et al. 2008). Furthermore, a derivative of BM, CDDO-MA, improved spatial memory 
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and reduced hippocampal amyloid plaques in a mouse model of Alzheimer’s disease (Dumont, 

Wille et al. 2009). Since these previous studies suggest that BM has therapeutic effects on the 

brain, in Chapter 3 of this thesis, it was investigated whether chronic BM treatment can prevent 

HF diet-induced decline in recognition memory and synaptic plasticity in the hippocampus and 

prefrontal cortex. 

It is well established that BM directly influences the activity of proinflammatory signalling (Ahmad, 

Raina et al. 2006). Specifically, studies have demonstrated that BM can reduce inflammation by 

modulating TNFα levels in rodents fed a HF diet (Saha, Reddy et al. 2010, Dinh, Szabo et al. 

2015). Therefore, in Chapters 4 and 5 of this thesis, it was investigated whether BM could also 

prevent injury of the liver, heart, and kidneys induced by HF diet-induced fat accumulation, 

macrophage infiltration and inflammation. 
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1.3 AIMS 

1.3.1 General Aims 

To examine the effects of BM treatment in mice fed a chronic HF diet for 21 weeks and to 

uncover the molecular mechanisms behind its therapeutic effects in preventing the development 

of obesity and associated type 2 diabetes, hepatic steatosis, cognitive deficits, and cardiorenal 

diseases. 

1.3.2 Specific Aims 

The specific aims of this research were: 

1. To investigate the effects of BM in preventing deregulation of energy balance and 

hypothalamic leptin signalling in mice fed a HF diet. 

2. To examine the effects of BM in preventing recognition memory decline and alterations in 

downstream BDNF signalling molecules in the hippocampus and PFC of mice fed a HF diet.  

3. To examine the effects of BM in preventing the development of diet-induced insulin resistance, 

hepatic steatosis, and impaired downstream hepatic insulin signalling in mice fed a HF diet. 

4. To determine if BM has protective or detrimental effects in obesity-induced cardiac and renal 

pathophysiologies in mice fed a HF diet. 

1.3.3 Hypotheses 

1. BM will prevent body weight gain, peripheral fat accumulation and leptin resistance by 

modulating hypothalamic leptin signalling in mice fed a chronic HF diet. 

2. BM administration will prevent the development of obesity-induced recognition memory decline 

by modulating downstream BDNF signalling in the hippocampus and PFC of mice fed a chronic 

HF diet. 



 

Danielle Camer 28 

 

3. BM administration will prevent the development of obesity-induced insulin resistance and 

hepatic steatosis by modulating hepatic insulin signalling, inflammation and lipid metabolism in 

mice fed a HF diet. 

4. BM administration will prevent the development of obesity-induced development of cardiac and 

renal pathophysiologies in mice fed a HF diet by decreasing inflammation. 

1.3.4 Significance 

Obesity and the associated development of type 2 diabetes have reached epidemic proportions 

worldwide. This increasing incidence is concerning as obesity and type 2 diabetes can lead to the 

development and progression of a number of potentially life-threatening complications affecting a 

variety of tissues including the brain, liver, kidneys and heart. Complications of obesity and type 2 

diabetes include impaired energy balance regulation, memory deficits, hepatic steatosis, and 

cardiorenal diseases. Therefore there is an urgent need to find novel therapeutics that have the 

ability to prevent the development of obesity, type 2 diabetes and associated complications. 

In human clinical trials, BM, a highly potent OA derivative, has demonstrated a therapeutic 

potential through its anti-inflammatory and anti-oxidative properties. In addition, reductions in 

body weight and appetite have been reported as side effects in patients taking the drug. 

Therefore, exploring the effects of BM on body weight regulation in mice fed a chronic HF diet will 

provide a novel understanding of the mechanisms underlying its therapeutic effects. Furthermore, 

the results from the present study will provide an insight into whether BM can also prevent 

obesity-induced type 2 diabetes and associated complications of the brain, liver, heart, and 

kidneys. These results may lead to identifying BM as a potential therapeutic for preventing and 

treating obesity, type 2 diabetes, and associated complications. Importantly, these findings may 

lead to the development of additional human clinical trials and the future use of BM as a novel 

pharmaceutical in the clinic. 
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1.4 GENERAL METHODS 

1.4.1 Ethics Statement 

This study was approved by the Animal Ethics Committee, University of Wollongong (Application 

Approval #: AE12/15), and all experimental procedures complied with the Australian Code of 

Practice for the Care and Use of Animals for Scientific Purposes (2004), which is in accordance 

with the International Guiding Principles for Biomedical Research Involving Animals. All efforts 

were made to minimise animal stress and suffering. 

1.4.2 Animals, Diet and Drug Treatment 

Seventy male adult (12 week old) C57BL/6J mice were obtained from the Animal Resource 

Centre (Perth, Western Australia) and were maintained in the animal facility at the University of 

Wollongong, Wollongong, NSW, Australia. Mice were housed individually in environmentally 

controlled conditions (temperature 22 °C, 12hr light/dark cycle). Following 1 week of 

acclimatisation, mice were randomly divided into 5 groups (n=14 per group). For the next 21 

weeks, one group of mice were fed a lab chow (LC) diet (5% of energy as fat; Vella Stock Feeds, 

Doonside, New South Wales, Australia), while the other four groups were fed a HF diet (40% of 

energy as fat; SF11-095, Specialty Feeds, Glen Forrest, Western Australia). The diet 

compositions of the LC and HF diets are presented in Table 1.1. Mice fed a HF diet were 

randomly assigned to UA, OA, or BM treatment groups, or the control group. For the treatment 

groups, a daily oral dosage of 10 mg/kg of UA, OA or BM administered in drinking water was 

chosen according to previous studies (de Melo, Queiroz et al. 2010, Rao, de Melo et al. 2011, 

Wu, Liu et al. 2014). Body weight and food intake were measured weekly for the duration of the 

experiment.  
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Table 1.1 Composition of the high-fat and lab chow diets 

 High-fat diet Lab chow diet 

Total energy (kcal/100g)   

Fat 
Carbohydrate 
Protein 

40 
45 
15 

5 
75 
20 

Typical Ingredients; 
High-fat diet: Casein (Acid), Sucrose, Lard, Sunflower Oil, Cellulose, Wheat Starch, Dextrinised Starch, Minerals, and 
Vitamins.  
Lab chow diet: Cereal Grains, Meat Offal Meal, Fish Offal Meal, Whey Powder, Vegetable Oils, Soybean Protein, 
Cereal Offal, Corn Offal, Minerals, and Vitamins. 
 

1.4.3 Experimental Design 

Following 16 weeks of the study, the most effective treatment was chosen for further investigation 

in the remaining experimentation. The body weights of the five groups from week 0 to week 16 

are presented in Figure 1.5 (Final average body weight after 16 weeks: LC, 27.74±0.16g; HF, 

36.39±1.01g; HF+UA, 36.45±0.76g; HF+OA, 38.11±1.04g; HF+BM, 26.28±0.39g). BM treatment 

significantly prevented HF diet-induced body weight gain. However, UA and OA treatment failed 

to prevent HF diet-induced obesity. Therefore, the BM group was chosen for further investigation 

for the remainder of the experiments to examine the mechanisms behind why BM prevented HF 

diet-induced obesity. In addition, we investigated whether BM could also prevent obesity-induced 

associated complications including type 2 diabetes and alterations to the brain, liver, heart, and 

kidneys. 

 
Figure 1.5. Body weights of mice fed a lab chow (LC), high-fat (HF), or HF diet supplemented with ursolic 
acid (UA), oleanolic acid (OA) or bardoxolone methyl (BM) (administered in drinking water at a daily dose of 
10 mg/kg) from week 0 to week 16 of the experiment. Chronic administration of BM significantly prevented body 
weight gain in mice fed a HF diet. However, UA or OA administration failed to prevent body weight gain induced by a 
HF diet in mice. *, p = <0.05 vs. LC group, #, p<0.05 vs. HF group, values are means ±SEM. 
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To examine the effects of BM in preventing HF diet-induced alterations in hypothalamic energy 

balance regulation (Chapter 1), recognition memory (Chapter 2), insulin resistance and hepatic 

steatosis (Chapter 3), and heart and kidney pathophysiologies (Chapter 4), a chronic HF diet 

animal model was used before tissue was collected for analysis. 

1.4.4 Euthanasia and Tissue Collection 

For tissue analysis (n=14 per group), mice were euthanised at week 21 of the experiment by CO2 

infusion. Whole brains were dissected from the mice, snap frozen in liquid nitrogen and stored at -

80 °C until use. Visceral and inguinal white adipose tissue (WAT) were dissected from mice and 

weighed. The kidneys, liver, and heart were dissected from each mouse. The full hearts and liver 

were weighed. The apex of the heart and a small section of the liver were cut and placed in 10% 

formalin. The right kidneys of each mouse were cut in half before the inferior portion was placed 

into 10% formalin. The remaining heart, liver and kidney tissue were snap frozen in liquid 

nitrogen, and stored at -80 °C until use. Blood samples were collected from the left ventricle of 

the heart and placed into ethylenediaminetetraacetic acid (EDTA) tubes. The plasma was then 

separated via centrifugation from each blood sample and stored at -80 °C. 

1.4.5 Microdissection 

Frozen brain sections containing the PFC and hippocampus were cut into 14 μm coronal sections 

with a cryostat at -18°C before being mounted on Polylysine™ microscope slides for receptor 

autoradiography. Further coronal brain sections were cut at 500μm before the PFC, 

hippocampus, mediobasal hypothalamus, and paraventricular nucleus regions were dissected for 

western blotting. Sections were collected using a Stoelting Brain Punch (#57401, 0.5mm 

diameter, Wood Dale, Stoelting Co, USA) (White, Whittington et al. 2009). The areas of the brain 

collected ranged from Bregma -2.34mm to -2.80mm based on a standard mouse brain atlas 
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(Paxinos 2002), as outlined in previous studies (Yu, Wu et al. 2013, Wu, Yu et al. 2014), Figure 

1.6. Brain sections and collected tissue were stored at -20°C until use.  

 

Figure 1.6. Schematic of the mouse brain. Depicts the levels of Bregma (A) 2.22mm, incorporating the prefrontal 
cortex (PFC); (B) -1.22mm, incorporating the hypothalamic paraventricular nucleus (PVN), mediobasal 
hypothalamus, and hippocampus. Modified from Paxinos and Franklin (2002). The Mouse Brain in Stereotaxic 
Coordinates, 2nd Ed. San Diego Academic Press, USA. 
 

Frozen liver, heart, and kidney tissue were cut into 10 μm sections with a cryostat at -18 °C 

before being mounted on Polylysine™ microscope slides for histological staining. Specifically, the 

apex of the hearts and the superior portion of the cortex of the kidney were sectioned. The liver, 

left ventricle of each mouse heart and inferior portion of the kidney cortex were micro dissected 

from 500 μm thick frozen sections, and collected for Quantitative Real Time PCR (RT-PCR). Liver 

tissue was also collected from 500 μm thick frozen sections for protein analysis via western 

blotting. Liver, kidney and heart tissue were stored at a temperature of -80 °C until use.  

1.4.6 Extraction of total, nuclear and cytosolic proteins 

For total protein extraction the frozen liver, mediobasal hypothalamus, paraventricular nucleus, 

PFC, and hippocampus tissue samples were homogenised in homogenising buffer (containing 

Nonidet P-40 lysis buffer, Protease Inhibitor Cocktail, 1mM PMSF and 0.5mM β-

glycerophosphate). The homogenised tissue was stored at -80 °C until use. 

Nuclear and cytosolic proteins were extracted from liver tissue as described by Mobasher et al 

(Mobasher, Gonzalez-Rodriguez et al. 2013). Briefly, liver tissue was homogenised in a solution 
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containing 10Mm HEPES-KOH (pH 7.9), 10mM KCL, 1.5mM MgCl2, 0.5mM DTT, 0.2mM PMSF, 

and protease and phosphatase inhibitors (buffer A) before incubation on ice, vortexing and 

centrifugation. Following centrifugation, the supernatant containing the cytosolic fraction was 

collected and frozen at -80 °C until use. The remaining pellet was resuspended in a solution 

containing 20mM HEPES-KOH (pH 7.9), 400mM NaCl, 1.5 mM MgCl2 0.2mM EDTA, 15% 

glycerol, 0.5mM DTT, 0.2mM PMSF and protease and phosphatase inhibitors (buffer B) before 

further centrifugation. Following multiple washes with buffer B and centrifugation of the pellet, the 

supernatant containing the nuclear fraction was collected and stored at -80 °C until use.  

1.4.7 Western Blotting 

The total, cytosolic, and nuclear protein concentrations were determined by a DC-Assay (Bio 

Rad, Hercules, USA), that was detected by an absorbance microplate reader (SpectraMax Plus 

384, Molecular Devices, USA). Each sample was heated to 95°C in Laemmli buffer, before being 

loaded onto SDS-PAGE 4-12% gels and transferred onto ImmunoBlot™ PVDF membranes (Bio 

Rad, Hercules, CA, USA). The membranes were blocked with 5% BSA in TBST. 

