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RADIAL CONSOLIDATION RESPONSE UPON THE APPLICATION AND 

REMOVAL OF VACUUM AND FILL LOADING 

 Kourosh Kianfar, Buddhima Indraratna, Cholachat Rujikiatkamjorn and Serge 
Leroueil 

ABSTRACT 

This Technical Note presents a laboratory study using a Rowe cell to compare the 

consolidation responses upon vacuum pressure and fill load application and removal. The 

influences of the duration of application and removal of fill load and vacuum pressures on 

radial consolidation were investigated using excess pore water pressure, axial strain, and 

overconsolidation ratio. It is shown that the appropriate removal time for vacuum pressure 

can be determined based on excess pore pressure responses.  
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INTRODUCTION 

Demand for suitable lands especially along the coastal areas where the majority of population 

would prefer to live and work necessitates the improvement of soft compressible soil prior to 

the construction of infrastructure. The main aims of the soft soil improvement are to increase 

its bearing capacity and reduce associated post construction settlement of the infrastructures. 

The combination of wick drains with the application of surcharge embankments and/or 

vacuum pressure has been one of the most popular and cheaper ground improvement 

techniques.  

Kjellman (1952) originally proposed the idea of applying vacuum preloading to land 

reclamation using cardboard wick drains. Afterwards, this technique has been successfully 

used in different projects worldwide (Holtz, 1975; Chen and Bao, 1983; Bergado et al. 1998; 

Indraratna et al. 2005a, b). In land reclamation where higher surcharge load is needed and soil 

shear strength is relatively low,  the combination of vacuum preloading with fill load can 

reduce the required height of the embankment and the consolidation time (Chu et al. 2000). 

As explained in several papers in the past by Indraratna et al. (2005b), Indraratna et al. 

(2013),  Chai et al. (2005), Chu et al. (2000), the differences between vacuum and fill 

preloading are as follows: 

(a) Vacuum pressure accelerates inward radial drainage hence isotropic compression, 

whereby outward (destabilising) lateral displacement is significantly supressed, thus 

increasing the embankment stability. Therefore, with vacuum pressure application, 

embankments can be raised more speedily.  

(b) Although for a given applied ‘equivalent’ load (i.e. the summation of vacuum and fill  

loading), the ultimate consolidation settlement under K0 consolidation (i.e. no lateral 

displacement) is theoretically the same for the two schemes, the rate of excess pore pressure 

dissipation is often higher upon vacuum application (Indraratna et al. 2013).  

In a practical sense, application of a vacuum and its effect are immediate. Fill surcharge is 

more gradual (ramp loading) and sometimes requires a ‘rest period’ to minimise the adverse 

effects of outward (destabilising) displacements. The above factors can be attributed to a 
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higher rate of settlement and excess pore pressure dissipation especially at the initial stages of 

consolidation, which has often been observed through numerous case studies (Indraratna and 

Chu, 2005). 

 Indraratna et al (2013) investigated the effectiveness of traditional fill loading and the 

combination of fill load and vacuum pressure using degrees of consolidation based on pore 

pressure and strain. They showed that the back-calculated coefficients of radial consolidation 

obtained from the vacuum assisted consolidation are higher than those from fill loading 

application alone. For a given total applied load, the coefficients of radial consolidation 

increases with the vacuum-fill surcharge ratio. Kianfar et al (2013) established a non-linear 

flow relationship during radial consolidation. It was shown that the settlement and excess 

pore water pressure dissipation can be predicted quite well using the proposed relationship. 

The main issue of the vacuum preloading is that if consolidation time becomes excessive, the 

operation costs of vacuum pumps can be uneconomical. Currently there is no criterion to 

determine the best time to remove the vacuum pressure. Often the contractors make the 

decision either on the basis of the approved budget in an arbitrary manner (e.g. contractually 

fixed time) or considering a pre-agreed value of settlement with the client/consultant (e.g. 

