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ABSRACT 

Anthropogenic climate change is expected to result in dramatic shifts in the abiotic conditions 

within estuaries, including an elevation of temperature and salinity levels. Even so, few 

studies have addressed the impacts of multiple abiotic stressors on the behaviour and life 

history of key estuarine species, such as those of biological and commercial importance. Here 

we used a cross-factored experimental design to tease apart the effects of temperature and 

salinity on intraspecific aggression and growth rates of a native estuarine fish species, the 

Australian bass (Macquaria novemaculeata). Juvenile bass were exposed to one of four 

treatment conditions: 1) baseline temperature and salinity, 2) elevated temperature, 3) 

elevated salinity, and 4) elevated temperature and salinity. Elevated salinity increased rates of 

aggression, and elevated temperature decreased rates of growth, although the effects of both 

factors were mediated by the body size of individual bass. These results therefore highlight 

complex and variable effects of abiotic stressors and body size, emphasising the importance 

of considering individual-level attributes when evaluating the impacts of climate change on 

estuarine fishes. 

Keywords: climate change; estuary; temperature; salinity; Australian bass; growth rate; 
aggression 
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INTRODUCTION  

Estuaries are bodies of water that connect freshwater rivers and creeks to the ocean (Roy et 

al. 2001). The resulting brackish environment supports a diversity of fishes, including 

commercially and recreationally important species, which often use estuaries during critical 

parts of their life cycles (Elliott et al. 2007). Since estuaries are influenced by marine, 

terrestrial and freshwater processes, they are subject to high annual and seasonal climatic 

variability, hence the biota within them must be able to tolerate some fluctuations in abiotic 

conditions (Kench 1999; Roessig et al. 2004). Even so, estuarine fish may be particularly 

vulnerable to the cumulative effects of multiple abiotic stressors because estuarine 

ecosystems are disproportionately affected by both increasing development on land and water 

use (Nelson et al. 2009; Gillson 2011; Pratchett et al. 2011). Therefore, it is important to 

understand how the modification of estuarine water quality influences the persistence of 

estuarine fishes within these biologically important ecosystems (Pease 1999; Saintilan 2004; 

McKinley et al. 2011). 

Global climate change is likely to be a key factor causing changes in estuarine physical 

characteristics, water quality and fish assemblages (Koehn et al. 2011). In response to global 

climate change, a wide range of abiotic factors are expected to change, including temperature, 

salinity, dissolved oxygen, CO₂ concentrations and pH (Pratchett et al. 2011). These abiotic 

variables will not exert their effects in isolation, but rather will interact with each other in 

potentially complex ways (Pease 1999; Hobday and Lough 2011; Koehn et al. 2011). 

Although the changes to abiotic variables in coastal ecosystems as a result of climate change 

have been widely reviewed (Gillanders et al. 2011; Koehn et al. 2011; Pratchett et al. 2011), 

little is known about the nature and extent of impacts on estuarine fishes relative to studies 

examining the impacts on marine and terrestrial fauna (Booth et al. 2011).  



4 
 

Amongst the various potential abiotic stressors linked to climate change, elevated salinity is 

likely to pose problems for fishes through influences on osmoregulation and oxygen 

consumption (Gillanders et al. 2011; Koehn et al. 2011). The spatial distribution of fish along 

estuaries can indicate the tolerable salinity range of different species (Cardona 2000; Diouf et 

al. 2006; Bachman and Rand 2008; Macdonald and Crook 2010), however future changes in 

salinity may cause conditions to move towards, or away from the optimum conditions for 

each species (Labonne et al. 2009). For example, large increases in salinity may have 

negative impacts on freshwater and estuarine resident species through physiological stress 

(Elliott et al. 2007), particularly where upstream estuarine areas have become hypersaline 

(Koehn et al. 2011; Pratchett et al. 2011). Extreme increases in salinity can also cause mass 

fish mortalities, and such extreme events are predicted to increase in frequency and intensity 

(Gillanders et al. 2011). Extreme events could therefore have severe impacts on estuarine fish 

communities, particularly in estuaries where physical barriers such as dams restrict the ability 

of fish to move away from stressful abiotic conditions (Hoeksema et al. 2006; Gillanders et 

al. 2011). 

