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Effect of grain size on springback and system energy in micro V-bending
with phosphor bronze foil

Abstract
In this paper, the effect of grain size on springback in the micro V-bending process of phosphor bronze foil
(face-centered cubic structure) is investigated. Grain size effect is expressed by the ratio of material thickness
(T) to average grain size (D), and these T/D values are divided into three groups: larger than 1, less than 1,
and approximately equal to 1. It has been found that springback angles were the lowest when T/D ≈ 1.
Electron backscattering diffraction (EBSD) measurement results show that the twinning boundaries change
with the ratios of T/D before and after bending. When T/D > 1, the high relative frequency of Σ3 implies that
the specimen has a high system energy, which can result in large springback behavior. The equal relative
frequencies of Σ3 for specimens with three ratios also prove that twinning boundaries can be regarded as an
indicator of system energy. The effect of grain size on grain reorientation during bending is also discussed, and
it was found that the least quantities of high surface energy {110} planes in the T/D ≈ 1 material could
contribute to the least springback angles.
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Abstract: In this paper, effect of grain size on springback in micro V-bending process of phosphor 

bronze foil (face centered cubic structure) was investigated. Grain size effect is expressed by the ratio 

of materials’ thickness (T) to average grain size (D), and their T/D values are divided designed into 

three groups: larger than 1, less than 1 and approximately equal to 1. It is found that springback angles 

were the lowest when T/D≈1. Electron back-scattering diffraction (EBSD) measurement results show 

that the twinning boundaries change with the ratios of T/D before and after bending. When T/D >1, 

the high relative frequency of Σ3 implies that the system specimen has a high system energy, which 

can result in large springback behaviour. The equal relative frequencies of Σ3 after bending for three 

ratios’ specimens also prove that twinning boundaries can be regarded as an indicator of system 

energy. Moreover, the effect of grain size on grain reorientation during bending was discussed, and 

the least quantities of high surface energy {110} planes in the T/D≈1 material could contribute to the 

least springback angles. 

 

Keywords:  Grain Size effect; Electron back-scattering diffraction (EBSD); System energy; Twinning 

boundaries; Micro V-bending; Surface energy 

 

  



1. Introduction 

 

Size effects have become an increasingly one of the most valuable and popular research topics in 

micromanufacturing in recent years. Correspondingly, the relevant results prompt the development of 

microforming technologies where size effects are playing a significant role in deformation behaviours. 

Size effects can be categorised into three types: density size effect, shape size effect and 

microstructure size effect [1]. The first two size effects have been Grain size effect belongs to 

microstructure size effect and is easy to realise and control so that it has been applied by many 

researchers.attracts widespread attention. 

 

Geiger et al. [2] and Engel et al. [3] summarised early studies and achievements on microforming 

with the trend of miniaturisation in the beginning of 21
st
 century, and Vollertsen et al. [4] and Fu et al. 

[5] reviewed the state-of-the-art microforming progress and advanced technologies individually in 

recent years. With the advance of micro metal parts and their applications, downstream assembly is 

confronted with a problem: springback phenomenon which is inevitable in metal processing [6]. As 

springback can produce unexpected geometric errors, it can cause difficulties when assembling 

deformed parts. Therefore, a large amount of research has been conducted on springback prediction 

and compensation in terms of experiments and simulations [7-10]. These valuablevalued 

achievements have helped people obtain a better understanding of this unique phenomenon. However, 

it is also widely accepted that the conventional processing theories cannot be directly applied on 

microforming field. Hence, several studies on springback in microforming have been conducted: Gau 

et al. [11] studied the relationship between the ratio of thickness and grain size and springback angles 

by three points bending with annealed brass thin sheet, and concluded that when the thickness of 

material is less than 350µm, the conventional springback theory cannot be applicable. Liu et al. [12] 

modelled three points bending with commercial finite element (FE) software ABAQUS/standard. The 

elastic properties in the simulation were connected with the elastic anisotropy which represents 

different Young’s moduli in different grain orientations.  Fang et al. [13] combined the Voronoi 

tessellations and grain heterogeneity in a finite element (FE) model to offer more accurate springback 
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predations for micro V-bending. Gupta et al. [14] proposed a crystal plasticity model considering 

strain gradient hardening to investigate the impact of grain orientation <110> and <100> on 

springback. Moreover, Jiang et el. [15] studied grain size effect on springback of microtube in press 

bending, and they found that grain subdivision could make contribution to the reduction of springback. 