The following antibodies were incubated onto the membranes in TBST containing 1% BSA 

overnight at 4°C to quantify specific proteins: BDNF (sc-546), pTrkB (sc-135645), TrkB (sc-

377218), pAkt (sc-135650), Akt (sc-1618), pAMPK (sc-33524), AMPK (sc-25792), pJNK (sc-

6254), Nrf2 (sc-722), IL-1β (sc-7884), IL-6 (sc-7920) (Santa Cruz Biotechnology, Dallas, TX); 

PTP1B (#5311), pIKK (#2697), pSTAT3 (#9145), STAT3 (#4904), pFOXO1 (#9461), FOXO1 

(#2880), SOCS3 (#2932), TNFα (#3707), pJAK2 (#3771) (Cell Signalling Technology, Beverly, 

MA). The antibodies and respective dilution factors used are presented in Table 1.2. Secondary 

antibodies were anti-rabbit, anti-goat or anti-mouse IgG conjugated with horseradish peroxidise 

(Santa Cruz Biotechnologies, USA; dilution factor 1:1000). All quantitative analyses for total and 

cytosolic proteins were normalised to β-actin. Nuclear proteins were normalised to Lamin B. ECL 
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detection reagents were used and film was exposed in the darkroom using an AGFA CP1000 

Tabletop Processor (COD Medical, USA) for antibody visualisation. The bands corresponding to 

the proteins of interest were scanned and the band density analysed using the automatic imaging 

analysis system, Quantity One (Bio-Rad Laboratories, Hercules, California). Western blots were 

performed in triplicate for each sample; however, in some cases only two values for each sample 

were collected. The average of the duplicate/triplicate numbers for each sample was calculated 

and this number was used for statistical analysis. 
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Table 1.2. The antibodies used in western blotting for measuring protein expression. 
Peptide/protein 

target 
Name of Antibody Manufacturer, catalog #, 

and/or name of 
individual providing the 

antibody 

Species raised in; 
monoclonal or 

polyclonal 

Dilution 
used 

Akt Akt1 Antibody (C-20) Santa Cruz Biotechnology, 
sc-1618 

goat polyclonal 1:200 

AMPK AMPKα1/2 Antibody 
(H-300) 

Santa Cruz Biotechnology, 
sc-25792 

rabbit polyclonal 1:1000 

β-Actin β-Actin (C4) Santa Cruz Biotechnology, 
sc-47778 

mouse monoclonal 1:1000 

BDNF BDNF Antibody (N-
20) 

Santa Cruz Biotechnology, 
sc-546 

rabbit polyclonal 1:1000 

FOXO1 FoxO1 (C29H4) 
Rabbit mAb 

Cell Signalling 
Technology, #2880 

rabbit monoclonal 1:1000 

IL-1β IL-1β Antibody (H-
153) 

Santa Cruz Biotechnology, 
sc-7884 

rabbit polyclonal 1:200 

IL-6 IL-6 Antibody (H-183) Santa Cruz Biotechnology, 
sc-7920 

rabbit polyclonal 1:200 

Lamin B Anti-Lamin B1 
antibody- Nuclear 
Envelope marker 

Abcam, ab16048 rabbit polyclonal 1:1000 

Nrf2 Nrf2 Antibody (C-20) Santa Cruz Biotechnology, 
sc-722 

rabbit polyclonal 1:500 

pAkt p-Akt1 Antibody (Thr 
308) 

Santa Cruz Biotechnology, 
sc-135650 

rabbit polyclonal 1:200 

pAMPK p-AMPKα1/2 
Antibody (Thr 172) 

Santa Cruz Biotechnology, 
sc-33524 

rabbit polyclonal 1:1000 

pFOXO1 Phospho-FoxO1 
(Ser256)  

Cell Signalling 
Technology, #9461 

rabbit polyclonal 1:1000 

pIKK Phospho-IKKα/β 
(Ser176/180)  

Cell Signalling 
Technology, #2697 

rabbit monoclonal 1:1000 

pJAK2 Phospho-Jak2 
(Tyr1007/1008) 

Cell Signalling 
Technology, #3771 

rabbit polyclonal 1:500 

pJNK p-JNK Antibody (G-7)  Santa Cruz Biotechnology, 
sc-6254 

mouse monoclonal 1:1000 

pSTAT3 Phospho-Stat3 
(Tyr705)  

Cell Signalling 
Technology, #9145 

rabbit monoclonal  1:1000 

pTrkB p-Trk B Antibody (Tyr 
706) 

Santa Cruz Biotechnology, 
sc-135645 

rabbit polyclonal 1:500 

PTP1B PTP1B Antibody Cell Signalling 
Technology, #5311 

rabbit polyclonal 1:200 

SOCS3 SOCS3 (L210) 
Antibody 

Cell Signalling 
Technology, #2932 

rabbit polyclonal 1:1000 

STAT3 Stat3 (79D7) Rabbit 
mAb 

Cell Signalling 
Technology, #4904 

rabbit monoclonal  1:1000 

TrkB TrkB Antibody (F-1) Santa Cruz Biotechnology, 
sc-377218 

mouse monoclonal 1:500 

TNFα TNF-α Antibody Cell Signalling 
Technology, #3707 

rabbit polyclonal 1:1000 
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1.4.8 RNA extraction and RT-PCR 

Total RNA was extracted from mouse liver, kidney and heart using the Aurum total RNA mini kit 

(Bio-Rad Laboratories, Hercules, CA) before being reversed transcribed to complimentary first 

strand DNA with a high-capacity cDNA reverse transcription kit (AB Applied Biosystems, 

California, USA) according to the manufacturer’s directions. RT-PCR was performed using a 

Lightcycler 480 real time PCR system (F.Hoffmann-La Roche Ltd, Switzerland). A 20 ul final 

reaction volume containing cDNA sample and SYBR green I master mix was used to perform the 

experiment. Briefly, amplification was carried out with 45 cycles of 95 °C for 10 seconds, 60 °C 

for 30 seconds and 72 °C for 30 seconds. The expression of mRNA was normalised to an 

internal control, GADPH. The degree of mRNA expression was calculated using the comparative 

threshold cycle value (Ct) method, using the formula 2–ΔΔCt (where ΔΔCt =ΔCt sample - ΔCt 

reference) as described previously (Livak and Schmittgen 2001). The primers used and gene 

tracking numbers are presented in Table 1.3.   
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Table 1.3. The primers used in RT-PCR for measuring mRNA expression. 

Gene Forward primer Reverse primer Gene Tracking 
Number (From 
NCBI) 

IR TTTGTCATGGATGGAGGCTA CCTCATCTTGGGGTTGAACT NM_010568.2 

IRS-1 TCCTATCCCGAAGAGGGTCT TGGGCATATAGCCATCATCA NM_010570.4 

G6Pase CTGTGAGACCGGACCAGGA GACCATAACATAGTATACACCT
GCTGC 

NM_008061.3 

GK GTGGTGCTTTTGAGACCCGTT TTCAATGAAGGTGATTTCGCA NM_010292.5 

ACOX ATGAATCCCGATCTGCGCAAG
GAGC 

AAAGGCATGTAACCCGTAGCA
CTCC 

NM_015729.3 

ACC GAAGTCAGAGCCACGGCACA GGCAATCTCAGTTCAAGCCAGT
C 

NM_133360.2 

SCD1 CTTCTTGCGATACACTCTGG TGAATGTTCTTGTCGTAGGG NM_009127.4 

FAS AGGGGTCGACCTGGTCCTCA GCCATGCCCAGAGGGTGGTT NM_007988.3 

Nrf2 CTCGCTGGAAAAAGAAGTG  CCGTCCAGGAGTTCAGAGA NM_010902.3 

TNFα CATCTTCTCAAAATTCGAGTGA
CAA 

TGGGAGTAGACAAGGTACAAC
CC 

NM_013693.3 

IL-6 GTGGCTAAGGACCAAGACCA GGTTTGCCGAGTAGATCTCA NM_031168.1 

IKKβ GGCACCCTGGATGACCTAGA CCATCTCCTGGCTGTCACCT NM_001159774.
1 

IKKε ACCACTAACTACCTGTGGCAT ACTGCGAATAGCTTCACGATG NM_019777.3 

ET-1 GTGTCTACTTCTGCCACCTGGA
CAT 

GGGCTCGCACTATATAAGGGA
TGAC 

NM_010104.3 

ETA CTGAAAACAATTTTTGAATTTCT
TGC 

TACCAAGATGTGAAGGACTGG
TGG 

NM_010332.2 

ETB GTAACATGCAATCGCCCGCA GGAACCCCAATTCCTTTAA NM_007904.4 

GADPH TGAAGCAGGCATCTGAGGG CGAAGGTGGAAGAGTGGGAG NM_001289726.
1 

 

1.4.9 Immunohistochemistry  

Liver, heart, and kidney sections fixed in 10% formalin were embedded in paraffin before being 

sectioned (5 μm) onto Polylysine™ slides. Slides were incubated overnight at 4 °C with anti-

rabbit F4/80, anti-goat ET-1, anti-goat ETB, or anti-rabbit ETA primary antibody (1:150 Santa Cruz 

Biotechnology, Dallas, TX) diluted in blocking buffer. Liver sections were incubated with anti-

rabbit F4/80 only. Samples were then incubated consecutively at room temperature for 30 

minutes with their respective secondary antibody (1:150 Santa Cruz Biotechnology, TX) and then 

streptavidin-HRP polymer conjugate (1:1000 2438, Sigma-Aldrich Pty Ltd, Sydney, Australia). A 

DAB peroxidise substrate kit (4100, Vector Laboratories Inc, Burlingame, CA) was used for the 

development of the stained sections before counterstaining with H&E (POCD Scientific, 

http://www.ncbi.nlm.nih.gov/nucleotide/161086993?report=genbank&log$=nucltop&blast_rank=1&RID=KPPZPNMW01R
http://www.ncbi.nlm.nih.gov/nucleotide/118131011?report=genbank&log$=nucltop&blast_rank=1&RID=KPR295VX014
http://www.ncbi.nlm.nih.gov/nucleotide/565671706?report=genbank&log$=nucltop&blast_rank=4&RID=KPR3S02C014
http://www.ncbi.nlm.nih.gov/nucleotide/429484482?report=genbank&log$=nucltop&blast_rank=3&RID=KPR5XNT2014
http://www.ncbi.nlm.nih.gov/nucleotide/125656172?report=genbank&log$=nucltop&blast_rank=9&RID=KPR97A64015
http://www.ncbi.nlm.nih.gov/nucleotide/227908811?report=genbank&log$=nucltop&blast_rank=1&RID=KPRBCFD6014
http://www.ncbi.nlm.nih.gov/nucleotide/93102408?report=genbank&log$=nucltop&blast_rank=1&RID=KPRGSWZ7015
http://www.ncbi.nlm.nih.gov/nucleotide/76573877?report=genbank&log$=nucltop&blast_rank=1&RID=KPRJCUR7015
http://www.ncbi.nlm.nih.gov/nucleotide/518831586?report=genbank&log$=nucltop&blast_rank=1&RID=KPRMNXNS014
http://www.ncbi.nlm.nih.gov/nucleotide/13624310?report=genbank&log$=nucltop&blast_rank=1&RID=KPRPCBPV014
http://www.ncbi.nlm.nih.gov/nucleotide/229576824?report=genbank&log$=nucltop&blast_rank=4&RID=KPRRRDZW015
http://www.ncbi.nlm.nih.gov/nucleotide/229576824?report=genbank&log$=nucltop&blast_rank=4&RID=KPRRRDZW015
http://www.ncbi.nlm.nih.gov/nucleotide/142379783?report=genbank&log$=nucltop&blast_rank=6&RID=KPRTX55F015
http://www.ncbi.nlm.nih.gov/nucleotide/261599055?report=genbank&log$=nucltop&blast_rank=1&RID=M2ZS0M5D014
http://www.ncbi.nlm.nih.gov/nucleotide/93102407?report=genbank&log$=nucltop&blast_rank=1&RID=M2ZTMH67015
http://www.ncbi.nlm.nih.gov/nucleotide/443609484?report=genbank&log$=nucltop&blast_rank=4&RID=M2ZV9B5S01R
http://www.ncbi.nlm.nih.gov/nucleotide/576080554?report=genbank&log$=nucltop&blast_rank=11&RID=KPRWAP7F014
http://www.ncbi.nlm.nih.gov/nucleotide/576080554?report=genbank&log$=nucltop&blast_rank=11&RID=KPRWAP7F014
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Artarmon, Australia). Three fields from three sections of each mouse were viewed under a Leica 

microscope and digital photographs captured. Image J software was used to quantify the area of 

F4/80, ET-1, ETA, or ETB immunoreactivity on each slide.  

1.4.10 Haematoxylin and Eosin (H&E) staining 

Frozen liver, kidney and heart sections (10 μm) were stained with Haematoxylin and Eosin 

(POCD Scientific, Artamon, Australia) for 30 seconds each. Three fields from three sections of 

each mouse were viewed under a Leica microscope and digital photographs were captured in 

order to analyse histological parameters for each tissue.  

For the liver tissue, steatosis and ballooning were scored according to the method described by 

Kleiner and colleagues (Kleiner, Brunt et al. 2005). The steatosis grades were as follows: 0, <5%; 

1, 5%–33%; 2, >33%–66%; 3, >66%. The ballooning classifications were grouped as: 0, no 

ballooning cells; 1, few ballooning cells; 2, many cells/prominent ballooning. Glomerular and 

Bowman’s capsule hypertrophy in the kidneys were calculated according to the methods 

described by previous studies (Al-Douahji, Brugarolas et al. 1999, Henegar, Bigler et al. 2001). In 

the heart tissue, myocytes were measured quantitatively using the software, Image J according to 

our previous study (Dinh, Szabo et al. 2015).  

1.4.11 Oil Red O staining 

Oil Red O staining was used to examine lipid accumulation in the liver, heart, and kidneys, as 

described previously (Kudo, Tamagawa et al. 2007). Briefly, frozen liver, heart, and kidney 

sections (10 μm) were stained with 0.5% Oil Red O (Sigma-Aldrich) for 15 minutes and then 

washed. Three fields from three sections collected from each mouse were viewed under a Leica 

microscope, and digital photographs were captured. Image J software 

(http://imagej.nih.gov/ij/download.html) was used to quantify the staining, which corresponds to 

the percentage of stained lipid droplets on an area of each slide (Mehlem, Hagberg et al. 2013).  
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1.4.12 Statistical Analysis 

A power calculation analysis was performed in experimental design and revealed a power of 80-

85% (JMP 5.1, SAS Institute Inc, USA), based on previous studies (Zhao, Sim et al. 2005). In 

order to achieve a power of 80% in this project, a minimum of 12 animals per group were required 

to examine body weight, food intake, and recognition memory, whereas a minimum of 6 animals 

per group were required for further histological and biochemical analysis in order for results to be 

significantly different at an alpha level of 0.05. 

Data were analysed using the statistical package SPSS 20 (SPSS, Chicago, IL). Data was first 

tested for normality using Kolmogorov-Smirnov Tests, before differences between mice fed a LC, 

HF, and HF supplemented with BM diet were determined by one-way analysis of variance 

(ANOVA). This was followed by the post hoc Tukey-Kramer honestly significant difference (HSD) 

test for multiple comparisons among the groups. Pearson’s correlations were used to examine 

the relationship between recognition index and BDNF levels, recognition index and NMDA 

receptor density, and AMPK phosphorylation and BDNF levels in the PFC and hippocampus. All 

data are expressed as mean ± SEM. A p value less than 0.05 was considered statistically 

significant.  
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1.5 OVERVIEW OF THESIS 

The worldwide increase in rates of obesity is largely driving an increase in type 2 diabetes and 

associated complications affecting vital organs including the brain, liver, heart, and kidneys. 

Therefore, there is an urgency to find novel therapeutics that have the ability to prevent obesity, 

type 2 diabetes, and the development of associated complications. I decided to search for 

potential therapeutics by looking at natural compounds and their derivatives. After careful 

consideration, I decided to test the effects of the pentacyclic triterpenes, OA, UA, and a 

derivative, BM, in mice fed a chronic HF diet and to choose the most potent compound for 

subsequent experimentation. From preliminary testing, it was uncovered that BM, a highly potent 

OA derivative, had the ability to prevent body weight gain in mice fed a chronic HF diet. However, 

UA and OA treatment had no effect in preventing HF diet-induced body weight gain. From this, 

the molecular mechanisms underlying the ability of BM to prevent HF diet-induced obesity were 

examined by investigating energy balance signalling in the hypothalamus. In addition, whether 

BM administration could also prevent the development of obesity-induced insulin resistance, 

memory deficits, hepatic steatosis, and cardiorenal diseases was also determined. Summary 

abstracts from each study are presented in the following sections (1.5.1-1.5.4). 

1.5.1 BM prevents body weight gain, hypothalamic inflammation, and leptin resistance in 

male mice fed a HF diet 

Neuroregulation of negative energy balance is largely controlled by the mediobasal and 

paraventricular nuclei regions of the hypothalamus via leptin signal transduction. HF diet-induced 

obesity is associated with hypothalamic leptin resistance and low grade chronic inflammation, 

which largely impairs this neuroregulation of negative energy balance. Recently, BM has been 

shown to have anti-inflammatory effects. The hypothesis that BM would prevent diet-induced 

obesity, leptin resistance and inflammation in mice fed a HF diet was tested. Oral administration 
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of BM via drinking water (10 mg/kg daily) for 21 weeks significantly prevented an increase in food 

intake, body weight, hyperleptinemia, and peripheral fat accumulation in mice fed a HF diet. 

