
University of Wollongong University of Wollongong 

Research Online Research Online 

Australian Institute for Innovative Materials - 
Papers Australian Institute for Innovative Materials 

1-1-2015 

3D braided yarns to create electrochemical cells 3D braided yarns to create electrochemical cells 

Chen Zhao 
University of Wollongong, cz995@uowmail.edu.au 

Syamak Farajikhah 
University of Wollongong, sf998@uowmail.edu.au 

Caiyun Wang 
University of Wollongong, caiyun@uow.edu.au 

Javad Foroughi 
University of Wollongong, foroughi@uow.edu.au 

Xiaoteng Jia 
University of Wollongong, xj916@uowmail.edu.au 

See next page for additional authors 

Follow this and additional works at: https://ro.uow.edu.au/aiimpapers 

 Part of the Engineering Commons, and the Physical Sciences and Mathematics Commons 

Recommended Citation Recommended Citation 
Zhao, Chen; Farajikhah, Syamak; Wang, Caiyun; Foroughi, Javad; Jia, Xiaoteng; and Wallace, Gordon G., 
"3D braided yarns to create electrochemical cells" (2015). Australian Institute for Innovative Materials - 
Papers. 1637. 
https://ro.uow.edu.au/aiimpapers/1637 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/aiimpapers
https://ro.uow.edu.au/aiimpapers
https://ro.uow.edu.au/aiim
https://ro.uow.edu.au/aiimpapers?utm_source=ro.uow.edu.au%2Faiimpapers%2F1637&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Faiimpapers%2F1637&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Faiimpapers%2F1637&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/aiimpapers/1637?utm_source=ro.uow.edu.au%2Faiimpapers%2F1637&utm_medium=PDF&utm_campaign=PDFCoverPages


3D braided yarns to create electrochemical cells 3D braided yarns to create electrochemical cells 

Abstract Abstract 
The demands for new configurations of electrochemical cells continue to grow and novel approaches are 
being enabled by the advent of new electromaterials and novel fabrication strategies. Wearable energy 
storage devices that can be seamlessly integrated into garments are a critical component of the wearable 
electronics genre. Recently, flexible yarn supercapacitors have attracted significant attention due to their 
ability to be integrated into fabrics, or stitched into existing textiles. Large-scale production of yarn 
supercapacitors using conventional manufacturing processes, however, is still a challenge. Here, we 
introduce the use of braiding technology to achieve a predetermined arrangement of fibre electrodes, the 
basis of a mass fabrication protocol to produce specific electrochemical cells: wearable supercapacitors. 
The resultant supercapacitors show a high capacitance of 1.71 mF cm- 1. The structure is highly flexible 
with a 25% capacitance loss recorded after 1000 bending cycles. 

Keywords Keywords 
create, yarns, cells, braided, electrochemical, 3d 

Disciplines Disciplines 
Engineering | Physical Sciences and Mathematics 

Publication Details Publication Details 
Zhao, C., Farajikhah, S., Wang, C., Foroughi, J., Jia, X. & Wallace, G. G. (2015). 3D braided yarns to create 
electrochemical cells. Electrochemistry Communications, 61 27-31. 

Authors Authors 
Chen Zhao, Syamak Farajikhah, Caiyun Wang, Javad Foroughi, Xiaoteng Jia, and Gordon G. Wallace 

This journal article is available at Research Online: https://ro.uow.edu.au/aiimpapers/1637 

https://ro.uow.edu.au/aiimpapers/1637


�������� ��	
�����

3D Braided Yarns to Create Electrochemical Cells

Chen Zhao, Syamak Farajikhah, Caiyun Wang, Javad Foroughi, Xiaoteng Jia,
Gordon G. Wallace

PII: S1388-2481(15)00265-9
DOI: doi: 10.1016/j.elecom.2015.09.021
Reference: ELECOM 5553