Chen et al. [16] conducted micro V-bending with different T/D ratios’ ferrum specimens and 

discussed the relationship between the T/D and bending behaviours. Similarly, Wang et al. [17] 

investigated the grain size effect on springback in micro U-bending. They also proposed a constitutive 

model based on the surface layer model to study the materials’ mechanical response, and linked it 

with springback behaviour. Diehl et al. [18] performed free bending test to find that the scatter of 

springback angles in coarse-grained material was greater than that in the fine-grained one. [9]Recently, 

increasing numbers of research are focusing on the grain structure [19] and grains’ stress-strain state 

[20, 21] to explain the correlation between the grain size effect and springback.  

 

Previous studies [11, 16, 18] have proved that the ratio T/D is a wide-applied indicator evaluation 

parameter for studying the relationship between the the grain size effect and springback. However, it 

is also found that there is a lack of research on grain size effect when the ratio is around 1 (greater 

than 1, less than 1 and equal to 1). Although these three values are small, what these three ratios 

reflect are three different special microstructural features: a few grains exist in specimen’s thickness 

direction, one grain exists in thickness direction and one partial grain in thickness direction, 

respectively. Therefore, from this point, the focus of this research is to investigate and compare the 

effects of T/D ratios on microstructural features, their interfacial energies and their deformation 

results during micro V-bending.  

  

  

Formatted: Font color: Text 1



 

2. Experimental procedure 

 

2.1 Heat treatment 

  

Phosphor bronze C5191 foil from cold rolling with thickness of 70 μm was employed to conduct this 

research due to its wide application in microforming industry. The chemical compositions of material 

are displayed in Table 1.  

Table 1 Chemical compositions of phosphor bronze C5191, in wt%. 

Sn P Pb Fe Zn 

5.87 0.22 0.004 0.001 0.004 

 

Total 12 specimens measuring 2 mm (length) ×1 mm (width) ×0.07 mm (thickness) were cut by wire-

cut (Electric Discharge Machine) EDM from as-received materials. Next, the specimens were divided 

into three groups averagely, and were subjected to various heat treatments to obtain different grain 

sizes. For different scale factors (greater than, less than and equal to 1), the materials were annealed in 

Ar protection condition with the same temperature but different holding times before furnace cooling. 

The grain size was measured independent of twin grains according to the standard of ASTM. The 

anneal conditions are presented in Table 2, and the microstructures of three different grain sizes in 

thickness direction are shown in Fig. 1.  

 
Fig. 1. Microstructures of annealed phosphor bronze foils: (a) T/D>1, (b) T/D≈1 and (c) T/D<1. 

 



It can be seen that the grain size increases with holding time under the same annealing temperature. 

After annealing, one sample from each group was chosen for straight samples EBSD data acquisition, 

and the other nine specimens were conducted micro V-bending experiments and then scanned for 

EBSD mapping of bended specimens. 

 

Table 2 Heat treatment and average grain size. 

Temperature (°C) 550 550 550 

Time (h) 
Thickness, T (μm) 

4 
70 

6 
70 

8 
70 

Average grain size, D (μm) 57.1 65.7 103.4 

T/D 1.23 1.07 0.68 

 

 

2.3 Micro V-bending experiment 

 

To investigate the relationship between T/D ratios and springback phenomenon, micro V-bending was 

conducted on the desk-top servo press machine DT-3AW (as shown in Fig. 2) with the annealed 

specimens. This equipment has position accuracy of ± 2μm and self-designed bending models were 

employed. The machine can provide 30KN maximum force and ±0.002mm guidepost position 

accuracy. In addition, micro V-bending tooling set (punch and female die) was high-precisely 

manufactured from D2 tool steel with good dimensional stability (±2 μm) to conquer the difficulty of 

positioning the bending set. 



 

Fig. 2. Schematic of desk-top servo press machine DT-3AW.  