Furthermore, BM treatment prevented decreased the anorexigenic effects of peripheral leptin 

administration induced by a HF diet. In the mediobasal and paraventricular nuclei regions of the 

hypothalamus, BM administration prevented HF diet-induced impairments of downstream leptin 

JAK2-Akt-FOXO1 signalling. BM treatment also prevented an increase in the inflammatory 

mediator, pJNK, and cytokines, TNFα and IL-6, in these two hypothalamic regions. These results 

identify a potential novel neuropharmacological application for BM to prevent HF diet-induced 

obesity, hypothalamic inflammation, and leptin resistance. 

1.5.2 BM prevents HF diet-induced alterations in prefrontal cortex signalling molecules 

involved in recognition memory 

HF diets are known to induce changes in synaptic plasticity in the forebrain leading to learning 

and memory impairments. Previous studies of OA derivatives have found that these compounds 

can cross the blood brain barrier to prevent neuronal cell death. The hypothesis that BM would 

prevent diet-induced cognitive deficits in mice fed a HF diet was examined. C57BL/6J male mice 

were fed a LC (5% of energy as fat), HF (40% of energy as fat), or HF diet supplemented with 10 

mg/kg/day BM orally for 21 weeks. Recognition memory was assessed by performing a novel 

object recognition test on the treated mice. Downstream BDNF signalling molecules were 

examined in the PFC and hippocampus of mice via western blotting and NMDA receptor binding. 

BM treatment prevented HF diet- induced impairment in recognition memory. In HF diet-fed mice, 

BM administration attenuated alterations in NMDA receptor binding density in the PFC; however, 

no changes were seen in the hippocampus. In the PFC and hippocampus of HF diet-fed mice, 

BM administration improved downstream BDNF signalling as indicated by increased protein 

levels of BDNF, pTrkB and pAkt, and increased pAMPK. BM administration also prevented HF 
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diet-induced increase in the protein levels of inflammatory molecules, pJNK in the PFC, and 

PTP1B in both the PFC and hippocampus. In summary, these findings suggest that BM prevents 

HF diet-induced impairments in recognition memory by improving downstream BDNF signal 

transduction, increasing pAMPK, and reducing inflammation in the PFC and hippocampus. 

1.5.3 BM prevents insulin resistance and the development of hepatic steatosis in mice fed 

a HF diet. 

HF diet-induced obesity is a major risk factor for the development of insulin resistance and 

hepatic steatosis. The hypothesis that BM would prevent the development of insulin resistance 

and hepatic steatosis in mice fed a HF diet was determined. C57BL/6J male mice were fed a LC, 

HF (40% fat), or HF diet supplemented with 10 mg/kg/day BM orally for 21 weeks. Glucose 

metabolism was assessed using a GTT and IST. Signalling molecules involved in insulin 

resistance, inflammation, and lipid metabolism were examined in liver tissue via western blotting 

and RT-PCR. BM prevented HF diet-induced insulin resistance and alterations in the protein 

levels of PTP1B, FOXO1 and BDNF, and expression of the IR, IRS-1 and G6Pase genes. 

Furthermore, BM prevented fat accumulation in the liver and decreases in the β-oxidation gene, 

ACOX, in mice fed a HF diet. In the livers of HF fed mice, BM administration prevented HF diet-

induced macrophage infiltration, inflammation as indicated by reduced IL-6 and STAT3 protein 

levels and TNFα mRNA expression, and increased Nrf2 mRNA expression and nuclear protein 

levels. These findings suggest that BM prevents HF diet-induced insulin resistance and the 

development of hepatic steatosis in mice fed a chronic HF diet through modulation of molecules 

involved in insulin signalling, lipid metabolism and inflammation in the liver. 
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1.5.4 BM prevents the development and progression of cardiac and renal 

pathophysiologies in mice fed a HF diet 

Obesity is a major risk factor for the development of associated complications, such as heart and 

kidney failure. BM was administrated to mice fed a HF diet for 21 weeks to determine if it would 

prevent the development of obesity-associated cardiac and renal pathophysiologies. Histological 

analysis revealed that BM prevented HF diet-induced development of structural changes in the 

heart and kidneys. BM prevented HF diet-induced decreases in myocyte number in cardiac tissue 

and renal corpuscle hypertrophy in the kidney. Furthermore, in both the hearts and kidneys of 

mice fed a HF diet, BM administration prevented HF diet-induced increases in fat accumulation, 

macrophage infiltration and TNFα gene expression. These findings suggest that BM prevents HF 

diet-induced developments of cardiac and renal pathophysiologies in mice fed a chronic HF diet, 

by preventing inflammation. Moreover, these results suggest that BM has the potential as a novel 

therapeutic for preventing obesity-induced cardiac and renal pathophysiologies. 

1.5.5 Summary 

In conclusion, obesity was successfully modelled in male C57BL/6 mice following a HF diet for 21 

weeks. Furthermore, mice fed a HF diet developed obesity-associated complications including 

leptin resistance, insulin resistance, cognitive deficits, and liver, kidney, and heart 

pathophysiologies. Diet-induced obesity and these associated co-morbidities were prevented by 

oral administration of BM in drinking water at a dosage of 10 mg/kg in mice fed a HF diet for 21 

weeks. Results from the present study suggest that BM prevented the development of HF diet-

induced obesity and associated type 2 diabetes and recognition memory deficits by targeting 

hypothalamic leptin signalling, hepatic insulin signalling, and downstream BDNF signalling in the 

forebrain respectively. Moreover, the ability of BM to prevent obesity-induced peripheral tissue 

damage of the liver, heart, and kidneys was suggested to be as a result of its potent anti-
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inflammatory mechanisms. Overall, these findings highlight BM as a potential novel therapeutic in 

preventing the development and progression of HF diet-induced obesity and associated type 2 

diabetes, cognitive deficits, and pathophysiologies of the liver, heart, and kidneys. 
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Chapter Two 
 

 
Bardoxolone methyl prevents body weight gain, hypothalamic inflammation, 
and leptin resistance in male mice fed a high-fat diet 
 
Under Revision in Molecular and Cellular Neuroscience, Camer D, Yu Y, Szabo A, Wang H, Dinh 
C and Huang XF, Bardoxolone methyl prevents body weight gain, hypothalamic inflammation, 
and leptin resistance in male mice fed a high-fat diet (Resubmitted: 03/11/2015) 
 
2.1 Author Contributions  

D.Camer was a designer of this study, performed all of the experiments, analysed all the data, 
and wrote the first draft of the manuscript, which all authors reviewed and approved for 
publication. 
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Abstract  

Neuroregulation of negative energy balance is largely controlled by the mediobasal and 

paraventricular nuclei regions of the hypothalamus via leptin signal transduction. High-fat (HF) 

diet-induced obesity is associated with hypothalamic leptin resistance and low grade chronic 

inflammation, which largely impairs this neuroregulation of negative energy balance. Recently, a 

derivative of oleanolic acid, bardoxolone methyl (BM) has been shown to have anti-inflammatory 

effects. We tested the hypothesis that BM would prevent diet-induced obesity, leptin resistance 

and inflammation in mice fed a HF diet. Oral administration of BM via drinking water (10 mg/kg 

daily) for 21 weeks significantly prevented an increase in body weight, energy intake, 

hyperleptinemia and peripheral fat accumulation in mice fed a HF diet. Furthermore, BM 

treatment prevented decreased anorexigenic effects of peripheral leptin administration induced by 

a HF diet. In the mediobasal and paraventricular nuclei regions of the hypothalamus, BM 

administration prevented HF diet-induced impairments of downstream leptin JAK2-Akt-FOXO1 

signalling. BM treatment also prevented an increase in the inflammatory mediator, pJNK and 

cytokines, TNFα and IL-6 in these two hypothalamic regions. These results identify a potential 

novel neuropharmacological application for BM to prevent HF diet-induced obesity, hypothalamic 

inflammation and leptin resistance.  
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1. Introduction 

Obesity is currently a major health problem characterised by a deregulation of energy balance 

that is attributed to an increase in consumption of palatable high-fat (HF) food and reduced 

energy expenditure. The prevalence of obesity is a growing problem since it greatly increases the 

risk of developing associated complications such as type 2 diabetes and cardiovascular disease 

(Kahn, Hull et al. 2006, Forouhi and Wareham 2010). There is compelling evidence that 

overnutrition and subsequent obesity leads to chronic inflammation and leptin resistance in the 

hypothalamus, an area of the brain that plays a critical role in maintaining energy homeostasis. 

Therefore, the hypothalamus appears a promising target of future novel therapeutics for 

preventing the development of obesity and associated pathophysiologies. 

It is well established that hypothalamic inflammation is a key characteristic of obesity in rodents 

and humans (Cai and Liu 2011). Recent research has demonstrated that a HF diet results in low 

grade hypothalamic inflammation in rodents (Thaler, Yi et al. 2012). Furthermore, within a week 

of starting a HF diet, rodents have increased mRNA expression of the proinflammatory cytokines 

tumour necrosis factor alpha (TNFα) and interleukin 6 (IL-6) in the hypothalamus (Thaler, Yi et al. 

2012). Hypothalamic inflammation leads to the development of central leptin resistance through 

activation of protein tyrosine phosphatase 1B (PTP1B), an inhibitor of leptin signalling (Zhang, 

Zhang et al. 2008, Milanski, Arruda et al. 2012). In the hypothalamus, leptin binds to long form 

leptin receptors and functions to regulate food intake and energy expenditure via neuronal 

interactions known as central leptin signalling (Friedman and Halaas 1998, Elmquist, Elias et al. 

1999, Bates and Myers 2003). In a normal functioning state, central leptin signalling allows the 

suppression of hunger signals causing satiety (Friedman and Halaas 1998, Elmquist, Elias et al. 

1999, Bates and Myers 2003). Obesity from a HF diet has been demonstrated in both rodents 

and humans to cause central leptin resistance which limits the clinical effectiveness of exogenous 

leptin administration (Caro, Kolaczynski et al. 1996, Nam, Kratzsch et al. 2001). Central leptin 
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resistance has been suggested to occur since it has been found that although leptin levels in the 

cerebrospinal fluid (CSF) is 30% higher in obese individuals than individuals with a lean body 

mass, leptin downstream orexigenic neuropeptide, neuropeptide Y (NPY) are not reduced in the 

CSF (Caro, Kolaczynski et al. 1996, Nam, Kratzsch et al. 2001). Therefore, novel therapeutics 

that target hypothalamic inflammation and leptin resistance has the potential to prevent the 

development of obesity and associated complications such as type 2 diabetes.  

Oleanolic acid (OA) is a natural compound that has shown a number of therapeutic benefits in the 

treatment and prevention of obesity and associated complications such as type 2 diabetes 

(Camer, Yu et al. 2014). In several in vitro studies, OA has been found to improve leptin signalling 

by activating the phosphorylation of protein kinase b (Akt) and reducing the leptin signalling 

inhibitor, PTP1B (Na, Oh et al. 2006, Jung, Ha et al. 2007, Lin, Zhang et al. 2008, Ramirez-

Espinosa, Rios et al. 2011). However, derivatives of OA have been found to be significantly more 

potent and have a higher bioavailability than in their natural form (Zhang, Zhang et al. 2008). An 

example of a highly potent OA synthetic derivative is bardoxolone methyl (BM), which has 

attracted wide attention due to its anti-inflammatory effects (Ahmad, Raina et al. 2006, Wang, 

Garvin et al. 2011, Liby and Sporn 2012, Reisman, Chertow et al. 2012). BM has completed 

phase II of human clinical trials for treating chronic kidney disease (CKD) in individuals with type 

2 diabetes (Pergola, Raskin et al. 2011, NIH 2012). Interestingly one of the side effects, body 

weight loss, has been reported in the phase II human clinical trials in a population with CKD and 

type 2 diabetes (Pergola, Raskin et al. 2011, NIH 2012). However, the effects of BM on the 

hypothalamus have previously been unexplored. Therefore, in this study, we investigated whether 

chronic treatment with BM could prevent body weight gain and the development of hypothalamic 

inflammation and leptin resistance in mice fed a HF diet. 
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2. Materials and Methods 

2.1 HF diet-induced obesity animal model 

12 week old male C57BL/6J mice were purchased from the Animal Resource Centre (Perth, 

Western Australia) and maintained in the animal facility at the University of Wollongong. The 

procedures were undertaken in accordance with the Australian Code of Practice for the Care and 

Use of Animals for Scientific Purposes and were approved by the Animal Ethics Committee, 

University of Wollongong, Wollongong, Australia (AE 12/15). Mice were housed individually in 

environmentally controlled conditions (temperature 22 °C, 12hr light/dark cycle). Following 1 

week of acclimatisation, mice were randomly divided into 3 groups (n=14 per group). For the next 

21 weeks, one group of mice were fed a lab chow (LC) diet (5% of energy as fat; Vella Stock 

Feeds, Doonside, New South Wales, Australia), while the other two groups were fed a HF diet 

(40% of energy as fat; SF11-095, Specialty Feeds, Glen Forrest, Western Australia). One of the 

groups of mice fed the HF diet were also given an oral daily dose of BM (10 mg/kg) administered 

in their drinking water for the duration of the study. This dosage was chosen as per our previous 

studies (Camer, Yu et al. 2015, Camer, Yu et al. 2015). Body weight and energy intake were 

measured weekly. 

2.2 Peripheral leptin sensitivity test 

At week 16 of the study, each group of mice (n=14 per group) were further divided into leptin 

treated or saline groups (n=7 per group). Following overnight fasting, mice were administered 

with an intraperitoneal (i.p) leptin or saline injection at a dosage of 2µg/g body weight. Food 

intake was measured every 1, 4 and 24 hours and body weight was measured 24 and 48 hours 

following leptin or saline injection as reported previously (Lin, Thomas et al. 2000). 
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2.3 Tissue collection and sample preparations 

Mice were euthanised at week 21 of the experiment (n=14). Visceral and inguinal white adipose 

tissue (WAT) were dissected from mice and weighed. Brains were collected and stored at -80 °C 

for further analyses as detailed below.  

2.4 Microdissection 

500μm frozen brain sections were cut using a cryostat, at a temperature of -18°C, at levels 

ranging from Bregma -1.22mm to -2.72mm based on a standard mouse brain atlas (Paxinos 

2002) as outlined in our previous studies (Yu, Wu et al. 2013, Wu, Yu et al. 2014). The 

mediobasal and paraventricular nucleus regions of the hypothalamus were dissected and 

collected using a Stoelting Brain Punch (#57401, 0.5mm diameter, Wood Dale, Stoelting Co, 

USA) (White, Whittington et al. 2009). 

