
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Engineering and Information 
Sciences - Papers: Part A 

Faculty of Engineering and Information 
Sciences 

1-1-2016 

A buckling model for the stability design of steel columns with intermediate A buckling model for the stability design of steel columns with intermediate 

gravity loads gravity loads 

Lip H. Teh 
University of Wollongong, lteh@uow.edu.au 

Benoit P. Gilbert 
Griffith University, b.gilbert@griffith.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/eispapers 

 Part of the Engineering Commons, and the Science and Technology Studies Commons 

Recommended Citation Recommended Citation 
Teh, Lip H. and Gilbert, Benoit P., "A buckling model for the stability design of steel columns with 
intermediate gravity loads" (2016). Faculty of Engineering and Information Sciences - Papers: Part A. 
4945. 
https://ro.uow.edu.au/eispapers/4945 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/37029016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers?utm_source=ro.uow.edu.au%2Feispapers%2F4945&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers%2F4945&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers%2F4945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers/4945?utm_source=ro.uow.edu.au%2Feispapers%2F4945&utm_medium=PDF&utm_campaign=PDFCoverPages


A buckling model for the stability design of steel columns with intermediate A buckling model for the stability design of steel columns with intermediate 
gravity loads gravity loads 

Abstract Abstract 
This paper points out an accurate buckling model for determining the flexural effective length of a steel 
column subjected to intermediate gravity loads, for applications in the 2D second-order elastic analysis 
based design procedure. The proposed buckling model has "notional" horizontal restraints where 
equivalent horizontal forces have been applied, and can be readily programmed into a structural analysis/
design software. Thirty columns having various end restraints and subjected to concentrated gravity 
loads within their unsupported lengths are analysed to demonstrate the merits of the proposed buckling 
model. It is shown that, in most of the cases analysed, the proposed buckling model leads to more liberal 
column capacities compared to the use of the unity effective length factor or the buckling model 
described in the European drive-in rack design code. The more liberal capacities are very close to the 
ultimate loads determined through second-order plastic-zone analysis. 

Disciplines Disciplines 
Engineering | Science and Technology Studies 

Publication Details Publication Details 
Teh, L. H. & Gilbert, B. P. (2016). A buckling model for the stability design of steel columns with 
intermediate gravity loads. Journal of Constructional Steel Research, 117 243-254. 

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/4945 

https://ro.uow.edu.au/eispapers/4945


A Buckling Model for the Stability Design of Steel Columns with 

Intermediate Gravity Loads 

Lip H. Teh
a,*

, Benoit P. Gilbert
b 

aSchool of Civil, Mining & Environmental Engineering, University of Wollongong, Australia. 

bGriffith School of Engineering, Griffith University, Australia. 

*Corresponding author at School of Civil, Mining & Environmental Engineering, University of Wollongong, 

Wollongong, NSW 2522, Australia. Tel: +61242213564, fax: +61242213238, e-mail: lteh@uow.edu.au 

 

Abstract: This paper points out an accurate buckling model for determining the flexural 

effective length of a steel column subjected to intermediate gravity loads, for applications in 

the 2D second-order elastic analysis based design procedure. The proposed buckling model 

has “notional” horizontal restraints where equivalent horizontal forces have been applied, and 

can be readily programmed into a structural analysis/design software. Thirty columns having 

various end restraint conditions and subjected to concentrated gravity loads within their 

unsupported lengths are analysed to demonstrate the merits of the proposed buckling model. 

It is shown that, in most of the cases analysed, the proposed buckling model leads to more 

liberal column capacities compared to the use of the unity effective length factor or the 

buckling model described in the European drive-in rack design code. The more liberal 

capacities are very close to the ultimate loads determined through second-order plastic-zone 

analysis. 
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1. Introduction 

This paper is concerned with the stability design of steel columns subjected to intermediate 

gravity loads within their unsupported lengths, based on 2D second-order elastic analysis 

where the columns are assumed to have an initial out-of-plumb. Columns with intermediate 

gravity loads include mill building columns and drive-in rack uprights, shown in Figures 1 

and 2, respectively. A three-dimensional view of an unloaded drive-in rack is shown in 

Figure 3. In steel storage rack design standards [1-4], the use of equivalent horizontal forces 

in lieu of explicit modelling of initial out-of-plumb (and connector looseness) is a well-

accepted practice. The equivalent horizontal forces are simply the product of the applied 

gravity loads and the prescribed initial out-of-plumb, as illustrated in Figure 4, which is 

adopted from the European adjustable pallet racking code [1].  