A compounding potential problem associated with high salinity is an elevation in temperature 

due to climate change. Direct effects of increased water temperature are generally observed 

through decrements in growth, reproduction, foraging, immune competence as well as 

changes in behaviour such as aggression (Pörtner and Knust 2007; Pörtner and Farrell 2008). 

Increasing water temperatures may affect species differently, depending on whether they are 

at the extremes of their distribution and temperature tolerance (Koehn et al. 2011). Fish 

generally occupy thermal preference windows that are narrower than their thermal tolerance 

range, however additional environmental stress can activate a stress response, for example 

diverting energy from growth and reproduction to maintenance (Koehn et al. 2011). 

However, increasing water temperatures may also have positive effects for fish well within 
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their thermal tolerance range; higher temperatures could accelerate development, with faster 

larval development and shorter larval duration (Gillanders et al. 2011). Faster development 

may result in higher survivorship through avoiding predation at smaller sizes, or it could lead 

to greater susceptibilities to starvation because of higher metabolic rates that require more 

food and almost constant feeding (Gillanders et al. 2011; Koehn et al. 2011). 

There have been few experimental studies specifically investigating how multiple abiotic 

factors, such as salinity and temperature, influence the life history and behaviour of estuarine 

fishes, making it difficult to assign causal relationships and formulate effective management 

and conservation strategies. Moreover, but there have been even fewer investigations into 

how the physical attributes of individuals could mediate their responses to alterations in 

multiple abiotic factors. Accounting for individual variation is important, because attributes 

such as body size, age and sex are known to affect the activity level, time budgets, social 

behaviours and physiological profiles of fish in general (e.g. Wiegmann and Baylis 1995; 

Taborky and Grantner 1998; Wong et al. 2012). Therefore, not only is it important to address 

the interacting effects of multiple stressors, but also how they themselves interact with the 

physical attributes of organisms. 

The overall aim of this study was to address these key knowledge gaps by investigating the 

impacts of climate change on the life history and behaviour of an estuarine fish, the 

Australian bass (Macquaria novemaculata). Australian bass is a catadromous freshwater fish 

native to Australia from Queensland to Victoria. Adult fish reside in freshwater upstream but 

migrate downstream to estuaries in order to spawn between late June and early September 

(Harris, 1986) – as such, juvenile bass develop in saline estuarine waters before migrating 

upstream to freshwater (Fielder and Heasman 2011). Australian bass have previously been 

observed to survive in a wide range of abiotic conditions (Harris 1987): thermal tolerance 

ranges have been estimated between 3-30°C (Cameron et al. 2012; Grigalchik et al. 2012), 
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and salinity tolerance ranges from 0-35ppt (Fielder and Heasman 2011). Even so, adult bass 

do not usually enter water of salinity greater than 20ppt (Fielder and Heasman 2011) and 

field studies demonstrated that spawning, incubation and larval development occur at 

salinities of 8-14ppt and temperatures of 11-16°C in the wild (Harris 1986). In temperate East 

Australian streams, water residence time is expected to increase (Hobday and Lough 2011) 

and, coupled with an increase in air temperatures, could cause water temperatures to rise to 

over 30°C in summer months (Hobday and Lough 2011; Koehn et al. 2011). Sea-level rise is 

also expected to cause ocean water to penetrate further upstream in estuaries, hence, elevating 

salinity levels (Pethick 2001). Therefore, it could be expected that this key predatory species 

may be exposed to salinities as high as 35ppt in the future, during either their juvenile phase 

when undergoing migrations between river systems, or when spawning in estuaries as adults. 

To date, nothing is known about the impacts of multiple interacting stressors on their growth 

and behaviour, nor how body size might mediate these effects. This lack of data is alarming, 

given that Australian bass is endemic to the south-eastern coast of Australia, is a highly 

prized commercially and recreationally fished species, must migrate to estuaries in order to 

spawn and a key fish predator in estuarine environments throughout its range (Harris 1986; 

Hall et al. 2009). These attributes make Australian bass a potentially vulnerable species to 

future climate change, with knock-on impacts on the recreational, economic and ecological 

gains from this species.  