2.5 Western Blot analysis 

For protein extraction the frozen mediobasal and paraventricular nucleus regions of the 

hypothalamus were homogenised in Nonidet P-40 lysis buffer. The following antibodies were 

used to quantify specific proteins: BDNF (sc-546), pTrkB (sc-135645), pAkt (sc-135650), pAMPK 

(sc-33524), pJNK (sc-6254), IL-6 (sc-7920) (Santa Cruz Biotechnology, Dallas, TX); PTP1B 

(#5311), TNFα (#3707), pSTAT3 (#9145), STAT3 (#4904), pFOXO1 (#9461), FOXO1 (#2880), 

pJAK2 (#3771) (Cell Signalling Technology, Beverly, MA). The bands corresponding to the 

proteins of interest were scanned before the band densities were analysed using Quantity One 

software (Bio-Rad Laboratories, Hercules, California). All quantitative analyses were normalised 

to β-actin.  
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2.6 Luminex Assay 

Blood was collected in EDTA tubes from mice following euthanasia. Following centrifugation, 

plasma was extracted, collected and stored at -80 °C. Plasma leptin levels were measured using 

luminex assay kits according to manufacturer guidelines (Bio-Rad Diabetes Kit, Sydney). 

2.7 Statistics 

Data were analysed using the statistical software package SPSS 20 (SPSS, Chicago, IL). All data 

were first tested for normality using a Kolmogorov-Smirnov normality test. Differences between 

mice fed a LC, HF, and HF diet with BM treatment were determined by one-way ANOVA. This 

was followed by the post hoc Tukey-Kramer honestly significant difference (HSD) test for multiple 

comparisons among the groups. A p value of <0.05 was considered statistically significant. 

Values are expressed as the mean ± SEM. 

3. Results 

3.1 Bardoxolone methyl prevented body weight gain, an increase in energy intake and 

accumulation of adipose tissue in mice fed a high-fat diet 

Mice were fed a HF diet for 21 weeks and weighed weekly to assess body weight gain. Body 

weight steadily increased in HF diet fed mice compared with LC diet fed mice (Figure 1A). 

However, oral administration of BM significantly prevented body weight gain during the 21 week 

treatment period, with significance first achieved at week 2, in mice fed a HF diet (Figure 1A). 

Furthermore, from weeks 6 to 11 the BM treated group had a significantly lower body weight 

compared to the LC diet fed group. The final body weight of BM treated animals was significantly 

lower than the HF diet fed group after 21 weeks of treatment (Final body weight: -31.12%, p = 

<0.001, Figure 1A). There were no significant differences in final body weight between the BM 

treatment group and LC group.  
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Overall, BM administration significantly prevented HF diet-induced increases in energy intake by 

12.72% (Average 24 hour energy intake: LC= 17.3±0.5 kcal, HF= 20.0±0.5 kcal, HF+BM= 

17.5±0.5 kcal, p= <0.05), and a reduction in energy intake was observed in weeks 5, 7, 8, 

9,11,12,19 and 20 of the study (Figure 1B). In addition, average 24 hour energy efficiency (body 

weight gain/energy intake) was significantly lower in BM treated mice compared to HF diet fed 

mice by 61.80% (Average 24 hour energy efficiency: LC= 0.018±0.06 g/kcal, HF= 0.042±0.01 

g/kcal, HF+BM= 0.016±0.01 g/kcal, p= <0.05). Consistent with reduced body weight gain, BM 

also significantly prevented body fat accumulation in mice fed a HF diet compared with the control 

HF diet group (Figure 1C and D). Compared with mice fed a HF diet only, BM treated mice had 

significantly lower amounts of epididymal, perirenal, and inguinal fat deposits (Epididymal fat 

weight -69.05%; perirenal fat weight -72.36%; inguinal fat weight -67.17 %; all p = <0.001, Table 

1). Taken together, these results suggest that BM’s ability to reduce body weight gain and fat 

accumulation may be through reducing energy intake. 
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Figure 1. Effect of chronic administration of bardoxolone methyl (BM) on body weight gain, energy intake and 
peripheral fat accumulation in mice fed a high-fat (HF) diet for 21 weeks (n= 14 per group). Chronic administration of 
BM (10 mg/kg in drinking water for 21 weeks) significantly prevented body weight gain (A) and energy intake (B) 
resulting in a reduced body size (C) and peripheral fat accumulation (D). *, p = <0.05 vs. lab chow (LC) group, #, 
p<0.05 vs. HF group, values are means ±SEM. 
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Table 1 Weight of fat deposits in mice following 21 weeks of LC, HF or HF + BM diet 

Weight (g) LC HF HF+BM F value P value 

Epididymal fat 0.24±0.04b 1.64±0.19a 0.51±0.08b 36.027 <0.001 

Perirenal fat 0.07±0.00b 1.02±0.08a 0.28±0.05b 78.695 <0.001 

Inguinal fat 0.38±0.05b 1.72±0.16a 0.57±0.05b 50.797 <0.001 
Values are means ±SEM. LC, lab chow diet, HF, high-fat diet, HF+BM, high-fat diet and bardoxolone methyl 
treatment. aP<0.05 vs. LC, bP<0.05 vs. HF. 
 

3.2 Bardoxolone methyl prevented leptin resistance and hyperleptinemia in mice fed a high-fat 

diet  

Hyperleptinemia and leptin resistance are characteristic features of obesity (Bodkin, Nicolson et 

al. 1996, Dagogo-Jack, Fanelli et al. 1996). At week 16 of the experiment, a peripheral leptin 

sensitivity test was performed to determine if BM could prevent leptin insensitivity in mice fed a 

HF diet. LC fed mice had significantly reduced body weight at 0-24 hours and 24-48 hours, and 

reduced energy intake 4-24 hours following i.p leptin administration compared to saline injected 

controls (Figures 2A and B). In comparison, HF diet-fed mice demonstrated no changes in body 

weight or energy intake following leptin administration compared to saline injection (Figures 2A 

and B), suggesting that they were insensitive to leptin. However, BM treatment in mice fed a HF 

diet significantly prevented leptin insensitivity as indicated by a reduction of body weight at 0-24 

hours and energy intake 4-24 hours in mice injected with leptin compared with saline injection 

(Figure 2A and B). However, this reduction of body weight did not last 24-48 hours later following 

leptin injection in BM treated mice (Figure 2A). In addition, there were no significant differences in 

energy intake between any of the groups at 0-1 hour, and 1-4 hours following leptin or saline 

administration (Figure 2B). In line with these results, mice fed a HF diet for 21 weeks had 

significantly elevated plasma leptin levels compared to the LC group (Figures 2C). This elevation 

in plasma leptin levels was significantly prevented by BM treatment (Figures 2C). These results 

suggest that BM can prevent HF diet induced leptin resistance and hyperleptinemia. 
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Figure 2. Effect of chronic bardoxolone methyl (BM) levels on peripheral leptin sensitivity and plasma leptin levels in 
mice fed a high-fat (HF) diet (n=7 per group). Chronic administration of bardoxolone methyl (BM; 10 mg/kg in drinking 
water) significantly prevented HF diet-induced leptin resistance as demonstrated by reduced 24 hour body weight (A) 
and energy intake (B) following intraperitoneal (i.p) leptin injection in mice fed a HF diet for 16 weeks. *, p = <.0.05 
vs. saline injection. BM treatment also prevented plasma hyperleptinemia (C) in mice fed a HF diet for 21 weeks. *, p 
= <.0.05 vs. lab chow (LC) group, #, p = <.0.05 vs. HF group, values are means ±SEM. 
 

3.3 Bardoxolone methyl prevented high-fat diet-induced alterations in energy balance regulating 

molecules in the mediobasal and paraventricular nucleus regions of the hypothalamus 

We evaluated the effect of BM on the expression of energy balance regulatory molecules in the 

mediobasal and paraventricular nucleus regions of the hypothalamus of HF diet fed mice using 

western blotting. In both regions of the hypothalamus tested, western blot analysis showed that a 

HF diet significantly reduced brain-derived neurotrophic factor (BDNF) levels and the 

phosphorylation of janus kinase 2 (JAK2), Akt, and forkhead box protein O1 (FOXO1), which was 

significantly reversed by BM treatment (p = <0.05, Figures 3 and 4). Furthermore, HF diet 

induced increases in signal transducer and activator of transcription 3 (STAT3), PTP1B, and the 

phosphorylation of AMP-activated protein kinase (AMPK), was significantly prevented by BM 

administration (p = <0.05, Figures 3 and 4). In addition, in the paraventricular nucleus region of 

the hypothalamus FOXO1 protein levels were significantly elevated in HF diet fed mice (p = 

<0.05, Figure 4A). This increase in FOXO1 levels in the paraventricular nucleus was significantly 

prevented by BM treatment (p = <0.05, Figure 4A). However, in the mediobasal region of the 

hypothalamus, there were no significant differences in FOXO1 protein levels between the groups 

(p = >0.05, Figure 3A). There were also no significant differences in the phosphorylation of 
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STAT3 and tropomyosin receptor kinase B (TrkB) between any of the groups in either of the 

regions of the hypothalamus (p = >0.05, Figures 3B, 3D, 4B and 4D). These results suggest that 

BM prevents HF diet-induced decreases in the negative energy balance associated molecules, 

BDNF, pJAK2, pAkt, and pFOXO1, and increases in the positive energy balance associated 

molecules, STAT3, PTP1B and pAMPK, in both the mediobasal and paraventricular nucleus 

regions of the hypothalamus. Furthermore, these results suggest that BM prevents HF diet-

induced elevations in FOXO1 levels in the paraventricular region of the hypothalamus. 
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Figure 3. Effect of chronic administration of bardoxolone methyl (BM) treatment on key signalling molecules involved 
in energy balance in the mediobasal region of the hypothalamus in mice fed a HF diet for 21 weeks (n= 6-7 per 
group). Chronic treatment of BM significantly prevented high-fat (HF) diet-induced alterations in (A) downstream 
pJAK2-Akt-FOXO1 leptin signalling molecules, (B) STAT3, (C) negative regulators and (D) BDNF signalling 
molecules. *, p = <0.05 vs. lab chow (LC) group, #, p = <0.05 vs. HF group, values are means ±SEM.  
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Figure 4. Effect of chronic administration of bardoxolone methyl (BM) treatment on key signalling molecules involved 
in energy balance in the paraventricular nuclei region of the hypothalamus in mice fed a HF diet for 21 weeks (n= 6-7 
per group). Chronic treatment of BM significantly prevented high-fat (HF) diet-induced alterations in (A) downstream 
pJAK2-Akt-FOXO1 leptin signalling molecules, (B) STAT3, (C) negative regulators and (D) BDNF signalling 
molecules. *, p = <0.05 vs. lab chow (LC) group, #, p = <0.05 vs. HF group, values are means ±SEM. 
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3.4 Bardoxolone methyl prevented high-fat diet-induced inflammation in the mediobasal and 

paraventricular nucleus regions of the hypothalamus 

The phosphorylation of the downstream inflammatory mediator, c-Jun N-terminal kinase (JNK), 

and protein expression of the cytokines, TNFα and IL-6, were measured using western blotting in 

the mediobasal and paraventricular nucleus of mice fed a HF diet in order to determine if BM 

treatment could prevent hypothalamic neuroinflammation. In HF group, protein phosphorylation of 

JNK and the expression of TNFα and IL-6 were significantly increased in both regions of the 

hypothalamus (p = <0.05, Figures 5A and B). These HF diet-induced elevations in inflammation 

found in the mediobasal and paraventricular nucleus regions of the hypothalamus were 

significantly prevented by BM administration (p = <0.05, Figures 5A and B). These results 

suggest that BM treatment prevented a HF diet-induced inflammatory response in the mediobasal 

and paraventricular nucleus regions of the hypothalamus. 
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Figure 5. Effect of chronic administration of bardoxolone methyl (BM) treatment on protein levels of inflammatory 
mediators in the hypothalamus of mice fed a high-fat (HF) diet for 21 weeks (n=6-7 per group). Chronic treatment of 
BM significantly prevented HF diet-induced increase in phosphorylation of JNK, and TNFα and IL-6 levels in the 
mediobasal (A) and paraventricular nuclei (B) regions of the hypothalamus in mice. *, p = <0.05 vs. lab chow (LC) 
group, #, p = <0.05 vs. HF group, values are means ±SEM. 
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In a phase II human clinical trial of patients with chronic kidney disease and type 2 diabetes 

treated with BM, dramatic weight loss was observed where treated patients lost 5-10kg more than 

the placebo group over a 24 week period (Pergola, Raskin et al. 2011). However, the possible 

mechanisms explaining this effect were unclear. The current study is the first to demonstrate 

BM’s effect in a chronic HF diet-induced obesity prevention study. Our results demonstrated that 

BM treatment in mice fed a HF diet for 21 weeks significantly prevented body weight gain and fat 

accumulation. Furthermore, similarly to Parekh and colleagues (Parekh, Petro et al. 1998), we 

found that energy efficiency was significantly increased in the HF diet group which was prevented 

by BM administration. In addition, BM administration prevented HF diet-induced increases in 

energy intake, suggesting that BM regulates negative energy balance by targeting the 

hypothalamus, an important region for maintaining energy homeostasis. 

In the hypothalamus of the brain, leptin plays a crucial role in the control of energy intake. In most 

obese individuals, this control of energy intake by leptin is impaired resulting in leptin resistance. 

In this study we confirmed that mice fed a chronic HF diet were leptin resistant. An i.p injection of 

leptin significantly decreased energy intake and body weight 24 hours following the injection in 

mice fed a LC diet but not in HF diet fed mice. In addition, HF diet fed mice had significantly 

higher plasma leptin levels than LC fed mice. One mechanism that can explain the development 

of leptin resistance is hyperleptinemia in diet-induced obese mice (Knight, Hannan et al. 2010). In 

the current study, BM significantly prevented HF diet-induced leptin resistance and 

hyperleptinemia as evidenced by restored leptin in reducing body weight and energy intake 24 

hours following i.p leptin injection, and significantly improved hyperleptinemia. BM administration 

may have prevented HF diet-induced overstimulation and subsequent desensitisation of the leptin 

receptor and downstream signalling, thereby preventing leptin resistance. 
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Hypothalamic leptin-JAK2-Akt-FOXO1 signalling is essential for the regulation of energy balance 

(Munzberg and Myers 2005). The mediobasal and paraventricular nuclei regions of the 

hypothalamus are important areas in controlling energy balance through central leptin signalling 

(Bell, Bhatnagar et al. 2000). Central leptin administration via intracerebroventricular (i.c.v) 

injection results in an increase of JAK2 and Akt phosphorylation (Roman, Reis et al. 2010). 

However, an i.c.v central leptin injection results in an increase in the phosphorylation of Akt in 

lean mice but not obese mice, which suggests that central leptin resistance may be caused by a 

deregulation in phosphorylated Akt and leptin signalling (Metlakunta, Sahu et al. 2008). 

Phosphorylated Akt (pAkt) can subsequently phosphorylate and inactivate FOXO1, a transcription 

factor in the hypothalamus (Kim, Pak et al. 2006). Inactivation of FOXO1 leads to regulation of 

neuropeptides that promote negative energy balance (Morton, Gelling et al. 2005, Kim, Pak et al. 

2006, Plum, Lin et al. 2009). Our results demonstrated that BM treatment prevents HF diet-

induced impairment to downstream leptin signal transduction in the mediobasal and 

paraventricular nuclei regions of the hypothalamus by maintaining phosphorylation of JAK2, Akt 

and FOXO1. Furthermore, in the paraventricular nucleus of the hypothalamus, BM prevented HF 

diet-induced elevations in FOXO1, an important transcription factor responsible for the 

transcription of neuropeptides that stimulate positive energy balance. This suggests that the 

paraventricular nuclei of the hypothalamus may have a more important role in the regulation of 

energy balance via FOXO1.  