The concept of equivalent horizontal forces is predated by the notional load approach found 

in the literature [5-7], which aims to capture the initial out-of-plumb (P-Δ), initial 

crookedness (P-δ), distributed plasticity and residual stress effects on the member forces at 

the ultimate limit state via the application of notional horizontal loads in a second-order 

analysis. However, the equivalent horizontal forces in the storage rack design standards 

correspond more closely to the notional horizontal loads specified in the current structural 

steel design standards [8-9], which principally model the frame’s (nominal) initial out-of-

plumb only, although Section 3.3.2.1 of the Australian storage racking standard [4] attempts 

to account for inelasticity via a minimum value of the initial out-of-plumb that is greater for 

the second-order elastic analysis than for the second-order inelastic analysis. 

The notional load approach has been promoted as a method that enables the use of the “actual 

unsupported length” of a column in its stability design check. With regard to regular 

rectangular frames, extensive discussions regarding effective lengths and the notional load 

approach can be found in the literature [10-16]. Surovek & White [13] proposed the 

“modified elastic approach”, which forms the basis of the highly successful “Direct Analysis 

Method” described in the current AISC Specification for Structural Steel Buildings [9]. They 

stated that the LRFD-based notional load approach [7] had a limitation in that the moments 

produced by the notional horizontal loads are distributed through the system based on the 

elastic stiffness, causing the lateral load resisting part that has the largest elastic stiffness to 

receive a higher portion of the notional load effects regardless of the level of the axial load 



and subsequent inelasticity of individual beam-columns. However, this observation does not 

apply to certain structures such as the drive-in rack shown in Figure 2.  

First, in general the stiffness is quite uniform throughout the drive-in rack system since the 

uprights are of the same size. Furthermore, the uprights within a down-aisle plane of bending 

generally carry the same design load. Second, in most cases the main lateral load resisting 

system is the spine bracing located in one down-aisle plane (most often at the back) that 

functions in conjunction with the plan bracing at the top of rack [17], as illustrated in Figure 

3. Third, the notional horizontal load effects (in the down-aisle direction) are substantially 

local to the uprights where they are applied since there are no beams connecting the uprights 

to each other except at the top, as evident in Figure 3. It may also be noted that there is no 

inelastic moment redistribution in a drive-in rack. 

The exception mentioned in the preceding paragraph also applies to mill building columns 

[18-21]. As indicated previously, in addition to the exception common to drive-in rack  

uprights and mill building columns, these compression members also share an important 

feature, i.e. they are subjected to intermediate gravity loads within their unsupported lengths. 

In contrast to regular rectangular frames, very little discussions can be found on the 

application of the notional load approach to a column subjected to intermediate gravity loads 

within its unsupported length. It is unclear to the structural engineer what the correct flexural 

effective length is for the bottom segment, or any of the upper segments, even when he or she 

uses the notional load approach or the equivalent horizontal forces. What is the “actual 

unsupported length” in this case? Based on the authors’ experience, it is a common belief that 

the use of an effective length factor equal to unity for each segment is unconservative, since 

there are no horizontal members connecting the column at each loaded point to adjacent 

columns (i.e. there are no lateral restraints at the ends of each segment). This belief appears to 

be justified by Clause 9.4.3 of the European drive-in rack design code [2], which specifies 

that only the base and the top of the upright are to be laterally restrained in the buckling 

model used to determine the effective length when “direct second-order analysis” method is 

carried out, resulting in flexural effective length factors greater than unity in most cases. 

However, it will be explained and demonstrated in this paper that whether there is a 

horizontal member restraining the point of loading or not is irrelevant to the correct buckling 

model used to determine the flexural effective length. For drive-in racks, the buckling model 



is also independent of the horizontal restraints provided by the friction between the pallet 

bases and the pallet runners [22]. 

This paper aims to elucidate the implications of the equivalent horizontal forces, and explain 

the more economical procedure for determining the (elastic) flexural effective length of a 

column subjected to intermediate gravity loads within its unsupported length. The buckling 

model proposed in this paper can be applied to the design of drive-in rack uprights and mill 

building columns, where automated creation of buckling models with no manual efforts from 

the program user has been implemented for several years [23]. In the warehousing industry, 

“little” savings in the member sizing quickly add up due to extensive repeatability. 

Furthermore, missing the required capacity by 5% often means an increase in steel tonnage of 

25% or more due to a step change in the member sizes. 

As this paper is only concerned with the determination of the flexural effective length of a 

column in a 2D second-order elastic analysis based design procedure, three-dimensional 

phenomena such as torsional warping and flexural-torsional buckling [24-26] are not 

discussed. This paper reviews the failure mechanism of a compact steel column and points 

out its implication for the notional load approach. Based on the second-order plastic-zone 

analysis results of thirty columns subjected to intermediate gravity loads within their 

unsupported lengths, the proposed buckling model is compared against the use of the unity 

effective length factor and the buckling model prescribed in Clause 9.4.3 of the European 

drive-in rack design code [2]. 