Port of Brisbane). However, in the above decisions, the most important advantage of applying 

vacuum pressure in conjunction with the surcharge fill, i.e. to maximise the gradient of 

excess pore pressure dissipation, is invariably overlooked. It has been demonstrated that the 

vacuum assisted consolidation can provide a significantly high rate of excess pore water 

dissipation especially during the early stages of consolidation while reducing the lateral 

displacement of the soil. As a result, the overlying fill (surcharge) can be placed much faster 

without affecting the embankment stability, and this helps in switching off the vacuum 

pressure earlier than waiting for primary consolidation to be fully completed.   
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 Although, numerous studies have been conducted to show the effectiveness of the 

application of vacuum pressure in conjunction with vertical drains, the effects of early 

removal of either vacuum or fill loading on axial strains and excess pore pressure are not yet 

addressed in detail, which is the main objective of this Note. The examination of long term 

settlement including secondary compression is not within the scope of this Technical Note. 

EXPERIMENTAL PROGRAMME 

Effects of the application and removal of fill and vacuum pressures on the radial 

consolidation of soft soils were studied using a modified 150mm diameter Rowe cell. Figure 

1 schematically shows the cell equipped with instrumentation. Rigid impermeable discs were 

used at the base and top of the sample to allow only the radial consolidation. The 

measurement of pore water pressure at 4 locations was obtained using pore pressure 

transducers. The central hole at the top plate was used for drainage and application of vacuum 

pressure. Surface settlement was measured at the centre of the top of the cell. The inner wall 

of the Rowe Cell has been specially laminated by vinyl to minimise friction. This technique 

was proposed by Indraratna et al. (2013) for use when the height to diameter ratio becomes 

large. The initial response of the pore pressure reading being equal to the applied fill loading 

also confirms the satisfactory functioning of the cell. 

 

Kaolin slurry was prepared with a moisture content of at least 1.5 times its liquid limit (water 

content =88%) and its properties have been reported by Kianfar et al. (2013). The slurry was 

carefully poured into the cell and later subjected to a preconsolidation pressure of 30 kPa to 

simulate a typical in-situ stress. To ensure that the sample was saturated, Skempton’s B 

parameter of at least 0.99 was obtained. To measure Skempton’s B parameter, the drainage 

valve was closed and an additional vertical load was applied to measure the excess pore 
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pressure response. For example, in Test 1, after the pre-consolidation (30 kPa) stage, an 

additional 50 kPa was imposed with the drainage valve closed. The resulting immediate 

excess pore pressure response was 49.5 kPa, verifying near-saturation.   

Following completion of preconsolidation (under 30 kPa), the preconsolidation pressure was 

removed and a central vertical sand drain (14.5 mm in diameter) was installed within a re-

bored hole to minimise the smear effect. The 30 kPa preconsolidation pressure was then 

reapplied.  Fill pressure was applied on top of the sample and vacuum pressure was applied 

through the central drain. This method of the vacuum pressure application simulates the 

membraneless system where a vacuum pump connects directly to the vertical drains 

(Indraratna et al. 2013). After the preconsolidation stage, additional fill pressure was applied 

under undrained conditions for 10-15 minutes to ensure the excess pore water pressure was 

uniform within the sample (i.e. equal to the applied fill surcharge). When an external load is 

applied to the soil samples under undrained conditions, the increase in the excess pore water 

pressure is almost instant. The fill loading was applied under undrained condition so that the 

initial excess pore pressure was constant in the Rowe cell sample.  For the vacuum assisted 

tests, a vacuum was applied simultaneously when the drainage valve was opened. The 

vacuum pressure was applied directly through the vertical drain, i.e. via the drainage rod 

(Figure 1). The drain was connected to a stand-pipe piezometer filled with water to simulate 

the effect of the water table in the field. This would also allow a reverse movement of water 

from the drain to the soil and prevent air from entering into the soil specimen during the 

unloading stage. 