In addition to leptin-JAK2-Akt-FOXO1 signalling, phosphorylation of JAK2 can also mediate 

hypothalamic leptin signalling via subsequent phosphorylation of STAT3 (Ladyman and Grattan 

2013). However, our results showed no differences between any of the groups in the 

phosphorylation of STAT3 in the mediobasal and paraventricular nuclei regions of the 

hypothalamus of mice fed a HF diet for 21 weeks. Despite this, mice fed a HF diet had 
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significantly higher unphosphorylated STAT3 levels in both the mediobasal and paraventricular 

regions of the hypothalamus. Unphosphorylated STAT3 has been found to play a role in 

inflammatory signalling and has been found to accumulate in response to an increase in IL-6 

levels in human mammary epithelial (hTERT-HME1) cells (Yang, Liao et al. 2007). Therefore, this 

suggests that in the mediobasal and paraventricular nuclei regions of the hypothalamus, BM 

prevents HF diet induced increased levels of unphosphorylated STAT3 resulting in reduced 

hypothalamic inflammation. 

In obesity, downstream hypothalamic leptin signalling is largely impaired due to accentuated 

activation of the negative regulators, PTP1B and AMPK which inhibit JAK2 activation (Zabolotny, 

Bence-Hanulec et al. 2002, Bence, Delibegovic et al. 2006, Zhang, Zhang et al. 2008, Su, Jiang 

et al. 2012). Thus, if there is a dysfunction in this pathway, this regulation of food intake and 

energy expenditure is disabled. Obese mice induced by a HFD have increased hypothalamic 

PTP1B levels and leptin resistance (Lam, Covey et al. 2006, White, Whittington et al. 2009, Lu, 

Wu et al. 2011). In addition, it has been demonstrated that neuronal PTP1B knockout mice have 

been found to have reduced weight, increased energy expenditure and improved leptin and 

insulin signalling (Bence, Delibegovic et al. 2006). Activation of hypothalamic AMPK has been 

demonstrated to increase body weight and food intake in mice (Andersson, Filipsson et al. 2004, 

Minokoshi, Alquier et al. 2004). Furthermore, pharmacological inhibition of AMPK in the 

hypothalamus largely enhances leptin signalling (Su, Jiang et al. 2012). In this study, BM 

prevented HF diet-induced increases in PTP1B and phosphorylation of AMPK proteins in the 

mediobasal and paraventricular nuclei regions of the hypothalamus. This may have contributed to 

improved leptin sensitivity through preventing the impairment to downstream hypothalamic leptin-

JAK2-Akt-FOXO1 signalling resulting in negative energy balance. 
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Recently, another important molecule found to be involved in the regulation of food intake and 

energy expenditure is BDNF. The activation of BDNF in the hypothalamus results in subsequent 

activation and phosphorylation of TrkB, which also results in the activation and phosphorylation of 

Akt (Reichardt 2006). An i.c.v injection of BDNF demonstrated reduced appetite and promoted 

weight loss in mice (Pelleymounter, Cullen et al. 1995). Furthermore, mice with a deletion of the 

BDNF gene develop severe obesity as a result of overeating (Lyons, Mamounas et al. 1999, 

Kernie, Liebl et al. 2000). Activation of BDNF and its downstream targets, TrkB and Akt, can be 

inhibited by PTP1B (Ozek, Kanoski et al. 2014). In addition PTP1B knockout mice have reduced 

cumulative food intake and body weight following i.c.v BDNF administration (Ozek, Kanoski et al. 

2014). Our results demonstrated that BM administration prevented HF diet-induced decreases in 

BDNF levels in the mediobasal and paraventricular nuclei regions of the hypothalamus. This 

effect may have been as a result of BM’s ability to prevent HF diet induced increases in PTP1B 

levels in the mediobasal and paraventricular nuclei regions of the hypothalamus, thereby 

preventing its inhibition of BDNF. However, there were no differences in phosphorylated TrkB 

levels in both hypothalamic regions between any of the groups. This suggests that energy 

balance regulation by BDNF may be through its interaction with another substrate in the 

hypothalamus in promoting its activation of downstream Akt signalling. 

Chronic low grade inflammation is a key characteristic of obesity. Activation of a proinflammatory 

state in rodents fed a HF diet increases the production of the cytokines TNFα and IL-6 in the 

hypothalamus within the first few days of exposure to this diet (Thaler, Yi et al. 2012). In addition, 

TNFα administration has been found to increase PTP1B mRNA by 1.4 fold in the hypothalamic 

arcuate nucleus of diet-induced obese mice (Zabolotny, Kim et al. 2008). In mice fed a HF diet, 

the activation of phosphorylated JNK is elevated in the mediobasal hypothalamic region of mice 

fed a HF diet (Benzler, Ganjam et al. 2013). Furthermore, rodents fed a HF diet had 



 

Danielle Camer 66 

 

hyperlipidemia, increased food intake, body weight and increased phosphorylation and activation 

of JNK in the hypothalamus, which was attenuated through inhibition of JNK (De Souza, Araujo et 

al. 2005). Inhibition of JNK activation has also been found to increase pAkt expression in Lep 

ob/ob mice (Benzler, Ganjam et al. 2013). We have demonstrated for the first time that BM 

administration prevents elevations in the activation of the proinflammatory mediator, JNK, and the 

proinflammatory cytokines TNFα and IL-6 in the mediobasal and paraventricular nuclei regions of 

the hypothalamus of mice fed a chronic HF diet. This may have contributed to improved leptin 

sensitivity and hypothalamic leptin signal transduction via inhibition of PTP1B leading to the 

prevention of HF diet induced increases in energy intake and body weight. 

In summary, we have demonstrated that chronic BM administration significantly prevented food 

intake and body weight gain in mice fed a HF diet. In addition, we found that BM treatment 

prevented HF diet-induced hyperleptinemia and leptin resistance. Furthermore, our results 

suggest that BM targets signalling molecules in both the mediobasal and paraventricular nuclei 

regions of the hypothalamus that promote downstream leptin signalling and prevent inflammation. 

A proposed model of molecular targets of BM in the hypothalamus in regulating energy balance is 

summarised in Figure 6. These results therefore identify a novel role for BM as a potential 

candidate for a future anti-obesity and anti-inflammatory therapeutic. With further research and 

human clinical trials, the possibility of using BM for the prevention of HF diet-induced 

development of obesity and associated co-morbidities appears promising. 
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Figure 6: A proposed model of molecular targets of bardoxolone methyl (BM) in the hypothalamus in preventing 
high-fat (HF) diet-induced obesity, hypothalamic inflammation, and leptin resistance. Our study found that BM 
prevented HF diet-induced decreases in hypothalamic JAK2-Akt-FOXO1 leptin signalling. Furthermore, our study 
showed that BM prevented HF diet-induced increases in negative regulators, and inflammatory molecules.  
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Abstract  

Obesity caused by consumption of a high-fat (HF) diet is a major risk factor for the development 

of associated complications, such as heart and kidney failure. A novel semi-synthetic triterpenoid, 

bardoxolone methyl (BM) was administrated to mice fed a high-fat (HF) diet for 21 weeks to 

determine if it would prevent the development of obesity-associated cardiac and renal 

pathophysiologies. Twelve week old male C57BL/6J mice were fed a lab chow (LC), HF (40% 

fat), or a HF diet supplemented with 10 mg/kg/day BM in drinking water. After 21 weeks, the left 

ventricles of hearts and cortex of kidneys of mice were collected for analysis. Inflammatory and 

endothelin signalling molecules were examined in heart and kidney tissue using 

immunohistochemistry and RT-PCR. Histological analysis revealed that BM prevented HF diet-

induced development of structural changes in the heart and kidneys. BM prevented HF diet-

induced decreases in myocyte number in cardiac tissue and renal corpuscle hypertrophy in the 

kidney. Furthermore, in both the hearts and kidneys of mice fed a HF diet, BM administration 

prevented HF diet-induced increases in fat accumulation, macrophage infiltration and TNFα gene 

expression. These findings suggest that BM prevents HF diet-induced developments of cardiac 

and renal pathophysiologies in mice fed a chronic HF diet by preventing inflammation. Moreover, 

these results suggest that BM has the potential as a novel therapeutic for preventing obesity-

induced cardiac and renal pathophysiologies 
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1. Introduction 

Obesity caused by the consumption of a high-fat (HF) diet increases the risk of cardiorenal 

diseases. Cardiovascular disease is the leading cause of death worldwide, with the incidence 

expected to rise from 17.3 million per year in 2008 to over 23.6 million per year by 2030 

(Mozaffarian, Benjamin et al. 2015). There is increasing evidence that obese individuals have an 

increased risk of developing cardiovascular disease (Kenchaiah, Evans et al. 2002). In addition, 

there is direct evidence that obesity from a HF diet can cause kidney injury, which also increases 

the associated cardiovascular disease risk (Prasad 2014). Therefore, there is an urgent need to 

find suitable therapeutics that can prevent HF diet-induced obesity-associated complications to 

the heart and kidney, in order to reduce the incidence of global mortality from cardiorenal 

disease. 

The endothelin system has been suggested to play an important role in the development of 

cardiovascular pathophysiologies. In the heart, endothelin 1 (ET-1) acts through two receptors, 

endothelin receptor type a (ETA) and endothelin receptor type b (ETB). The key endothelin system 

molecules ET-1, ETA and ETB play a role in vasoconstriction, with ETB also having an additional 

role in vasodilation (Kedzierski and Yanagisawa 2001). In the cardiac muscle, ET-1 activates ETA 

which results in the promotion of cardiac hypertrophy leading to subsequent heart failure (Nasser 

and El-Mas 2014). Previous studies have demonstrated that there is therapeutic potential in 

targeting the endothelin system with ETA or combined ETA/ETB antagonists in patients with 

congestive heart failure (Krum, Viskoper et al. 1998, Nakov, Pfarr et al. 2002). However, it is 

important to note that in the kidneys the endothelin pathway plays several important roles 

including the regulation of sodium and water homeostasis and renal blood flow (Kohan 2006). 

Therefore, over-suppression of the endothelin pathway by antagonistic drugs may lead to other 

complications in the kidneys such as fluid retention, which if not addressed can also lead to heart 
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failure (Kohan 2006). Therefore, the development of therapeutics that appropriately targets the 

endothelin pathway in the heart and kidneys is warranted, in order to prevent obesity-associated 

cardiovascular disease and renal failure. 

Obesity from HF diet is known to result in the development of fat accumulation in peripheral 

organs, such as the heart and kidneys (Montani, Carroll et al. 2004). Furthermore, peripheral fat 

accumulation is associated with macrophage infiltration into adipose tissue, which promotes the 

release of proinflammatory cytokines including tumour necrosis factor alpha (TNFα) (Wellen and 

Hotamisligil 2005). In a recent study, significantly higher levels of inflammatory markers, including 

TNFα, were found in the cardiac tissue of Tibetan mini pigs as a result of being fed a HF diet for 

24 weeks (Yongming, Zhaowei et al. 2015). Furthermore, rats fed a HF diet for 10 weeks 

demonstrated increased TNFα levels in the cortex of their kidneys (Elmarakby and Imig 2010). 

Therefore, novel pharmaceuticals that attenuate TNFα levels may provide a potential therapy for 

preventing obesity-induced inflammation and tissue damage such as to the heart and kidneys. 

In recent years, BM has been extensively studied in both preclinical rodent studies and human 

clinical trials, and shows promise for the treatment of renal diseases such as chronic kidney 

disease, and colitis-induced colon cancer due to its anti-inflammatory effects (Pergola, Krauth et 

al. 2011, Pergola, Raskin et al. 2011, de Zeeuw, Akizawa et al. 2013, Camer, Yu et al. 2014, 

Choi, Kim et al. 2014). Specifically, studies have demonstrated that BM can reduce inflammation 

induced by modulating TNFα levels in rodents fed a HF diet (Saha, Reddy et al. 2010, Dinh, 

Szabo et al. 2015). In addition, our previous studies have highlighted BM as a potential novel 

therapeutic for preventing HF diet-induced obesity, visceral fat accumulation, and associated 

development of insulin resistance, hepatic steatosis and cognitive deficits (Camer, Yu et al. 2015, 

Camer, Yu et al. 2015, Dinh, Szabo et al. 2015). However these positive findings were 

overshadowed by the recently terminated phase III human clinical trial where there were adverse 
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cardiovascular events seen in patients with advanced chronic kidney disease treated with BM (de 

Zeeuw, Akizawa et al. 2013). The mechanisms contributing to these adverse events in the clinical 

trial were speculated to be via the modulation of the endothelin pathway (Chin, Reisman et al. 

2014). However, this pathway was not investigated in the heart tissue (Camer and Huang 2014) 

and in the kidney following chronic BM treatment, suggesting that further investigation into this 

drug was vital. In addition, the therapeutic effects of BM treatment on the hearts and kidneys of 

mice fed a chronic HF diet have not been examined previously. 

Here, we provide the first evidence that oral administration of BM prevents HF diet-induced 

cardiac hypertrophy in mice fed a chronic HF diet. In addition, the development of HF diet-

induced kidney pathophysiologies was prevented by BM administration. Specifically, BM 

administration prevented HF diet-induced macrophage infiltration and elevation of TNFα gene 

expression in the heart and kidneys of mice fed a HF diet. Furthermore, BM treatment 

suppressed endothelin signalling molecules in the kidney, but elevated expression of endothelin 

signalling molecules in the heart. These findings indicate the potential of BM as a future 

therapeutic for the prevention of obesity-related complications, such as cardiac hypertrophy and 

chronic kidney disease. 

2. Materials and Methods 

2.1 Animals and HF diet-induced obesity model 

Twelve week old C57BL/6J male mice were purchased from the Animal Resource Centre (Perth, 

Western Australia) and kept in the animal research facility at the University of Wollongong. The 

experiments were performed in accordance with the Australian Code of Practice for the Care and 

Use of Animals for Scientific Purposes. All procedures were approved by the Animal Ethics 

Committee, University of Wollongong, Wollongong, Australia (AE 12/15). Mice were housed in 

environmentally controlled conditions at a constant temperature of 22 °C with a 12 hour light/dark 
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cycle. Following 1 week of acclimatisation, mice were randomly divided into 3 groups (n=7 per 

group). For the next 21 weeks one group of mice were fed a lab chow (LC) diet (5% of energy as 

fat; Vella Stock Feeds, Doonside, New South Wales, Australia), and the other two groups a HF 

diet (40% of energy as fat; SF11-095, Specialty Feeds, Glen Forrest, Western Australia). Mice in 

the treatment group were fed a HF diet for 21 weeks, along with a daily oral dose of BM (10 

mg/kg) in their drinking water. The dose was chosen according to a previous study (Wu, Liu et al. 

2014). Body weights of mice were measured weekly for the duration of the experiment (Final 

average body weight after 21 weeks: LC, 27.15g; HF, 40.84g; HF+BM, 28.13g).  

2.2 Tissue collection  

Mice were euthanised (n=7 per group) at week 21 of the experiment. The kidneys and heart were 

dissected from each mouse. The full hearts were weighed before the apex was cut and place in 

10% formalin. The right kidneys of each mouse were cut in half before the inferior portion was 

place into 10% formalin. The remaining heart and kidney tissue were snap frozen in liquid 

nitrogen, and stored at -80 °C until use. 