We conducted a controlled manipulative experiment to determine how elevated temperature 

(30°C) and salinity (35ppt), as well as their interactions with body size, influence three key 

life history and behavioural traits: growth rate, aggressive interactions and body condition. 

We hypothesised that salinity would reduce aggression rates i.e. competition intensity 

declines with increasing abiotic stress (Alcaraz et al. 2008), and reduce growth rates and body 

condition, due to increased osmotic stress experienced (Boeuf and Payan 2001). This raised 
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osmotic stress subsequently diverts energy away from higher level activities like aggression. 

We also hypothesised that elevated temperature would decrease competitive interactions, 

overall growth rates and body condition because the increased resting metabolism (Pörtner 

and Knust 2007) would reduce the energy available for higher level functions like growth and  

rigorous activities (such as aggression). Larger individuals were also expected to display 

more aggression, grow faster and have a higher body condition given that size typically 

reflects dominance in fishes (Wong et al. 2007). We experimentally tested these predictions 

by maintaining juvenile bass fingerlings under varying degree of temperature and salinity in a 

cross-factored experimental design to tease apart the relative effects of either abiotic factor, 

and how they interact with body size, on competitive behaviours (intraspecific aggression) 

and life history traits, to gain a deeper understanding of how climate change may impact one 

of the key fish predators within estuaries in Australia. 
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METHODS 

Housing and treatment conditions 

All fish were housed in 4 separate recirculating systems located at the University of 

Wollongong, NSW, Australia. Each system comprised 8 aquaria (60 x 30 x 30cm; 

approximately 54 litres) containing sand and a PVC pipe for shelter. Juvenile Australian bass 

(M. novemaculeata; mean ± S.E. standard length = 24.6 ± 0.23mm) of mixed sex were 

obtained from a native fish hatchery (Aquablue Seafoods Inc.). To determine initial body size 

and mass, each fish was measured using callipers (mm standard length (SL) ± 0.1mm) and 

weighed using an electronic balance (g ± 0.1g). Each fish was then tagged using fluorescent 

elastomer (Northwest Technologies Inc.) injected into the dorsal musculature just under the 

skin to enable individual recognition. Following this procedure, fish were randomly assigned 

and placed into an aquarium (4 fish per aquarium). Water conditions within each of the four 

systems were maintained at 22°C and 10ppt salinity for 2 weeks to allow fish to acclimate to 

baseline conditions. Light cycles were kept at a constant 12L:12D cycle throughout 

experiments. Bass were fed to ensure each ate approximately 5-6 pellets each (New Life 

Spectrum, Homestead FL) and were supplemented with approximately 5-8 frozen blood 

worms (Hikari Frozen Blood worm, 100g) daily.  

After the acclimation period, bass in each system (n = 32 per rack) were acclimated to 4 

different water conditions (with one treatment per system): 1) baseline temperature and 

salinity (22°C and 10ppt); 2) elevated temperature and baseline salinity (30°C and 10ppt); 3) 

baseline temperature and elevated salinity (22°C and 35ppt); and 4) elevated temperature and 

elevated salinity (30°C and 35ppt). The adjustments made were gradually over a period of 3 

weeks, with temperature increases performed at a rate of approximately 3°C per week for the 

first two weeks and a further 2°C on the third week so that the maximum temperature of 30°C 
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was reached. Salinity was raised at a rate of 10ppt per week for the first two weeks and a 

further 5ppt during the third week (acclimatisation to maximum conditions was performed so 

that maximum temperatures and maximum salinities were reached at the same time between 

treatments). Fish were then maintained at these treatment conditions for 4 weeks with no 

change to the feeding or housing regimes. 