To appear in: Electrochemistry Communications

Received date: 19 August 2015
Revised date: 20 September 2015
Accepted date: 21 September 2015

Please cite this article as: Chen Zhao, Syamak Farajikhah, Caiyun Wang, Javad For-
oughi, Xiaoteng Jia, Gordon G. Wallace, 3D Braided Yarns to Create Electrochemical
Cells, Electrochemistry Communications (2015), doi: 10.1016/j.elecom.2015.09.021

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/10.1016/j.elecom.2015.09.021
http://dx.doi.org/10.1016/j.elecom.2015.09.021


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

1 

 

3D Braided Yarns to Create Electrochemical Cells 

Chen Zhao
#
, Syamak Farajikhah

#
, Caiyun Wang, Javad Foroughi*, Xiaoteng Jia, Gordon G. 

Wallace* 

Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials 

Science, University of Wollongong, NSW, 2522, Australia 

 

Corresponding authors: 

Gordon G. Wallace 

Tel: +61 2 42213127 

Fax: +61 2 42981499 

E-mail: gwallace@uow.edu.au 

Javad Foroughi 

Tel: +61 2 42981452 

Fax: +61 2 42981499 

E-mail: foroughi@uow.edu.au 

# These authors contributed equally in this paper. 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

2 

 

Abstract 

The demands for new configurations of electrochemical cells continues to grow and 

novel approaches are being enabled by the advent of new electromaterials and novel 

fabrication strategies. Wearable energy storage devices that can be seamlessly integrated into 

garments are a critical component of the wearable electronics genre. Recently, flexible yarn 

supercapacitors have attracted significant attention due to their ability to be integrated into 

fabrics, or stitched into existing textiles. Large-scale production of yarn supercapacitors using 

conventional manufacturing processes, however, is still a challenge.  

Here, we introduce the use of braiding technology to achieve a predetermined 

arrangement of fibre electrodes, the basis of a mass fabrication protocol to produce specific 

electrochemical cells: wearable supercapacitors. The resultant supercapacitors show a high 

capacitance of 1.71 mF cm
-1

. The structure is highly flexible with a 25% capacitance loss 

recorded after 1000 bending cycles.  

Keywords:    

Wearable; supercapacitor; braiding; polypyrrole 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

3 

 

1. Introduction 

The advent of new electromaterials, particularly in the form of fibres, has enabled 

creative approaches to the fabrication of novel electrochemical cell configuration. Smart 

garments, are clothes with embedded functional electronic componentry including sensors 

and antennas [1, 2]. They may be used for physiological measurement and monitoring [3], 

hazard detection [4], and/or wireless communication [5]. This approach has found widespread 

application in personalized wearable medical monitors, and even in the military field [6]. 

Wearable energy storage devices must be seamlessly integrated into such garments [7]. 

Supercapacitors have been extensively studied for energy storage due to their high power 

density, fast charge-discharge and extended cycle life [8]. Recently, flexible yarn 

supercapacitors have attracted significant attention due to the ability to  integrate them into 

fabrics, or stitch into existing textiles [9].  

Long lengths of fibre electrodes are necessary to fabricate yarn supercapacitors. Such 

fibre electrodes may be formed on thin metal wires [10-12], or metal coated plastic wires [13]. 

Alternatively carbon fibres [14], reduced graphene oxide (rGO) fibres [15], carbon 

nanotube(CNT) fibres[16], or composites containing them have been used [17-23]. Several 

device architectures have been developed for yarn supercapacitors. These include two parallel 

fibres, two-ply yarns and coaxial yarns [24]. In the first two types, two fibre electrodes and a 

separator or solid polymer electrolyte are fixed in parallel or twisted. And in the third type, 

the core electrode, separator or solid polymer electrolyte and outer electrode are assembled 

layer by layer. These yarn supercapacitors have yielded double-layer capacitances in the 

range of 0.01-6.30 mF cm
-1

, and pseudo-capacitance values up to 263 mF cm
-1

[23]. 