 

Details of six different tests are summarized in Table 1. The testing program was planned 

based on the following scenario, in which the clay specimen was subjected to an initial pre-

consolidation pressure of 30 kPa in order to achieve a desired effective stress of 80 kPa upon 
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complete consolidation (i.e. in-situ pressure plus additional gain of effective stress by 

preloading), while the applied total pressure was 100kPa. This typical loading scheme was 

considered during the selection of consolidation techniques for a land reclamation project at 

the Port of Brisbane, Australia. Further information on the preconsolidation pressure profile, 

and computed magnitude of the final primary settlement of the ground surface is given 

elsewhere by Indraratna et al (2011). Table 1 indicates the applied (equivalent) stress not the 

actual total stress in the soil. As explained by Indraratna et al. (2013), the application of 

vacuum pressure (50kPa) with fill pressure (50kPa) results in an increase in the total stress of 

50 kPa. However, the gain in effective stress is 100 kPa due to the direct change in excess 

pore pressure caused by both suction and fill pressure. Therefore the total applied stress 

between the combination of vacuum+fill loading (50+50 = 100kPa) and the fill loading 

(100kPa) is the same (equivalent). To accelerate the consolidation process and minimise 

possible shear failure of the shallow dredged mud, rather than applying 50 kPa fill load alone, 

an additional vacuum pressure or fill pressure of 50 kPa was added.  Therefore, the total 

applied load of 100 kPa (summation of vacuum plus fill pressures) was the same for all tests. 

Loading application could be divided into 3 distinct stages: 

(a) Stage A: For Tests 1-3, a total of 100 kPa fill pressure alone was applied at the start of the 

tests. For Tests 4-6, a fill pressure of 50 kPa was initially applied simultaneously with a 

vacuum pressure of 50 kPa. 

(b) Stage B: Half of the fill pressure (50 kPa) was then removed after 8, 10, and 12 hours for 

Tests 1-3, respectively. For Tests 4-6, the vacuum pressure was entirely removed after 8, 10, 

and 12 hours, respectively. 

(c) Stage C: The remaining fill (50 kPa) was removed after 72 hours. 

Mohamedelhassan and Shang (2002) and Chai et al (2005) conducted vacuum consolidation 

tests under vertical drainage using a modified oedometer, where the vacuum pressure was 
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applied at the soil surface.  Chai et al. (2005) proposed that soil deformation under vacuum 

application depends on the stress ratio which can be modified for the combination of fill and 

vacuum loading as: 

[1]                                             𝑘𝑘 = ∆𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣
�∆𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣+∆𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓+𝜎𝜎𝑣𝑣0′ �

                                

where,  ∆𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣 is the vacuum pressure, ∆𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the fill pressure and 𝜎𝜎𝑣𝑣0′  is the initial vertical 

effective stress. 

At rest, the coefficient of horizontal earth pressure for the normally consolidated clays is 

calculated from 𝑘𝑘0 = 1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑′ where 𝜑𝜑′ is the effective friction angle. 

For tests subjected to vacuum preloading, ∆𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣 =  ∆𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 50 𝑘𝑘𝑘𝑘𝑘𝑘 , and 𝜎𝜎𝑣𝑣0′  = 30 𝑘𝑘𝑘𝑘𝑘𝑘,  

the Stress Ratio (𝑘𝑘) is 0.385, which is less than 𝑘𝑘0 = 0.546 where the friction angle of the 

clay is 270. According to Chai et al (2005), when the stress ratio is less than 𝑘𝑘0, there is no 

inward lateral displacement and the ultimate settlements would be almost the same as that 

induced by conventional fill loading. Preliminary test results show that complete 

consolidation curves for either fill or vacuum load applied up to 50 days converge to the same 

ultimate settlement. 
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EXCESS PORE WATER PRESSURE RESPONSES  

To normalise the radial distance from the centre of the cell, a Radius Ratio (RR) was defined 

as:  

[2]                 𝑅𝑅𝑅𝑅 = (𝑟𝑟 − 𝑟𝑟𝑤𝑤)/(𝑅𝑅 − 𝑟𝑟𝑤𝑤)                                                                                            

where,  r is the radius from the centre, rw is the radius of the vertical drain, and R is the 

radius of the cell.  