2. How a (compact) steel column reaches its ultimate load capacity 

The failure mechanism of a steel column may appear to be a simple topic, but its fundamental 

has sometimes eluded practitioners and researchers in the field. A steel column, no matter 

how slender it is, does not reach its ultimate load-carrying capacity when it buckles elastically, 

but after the critical cross-section has yielded sufficiently under combined compression and 

bending. Figure 5, adapted from Gere & Timoshenko [27], shows that a column that has 

buckled elastically is able to sustain increased loading beyond the elastic buckling load Pe.  

Curve A in the figure denotes the load-deflection path of an elastic, geometrically perfect 

column following its bifurcation. Curve B denotes that of an elastic, initially crooked column. 

The softening response exhibited by this curve is due to the P-δ effect. In each of the two 



cases, as long as the column remains elastic, it can always sustain increased loading since the 

column’s resistance increases with increasing deformations to the extent that it equilibrates 

the applied load. 

However, in reality, a (compact) steel column that buckles elastically would soon reach its 

ultimate load-carrying capacity as it encounters member instability due to (partial) yielding of 

the critical cross-section under combined compression and bending. For a simply supported 

column such as that shown in Figure 5(a), the bending moment at mid-span (the critical 

cross-section) results from the so-called P-δ effect. At the ultimate limit state, any further 

increase in the bending resistance of the mid-span due to increasing deformation could only 

match the increase in the P-δ effect if the applied load P decreases (while the displacement δ 

increases disproportionately).  

As an aside, the failure mechanism described in the preceding paragraph is sometimes 

simplified into the formation of a plastic hinge at the critical cross-section [5], or into a cross-

section failure (which may also be due to local or distortional buckling), which is implicit in 

Clause 9.4.2 of FEM 10.2.07 [2]. According to this clause, only the cross-section strength 

check is required if the second-order elastic analysis accounts for the member’s initial 

crookedness in addition to the initial out-of-plumb. Such a procedure may be justified if the 

member is stocky or bent in substantial double curvature as the cross-section strength governs 

the design in these cases. It is optimistic otherwise since it ignores the member instability 

described in the preceding paragraph unless the notional load is calibrated [5].  

Real steel columns are invariably subject to initial crookedness, so a steel column typically 

follows the path denoted by Curve C in Figure 5(b). In any case, the ultimate load capacity of 

a column of a given section depends largely on its effective length Le, while the variation in 

the magnitudes of the initial crookedness δ0 typically encountered in practice has relatively 

insignificant effects on the ultimate capacity, as demonstrated by Teh & Clarke [28] for a 

square hollow section. The cantilevered and simply supported columns in Figure 6 have 

essentially the same ultimate load if they are composed of the same section. Based on this 

premise, column curves are used in steel structures design standards [8-9, 29], where these 

curves may be represented by mathematical functions. The member compression capacity of 

an initially crooked column is determined from its effective length and the relevant column 

curve, which is typically derived for the simply supported condition (for which the effective 

length factor is unity). 



3. Implication of the notional horizontal load 

As illustrated in Figure 4, the equivalent horizontal forces prescribed in steel design standards 

[1-3, 8-9] model the frame’s initial out-of-plumb. It has also been established by Clarke & 

Bridge [6] that the bending moments in the columns resulting from the application of the 

equivalent horizontal forces are virtually equal to those due to the initial out-of-plumb.  

As indicated in the preceding section, the ultimate load Pu of an axially loaded cantilevered 

column such as that shown in Figure 6(a) can be determined directly from the relevant 

column curve and its effective length, which is twice its actual length, i.e. Pu = Pc(Le = 2L2). 

Viewed as an equivalent simply supported column having a length twice its actual length, 

shown in Figure 6(b), no interaction equation between axial force and bending moment needs 

to be considered in determining its ultimate load capacity. 

The free body, axial force and bending moment diagrams of the cantilevered column at the 

ultimate limit state, the latter two drawn for the assumed straight configuration, are shown in 

Figure 7. The bending moment Mu at the column base, which is due to the P-Δ effect, can be 

“reasonably” found through a second-order elastic analysis where the initial out-of-plumb Δ0 

of the cantilevered column is modelled, either explicitly or via an equivalent horizontal force. 

Viewed in this manner, it is clear that the column fails by the interaction between the axial 

force and the bending moment, and its capacity can be determined using the appropriate 

interaction equation. For bi-symmetric I-sections, and rectangular and square hollow sections 

that are compact, AS 4100 [8] specifies the following interaction equation where the ultimate 

moment Mu is given as 
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in which Ms is the section moment capacity, and βm is the ratio of the smaller to the larger 

end moment, taken as positive when the column is bent in double curvature. The compression 

capacity Pc΄ is discussed in the next paragraph. The capacity factor ϕ given in the design 

standard [8] has been omitted from Equation (1). Interested readers may consult references 

[30-31] for the derivation and application of the design equation. 