Yarns are generally made by twisting fibres together. For large-scale production of yarn 

supercapacitors, simply twisting or grouping two fibre electrodes will cause direct contact of 

the electrodes. Wrapping fibre electrodes with separator membranes [22] or winding with 
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insulated wires [10] solves this short circuit problem, but limits large-scale manufacturing. 

Braiding is a process that involves intertwining three or more sets of yarns over and 

under each other [25]. Two or more fibres can be braided into one yarn without contacting 

each other. Here, we introduce the use of braiding technology to enable production of yarn 

supercapacitors. Stainless steel (SS) wires and polyester fibres are braided into one yarn, and 

the SS wires play the role of current collectors. The SS wires in the yarn are fixed and 

separated by the insulated polyester fibres, so no additional separators are needed. Braiding is 

a fast continuous method of fabrication. To illustrate the use of this approach to create 

devices, polypyrrole (PPy) was electrodeposited onto the SS wires to produce active 

electrodes. The fabricated yarn supercapacitors showed good flexibility for application in 

wearable electronics. Other fine metal wires are commercially available including nickel, 

copper, titanium and platinum and would be amenable to this braiding method of fabrication. 

Apart from PPy, other conducting polymers or a variety of metal oxides/hydroxides such as 

γ-MnO2 or Ni(OH)2 can be simply electroplated on to such wires. Alternatively a number of 

new organic conducting fibres have recently emerged [26]. All such materials would be 

suitable for use in these novel electrochemical devices. 

2. Experimental 

2.1 Reagents and materials 

Polyester fibres (100D) and nylon/SS fibres were obtained from China (Shijiazhuang 

Yunchong Trading Co., Ltd.). Pyrrole was purchased from Merck, sodium p-toluenesulfonate 

and lithium sulphate monohydrate were obtained from Sigma-Aldrich. Pyrrole was freshly 

distilled, whereas other chemicals were used as supplied. All aqueous solutions were 

prepared using Milli-Q water (~18 MΩ). 

2.2 Fabrication of yarn supercapacitor 
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3D yarns were braided from polyester and nylon/SS fibres using a Trenz-Export 

braiding machine. The nylon fibres were removed using formic acid after braiding. 

Electrodeposition of PPy was achieved at constant current (0.05 and 0.1 mA cm
-1

 for yarns 

with 2 and 4 SS wires, respectively) for 60 min using an aqueous solution containing 0.1 M 

pyrrole and 0.1 M sodium p-toluenesulfonate. During the deposition process, all the SS wires 

in the yarn were connected together. The sampleswere rinsed with water and dried in a fume 

hood overnight.  Then the yarn samples were sealed in a transparent plastic tube injected with 

1.0 M Li2SO4 aqueous solution to test capacitor performance. The quasi-solid state 

supercapacitor was fabricated using poly(vinyl alcohol) (PVA)/H3PO4 gel electrolyte 

prepared as described previously [27, 28]. 

2.3 Characterization 

The morphology of SS electrodes extracted from the yarn were characterized by FE-

SEM (JEOL JSM-7500FA). Cyclic voltammetry (CV) was performed over the range of 0 to 

0.8 V using a CHI 650D electrochemical workstation (CHI Instruments, USA). 

Electrochemical impedance spectra (EIS) were measured using a Gamry EIS 3000™ system 

over the frequency range of 100 kHz to 0.01 Hz with an AC perturbation of 10 mV at open 

circuit potential. Galvanostatic charge–discharge tests were performed using a battery test 

system (Neware electronic Co., China) between 0 and 0.8 V. The cyclic bending test of the 

yarn supercapacitor was carried out using Shimadzu EZ mechanical tester. 

3. Results and discussion 

The 3D braided yarns can be produced continuously without limitation in length. Two 

SS wires formed a double helix structure in the yarn (Fig. 1a). The SS wires in the yarn were 

fixed by the polyester fibres with a separation of ~2 mm to avoid direct contact. 