The locations for pore water pressure measurement were at RR = 0.0, 0.19, 0.48, and 0.77. 

The distributions of excess pore water pressure at different radii for Tests 1-3 are presented in 

Figure 2. It shows that there were three distinct excess pore pressure responses during the 

application and removal of the applied surface surcharge (i.e. simulating the fill placement 

and removal in the field):  

 (a) when the surface ‘fill’ load was first applied,  

(b) when the first half of the ‘fill’ surcharge was removed, and  

(c) when the second half of the ‘fill’ surcharge was removed.   

[Note: the term ‘fill’ loading represents the axial stress which simulates fill placement in the 

field]  

Upon the application of the surface ‘fill’ load, the excess pore water pressure first increased 

more than the applied load at RR=0.77 and decreased at the locations closer to the drain.  

This phenomenon can be attributed to the rigid boundary contributing to the Mandrel-Cryer 

effect. After approximately half an hour, all excess pore water pressure curves show a similar 

trend as the Mandrel-Cryer effect diminishes. The pore pressure closest to the drain decreased 

faster than that away from the drain.   Upon the removal of the first half of the surface load, 

the drop in excess pore water pressure was immediate and varied with the radial distance 
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from the drain. In all cases, the excess pore pressures after the 1st stage of removal did not 

become negative, and were the highest in Test 1 where the consolidation time was shorter.  

When the excess pore water pressures dissipated completely (after 72 hours), the remaining 

surface load (50 kPa) was completely removed (Fig. 2). As the excess pore pressures for all 

tests approached zero, it is interesting to note that the pore water pressures after the load 

removal became negative (suction) for at least 15 hours before they returned to zero. The 

negative pore pressures could be attributed to the tendency of the soil to expand. Considering 

the expected rapid drainage at the drain-soil interface, negative excess pore pressures quickly 

increase to zero when the measuring point is much closer to the drain.   

Time-dependent excess pore water responses for the vacuum assisted tests (Tests 4-6) are 

presented in Fig. 3. As expected, for a given total applied pressure (100kPa), the initial excess 

pore water pressures obtained from Tests 4-6 were less than those obtained from Tests 1-3. 

Unlike the surface ‘fill’ pressure, the removal of vacuum pressure increased the excess pore 

water pressure in the soil specimens (see Fig 3). In tests 4 and 5, depending on the removal 

time of the vacuum pressure, prior to the vacuum removal, the excess pore water pressures 

were negative at RR=0.19 and positive at other measurement points; while they were 

negative at all measuring  locations in Test 6. 

Figure 4 presents the average excess pore pressure responses computed based on simple 

numerical average where the average excess pore pressure was calculated from the excess 

pore pressures measured at 4 locations without the influence of the hydrostatic pressure. The 

sample height was 80mm and the excess pore pressure measurement was carried out at the 

base. Therefore during calculations, the hydrostatic pore pressure was subtracted from the 

total pore pressure reading. It is noted that the left and right vertical axes are for Tests 1-3 and 

Tests 4-6, respectively. As expected, the initial excess pore pressures obtained from the tests 

with fill loading alone were higher than those with the combination of vacuum and fill 
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pressure. Excess pore pressure dissipation rates under vacuum pressure are higher compared 

to those under fill loading alone which is similar to observation made by Indraratna et al. 

(2013). Due to the scale of the graphs, the differences are less visible for Cases B and C. 

Ideally, all curves under the same loading condition should coincide, however, these minor 

differences are inevitable during testing and unfortunately the responses are not identical. 