It is obvious that, for the cantilevered column, the compression capacity Pc΄ in Equation (1) 

must be greater than the ultimate load Pu = Pc(Le = 2L2). In fact, the structural steel design 



standards [8-9] specify that the compression capacity Pc΄ to be used in the interaction 

equation is equal to Pc(Le = L2), i.e. the effective length factor is unity whether the member is 

braced or unbraced at both ends.  

The exposition in the preceding paragraph should resolve the doubt among drive-in rack 

designers whether an effective length factor of unity can be safely applied to, say, the bottom 

segment of an upright when equivalent horizontal forces are included in the second-order 

analysis. In fact, as will be demonstrated later in this paper, the use of an effective length 

factor equal to unity in the interaction equation can be quite conservative in certain cases. The 

more correct procedure for determining the flexural effective length of a column segment is 

to apply a “notional” horizontal restraint where an equivalent horizontal force has been 

applied, in the buckling model. Figure 8(b) depicts the buckling model for the cantilevered 

column, which would result in an effective length factor close to 0.7 (equal to 0.699 in three 

significant figures). 

The notional horizontal restraint should be imposed onto the buckling model since the 

interaction equation is used to check the second-order bending moment resulting from the P-

Δ effect. In other words, the destabilising effect due to the absence of a lateral restraint has 

been represented in the second-order analysis, and should not be duplicated in the buckling 

model to determine the effective length and therefore Pc΄ in Equation (1). However, the 

implication of amplifying the bending moments due to the initial out-of-plumb (or equivalent 

horizontal forces) is less well appreciated in the literature, as reflected in the buckling model 

prescribed or allowed by certain standards [2, 8]. 

As far as computer analysis programs such as RAD [23] are concerned, a notional horizontal 

restraint can be automatically imposed onto the buckling model at any node where an 

equivalent horizontal force has been applied in the second-order elastic analysis. 

In addition to the member stability check represented by Equation (1), AS 4100 [8] requires 

that the member is checked against cross-section strength, which, for a compact rectangular 

or square hollow section, is represented by 
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in which Py is the squash load. However, as mentioned earlier, the cross-section strength 

check only governs stocky columns and those bent in substantial double curvature. The 

capacity factor ϕ is omitted from the equation. 

4. Demonstration problems 

All the columns analysed in this paper are composed of square hollow section (SHS) 203 × 

6.3. This section was selected for three reasons. First, the issues of local, distortional, 

minor/major axis and flexural-torsional buckling are irrelevant to the square hollow section, 

ensuring proper evaluations of the alternative methods used to determine the flexural 

effective length. Second, an interaction equation that accounts for the bending moment 

gradient, namely Equation (1), is available for a square hollow section, enabling a more 

rigorous comparison of the various buckling models considered in this paper. Third, simply 

supported columns of various lengths composed of this section had been tested and analysed 

by Key & Hancock [32], who provided the finite strip analysis results including that 

neglecting residual stresses. The finite element models used in the present plastic-zone 

analyses [33] could therefore be verified and employed with confidence.  

The square hollow section has an area of 4,818 mm
2
 and a second moment of area equal to 

3.06 × 10
7
 mm

4
. The slenderness ratios L/r in the following problems range from 37 to 113. 

For the purpose of this paper, the square hollow section was assumed to have a uniform yield 

stress of 395 MPa, which is the same as the flange yield stress in the analytical model of Key 

& Hancock [32]. No residual stresses nor strain hardening was assumed. The demonstration 

column models had an initial out-of-plumb ξ = 0.002 in both the second-order plastic and 

elastic analyses unless noted otherwise. However, no initial crookedness was modelled in the 

second-order elastic analyses as per the standard practice, while an initial crookedness δ0 of 

L/1000 was invariably modelled in the plastic-zone analyses, the direct results of which are 

taken to be the correct ones. 

In the following discussion, Method A refers to the use of the unity effective length factor to 

determine the compression capacity Pc΄ that is entered into Equation (1), and Method B refers 

to the use of the present buckling model, in which notional horizontal restraints are imposed 

where the equivalent horizontal forces have been applied. The effective length factors in 

Method B are therefore invariably smaller than in Method A, often significantly so. 



The third method, called Method C, uses the buckling model described in Clause 9.4.3 of 

FEM 10.2.07 [2]. The buckling model is only relevant to the columns subjected to 

intermediate gravity loads within its unsupported length, and is shown in the following sub-

sections where applicable. 