Electrodeposition of PPy on the SS wires was readily achieved using constant current. SEM 
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image confirmed a coherent PPy film with a cauliflower morphology composed of large 

nodules as previously described [27, 28].  

 

Fig.1 Schematic diagram to illustrate the 3D braiding process. (a-1) Polyester fibre and SS wire 

bobbins, (a-2) Braiding head, (a-3) As-prepared braid structure (a-4) Braided supercapacitor.  

 

The CV curves of the yarn supercapacitor retained a nearly rectangular shape at scan 

rates up to 50 mV s
-1

(Fig. 2a). As the scan rate reached 100 mV s
-1

, the CV curve became 

distorted. This can be explained by the slower inclusion/ejection and diffusion of counter ions 

compared to the electron transfer in PPy at high scan rates [27, 28]. Consequently, the length 

specific capacitance of the yarn supercapacitor decreased with an increase in scan rate as 

presented in Fig 2b. The length specific capacitances were calculated to be 0.78 to 1.71 mF 

cm
-1

. This value exceeded that of the reported yarn supercapacitors based on pen ink/nickel 

wire (0.504 mF cm
-1

) [10], Chinese ink/SS wire (0.1 mF cm
-1

) [11], rGO/Au wire (0.01 mF 

cm
-1

) [12], MnO2/ZnO nanowire (0.2 mF cm
-1

) [13], rGO fibre (0.02 mF cm
-1

) [15], 

CNT/PEDOT fibre (0.47 mF cm
-1

) [17], CNT fibre (0.018 mF cm
-1

) [18], CNT/graphene 

fibre (0.027 mF cm
-1

) [19], MnO2/rGO fibre (0.143 mF cm
-1

) [20], and CNT sheet (0.029 mF 

cm
-1

) [29]. 

The charge-discharge curves of the yarn supercapacitor at different current densities 

ranging from 5 to 50 µA cm
-1

 are presented in Fig. 2c. The curves showed a nearly 

symmetrical triangular shape, indicative of good capacitor behaviour. It delivered a length 

specific capacitance of 1.79 mF cm
-1

 at a current density of 5 µA cm
-1

. Even at the current 

density of 50 µA cm
-1

, the capacitance was still as high as 1.25 mF cm
-1

 (Fig. 2d).  

The Nyquist plot of the yarn supercapacitor is shown in Fig 2e. A semicircle in the high 

frequency region and a straight line in the low frequency region were obtained. The x-
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intercept of the Nyquist plot represents the equivalent series resistance (ESR) for the device 

[30]. The ESR of our yarn supercapacitor was measured to be ~11 Ω cm
-1

. The straight line at 

low frequencies indicates capacitive behaviour [31]. 

The cycling stability of the yarn supercapacitor was tested at a current density of 20 µA 

cm
-1

. After 1000 cycles, 30% of the initial capacitance was retained. PPy film swells and 

shrinks during the charge-discharge cycles, resulting in mechanical degradation [32].  

 

Fig. 2 (a) CV curves and (b) length-specific capacitance of the yarn supercapacitor at different scan 

rates. (c) Charge-discharge curves and (d) length-specific capacitance of the yarn supercapacitor at 

different current densities. (e) Nyquist plot of the yarn supercapacitor. (f) Capacitance retention of 

the yarn supercapacitor for 1000 charge-discharge cycles. 

For wearables, the yarn supercapacitor should possess excellent flexibility and maintain 

electrochemical performance under bending. CV tests were conducted at 5 mV s
-1

 while the 

yarn supercapacitor was held at different bending angles. The shapes of the CV curves only 

changed slightly up to 180
o bending (Fig. 3a), reflecting that the yarn supercapacitor is 

highly flexible. The capacitance decreased by 13% as the device was bent from 0 to 180
o
. 