 

For Stage B, upon the removal of first half of the surcharge in Tests 1-3, the drop in excess 

pore water pressure was immediate and the excess pore pressures continued to dissipate to 

zero afterwards. Prolonged removal time of the surcharge creates lesser residual excess pore 

pressure in Stage B. As explained by Aldrich (1965), for a given total stress, the specimens 

which experience a longer consolidation time have a higher effective stress. Unlike the 

surcharge pressure, the removal of vacuum pressure in Tests 4-6 caused a sudden increase in 

the excess pore water pressure. Depending on the removal time of the vacuum pressure, the 

average excess pore pressures were positive, and further dissipation was observed in Stage B 

(Tests 4 and 5). This is because, the average effective stress in the specimens was less than 

the total stress. In Test 6, the average excess pore water pressure was negative at the end of 

Stage A, and later increased to zero (hydrostatic) after vacuum removal, and then remained 

constant (at zero) thereafter. This is because the current average effective stress of the soil 

specimen in Test 6, immediately after vacuum pressure removal, was at least equal to or 

greater than the total external surcharge load (50 kPa). 

 

 If the desired effective stress of soil after consolidation is 80 kPa (in-situ pressure + 

preloading pressure), it is implied that the optimum removal time can be at 12 hours (Test 6) 

where the average excess pore pressures were negative. For a given removal time, the initial 

excess pore pressure in Stage B with vacuum application is always less than those with fill 
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load. For Stage C, before the removal of the remaining fill load, excess pore pressures for all 

Tests were zero.  It is interesting to note that the pore water pressures after the load removal 

became negative (suction) for at least 15 hours before they returned to zero. The negative 

pore pressures result from the tendency of the soil to swell upon unloading and this induced 

the inverse movement of water from the drain to the soil. The delay in the removal of the fill 

load has less effect on excess pore water pressure responses, while the extended period of 

vacuum removal imparts a greater influence on the change in excess pore water pressure. 

DETERMINATION OF VACUUM REMOVAL TIME 

The pore water pressure response indeed could be used as a prime indicator to remove 

vacuum application. The advantage of the vacuum pressure diminishes with time as the 

primary consolidation progresses, i.e.  gradient of the time-settlement curve at a given time. 

The normalised pore pressure dissipation rate and axial stain rate from Test 6 can be 

determined from the ratio of pore pressure dissipation rate or axial stain rate with its 

maximum rate at the initial consolidation stage (Figure 5). It can be seen that the vacuum 

pressure accelerates consolidation settlement significantly at the start, but subsequently a 

flatter pore water pressure curve after 8-10 hours is observed earlier than the axial strain 

response. When the gradient of the curve becomes less, the benefit of  maintaining the 

vacuum pressure are only marginal, and therefore, the amount of undissipated pore water 

pressure and its current rate of dissipation (du/dt) give  a clear indication to make the decision 

whether to continue or switch-off the vacuum pumps. For Port of Brisbane reclamation, 

Indraratna et al. (2011) considered the degree of consolidation based on pore pressure 

dissipation rate as a key indicator to either maintain or switch off the vacuum pressure.   

Piezometers are crucial component of the common instrumentation array to monitor the 

behaviour of the embankment, and relate the rate of settlement at a given time to the 

undissipated pore water pressure at critical locations beneath the embankment. 
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For example, if the required increase in effective stress due to surcharge is 50kPa and the 

maximum fill surcharge pressure cannot exceed 50 kPa due to relatively low undrained shear 

strength of the soft clay, then the application of vacuum in tandem with surcharge fill will be 

required. With the application of an additional 50kPa vacuum pressure (i.e. an equivalent 

total load of 100kPa), the vacuum pump can be switched off when the remaining excess pore 

water pressure approaches a small value, which will take a long time to dissipate totally. For 

example, at the Port of Brisbane reclamation works, it was found that the excess pore 

pressure gradient was more sensitive than the time-settlement plot, hence the pore pressure 

dissipation rate was more convenient to use than the settlement for determining the time for 

vacuum removal. 