Having determined the effective length of a column or column segment, the compression 

capacity Pc΄ to be entered into Equation (1) is read from the column curve shown in Figure 9. 

This curve has been derived through a series of plastic-zone analyses of simply supported 

columns having lengths ranging from 100 mm to 18,000 mm. Each of these columns was 

assumed to have an initial crookedness δ0 of L/1000. 

4.1 Cantilevered columns axially loaded at the top 

This simple structure, depicted in Figure 8(a), is included in this paper to demonstrate that 

Equation (1) is not unduly conservative. This aspect is important since, in the following 

subsections, it will be asserted that the use of an effective length factor equal to unity 

(Method A), and the buckling model described in Clause 9.4.3 of FEM 10.2.07 [2] that is 

used in Method C, lead to significant conservatism in the design of certain columns. 

The buckling model used to determine the effective lengths in the present method (Method B) 

is depicted in Figure 8(b), which results in an elastic effective length factor equal to 0.7. 

Table 1 lists the professional factors Pua/Pud of Methods A and B for 3000, 6000 and 9000 

mm long columns. The variable Pua denotes the ultimate load obtained by the second-order 

plastic-zone analysis, and Pud is the ultimate load capacity determined through second-order 

elastic analysis in conjunction with Equations (1) and (2), which depends on the effective 

length used to read Pc΄ from the column curve shown in Figure 9. 

Table 1  Results for cantilevered columns with ξ = 0.002  

Case L (mm) Pua (kN) 
Method A (Le = L) Method B (Le = 0.7 L) 

Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud 

4.1.1 3000 1289 1802 0.94 1841 0.94 

4.1.2 6000 394 1323 0.98 1689 0.98 

4.1.3 9000 180 684 0.99 1238 0.99 

 



It can be seen from Table 1 that, for a cantilevered column axially loaded at the top, 

significant differences in the assumed effective length factors do not lead to noticeably 

different ultimate load capacities Pud. For the 3000-mm column, the compression capacity Pc΄ 

entered into Equation (1) for the unity effective length factor is only 2% lower than that for 

the effective length factor of 0.7. For the other two columns, the reasons are twofold. First, a 

given percentage difference in the compression capacities Pc΄ translate to a much smaller one 

in the available moment capacities Mu given by Equation (1). Second, in the proximity of the 

ultimate load Pu, the second-order bending moment increases much more rapidly than the 

applied load. 

However, when either method is used, the ultimate load capacity Pua of the 3000-mm column 

is overestimated by more than 5% (Case 4.1.1 in Table 1). The reason is that the second-order 

bending moment at the ultimate limit state, which is the result of the P-Δ effect, is 

underestimated by the second-order elastic analysis. The elastic displacement of the 3000-

mm column is about 30% less than the inelastic displacement at the ultimate limit state, as 

evident in Figure 10. For each case shown in Figure 10, the elastic curve is somewhat stiffer 

than the inelastic one, which is plotted thicker, due to the neglect of initial crookedness in the 

former and, for Case 4.1.1, subsequent inelasticity in the latter. 

According to AS/NZS 4084 [4], the minimum initial out-of-plumb ξ is equal to 0.004 when 

second-order elastic analysis is performed, and 0.002 when second-order inelastic analysis is 

used. Table 2 shows the professional factors of both methods when ξ = 0.004 is used in the 

second-order elastic analysis. 

Table 2  Results for cantilevered columns with ξ = 0.004 in the elastic analysis 

L (mm) Pua (kN) 
Method A (Le = L) Method B (Le = 0.7 L) 

Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud 

3000 1289 1802 1.05 1841 1.04 

6000 394 1323 1.02 1689 1.01 

9000 180 684 1.01 1238 1.01 

 

The results shown in Tables 1 and 2 may appear to be inconsistent with each other as the 

professional factors vary in the opposite ways with respect to the column slenderness. 

However, Clarke & Bridge [6] have found that, for the second-order elastic analysis based 

design procedure to exactly match the plastic-zone analysis results, the required notional 



horizontal load increases with the column slenderness. There is therefore no inconsistency in 

the professional factors between Tables 1 and 2. 

In any case, Table 1 demonstrates that the use of Equations (1) and (2) in conjunction with an 

initial out-of-plumb ξ = 0.002 in the second-order elastic analysis does not lead to 

conservatism for the SHS columns analysed in the present work. This finding means that the 

two equations are unlikely to be the source of any significant conservatism found in the 

following examples. 

4.2 Columns with fixed bases and elastic restraints at the loading point 

The example depicted in Figure 11(a) is interesting in that it demonstrates the conservatism 

of the unity effective length factor approach (Method A) in a certain case where the actual 

(elastic) effective length factor of the column is 1.0. Method B uses the buckling model 

depicted in Figure 11(b).  