 

The delicate punch and die were manufactured with 90 degree convex-concavely, and these two 

elements were separately installed into the upper and lower mould. The micro punch was fabricated 

with high dimensional accuracy of ± 1 μm by micro-grinding, and the other pertinent geometric 

parameters are: die gap = 1.0 mm, die depth = 0.5 mm, punch corner radius = 0.01 mm, punch stroke 

= 0.43 mm. Before conducting the experiment, the surfaces between the punch and die were well 

lubricated by machine oil. The micro V-bending test was performed at room temperature and 

annealed specimens were placed in the middle of die and bended with a punch speed of 0.1 mm/s. Fig. 

3 illustrates the micro V-bending process from loading to bending, and then unloading. Tight shots of 

these three processes were taken and key components: punch, specimen and V-die are enlarged in 

ellipses.   

 

 

Fig. 3. Micro V-bending process: (a) loading, (b) bending, and (c) unloading. 



 

2.4 EBSD observation 

After micro V-bending test, the cross section of the rolling direction (RD) - normal direction (ND) 

sections for straight and bended specimens with three different T/D values were polished 

mechanically. Due to the small geometry and the softness of specimens, an ion beam milling system 

(Leica EM RES102) was adopted used to finalise polishing, qualifying the surface of specimens for 

EBSD test. EBSD mapping was carried out on a JEOL-JSM7001F field emission gun (FEG) scanning 

electron microscope (SEM), fitted with a Nordly-II (S) camera at 15 kV, ~5 nA and 10 mm working 

distance. A step size of 0.25 μm was maintained constant for all the maps. In all maps, a minimum of 

3 pixel was used to identify grain structures and misorientations (θ) less than 2° were disregarded. The 

EBSD post-processing was carried out via HKL Channel-5. 

 

 

3. Results and discussion 
 

The micro V-bending results are displayed in Fig. 4 where Fig. 4(a) shows three groups nine bended 

specimens after unloading and springback. These specimens were then measured under microscope 

VHX-1000 KEYENCE (Fig. 4(b)), and each specimen was measured three times. The springback 

angles were obtained by deducting the bending angle 90 degree from the observed angles. 

 



Fig. 4. Photo of (a) bended specimens and (b) a measured specimen under VHX-1000 KEYENCE. 

It is interesting to notice that the lowest springback angles were obtained when T/D≈1 from Fig. 5, as 

other two ratios’ materials had comparatively large springback angles.  

 

Fig. 5. Springback angles for each T/D ratio 

 

It can assure that the grain size effect has a great impact on springback results since other parameters 

in micro V-bending are the same. It is well- established that the material’s deformation can be divided 

into elastic deformation and plastic deformation, and springback normally occurs when the material 

tries to return its original shape after being deformed. This means the degree that the material can 

recover to its previous geometric profile heavily depends on the ratio of elastic deformation to the 

whole deformation. 

 

With the same deformation amount in micro V-bending for the three different ratios’ materials, the 

springback angles after unloading are different, which shows that the elastic deformation during 

bending must not be differentthe same. It is the least amount of elastic deformation that results in the 

least springback angle, and here this paper focuses on how the difference of grain size in three ratios’ 

materials influences springback in terms of energy. 

 

Fig. 6 shows that as the material is bent, the inner region of the material is compressed while the outer 

region is stretched. Generally, this will result in that the grain boundaries’ density is greater on the 



inside of the material than that on the outside, and the compressive forces are less than the tensile ones 

on the outside layer, causing the material to try to return to its flat position.  

 

Fig. 6. Schematic of (a) the stress state, and (b) the stress and strain state of infinitesimal element 

during bending. 

 

Here there are two issues need to be clarified. One is due to the different stress-strain conditions, grain 

reorientation in the inside layer during bending will be different with that on in the outer surface, 

which will increase the asymmetry of tension and compression. This will have a direct impact on 

springback since different grain orientations are equipped with different Young’s moduli, and the 

latter is decisive to springback results. The other is the interfacial energy will be different for three 

ratios’ materials, especially when grain size has a volumetric change because ofdue to 

recrystallisation and twinning.    