2.3 Microdissection 

Frozen heart and kidney tissue were cut into 10 μm sections with a cryostat at -18 °C before 

being mounted on Polylysine™ microscope slides for histological staining. Specifically, the apex 

of the hearts and the superior portion of the cortex of the kidney were sectioned. The left ventricle 

of each mouse heart and inferior portion of the kidney cortex were micro-dissected from 500 μm 

thick frozen sections, and collected for RT-PCR. Kidney and heart tissue were both stored at a 

temperature of -80 °C until use.  

2.4 Oil Red O staining 

Oil Red O staining was used to examine lipid accumulation in the heart and kidneys as described 

previously (Kudo, Tamagawa et al. 2007, Camer, Yu et al. 2015). Briefly, frozen heart and kidney 
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sections (10 μm) were stained with 0.5% Oil Red O (Sigma-Aldrich) for 15 minutes and then 

washed. Three fields from three sections collected from each mouse were viewed under a Leica 

microscope, and digital photographs were captured. Image J software 

(http://imagej.nih.gov/ij/download.html) was used to quantify staining, which corresponded to the 

percentage of stained lipid droplets on an area of each slide (Mehlem, Hagberg et al. 2013).  

2.5 Haematoxylin and Eosin (H&E) staining 

Briefly, frozen kidney and heart sections (10 μm) were stained with Haematoxylin and Eosin 

(POCD Scientific, Artamon, Australia) for 30 seconds each. Three fields from three sections of 

each mouse were viewed under a Leica microscope and digital photographs captured. The 

histological parameters of glomerular and Bowman’s capsule hypertrophy in the kidneys were 

calculated according to the methods described by previous studies (Al-Douahji, Brugarolas et al. 

1999, Henegar, Bigler et al. 2001). In the heart tissue, myocytes were measured quantitatively 

using the software, Image J according to our previous study (Camer, Yu et al. 2015, Dinh, Szabo 

et al. 2015).  

2.6 Immunohistochemistry 

Immunohistochemistry was performed as described previously (Camer, Yu et al. 2015, Dinh, 

Szabo et al. 2015). Briefly, heart and kidney sections fixed in 10% formalin were embedded in 

paraffin before being sectioned (5 μm) onto Polylysine™ slides. Slides were incubated overnight 

at 4 °C with anti-rabbit F4/80, anti-goat ET-1, anti-goat ETB, or anti-rabbit ETA primary antibody 

(1:150 Santa Cruz Biotechnology, Dallas, TX) diluted in blocking buffer. Samples were then 

incubated consecutively at room temperature for 30 minutes with their respective secondary 

antibody (1:150 Santa Cruz Biotechnology, TX) and then streptavidin-HRP polymer conjugate 

(1:1000 2438, Sigma-Aldrich Pty Ltd, Sydney, Australia). A DAB peroxidise substrate kit (4100, 

Vector Laboratories Inc, Burlingame, CA) was used for the development of the stained sections 
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before counterstaining with H&E (POCD Scientific, Artarmon, Australia). Three fields from three 

sections of each mouse were viewed under a Leica microscope and digital photographs captured. 

Image J software was used to quantify the area of F4/80, ET-1, ETA, or ETB staining in heart and 

kidney tissue on each slide.  

2.7 RNA isolation and RT-PCR 

Total RNA was extracted from dissected mouse heart and kidneys using the Aurum total RNA 

mini kit (Bio-Rad Laboratories, Hercules, CA) before being reversed transcribed to complimentary 

first strand DNA with a high-capacity cDNA reverse transcription kit (AB Applied Biosystems, 

California, USA) according to the manufacturer’s directions. Quantitative real-time PCR (RT-PCR) 

was performed using a Light cycler 480 real time PCR system (F.Hoffmann-La Roche Ltd, 

Switzerland). A 20μl final reaction volume containing cDNA sample and SYBR green I master mix 

was used for PCR Briefly, amplification was carried out with 45 cycles of 95 °C for 10 seconds, 

60 °C for 30 seconds and 72 °C for 30 seconds. The expression of mRNA was normalised to an 

internal control, GADPH. The degree of mRNA expression was calculated using the comparative 

threshold cycle value (Ct) method, using the formula 2–ΔΔCt (where ΔΔCt =ΔCt sample - ΔCt 

reference) as described previously (Camer, Yu et al. 2015, Cheng, Yu et al. 2015). The primers 

used are listed in Table 1.3.  

2.8 Statistics 

Data were analysed using the statistical package SPSS 20 (SPSS, Chicago, IL). Data was first 

tested for normality before differences between mice fed a LC diet, HF diet, or HF diet 

administered with BM diet were determined by one-way analysis of variance (ANOVA). This was 

followed by the post hoc Tukey-Kramer honestly significant difference (HSD) test for multiple 

comparisons among the groups. A p value of <0.05 was considered statistically significant. 

Values are expressed as mean ± SEM.  
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3. Results  

3.1 Bardoxolone Methyl prevented the development of cardiac hypertrophy, fat accumulation, and 

inflammation in mice fed a high-fat diet 

To assess whether BM treatment can prevent diet-induced cardiac hypertrophy, we analysed 

heart tissue in mice fed a HF diet for 21 weeks. Following 21 weeks on a HF diet, the hearts of 

mice had significantly higher weights than mice fed a LC diet (Final heart weight: -20.66%, 

p<0.001, Figure 1A). This increase in heart weight was prevented by oral administration of BM 

(Final heart weight: -27.04%, p<0.001, Figure 1A). However, there were no significant differences 

in heart to body weight ratios between any of the groups (Figure 1B). We performed haematoxylin 

and eosin (H&E) and oil red O staining to examine the effects of BM on myocyte number and lipid 

content in the heart (Figure 1C). Histological examination of mouse hearts revealed that there 

was a significant decrease in myocyte number and significant increase in cytoplasmic lipid 

droplets in mice fed a HF diet for 21 weeks compared to LC fed mice (Myocyte count: -37.43%; 

lipid stained area: +80.12%, p<0.001, Figures 1D and 1E). This change in cardiac morphology 

was significantly attenuated by BM treatment compared to untreated mice fed a HF diet (Myocyte 

count: +28.11%; lipid stained area: -50.61%, p<0.001, Figures 1D and 1E). However, BM 

treatment failed to revert HF diet-induced alterations in myocyte number and lipid content in 

cardiac tissue to the levels present in control LC mice (Myocyte count: -12.97 %; lipid stained 

area: +59.75%, p<0.001, Figures 1D and 1E). These results suggest that cardiac hypertrophy 

and cellular lipid droplet accumulation induced by a HF diet is attenuated with BM treatment. 

To investigate the effect of BM on macrophage accumulation in the left ventricle of the heart in 

HF diet fed mice, we performed immunohistochemistry with an anti-F4/80 antibody. We found 

that macrophage numbers increased in the left ventricle of HF diet fed mice as indicated by 

accumulation of F4/80 positive cells (HF vs. LC difference: -53.17%, p<0.05, Figure 1F). BM 
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administration significantly prevented an increase in the numbers of F4/80 positive cells in the left 

ventricle of the heart in HF diet fed mice (HF vs. BM difference: -67.40%, p<0.05, Figure 1F and 

1G). Furthermore, RT-PCR analysis showed a significant increase in TNFα and IKKβ mRNA 

expression in the left ventricle of the heart in mice fed a HF diet (HF vs. LC difference: TNFα, -

38.70%; IKKβ, -26.41%; p<0.05, Figure 1H). The alterations in TNFα mRNA levels were 

significantly prevented by BM administration (HF vs. BM difference: -63.12%, p<0.05, Figure 1H). 

However, BM treatment was unable to prevent HF diet-induced elevations in IKKβ mRNA 

expression (LC vs. BM difference: -25.47%, p<0.05, Figure 1H). No significant differences were 

found in the mRNA expression of IL-6, and IKKε between any of the groups. These results 

suggest that BM prevents the development of HF diet-induced cardiac macrophage infiltration by 

downregulating proinflammatory signalling molecules in the left ventricle of the heart. 

 
Figure 1. Bardoxolone methyl (BM) attenuated the development of cardiac hypertrophy, lipid accumulation, 
macrophage infiltration and inflammation in mice fed a chronic high-fat (HF) diet. (A) Heart weights showing 
significantly lower weights in BM treated mice compared to untreated mice fed a HF diet. (B) Heart to body weight 
ratio (HW/BW) (C) H&E and Oil Red O staining showing improved cardiac histomorphology and reduced lipid 
accumulation in mice treated with BM and fed a HF diet. Scale bar= 50μm. (D) Myocyte number per field of view. (E) 
Cardiac lipid accumulation (F and G) Histology and area of F4/80 immunoreactivity in the hearts of mice. Scale bar= 
100μm. (H) RT-PCR analysis of inflammatory genes, TNFα, IL-6, IKKβ and IKKε. *, p = <0.05 vs. lab chow (LC) 
group, #, p= <0.05 vs. HF group values are means ±SEM. (n= 7 mice per group). 
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3.2 Bardoxolone methyl prevented the development of renal corpuscle hypertrophy, fat 

accumulation and inflammation in mice fed a high-fat diet 

We evaluated whether BM treatment can prevent the development of diet-induced renal 

hypertrophy and fat accumulation in mice fed a HF diet for 21 weeks through analysis of kidney 

histomorphology. We performed haematoxylin and eosin (H&E) and oil red O staining to examine 

the effects of BM on the cellular morphology of the renal corpuscle, and lipid content in the renal 

cortex (Figure 2A). Compared to LC mice, in mice fed a HF diet for 21 weeks there was a 

significant increase in thickening of the bowman’s capsule and glomerular tuft area in the renal 

corpuscle that was coupled with a significant increase in cytoplasmic lipid droplets (Bowman’s 

capsule thickening: +91.01%; Glomerular tuft area: +41.96%; lipid stained area: +54.89%, 

p<0.001, Figures 2B-2D). This change in kidney cellular morphology was significantly attenuated 

by BM treatment compared to untreated mice fed a HF diet (Bowman’s capsule thickening: -

53.34%; Glomerular tuft area: -36.73%; lipid stained area: -56.85%, p<0.001, Figures 2B-2D). 

However, BM treatment failed to restore the thickness of the Bowman’s capsule to normal levels 

found in LC fed mice (Bowman’s capsule thickening: +80.74%, p<0.001, Figure 2B). These 

results suggest that renal corpuscle hypertrophy and cellular lipid droplet accumulation caused by 

a HF diet are attenuated with BM treatment. 

To investigate the effect of BM on macrophage accumulation in the renal cortex of HF diet fed 

mice, we performed immunohistochemistry with an anti-F4/80 antibody. We found that 

macrophage numbers increased in the renal cortex of HF diet fed mice as indicated by the 

accumulation of F4/80 positive cells (HF vs. LC difference: -52.79%, p<0.05, Figure 2E). BM 

administration prevented this increase in F4/80 positive cells (HF vs. BM difference: -46.01%, 

p<0.05, Figure 2E and 2F). Furthermore, RT-PCR analysis showed a significant increase in TNFα 

and IL-6 mRNA expression in the cortex of kidney tissue in mice fed a HF diet (HF vs. LC 
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difference: TNFα, -66.91%; IL-6, -67.79%; p<0.05, Figure 2G). The alterations in TNFα mRNA 

levels were prevented by BM administration (HF vs. BM difference: -62.38%, p<0.05, Figure 2G). 

However, there were no significant differences in IL-6 mRNA levels between BM and the other 

groups (p>0.05, Figure 2G). No significant differences were found in the mRNA expression of 

IKKβ and IKKε between any of the groups. These results suggest that BM prevents the 

development of HF diet-induced renal macrophage infiltration by regulating proinflammatory 

signalling molecules in the cortex of the kidneys. 

 
Figure 2. Bardoxolone methyl (BM) attenuated the development of renal corpuscle hypertrophy, lipid 
accumulation, macrophage infiltration and inflammation in mice fed a chronic high-fat (HF) diet. (A) H&E and 
Oil Red O staining showing improved renal histomorphology and reduced lipid accumulation in mice treated with BM 
and fed a HF diet. Scale bar= 50μm. (B and C) Percentage of Bowman’s Capsule thickening and Glomerular Tuft 
Area demonstrating that BM administration prevented renal corpuscle hypertrophy in mice fed a HF diet (D) Renal 
lipid accumulation (E and F) Histology and area of F4/80 immunoreactivity in the kidneys of mice. Scale bar= 100μm 
(G) RT-PCR analysis of inflammatory genes, TNFα, IL-6, IKKβ and IKKε. *, p = <0.05 vs. lab chow (LC) group, #, p= 
<0.05 vs. HF group values are means ±SEM. (n= 7 mice per group). 
 

3.3 Bardoxolone methyl treatment failed to restore ETA protein expression to normal levels and 

elevated cardiac endothelin signalling genes in mice fed a high-fat diet 

Endothelin signalling proteins in the left ventricles of mouse hearts were assessed using 

immunohistochemistry in order to examine whether BM could prevent HF diet-induced increases 
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in endothelin signalling. Protein levels of ETA were significantly elevated in mice fed a HF diet 

compared to LC diet fed mice (HF vs. LC difference: -93.35%, p<0.05, Figure 3A and Table 1). 

BM treatment failed to restore HF diet-induced elevations in ETA protein to normal levels present 

in LC fed mice (BM vs. LC difference: -92.62%, p<0.05, Figure 3A and Table 1). There were no 

differences in ET-1 or ETB protein levels found between any of the groups (p>0.05, Figure 3A and 

Table 1). 

Endothelin signalling gene transcription in the left ventricle of mouse hearts were examined using 

RT-PCR. Mice fed a HF diet were found to have increased expression of the ETA gene (HF vs. 

LC difference: -45.07%, p<0.05, Figure 3B), and decreased expression of ETB gene compared to 

LC diet fed mice (HF vs. LC difference: -63.04%, p<0.05, Figure 3B). BM treatment prevented the 

HF diet-induced decrease in ETB gene expression (HF vs. BM difference: -60.62%, p<0.05, 

Figure 3B). However, BM treatment also resulted in a significant increase in ET-1 gene 

expression compared to untreated HF diet fed mice (HF vs. BM difference: -56.34%, p<0.05, 

Figure 3B). There were no significant differences in ET-1 gene expression between LC fed mice 

and mice fed a HF diet treated with BM (p>0.05, Figure 3B). Furthermore, BM administration 

elevated ETA gene expression to levels higher than both the LC fed mice and the untreated HF 

diet fed mice (LC vs. BM difference: -60.72%, p<0.05; HF vs. BM difference: -28.49%, p<0.05, 

Figure 3B). These results suggest that BM fails to restore HF diet-induced elevations of ETA 

receptor protein levels, and elevates the expression of the endothelin signalling genes, ET-1, 

ETA, and ETB in the left ventricles of mice fed a HF diet. 
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Figure 3. Bardoxolone methyl (BM) elevated cardiac endothelin signalling in mice fed a chronic high-fat (HF) 
diet. (A) Cardiac ET-1, ETA and ETB proteins detected by immunohistochemistry. (B) RT-PCR analysis of cardiac ET-
1, ETA and ETB genes. *, p = <0.05 vs. lab chow (LC), #, p= <0.05 vs. HF group, values are means ±SEM. Scale 
bar= 50μm. (n= 7 per group). 