This example also illustrates the consequence of using the same initial out-of-plumb in the 

second-order plastic and elastic analyses, which does not vary monotonically with the column 

slenderness. Another feature of this example is that, except for Cases 4.2.2 and 4.2.3 listed in 

Table 3, the cross-section strength represented by Equation (2) governs when the proposed 

method (Method B) is used to determine the compression capacity Pc΄ to be entered into 

Equation (1). 

Table 3  Results for columns with fixed bases and elastic restraints at the loading point 

Case L (mm) Kt´ Kr´ Pua (kN) 
Method A (Le = L) Method B (Fig. 11b) 

Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud 

4.2.1 5000 1 1 1633 1560 1.06 1807 0.97 (0.93) 

4.2.2  3 1 1777  1.14  0.99 

4.2.3  3 3 1778  1.14 1817 0.98 

4.2.4 7500 1 1 1022 949 1.12 1680 1.01 (0.99) 

4.2.5  3 1 1384  1.46  0.95 (0.93) 

4.2.6  3 3 1438  1.52 1720 0.95 (0.91) 

Note: If the cross-section strength governs, the professional factor resulting from Equation (1) is given in 

brackets. 

  



The normalised translational spring stiffness Kt´ in Table 3 and subsequent tables is defined 

as  
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in which E is the column’s elastic modulus and I is its second moment of area. Therefore, a 

value of Kt´ = 1.0 implies that the cantilevered column is translationally restrained by another 

identical (unloaded) column that is connected at the top via a pin-ended link. 

The normalised rotational spring stiffness Kr´ is defined as 
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An empty cell in Table 3 means that it has the same value as the above cell. This convention 

applies to all tables in this paper. 

Table 3 shows that, even for Case 4.2.4, where the actual (elastic) effective length factor is 

equal to 1.0, the use of the unity effective length factor leads to some conservatism. The 

conservatism quickly escalates as the translational restraint increases. Note that the columns 

(ξ = 0.002) sway rather significantly under axial compression alone, as evident from the load-

deflection graphs plotted in Figure 12. 

It can be seen from Table 3 that, even if the same initial out-of-plumb
 
ξ = 0.002 is used in 

both the second-order plastic and elastic analyses, the use of the proposed buckling model 

depicted in Figure 11(b) in conjunction with Equations (1) and (2) does not lead to over-

optimistic capacities by more than 5%. This outcome is despite the 27% underestimation of 

the tip displacement at the ultimate limit state (and therefore the P-Δ effect) of Case 4.2.5 by 

the second-order elastic analysis, as evident in Figure 12. For each case shown in Figure 12, 

the elastic curve is noticeably stiffer than the inelastic one, which is plotted thicker. 

Additional analysis results involving propped columns are shown in Table 4. It can be seen 

that Method A resulted in similar levels of conservatism to those shown in Table 3. The 

proposed Method B, on the other hand, is consistently accurate for the propped columns. 

  



Table 4  Results for propped columns with elastic rotational restraints  

Case L (mm) Kt´ Kr´ Pua (kN) 
Method A (Le = L) Method B (Fig. 11b) 

Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud 

4.2.7 5000 ∞ 0 1775 1560 1.14 1764 1.01 

4.2.8   3 1835  1.18 1817 1.01 

4.2.9 7500  0 1532 949 1.61 1498 1.02 

4.2.10   3 1741  1.83 1720 1.01 

 

4.3 Columns with one intermediate gravity load 

The example depicted in Figure 13(a) has a loading arrangement that may be encountered in 

mill building columns (see also Problem 4.6), and shows cases where Methods A and C are 

alternately overconservative while Method B, which uses the buckling model depicted in 

Figure 13(b), is consistently accurate. The buckling model used by Method C, described in 

Clause 9.4.3 of FEM 10.2.07 [2], is shown in Figure 13(c). The “actual unsupported length” 

in Method A is the loaded length Lb. 

For the columns considered in Table 5, the second-order analysis model shown in Figure 

13(a) coincides with the buckling model depicted in Figure 13(c).  

Table 5  Results for columns with one intermediate gravity load 

Case Kr´bot Kt´top Kr´top Pua (kN) 
Method A  Method B Method C 

Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud 

4.3.1 0 ∞ 0 1203 1324 1.07 1600 1.02 1098 1.18 

4.3.2 1 ∞ 1 1765  1.33 1721 1.03 1624 1.09 

 

Table 5 shows that, for the pin-ended column (Case 4.3.1), the buckling model described in 

Clause 9.4.3 of FEM 10.2.07 [2] and used in Method C leads to an underestimation of the 

ultimate load capacity by almost 20%. For the column with elastic rotational restraints (Case 

4.3.2), the use of the unity effective length factor underestimates same by more than 30%. On 

the other hand, Method B is consistently accurate for both columns. 