 

When T/D≈1, the specimen has the least springback value, which means the system has the lowest 

energy comparing to the other two materials. This can reasonably conclude that the T/D≈1 material 

has the most chemical bonds, and it also indicates that the connection among molecules in the system 

is the strongest. Therefore, the material is the hardest one to recovery after unloading. 

 

After micro V-bending, it is found that the final relative frequencies of coincident site lattice (CSL) 

boundaries Σ3 in all three materials are nearly the same. Fig. 7(a) shows that when the specimens are 

straight, the quantity of Σ3 is related to the number of twinning grains in the materials. During the 

period of recovery, a large number of stacking faults were formed, leading to the nucleation of 



twinning. With the increase of annealing time, the high angle grain boundaries (HAGBs)’ migration 

leads to the recrystallisation grain and twining growth [22]. This causes the difference of grain 

boundaries and twin boundaries, and it can be concluded that the T/D>1 material has the highest 

system energy since it has the most these boundaries, which means infers thisis system is the most 

unstable one comparing to the other two. However, after micro V-bending, the values of twinning 

boundaries for each ratio’s material do not show obvious difference. Although the materials are 

different in terms of internal grain volume, when they experienced the same degree of deformation, 

they ended up with the same twinning boundary features as shown in Fig. 7(b). As above mentioned, 

the bending process contains compression and stretching, and this severe inhomogeneous deformation 

can contribute to the minimisation of Σ3. To T/D≈1 and T/D<1 materials, it can be seen that their 

boundaries’ relative frequencies remain stable after bending and springback., and Iit also found that 

the final relative frequencies of Σ3 and Σ9 are almost the same, which indicates that no matter the 

grain size, the relative frequencies of twin boundaries can be regarded as a system energy indicator 

since the system has a tendency to achieve the lowest energy state. 

   

Fig. 7.  (a) The frequencies of Σ3 and Σ9 twinning boundaries before bending, and (b) the frequencies 

of Σ3 and Σ9 twinning boundaries after bending. 

 

With regard toThe surface energy,, whichit is generated because some of the intermolecular bonds are 

not satisfied at the free surface [23], plays a significant role in influencing springback. Since . This 

means the loss of the number of atoms in contact and the incomplete bonding will cause surface 

energy increasing, this increment will make materials require more deformation to return to their 

lowest energy states.. It is well- known that the surface energy is correlated with grain orientation. 
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Wulff construction in Fig. 8 shows that for f.c.c materials {111} crystallographic planes have the 

lowest and {100} have the second lowest surface energy, while {110} planes have the highest surface 

energy. Grain surfaces with {110} planes in the bended specimens are also highlighted with white 

solid line in ND direction IPF mapping as shown in Fig. 9, indicating that the T/D≈1 material has the 

least high energy surfaces during grain reorientation, which demonstrates that the T/D≈1 material has 

the lowest surface energy. This feature could explain why the least springback was obtained when the 

ratio T/D was approximately equal to 1. 

 

Fig. 8. A two-dimensional Wulff construction for f.c.c material on a (110) plane [24]. 

 

Fig. 9. Surfaces on {110} grains in bended specimens: (a) T/D>1, (b) T/D≈1, and (c) T/D<1. 



 

4. Conclusions 

In this paper, the influence of the ratio of thickness to average grain size on springback and system 

energy in phosphor bronze foil (f.c.c. material) was investigated by micro V-bending test and EBSD. 

The ratios were designed to be: T/D>1 (1.23), T/D≈1 (1.07) and T/D<1 (0.68). The following 

conclusions are obtained: 

 

1. Comparing to the T/D≈1 and T/D<1 materials, the T/D>1 material has the highest system energy 

due to the most grain boundaries and twin boundaries. 

 

2. Despite the difference of twin boundaries Σ3 relative frequencies before micro V-bending, the final 

twin boundary features are almost the same after bending. This shows that the relative frequency of 

Σ3 can be regarded as an indicator for the system energy. 

 

3. The T/D≈1 material has the least springback angle. Because the least {110} planes were obtained 

during grain reorientation, this enables the T/D≈1 material has the lowest surface energy, which could 

contribute to the least springback. 
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