 
Table 1 Endothelin protein levels in mouse heart and kidneys following 21 weeks of LC, HF or HF + BM diet 

 Protein LC HF HF+BM F value P value 

Heart ET-1 68.0±2.8 54.4±9.7 70.4±3.9 2.101 0.193 
 ETA 0.95±0.5b 14.4±3.8a 12.9±3.1a 7.857 0.013 
 ETB 68.7±3.8 47.9±8.4 59.0±3.4 2.813 0.119 

Kidney ET-1 43.1±7.3 50.8±6.7 25.1±1.9 b 5.153 0.032 
 ETA 59.6±4.6 59.4±3.3 41.9±8.8 2.824 0.112 
 ETB 53.5±6.0 43.7±6.3 52.8±6.7 0.728 0.512 

Values are means ±SEM. LC, lab chow diet, HF, high-fat diet, HF+BM, high-fat diet and bardoxolone methyl 
treatment. ap<0.05 vs LC, bp<0.05 vs HF. 

 

  

3.4 Bardoxolone methyl treatment reduced renal endothelin signalling in mice fed a high-fat diet 

Endothelin signalling proteins in the cortex of mouse kidneys were examined using 

immunohistochemistry in order to assess if BM could prevent HF diet-induced renal dysfunction. 

There were no significant differences in the protein levels of ET-1 in HF diet fed mice compared 
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significantly reduced in mice treated with BM compared to untreated mice fed a HF diet (HF vs. 

BM difference: -51.63%, p<0.05, Figure 4A and Table 1). There were no differences in ETA or ETB 

protein levels found between any of the groups (p>0.05, Figure 4A and Table 1). 

Furthermore, endothelin signalling genes in the cortex of mouse kidneys were measured using 

RT-PCR. Mice fed a HF diet were found to have increased expression of the ETA gene compared 

to LC diet fed mice (HF vs. LC difference: -49.31%, p<0.05, Figure 4B). This HF diet-induced 

increase in ETA gene expression was prevented by BM administration (HF vs. BM difference: -

46.70%, p<0.05, Figure 4B). There were no difference in ET-1 or ETB gene expression found 

between any of the groups (p>0.05, Figure 4B). These results suggest that BM prevents HF diet-

induced elevations in ETA gene expression, and significantly reduces ET-1 protein levels in the 

cortex of the kidneys of mice fed a HF diet. 

 
Figure 4. Bardoxolone methyl (BM) reduced renal endothelin signalling in mice fed a chronic high-fat (HF) 
diet. (A) Renal ET-1, ETA and ETB proteins detected by immunohistochemistry (B) RT-PCR analysis of renal ET-1, 
ETA and ETB genes. *, p = <0.05 vs. lab chow (LC), #, p= <0.05 vs. HF group, values are means ±SEM. Scale bar= 
50μm. (n= 7 per group). 
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4. Discussion 

It is well established that a HF diet can lead to the development of complications in the heart and 

kidneys, such as cardiac hypertrophy and chronic kidney disease (van Bilsen and Planavila 2014, 

Hariharan, Vellanki et al. 2015). Rodents fed a chronic HF diet have increased body weight gain, 

along with structural and functional changes in the kidneys and heart (Deji, Kume et al. 2009, 

Dhahri, Drolet et al. 2014). Previously, BM has shown promise in treating chronic kidney disease 

in phases I and II of human clinical trials via anti-inflammatory mechanisms (Pergola, Krauth et al. 

2011, Pergola, Raskin et al. 2011). Furthermore, the therapeutic benefits of BM have been 

demonstrated in HF diet-induced obese animal models such as preventing HF diet-induced 

visceral fat accumulation, insulin resistance, hepatic steatosis and recognition memory decline in 

mice (Camer, Yu et al. 2015, Camer, Yu et al. 2015, Dinh, Szabo et al. 2015). The effects of 

chronic BM administration on the prevention of renal and cardiac pathophysiologies in mice fed a 

chronic HF diet have not been examined previously. In this present study, we found that feeding a 

chronic HF diet to mice induces fat accumulation, structural changes and inflammation in the 

heart and kidneys, which was attenuated by BM administration. These results suggest that BM 

has the potential to prevent the development of renal and cardiac complications of HF diet-

induced obesity. 

There is compelling evidence that overweight or obese individuals have an increased risk of heart 

failure due to left ventricular cardiac hypertrophy (Levy, Garrison et al. 1990, Russo, Jin et al. 

2011, Barton, Baretella et al. 2012). Cardiac hypertrophy is characterised by an increase in 

myocyte size (Chien, Knowlton et al. 1991) and the activation of ET-1 (Huang, Zhang et al. 2011). 

Along with an increase in heart weight, Zucker fatty rats have an increase in ET-1, ETA and ETB 

gene expression in the left ventricle of the heart (Huang, Yang et al. 2005). In addition, mice fed a 

HF diet for 10 weeks have significantly elevated cardiac mRNA expression of ET-1, ETA and ETB 
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genes (Catar, Muller et al. 2014). However, in dogs with congestive heart failure, inhibition of ETB 

by an antagonist resulted in increased cardiac pressure and decreased cardiac output, 

suggesting that the vasodilative actions of ETB are functionally more important than their 

vasoconstrictive actions (Wada, Tsutamoto et al. 1997). In our study, BM administration 

prevented HF diet-induced increases in myocyte size in mice, which was indicated by an increase 

in myocyte number. However, BM did not prevent HF diet-induced increases in ETA protein 

expression and worsened HF diet-induced increases in ETA and ET-1 gene expression. Despite 

this, BM prevented HF diet-induced decreases in the expression of the ETB gene. These results 

suggest that the therapeutic effects of BM on preventing HF diet-induced cardiac hypertrophy 

may be as a result of targeting the vasodilative functions of ETB, or a mechanism other than the 

endothelin pathway in the heart, such as inflammation. 

Previous studies have demonstrated that obesity can lead to the development of significant 

structural and functional changes to the kidneys that can progress to renal or even heart failure 

(Weisinger, Kempson et al. 1974, Hall, Brands et al. 1993). Obese dogs fed a HF diet were found 

to have an expansion in Bowman’s capsule area and glomerular tuft area in their kidneys 

compared to lean dogs (Henegar, Bigler et al. 2001). Our study demonstrated that chronic BM 

administration can prevent the expansion in Bowman’s capsule area and glomerular tuft area 

induced by HF diet in obese mice, suggesting BM has potential to prevent obesity associated 

kidney damage. Along with alterations in the structure and function of the kidneys, obesity 

induced by a chronic HF diet is associated with activation of the renal endothelin pathway (Barton 

2014). For example, mice fed a chronic HF diet develop obesity, which is coupled with an 

increase in mRNA expression of ETA and increased protein expression of ET-1 in the kidneys 

(Zhang, d'Uscio et al. 2001). BM has been found to suppress the renal endothelin pathway in the 

kidneys of rodents induced with chronic kidney disease by reducing the protein expression of ETA 
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(Chin, Reisman et al. 2014). In this study, we also found that chronic BM administration 

prevented HF diet-induced increases in mRNA expression of ETA. In addition, our study 

demonstrated that BM treatment significantly decreased the protein expression of ET-1. Our 

results support findings from previous research that demonstrate that BM suppresses renal 

endothelin signalling molecules. Furthermore, our results add additional knowledge that this drug 

can also prevent HF diet induced increases in molecules involved in modulating the endothelin 

signalling pathway. 

There is extensive scientific evidence that BM can improve kidney function by inhibiting 

inflammation in a number of rodent studies and human clinical trials (Pergola, Krauth et al. 2011, 

Wu, Wang et al. 2011, Ruiz, Pergola et al. 2013). However, no study has investigated the effects 

of BM on the heart, and thus we investigated the potential preventative effects of BM on 

inflammation in the hearts and kidneys of mice fed a chronic HF diet. Along with increased fat 

accumulation, we found that there was elevated macrophage infiltration that was coupled with an 

increase in the proinflammatory TNFα gene in both the left ventricle of the heart and the cortex of 

the kidneys of mice fed a chronic HF diet. Furthermore, our results demonstrated that chronic BM 

treatment prevented HF diet-induced fat accumulation, macrophage infiltration and elevated 

TNFα gene expression in the left ventricular area of the heart and cortex of the kidneys of mice. A 

possible mechanism for these anti-inflammatory effects of BM in these regions of the heart and 

kidneys includes preventing TNFα gene expression and macrophage infiltration, resulting in the 

attenuation of the proinflammatory response and organ fat accumulation. 

In conclusion, our findings suggest that chronic supplementation with BM can prevent HF diet-

induced development of cardiac and renal pathophysiologies in mice. Since obesity-induced 

peripheral fat accumulation and inflammation has been implicated in the progression of heart 

failure, BM may have beneficial effects in preventing the progression of HF diet-induced cardiac 
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and renal hypertrophy. With further research and human clinical trials, the possibility of using BM 

for the prevention of obesity-induced development of renal and cardiac pathophysiologies 

appears promising. 
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Chapter Six 
 

 
6.1 OVERALL DISCUSSION AND CONCLUSIONS 

The present series of studies demonstrated that bardoxolone methyl (BM) administration at a 

dosage of 10 mg/kg daily in drinking water prevented diet-induced obesity, type 2 diabetes and 

recognition memory decline in mice fed a chronic HF diet for 21 weeks. In addition, these studies 

show that BM treatment can target multiple tissues through its ability to prevent obesity-induced 

pathophysiologies of peripheral organs such as the liver, heart, and kidneys in the same animals. 

Overall, these studies identify BM as a potential novel therapeutic for preventing the development 

and progression of HF diet-induced obesity and associated complications. These findings from 

this thesis also contribute novel data towards understanding the mechanisms underlying the 

therapeutic effects of BM in preventing diet-induced obesity, type 2 diabetes, and associated 

complications in the brain, liver, heart, and kidneys of mice fed a chronic HF diet. This chapter will 

provide a general discussion of the findings and the potential mechanisms underlying the 

therapeutic properties of BM based on its effects on intracellular signalling pathways in the target 

cell. A detailed discussion of each study has been included at the end of Chapters 2-5.  

6.1.1 Proposed mechanisms of BM in preventing HF diet-induced obesity and associated 

complications 

In Chapter 2, it was found that BM treatment prevented HF diet-induced obesity, increased 

energy intake, and peripheral fat accumulation in male C57BL/6J mice fed a HF diet for 21 

weeks. It has previously been reported that BM treatment in a phase II human clinical trial of 

patients with chronic kidney disease and type 2 diabetes caused dramatic weight loss where 

treated patients lost 5-10kg more than the placebo group over a 24 week period (Pergola, Raskin 

et al. 2011). However, the possible mechanisms explaining this effect were unclear. Therefore, 
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Chapter 2 was the first to uncover the mechanisms behind BM’s anorexigenic effect in a chronic 

HF diet-induced obesity prevention study. Since BM administration prevented HF diet-induced 

increases in energy intake, it was proposed that this compound regulates negative energy 

balance by targeting the hypothalamus, an important brain region for maintaining energy 

homeostasis. As discussed in Chapters 1 and 2, Leptin-JAK2-Akt-FOXO1 signalling in both the 

mediobasal and paraventricular nuclei regions of the hypothalamus is essential for the regulation 

of energy balance (Bell, Bhatnagar et al. 2000, Morton, Gelling et al. 2005, Munzberg and Myers 

2005, Kim, Pak et al. 2006, Metlakunta, Sahu et al. 2008, Plum, Lin et al. 2009, Roman, Reis et 

al. 2010). In obesity, downstream hypothalamic leptin signalling is largely impaired due to 

accentuated activation of the negative regulators, PTP1B and AMPK, which inhibit JAK2 

activation, resulting in leptin resistance (Zabolotny, Bence-Hanulec et al. 2002, Andersson, 

Filipsson et al. 2004, Minokoshi, Alquier et al. 2004, Bence, Delibegovic et al. 2006, Bence, 

Delibegovic et al. 2006, Lam, Covey et al. 2006, Zhang, Zhang et al. 2008, White, Whittington et 

al. 2009, Lu, Wu et al. 2011, Su, Jiang et al. 2012). In Chapter 2, it was confirmed that mice fed a 

chronic HF diet were obese and leptin resistant, which was prevented by BM administration. 

Importantly, these results also demonstrated that BM treatment prevents HF diet-induced 

impairments to downstream leptin signal transduction by maintaining phosphorylation of JAK2, 

Akt and FOXO1 and preventing increases in PTP1B and phosphorylation of AMPK proteins in the 

mediobasal and paraventricular nuclei regions of the hypothalamus. Collectively, these results of 

Chapter 2 show for the first time that BM prevents HF diet-induced impairments to energy 

balance through modulating downstream leptin signalling in the mediobasal and paraventricular 

nuclei regions of the hypothalamus. 

Along with the development of obesity, several studies have demonstrated that a HF diet can 

cause cognitive decline, including impairments in recognition memory (Kanoski, Meisel et al. 
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2007, Valladolid-Acebes, Stucchi et al. 2011, Heyward, Walton et al. 2012, Carey, Gomes et al. 

2014). As discussed in Chapter 1, downstream BDNF-pTrkB-Akt signalling in the PFC and 

hippocampus promotes neuronal plasticity and neurogenesis, which are both important for 

learning and memory (Kanoski, Meisel et al. 2007, Cunha, Brambilla et al. 2010, Sakata, 

Martinowich et al. 2013). Mice fed a HF diet display decreased BDNF levels in both hippocampus 

and PFC, which is coupled with impaired discrimination learning (Kanoski, Meisel et al. 2007). In 

a previous study, a derivative of BM, CDDO-MA, improved spatial memory and reduced 

inflammation in the hippocampus in a mouse model of Alzheimer’s disease (Dumont, Wille et al. 

2009). However, the results from this current study were the first to investigate the effects of BM 

on cognition in a HF diet-fed mouse model. The novel data from Chapter 3 found that BM 

prevented deficits in recognition memory in mice fed a chronic HF diet. This result was coupled 

with increased BDNF levels along with protein phosphorylation of downstream signalling 

molecules, TrkB and Akt in the hippocampus and PFC. Overall, the findings from Chapter 3 

suggests that the actions of BM on the downstream BDNF signalling cascade contributed to 

improved neuronal plasticity in the hippocampus and PFC of mice fed a HF diet, which further 

contributed to an improvement in recognition memory. However, only BDNF levels in the PFC 

were positively correlated to recognition memory, suggesting that BDNF signalling in the PFC is 

important for recognition memory.  