Behavioural observations 

In order to quantify behaviours, we conducted a pilot observation study of a random subset of 

5 individuals to develop an ethogram of the aggressive behaviours exhibited by M. 

novemaculeata (Table 1). Having defined their behaviours in this way, the aggressive 

behaviours of each fish within each treatment were recorded following the 4 week 

experimental period to determine the effects of increased temperature and salinity on 

aggressive social behaviour. The fact that each fish was individually tagged with coloured 

elastomer not only enabled us to score overall rates of aggression, but to identify the 

individuals that initiated and received the behaviours within each group i.e. the directionality 

of aggressive interactions. All behavioural trials were conducted during daylight hours. Each 

fish in a group was observed one at a time for 10 minutes,  following a 5 minute acclimation 

period per group, during which time they habituated to the presence of the observer (i.e. total 

of 40 minutes observation per group). Only one person (KO) observed the fish to avoid 

potential issues with observer bias. It was not logistically possible to observe the fish blind to 

their respective treatments as each rack had to be designated to one treatment. Following 

observation of all fish in each group, each fish was captured, re-measured and re-weighed as 

described above to determine final body size and mass, and hence growth rates and body 

condition. 
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Statistical analysis  

All statistical procedures were performed using SPSS Statistics Version 21.0 (Armonk, NY: 

IBM Corp.). Aggressive interactions over the 10-minute observation period were summed for 

each individual (owing to a low frequency of aggressive encounters within each separate 

category). To investigate whether bass exhibit size-based dominance, the relationship 

between summed log-transformed aggression and final body size was assessed using a Linear 

Regression, using only data from the baseline abiotic conditions (low temperature and 

salinity). Similarly, the relationship between summed log-transformed aggression and the 

final size ratio between group members of adjacent size and hence dominance rank (SL 

subordinate / SL immediate dominant; Wong et al. 2007, 2008) was investigated to determine 

if aggression was heightened between adjacent ranked individuals. Note that dominance was 

based on relative body size rather than aggression levels, given that size and aggression were 

significantly positively correlated (Linear Regression: N = 106, R2 = 0.29, p = 0.004). A 

Generalized Linear Mixed Model (GLZ) with backward stepwise elimination was used to 

investigate the effects of salinity, temperature, final body size and group size (owing to some 

mortality there were some group size reductions during the experiment) on summed 

aggression, with a Poisson distribution and loglinear link function owing to the count data. 

Tank ID was incorporated as a random effect to account for non-independence of fish within 

each tank. Main effects of each factor and selected 2-way interactions (salinity*temperature, 

salinity*body size and temperature*body size) were included as predictors in the model. 

To investigate the effects of abiotic factors on growth, growth rates were first expressed as a 

% increase relative to their initial body size (Wong et al. 2007). A General Linear Mixed 

Model (GLMM) with backward stepwise elimination was used to investigate the effects of 

salinity, temperature, initial body size and group size on % growth rates, incorporating tank 
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ID as a random effect. As for aggression, main effects of each factor and selected 2-way 

interactions (salinity*temperature, salinity*body size and temperature*body size) were 

included as predictors in the model. Each non-significant factor was sequentially removed at 

a level of p > 0.05.  

The following mathematical formula was used to quantify the body condition (K) of fish 

(Fulton 1902): K = mass (g) / total length (cm) ^ b)*100, where b = allometric scaling value. 

The allometric scaling value was obtained from a regression of the length and mass data from 

fish in this study (linear relationship with a slope of 0.45, y = 0.45x - 0.98, R² = 0.90) 

(Ureche et al. 2012). Therefore, a value of b=1 was chosen in the equation, which has been 

previously used when calculating condition of fishes from the Percichthyidae family (Ingram 

2009). Total length was used as standard length gives a high K value that is misrepresentative 

of the proportions and condition of the fish (Barnham and Baxter 1998; Ingram 2009; 

Vasconcelos et al. 2009; Ureche et al. 2012). K values can range from 0 to 2, where values 

less than 1 indicate a fish in poor condition and values higher than 1.4 indicate a fish in 

excellent condition (Barnham and Baxter 1998). As body condition was normally distributed, 

a GLMM with backward stepwise elimination, incorporating tank ID as a random effect, was 

used to investigate the main effects of each factor and selected 2-way interactions 

(salinity*temperature, salinity*body size and temperature*body size) were included as 

predictors in the model. Each non-significant factor was sequentially removed at a level of p 

> 0.05.  
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RESULTS  

Levels of aggression were significantly positively correlated with final body size (Linear 

Regression: N = 106, R2 = 0.29, p = 0.004) (Fig 1a) and weakly positively correlated with the 

final size ratio between adjacent ranked group members (R2 = 0.21, p = 0.06) (Fig 1b), 

indicating the presence of size-based dominance relationships and potentially heightened 

conflict between adjacent ranked individuals in bass.  