Additional analysis results for columns each of which is subjected to a gravity load within its 

unsupported length are shown in Table 6. Method B is again consistently accurate for all 

columns. 

  



Table 6  Additional results for columns with one intermediate gravity load 

Case Kr´bot Kt´top Kr´top Pua (kN) 
Method A  Method B Method C 

Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud 

4.3.3 3 ∞ 3 1806 1324 1.36 1756 1.03 1706 1.06 

4.3.4 1 1 1 771  1.02 1645 1.02 1626 1.02 

4.3.5 1 3 1 1182  1.04 1653 1.02 1626 1.02 

4.3.6 ∞ 3 ∞ 1368  1.10 1743 1.01 1743 1.01 

 

4.4 Columns with two equally spaced gravity loads 

The example depicted in Figure 14(a) has a loading arrangement that may be encountered in 

drive-in racks. The three methods of determining the effective length are compared across 

three different restraint conditions at the bottom and the top. Method A invariably uses the 

length of each segment, 5000 mm, as the effective length. Method B uses the buckling model 

depicted in Figure 14(b), while Method C uses that in Figure 14(c).  

Table 7  Results for columns with two equally spaced gravity loads  

Case Kr´bot Kt´top Kr´top Pua (kN) 
Method A Method B Method C 

Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud 

4.4.1 1 1 1 400 1560 1.05 1716 1.05 996 1.05 

4.4.2 ∞ 0 ∞ 484  1.03 1773 1.03 1389 1.03 

4.4.3 1 ∞ 1 1092  1.00 1727 1.00 996 1.15 

 

Table 7 shows that, for the first two columns, the three methods give the same results despite 

the differences in the compression capacity Pc΄ determined from the column curve. However, 

for the largest capacity column, Method C underestimates the ultimate load capacity by 15%. 

Two additional analysis results for this example are shown in Table 8. 

Table 8  Additional results for columns with two equally spaced gravity loads  

Case Kr´bot Kt´top Kr´top Pua (kN) 
Method A Method B Method C 

Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud 

4.4.4 ∞ 3 ∞ 778 1560 1.04 1774 1.04 1389 1.05 

4.4.5 3 ∞ 3 1396  1.01 1757 0.99 1234 1.15 

 

  



4.5 Columns with two unequally spaced gravity loads 

The example depicted in Figure 15(a) has two unequally spaced gravity loads, and is 

interesting in that Method A determines the middle segment of the column without rotational 

restraint (Case 4.5.1 in Table 9) to be critical while Method B and C invariably determine the 

bottom segment to be critical for both cases shown in Table 9. For Case 4.5.1, Method C 

determines the effective length factor of the bottom segment to be 3.2. Method A uses each 

segment length as its effective length, Method B uses the buckling model depicted in Figure 

15(b), and Method C uses that depicted in Figure 15(a) minus the horizontal loads.  

Table 9  Results for columns with unequally spaced gravity loads  

Case Kr´bot Pua (kN) 
Method A  Method B Method C 

Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud 

4.5.1 0 630 949 0.99 1767 0.99 603 1.11 

4.5.2 3 1394 1802 0.96 1781 0.96 1279 1.13 

 

Although Methods A and B do not always determine the same segment to be critical, they 

yield essentially the same results that are accurate within 5%. On the other hand, Method C 

underestimates the ultimate load capacities by more than 10%. 

4.6 Columns subjected to primary bending moments 

All the preceding examples involve columns that are loaded concentrically, and are therefore 

subjected to secondary bending moments only due to the column’s initial out-of-plumb and 

deflection (in addition to axial compression). The example depicted in Figure 16(a) is 

subjected to a primary bending moment due to a 200-mm eccentricity of the axial load P. 

Depending on the eccentricity direction, the primary bending moment may act clockwise or 

counter-clockwise. 

The “actual unsupported length” in Method A is the loaded length Lb. Method B uses the 

buckling model shown in Figure 16(b), while Method C uses that shown in Figure 16(c). 

It can be seen from Tables 10 and 11 that, whether the primary bending moment acts in the 

clockwise or counter-clockwise direction, the proposed Method B is consistently accurate 

with errors less than 10%. In contrast, Methods A and C lead to errors of 15% or more in 

some cases. 