As reviewed in Chapter 1, HF diet-induced obesity largely increases the risk of developing type 2 

diabetes. A HF diet can promote insulin resistance by elevating protein levels of the negative 

regulator, PTP1B, which impairs downstream IR-IRS-pAkt-FOXO1 hepatic insulin signalling 

(Schmoll, Walker et al. 2000, Saltiel and Kahn 2001, Yeagley, Guo et al. 2001, Matsumoto, Pocai 

et al. 2007, Zabolotny, Kim et al. 2008). BM has recently received considerable attention because 

of its blood glucose lowering effects in an acute diet-induced obese mouse model (Saha, Reddy 



 

Danielle Camer 116 

 

et al. 2010). However, my findings from Chapter 4 were the first to demonstrate that BM 

treatment prevents the development of diet-induced insulin resistance in mice fed a chronic HF 

diet. Furthermore, these novel data shed further light into the potential mechanisms behind BM’s 

effects in regulating blood glucose levels. In this study, BM treatment in mice fed a HF diet for 21 

weeks reduced hepatic PTP1B and FOXO1, and increased BDNF protein levels, which was 

coupled with a reduction in plasma insulin levels. In addition, the HF diet-induced decreases in IR 

and IRS-1, and increase in G6Pase mRNA expression was significantly prevented by BM 

treatment. Overall, these results from Chapter 4 suggest that the action of BM in preventing HF 

diet-induced glucose intolerance and insulin resistance was through, at least partially, inhibiting 

FOXO1/G6Pase mediated hepatic glucose production. 

As discussed in Chapter 1 and in our published review paper (Appendix 1.1), BM has been 

reported to be one of the most potent known activators of Nrf2 in several peripheral tissues 

including the eyes and kidneys (Camer, Yu et al. 2014). In the livers of mice, Nrf2 activation 

causes reduced expression of the inflammatory cytokines, TNFα and IL-6 (Liu, Wu et al. 2013, 

Wang, Cui et al. 2013). Nrf2 deletion is associated with increased liver weight gain, and hepatic 

steatosis in mice fed a HF diet (Wang, Cui et al. 2013). Furthermore, mice deficient in Nrf2 and 

fed a HF diet have been reported to show rapid development of hepatic steatosis (Tanaka, Ikeda 

et al. 2012, Okada, Warabi et al. 2013). In addition, HF diet-induced hepatic steatosis in mice can 

be improved through regulation of Nrf2 (Yang, Li et al. 2014). In Chapter 4 of this study, BM 

administration prevented HF diet-induced increases in fat accumulation and inflammation, and 

decreases in Nrf2 protein levels in the nucleus and Nrf2 gene expression in the livers of mice. 

These findings suggest that the ability of BM to prevent HF diet-induced elevations in 

proinflammatory signalling molecules and fat accumulation in the liver may be due to its ability to 

regulate the expression of the Nrf2 gene and Nrf2 nuclear protein levels. 
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As reviewed in Chapter 1, it is well established that HF diet-induced obesity increases the risk of 

developing structural and functional complications in the heart and kidneys, such as cardiac 

hypertrophy and chronic kidney disease (Weisinger, Kempson et al. 1974, Levy, Garrison et al. 

1990, Hall, Brands et al. 1993, Henegar, Bigler et al. 2001, Russo, Jin et al. 2011, Barton, 

Baretella et al. 2012, van Bilsen and Planavila 2014, Hariharan, Vellanki et al. 2015). Along with 

alterations in the structure and function of the heart and kidneys, obesity induced by a chronic HF 

diet is associated with activation of the cardiac and renal endothelin pathway signalling 

molecules, ET-1, ETA, and ETB (Zhang, d'Uscio et al. 2001, Barton 2014, Catar, Muller et al. 

2014). However, the function of the endothelin signalling molecule, ETB in the heart is suggested 

to have more vasodilative than vasoconstrictive actions (Wada, Tsutamoto et al. 1997). The 

potential of BM for future use in the clinic has been promising for treating chronic kidney disease 

in phases I and II of human clinical trials via anti-inflammatory mechanisms (Pergola, Krauth et al. 

2011, Pergola, Raskin et al. 2011). However, this positive result was recently overshadowed by 

the subsequent phase III human clinical trial in patients with type 2 diabetes and stage 4 chronic 

kidney disease which was terminated due to increased cardiovascular events in BM treated 

patients (de Zeeuw, Akizawa et al. 2013). The mechanisms behind these adverse effects were 

speculated to be through the suppression of the renal endothelin pathway in the kidneys of 

rodents induced with chronic kidney disease (Chin, Reisman et al. 2014). However, this 

conclusion was based on the investigation of kidney, but not heart tissue. We raised this concern 

in our published invited perspective highlighting that further investigation of the effects of BM on 

the endothelin pathway needed to be performed in both kidney and heart tissue as the role of 

endothelin signalling differs in each tissue (Camer and Huang 2014) (Appendix 1.2). Therefore, it 

was important to test the effects of BM on endothelin signalling in the heart and kidneys in 

Chapter 5 of this study. The findings from Chapter 5 on the effects of BM on heart tissue 



 

Danielle Camer 118 

 

demonstrated that BM administration prevents increases in myocyte size and renal corpuscle 

hypertrophy in mice fed a chronic HF diet. However, BM did not prevent HF diet-induced 

increases in cardiac ETA protein expression and worsened HF diet-induced increases in ETA and 

ET-1 gene expression. Despite this, BM prevented HF diet-induced decreases in the expression 

of the ETB gene in the heart. On analysis of kidney tissue, the results from Chapter 5 supported 

findings from previous research by demonstrating that BM suppresses the renal endothelin 

signalling protein, ET-1, and gene, ETA. Collectively, the results from Chapter 5 suggest that the 

therapeutic effects of BM in preventing HF diet-induced cardiac hypertrophy may be as a result of 

targeting the vasodilative functions of ETB, or a mechanism other than the endothelin pathway in 

the heart, such as inflammation. Moreover, in the kidney tissue, these findings add additional 

knowledge that this drug can also prevent HF diet-induced increases in molecules involved in 

modulating the renal endothelin signalling pathway, suggesting a mechanism for preventing HF 

diet-induced renal pathophysiologies. 

As discussed in Chapter 1, chronic low grade inflammation is a key characteristic of obesity which 

promotes neuroinflammation, leading to the development of hypothalamic leptin resistance and 

impairments to synaptic plasticity in the forebrain (De Souza, Araujo et al. 2005, Sunayama, 

Tsuruta et al. 2005, Zabolotny, Kim et al. 2008, Lu, Wu et al. 2011, Fuentes, Zimmer et al. 2012, 

Thaler, Yi et al. 2012, Benzler, Ganjam et al. 2013, Wang, Fu et al. 2013). My findings from 

Chapter 2 demonstrated that BM administration prevented elevations in the activation of the 

proinflammatory mediator, JNK, and the proinflammatory cytokines, TNFα and IL-6, in the 

mediobasal and paraventricular nuclei regions of the hypothalamus of mice fed a chronic HF diet. 

Moreover, in Chapter 3, BM treatment was found to prevent elevated levels of inflammatory 

mediators, such as PTP1B in the PFC and hippocampus. Collectively, these results from 

Chapters 2 and 3 demonstrate the anti-inflammatory effects of BM in preventing 
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neuroinflammation and associated tissue damage in the hypothalamus, PFC and hippocampus 

induced by a chronic HF diet. 

In addition to uncovering the therapeutic effects of BM on the brain (Chapters 2 and 3), a further 

novel contribution in this project was the discovery that BM treatment has therapeutic benefits in 

preventing chronic HF diet-induced development of peripheral tissue damage (Chapters 4 and 5). 

Several studies have demonstrated that a HF diet leads to the development of fat accumulation, 

macrophage infiltration, and low grade inflammation in peripheral tissues, including the liver, 

heart, and kidneys (Marchesini, Brizi et al. 2001, Weisberg, McCann et al. 2003, Xu, Barnes et al. 

2003, Wellen and Hotamisligil 2005, Yang, Liao et al. 2007, Deji, Kume et al. 2009, Dhahri, Drolet 

et al. 2014). There is extensive scientific evidence that BM can improve kidney function by 

inhibiting inflammation in a number of rodent studies and human clinical trials (Pergola, Krauth et 

al. 2011, Wu, Wang et al. 2011, Ruiz, Pergola et al. 2013). However, no study has previously 

investigated the effects of BM on the liver, kidneys, and heart of mice fed a chronic HF diet. My 

results from Chapters 4 and 5 demonstrated that chronic BM treatment prevented HF diet-

induced fat accumulation, macrophage infiltration, and inflammation in the liver, heart, and 

kidneys of mice. Moreover, in all three of these peripheral organs, elevated gene expression of 

the proinflammatory cytokine, TNFα, was prevented by BM administration in mice fed a chronic 

HF diet. Taken together these data suggest a possible mechanism for these anti-inflammatory 

effects of BM in the liver, heart, and kidneys through preventing TNFα gene expression and 

macrophage infiltration, resulting in the attenuation of the proinflammatory response. Overall, the 

results from the present series of studies suggest that BM treatment prevents HF diet-induced 

associated tissue damage in the brain, liver, heart, and kidneys through anti-inflammatory 

mechanisms.  
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6.1.2 Recommendations for Future Research 

Based on the findings of the present series of studies, recommendations for further research are 

as follows: 

1. In Chapter 4 of this thesis, it was found that BM treatment prevented alterations in Nrf2 

nuclear protein and Nrf2 gene expression in the livers of mice fed a HF diet for 21 weeks. 

Since BM is a known potent activator of Nrf2 (Camer, Yu et al. 2014), it would be 

interesting to test if similar effects are found in other tissues including the brain, heart, 

and kidneys in a future study. 

2. This study was conducted in male mice only. Therefore, female mice should be tested in 

the future using the same experimental design to determine if there are gender 

differences. 

3. Since mice were used, I was limited by the amount of molecular analysis I could perform 

due to the small amount of tissue obtained following microdissection. For example, after 

dissecting the left ventricle of the mouse heart, I only had enough tissue to test a few 

parameters using immunohistochemistry and RT-PCR. Therefore, a larger animal should 

be used in future studies, such as rats, in order to obtain more tissue for investigation of 

more parameters and in order to perform additional important experimental techniques 

for protein analysis, such as western blotting. 

4. BM has successfully completed phase I and II of human clinical trials for treating CKD in 

individuals with type 2 diabetes, and phase I clinical trials for the treatment of leukaemia 

and solid tumours (Liby, Yore et al. 2007), indicating its potential in treating multiple 

diseases. This thesis has found that BM administration prevents HF diet-induced obesity 

(Chapter 2), cognitive deficits (Chapter 3), insulin resistance (Chapter 4) and 

development of pathophysiologies in the liver (Chapter 4), heart, and kidneys (Chapter 5) 
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in a mouse model. Therefore, future studies should involve a human clinical trial in 

overweight or obese patients to determine if BM can prevent the development and 

progression of obesity-induced complications.  

5. Collectively, the results of this PhD thesis showed that BM had therapeutic effects in 

preventing chronic HF-diet-induced obesity and associated complications. Although a 

previous study has tested the effects of acute BM administration for 2 weeks in obese 

mice with promising results (Saha, Reddy et al. 2010), a chronic treatment study in 

rodents should be performed in order to see if obesity and development of associated 

complications can be reversed through chronic BM treatment. 

6. In Chapter 3, my results demonstrated that BM treatment prevented impairments to 

recognition memory in mice fed a chronic HF diet, which was determined through 

performing a novel object recognition test. A number of studies have demonstrated that 

HF diet-induced obesity can also impair other areas of cognition, such as spatial memory 

(Greenwood and Winocur 1990, Greenwood and Winocur 1996, Heyward, Walton et al. 

2012). Therefore, other behavioural tests should be performed in the future, such as a 

Morris Water Maze test, in order to determine if BM has benefits in other areas of 

cognition in a HF diet animal model.  

7. A recent study found that BM treatment suppressed colitis-induced colon cancer via anti-

inflammatory mechanism in mice (Choi, Kim et al. 2014). Since HF diet-induced obesity 

has been found to be associated with the development of colon polyps (Chen and Huang 

2015), analysis of the colons of mice treated with BM and fed a HF diet should be tested 

in the future.  

8. It is well established that obesity and associated metabolic disorders can also be induced 

by pharmaceutics, such as the antipsychotic drug olanzapine (Deng 2013). Therefore, 



 

Danielle Camer 122 

 

BM administration should also be tested, such as in an olanzapine animal model, to 

determine if it can prevent or treat antipsychotic-induced obesity. 

9. Overall, the results from this thesis suggested that the ability of BM to target 

inflammation, in particular the pro-inflammatory cytokines TNFα and IL-6, played an 

important role in preventing the development of obesity and the mentioned associated 

complications. However, there are many cytokines, which have not been investigated in 

this thesis, that play an important role in anti-inflammatory (eg, IL-4, IL-10, IL-11, IL13) 

and pro-inflammatory (eg, 1L-1, IL-8) mechanisms (Xu, Barnes et al. 2003). In addition, 

no previous study has examined the effects of BM treatment on these pro-inflammatory 

and anti-inflammatory cytokines in HF diet-induced obesity and associated complications 

Therefore, future studies could investigate whether BM plays an additional role in 

reducing inflammation through interactions with other pro-inflammatory and anti-

inflammatory cytokines. 

6.1.3 Conclusion 

The results of this PhD thesis have demonstrated that BM treatment can prevent HF diet-induced 

development of obesity, type 2 diabetes, cognitive deficits, and pathophysiologies of the liver, 

heart, and kidneys in mice fed a HF diet for 21 weeks. In Chapter 2, chronic BM supplementation 

significantly prevented food intake, body weight gain, hyperleptinemia, and leptin resistance in 

mice fed a HF diet for 21 weeks. The mechanisms responsible for this anorexigenic effect of BM 

were found to be through promoting downstream leptin-JAK2-Akt-FOXO1 signalling and 

preventing hypothalamic inflammation in both the mediobasal and paraventricular nuclei regions 

of the hypothalamus. My findings from Chapter 3 also demonstrated that chronic administration of 

BM prevented impairments to recognition memory in mice fed a HF diet. These cognitive benefits 

of BM were suggested to be through promotion of downstream BDNF-TrkB-Akt signalling, and 
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through a decrease in the inflammatory mediator, PTP1B, in the PFC and hippocampus. The 

present study demonstrates in Chapter 4 that HF diet-induced development of insulin resistance 

and glucose intolerance could be prevented with BM supplementation. The mechanism of action 

of BM in this therapeutic effect was found to be through modulation of hepatic insulin-IR-IRS-Akt-

FOXO1 signalling resulting in the inhibition of FOXO1/G6Pase mediated glucose production. In 

addition, in Chapters 4 and 5, BM administration was found to prevent HF diet-induced 

development of peripheral tissue damage in the liver, kidneys, and heart. These findings were 

found to be anti-inflammatory, with a potential mechanism suggested to be through BM 

preventing TNFα gene expression and macrophage infiltration, leading to the attenuation of the 

proinflammatory response. Overall, the present series of studies highlighted the anti-inflammatory 

nature of BM in a variety of tissues. In mice fed a chronic HF diet, BM administration prevented 

HF diet-induced inflammation in the brain, liver, heart, and kidneys, suggesting a potential 

overarching anti-inflammatory mechanism in its ability to prevent the development of obesity and 

associated complications. The present study therefore offers an insight into the mechanisms 

underpinning the therapeutic properties of BM in preventing the development of HF diet-induced 

obesity and associated complications. With further research and human clinical trials, the 

possibility of using BM for the prevention of HF diet-induced obesity, and associated development 

of type 2 diabetes, cognitive deficits, and pathophysiologies of peripheral tissues such as the 

liver, kidneys, and heart appears promising, while taking into consideration its potential adverse 

effects.  
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Appendix One 
 

 
Appendix 1.1 The molecular mechanisms underpinning the therapeutic 
properties of oleanolic acid, its isomer and derivatives for type 2 diabetes and 
associated complications 
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