Furthermore, the yarn supercapacitor was subjected to repeated bending-relaxation to 90
o
 for 

up to 1000 cycles and it suffered 25% loss (Fig. 3b).  

 

Fig 3  CV curves of the yarn supercapacitor at different bending angles (a), and after different cycles 

of bending (b). 

Our single yarn supercapacitor shows good electrochemical performance, which makes 

it promising for integration with other micro electronic device. However, the energy of a 

single yarn supercapacitor may not meet the requirement of those micro devices. The 
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common approach is to connect two yarn supercapacitors or more in parallel. However, it 

will greatly increase the device dimension and also involve the package challenge. With the 

braiding technology, we can enhance the energy storage in the same yarn by simply 

incorporate more fibre electrodes. As a proof of concept, 4 SS wires were braided into the 

yarn. After PPy deposition, two SS wires were connected as positive electrode and the other 

two as negative electrode. This configuration equals to two single yarn supercapacitors 

connected in parallel. The output current doubled within the same voltage window as shown 

in the CV curves (Fig. 4a). The charge or discharge time was more than two times of the 

value of the 2-wire device at the same applied current density (Fig. 4b), since half of the total 

current is applied to each single device. According to the previous results of the capacitances 

at different current densities (Fig. 2d), the capacitance increased with the decreased current 

density.  

The use of gel or polymer electrolyte can minimize electrolyte leakage, which is highly 

desirable for the development of wearable yarn supercapacitor. Thus, we also tried to use 

PVA/H3PO4 gel electrolyte to fabricate a quasi-solid state supercapacitor. As shown in Fig. 4c, 

the CV curves became more distorted at high scan rates compared with that in liquid 

electrolyte, which can be ascribed to the lower conductivity of the gel electrolyte. 

Nevertheless, the quasi-solid state supercapacitor exhibited comparable performance at low 

scan rates (1.95 mF cm
-1

 at 5 mV s
-1

). It also showed good flexibility with ~10% of capacity 

decay as it was bent to 180º (Fig. 4d). 

 

Fig. 4 (a) CV curves at 5 mV s
-1 

and (b) charge-discharge curves at 20 µA cm
-1 

of yarn 

supercapacitors with 2 and 4 SS wires in 1.0 M Li2SO4 aqueous electrolyte. CV curves of yarn 

supercapacitor at (c) different scan rates, and (d) different bending angles at 5 mV s
-1

 in PVA/H3PO4 

gel electrolyte. 
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4. Conclusion 

We introduce braiding technology to arrange two fibre electrodes for fabrication of a 

yarn supercapacitor without separator. PPy was electrodeposited as the electroactive material. 

The fabricated yarn supercapacitor delivers a length specific capacitance of 1.71 mF cm
-1

 at 5 

mV s
-1

, and 1.79 mF cm
-1

 at 5 µA cm
-1

 in 1.0 M Li2SO4 aqueous solution. It can be bent to 

180
o with a 13% loss in capacitance and retained 75% of its initial capacitance after 1000 

cycles of bending-relaxation at 90
o
. Unlike other yarn supercapacitors which need to be 

connected in parallel to increase the output energy, our braiding technology can embed more 

fibre electrodes in the same yarn to meet the requirement. Our strategy provides a new 

direction for large-scale manufacturing of yarn supercapacitors. 
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Highlights 

 First demonstration of braiding technology in yarn supercapacitor fabrication. 

 Easy integration of multiple fibre electrodes in one yarn for high capacitance. 

 The yarn supercapacitor demonstrates a high capacitance of 1.71 mF cm
-1

. 

 A widely used industry technology makes sale up feasible.  

 A new direction for large-scale manufacturing of electrochemical devices. 


	3D braided yarns to create electrochemical cells
	Recommended Citation

	3D braided yarns to create electrochemical cells
	Abstract
	Keywords
	Disciplines
	Publication Details
	Authors

	3D Braided Yarns to Create Electrochemical Cells