COST ANALYSIS TO SHOW THE NEED FOR EARLY REMOVAL 

For the Port of Brisbane project where vacuum application was employed, the cost savings 

for early switching off vacuum pump was approximately A$150,000 per month for each 

improved area less than 15000m2 (i.e. A$ 10 per sq.m) in 2008. It is expected that the 

operating cost of the system will exceed A$200,000 per month for a similar project and soil 

conditions under current Australian rates. If the vacuum system could be switched off even a 

few weeks earlier, then the cost saving would be as much as half a million dollars over 15000 

sq.m. In fact, this was demonstrated through a field trial at the Port of Brisbane reclamation 

site.  

The capital cost of vacuum system installation is relatively high (and this is one of the 

impediments in using VP for small projects), but so are the running costs as explained above. 

In very large projects where soft clay deposits are thick, the total running costs significantly 

exceed the initial capital costs if the vacuum pressure has to be applied over a lengthy period 

of time.  Early vacuum switch off is crucial, so that the remaining excess pore pressure would 

dissipate under the surcharge fill height, which as mentioned earlier could be raised very 
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quickly without affecting stability, because of the key advantage of vacuum pressure that 

actively controls the lateral soil displacement. 

CONSOLIDATION SETTLEMENT RESPONSES 

The axial strains for the tests conducted with conventional fill loading alone and those with a 

combination of fill loading and vacuum are presented in Fig. 6. When the first half of the 

external loads in Stage B (fill or vacuum pressure) were removed, the vacuum assisted tests 

(Tests 4-6) produce a higher axial strain rate for a given time than those tests conducted with 

fill load alone (Tests 1-3). After the removal of the applied load in the Stage C, swelling can 

be observed with the negative excess pore pressure shown in Fig. 4. No further settlement can 

be observed in Test 6 after the vacuum pressure removal at 12 hours. This also is in 

accordance with the observation of no excess pore pressure dissipation shown in Fig. 4. 

AVERAGE OVERCONSOLIDATION RATIO 

To distinguish clearly the difference between fill surcharge and vacuum pressure, the increase 

in the average effective stresses computed using average values of pore water pressure of all 

of the tests were calculated and plotted in Fig. 7. The average pore water pressure is 

determined based on a simple numerical average of values at 3 locations. This Figure 

compares the gain in effective stress before and after the removal of external loads with the 

time for removing the fill/vacuum load. It shows that the gain in average effective stress 

before removing the external loads (fill or vacuum load) is on the average about 23% greater 

than that for tests conducted using fill pressure alone. Figure 7 also shows that this difference 

after removing the external loads increased to an average of 39%. This clearly shows the 

advantage of using vacuum pressure over conventional fill surcharge alone, especially when 

the embankment stability is crucial. These observations imply important practical 

implications between the two approaches. 
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Preconsolidation pressure (pc′ ) at the end of each test can be estimated by adding the initial 

effective stress (p0′  =30 kPa) to the total amount of pore pressure dissipation (which can be 

calculated from Fig. 4). Figure 8 shows the associated overconsolidation ratio (OCR) versus 

the removal time of the fill load/vacuum pressure.The performance between fill and vacuum 

preloading can be assessed using the overconsolidation ratio (OCR), as at the end of each 

test, the preconsolidation pressures were not the same due to the load application type and the 

removal time. It can be seen that the combination of vacuum and ‘fill’ surcharge provides a 

higher OCR than using ‘fill’ alone, which is consistent with the observed excess pore 

pressures and strains.  The increase in OCR depends on the removal time for both cases. It is 

shown that OCR can be used as an indicator to compare the performance of both systems. 

OCR can be determined using a number of techniques such as the change in excess pore 

pressure and an oedometer test for the soil samples at the end of preloading (Marques et al. 

2003). 