Table 10  Results for columns subjected to a clockwise primary bending moment 

Case Kr´bot Kt´top Kr´top Pua (kN) 
Method A  Method B Method C 

Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud 

4.6.1 0 ∞ 0 564 1324 1.02 1600 0.97 1098 1.09 

4.6.2 1 ∞ 1 861  1.17 1721 1.04 1624 1.07 

 

Table 11  Results for columns subjected to a counter-clockwise primary bending moment 

Case Kr´bot Kt´top Kr´top Pua (kN) 
Method A  Method B Method C 

Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud 

4.6.3 0 ∞ 0 575 1324 1.08 1600 1.02 1098 1.15 

4.6.4 1 ∞ 1 874  1.22 1721 1.09 1624 1.11 

 

4.7 Summary of analysis results 

The professional factors of the three methods for the columns analysed in the present work 

are plotted in Figure 17. The plots of the methods which are applied to a particular case are 

aligned vertically. Note that Method C is not relevant to the first thirteen cases, and the 

results in Table 2 obtained using an initial out-of-plumb ξ equal to 0.004 in the second-order 

elastic analysis are not included. The statistical performance of the three methods are 

described by the box chart in Figure 18. Their summary values are given in Table 12.  

Table 12  Mean professional factors 

Method 

Pua/Pud 

Mean COV  

A 1.15 0.12  

B 1.00 0.03  

C 1.09 0.05  

 

5. Conclusions 

The notional load approach, in conjunction with second-order elastic analysis, was conceived 

in order to allow the use of the “actual unsupported length” of a column in its stability design 

check. However, in structural engineering practice, it is unclear what the unsupported length 

is for a segment of a column with intermediate gravity loads where no lateral restraints exist. 

The European drive-in rack design code prescribes a buckling model that mostly results in 

effective length factors greater than unity. This paper points out that, in the context of 



second-order elastic analysis based design procedure, not only the effective length factor of a 

segment without lateral restraints at both ends needs not be greater than unity, it can even be 

significantly less than unity. 

It is explained that, since the destabilising effect due to the absence of a lateral restraint has 

been represented in the second-order analysis that incorporates the notional horizontal load 

(or the equivalent horizontal force), a
 
notional horizontal restraint should be imposed onto the 

buckling model in determining the effective length to be used in the interaction equation.  

Based on the results of plastic-zone analysis incorporating an initial out-of-plumb equal to 

0.002, it was found that, while the actual (inelastic) effective length factor of a cantilevered 

column is 2.0, the use of the braced effective length factor equal to 0.7 in conjunction with 

the second-order elastic analysis incorporating an initial out-of-plumb equal to 0.004 still led 

to a slightly conservative result. When an initial out-of-plumb equal to 0.002 was used in the 

elastic analysis, the braced effective length factor gave essentially the same results as the 

unity effective length factor, which are close to the plastic-zone analysis results. 

It is demonstrated through thirty examples involving columns subjected to concentrated 

gravity loads within their unsupported lengths that the proposed buckling model can lead to 

designs that are more economical than the use of the unity effective length factor or the 

buckling model described in the European drive-in rack design code. Automatically imposing 

notional horizontal restraints onto the buckling model where equivalent horizontal forces 

have been applied in the second-order analysis can be implemented in a computer program 

without much difficulty, with potentially significant savings in the total cost of the drive-in 

racking system or mill building columns. 
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Figure 1 Mill building columns [18] 

 

 

 

Figure 2 Design loading of drive-in rack uprights 

 

  



 

 

Figure 3 Three-dimensional view of a drive-in rack 

 

 

 

Figure 4  Equivalent horizontal forces [1] 

  



 

 (a) (b) 

Figure 5 Behaviour and strength of a compact steel column [27] 

 

 

 (a) (b) 

Figure 6 Two equivalent columns 

 

  



 

Figure 7 Diagrams of a cantilevered column at the ultimate limit state 

 

 

 

 (a) (b) 

Figure 8 Problem 4.1 

  



 

 

 

 

 

 

 

 

Figure 9 Column curve of SHS 203 × 6.3 (without residual stresses and strain hardening) 
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Figure 10 Elastic and inelastic load-deflection graphs of cantilevered columns 

 

 

 

 (a) (b) 

Figure 11 Problem 4.2 

 

  

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300 350 400 450

A
p
p

li
ed

 l
o
ad

 P
(k

N
)

Tip Displacement (mm)

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300 350 400 450

A
p

p
li

ed
 l

o
ad

 P
(k

N
)

Tip Displacement (mm)

Case 4.1.1

Case 4.1.2

Case 4.1.3

Series4

Load (N)

Load (N)



 

Figure 12 Elastic and inelastic load-deflection graphs of 7500-mm columns 

 

 

 

 (a) (b) (c) 

Figure 13 Problem 4.3 
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 (a) (b) (c) 

Figure 14 Problem 4.4 

 

 

 

 (a) (b) 

Figure 15 Problem 4.5 

  



 

 (a) (b) (c) 

Figure 16 Problem 4.6 

 

 

 



Figure 17 Professional factors of all methods 

 

Figure 18 Box charts of professional factors 
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