 

 CONCLUSION 

In essence, the application of combined vacuum and fill surcharge preloading can effectively 

decrease the height of fill required to achieve the same degree of consolidation, while 

enabling much better control of lateral soil movement that may otherwise become excessive 

in the absence of vacuum pressure. This is supported by the experimental observations of the 

differences in effective stress associated with the two approaches (i.e. conventional fill 

surcharge alone vs combined vacuum and fill surcharge).  

Six consolidation tests were carried out using a Rowe cell that can measure pore pressure at 4 

different locations and axial settlement. Kaolin specimens prepared under preconsolidation 

pressure of 30 kPa were used to perform radial consolidation under the combination of 
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vacuum and fill pressure. Partial fill load or vacuum pressure was removed at different times. 

Following specific observations can be made: 

(a) For a given total applied load, the initial excess pore pressures due to fill pressure alone 

were higher than those with the combination of vacuum and fill pressure. Excess pore 

pressure dissipation under vacuum pressure is faster compared to those under fill surcharge 

alone.  

(b) Upon the partial removal of fill surcharge, the drop in excess pore water pressure was 

immediate and the excess pore pressures continued to dissipate to zero afterwards. In 

contrast, the removal of vacuum pressure created a sudden increase in the excess pore water 

pressure. However, if the excess pore pressure was negative before vacuum removal, the 

excess pore water pressures increased to zero (hydrostatic) and remained constant at zero 

with no further settlement thereafter. The time for removal of the vacuum pressure can be 

decided upon the pore pressure response. 

(c) The application of vacuum and fill pressure yields a higher OCR than using fill load 

alone. The change in OCR depends on the removal time for both cases. 

(d) The gain in average effective stress before removing the external loads (fill or vacuum) is 

on the average about 23% greater than that for tests conducted using fill surcharge alone. This 

clearly shows the advantage of using vacuum pressure over conventional fill surcharge alone, 

especially when the embankment stability is crucial.  
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Table 1: Information of the test conducted using a 150 mm Rowe Cell 

Test 
No. 

Sample  
Diameter 

(mm) 

Drain 
Diameter 

(mm) 
𝒏𝒏 

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭  
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 
(FP, kPa) 

𝑽𝑽𝑽𝑽𝑽𝑽𝑷𝑷𝑷𝑷𝑽𝑽 
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 
(VP, kPa) 

𝑭𝑭𝑷𝑷
+ 𝑽𝑽𝑷𝑷 
(kPa) 

𝑽𝑽𝑽𝑽𝑽𝑽

=
𝑽𝑽𝑷𝑷

𝑭𝑭𝑷𝑷 + 𝑽𝑽𝑷𝑷
 

Time of 
Fill or 

Vacuum 
Removal 

(hr) 
1 

151 14.5 10.41 

100 0 

100 

0 8 
2 100 0 0 10 
3 100 0 0 12 
4 50 50 0.5 8 
5 50 50 0.5 10 
6 50 50 0.5 12 
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Figure 1: Modified 150 mm Rowe cell 
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Figure 2: Excess pore water pressure distribution with time at different radii: (a) Test 1: 
removal of 50 kPa fill load after 8.0 hours,(b) Test 2: removal of 50 kPa fill load 
after 10.0 hours,(c) Test 3: removal of 50 kPa fill load after 12.0 hours. 
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Figure 3: Excess pore water pressure distribution with time at different radii: (a) Test 4: 
removal of 50 kPa vacuum after 8.0 hours,(b) Test 5: removal of 50 kPa vacuum 
after 10.0 hours, (c) Test 6: removal of 50 kPa vacuum after 12.0 hours. 
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Figure 4: Average excess pore water pressures for: (a) fill/vacuum removal at 8.0 hours, (b) 
fill/vacuum removal at 10.0 hours,(c) fill/vacuum removal at 12.0 hours. 
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Fig .5 Normalised pore pressure dissipation rate and Normalised axial strain rate 
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