Average rates of aggression differed between the four treatments (Table 1). When 

investigating the influence of each factor, there was no influence of temperature on levels of 

aggression (GLZ: F1,97 = 0.33, p = 0.57), nor was there a significant interaction between 

temperature and salinity (F1,97 = 0.66, p = 0.42) or temperature and final body size (F1,97 = 

0.07, p = 0.79) on aggression. There was a significant effect of salinity on aggression (F1,100 = 

52.6, p < 0.001) that explained 5.1% of the variation, with less aggression occurring at high 

salinity. There was a significant interaction between salinity and final body size on 

aggression (F1,100 = 62.8, p < 0.001) that explained 6.1% of the variation, with aggression 

increasing with body size under low salinity but not under high salinity (Fig 2). Group size 

and final body size were also significant predictors of aggression (group size: F2,100 = 8.9, p < 

0.001; final body size: F1,100 = 39.5, p < 0.001), explaining 5.6% and 8.2% of the variation 

respectively, with aggression increasing with group size and final body size.  

Average rates of growth differed between the four treatments (Table 1). Temperature was a 

significant predictor of % growth rates (GLMM: F1,100 = 36.6, p < 0.001), with elevated 

temperature resulting in lower growth rates (Fig 3) and explaining 17.1% of the variation in 

growth. In addition, there was a significant interaction between temperature and initial body 

size (F1,100 = 27.2, p < 0.001) that explained 12.9% of the variation, with growth rates of 

small fish being higher at low temperatures than at high temperatures, and growth rates of 
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larger fish being similar under low and high temperatures (Fig 3). Growth rates also showed a 

significant decline with increasing initial body size (F1,100 = 64.5, p < 0.001) and group size 

(F2,100 = 7.9, p = 0.001), these factors explaining 35.8% and 6.9% of the variation 

respectively. Salinity did not significantly predict growth rates, whether as a main effect or an 

interaction with temperature or initial body size (Salinity: F1,100 = 1.85, p = 0.18; 

Salinity*Temperature: F1,100 = 0.2, p = 0.65; Salinity*Initial body size = F1,100 = 2.1, p = 

0.15). 

Although there was a trend towards a significant effect of salinity on body condition 

(GLMM: F1,104 = 2.9, p = 0.09), no factor was a significant predictor of body condition, either 

as main or interactive effects  (temperature: F1,90 = 0.39, p = 0.84; group size: F2,93 = 0.25, p = 

0.78; tank ID: F7,95 = 1.1, p = 0.37; final body size: F1,102 = 1.3, p = 0.26; salinity: F1,104 = 3.0, 

p = 0.09). Finally, there were a total of 22 deaths during the experiment (n = 5 in treatment 1; 

n = 5 in treatment 2; n = 7 in treatment 3; n = 5 in treatment 4), however there was no 

significant difference in the frequency of deaths between the four treatments (Chi-squared 

test: χ² = 0.15, p = 0.7).  
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DISCUSSION 

Anthropogenic climate change is expected to result in dramatic alterations to the estuarine 

environment, including an elevation of temperature and salinity levels. To our knowledge, we 

provide the first experimental assessment of the interplay between multiple abiotic factors 

and body size on intraspecific aggression and growth rates of an Australian native estuarine 

fish, the Australian bass. We found that intraspecific aggression within groups was size-

related, with larger bass being more aggressive than smaller bass, and that bass tended to be 

more aggressive to those similar in size to themselves, supporting the occurrence of size-

based dominance relationships within groups. Interestingly, this size-related variation in 

aggression disappeared under high salinity levels, and salinity had no impact on growth rates. 

High temperatures did not influence levels of aggression, but did affect growth rates - at high 

temperatures, bass grew slower than at low temperatures, and elevated temperatures had a 

greater negative impact on the growth rate of smaller fish than on larger fish. These results 

point to complex and variable interactions between salinity, temperature and body size on the 

behaviour and life history of bass, emphasising the importance of considering individual 

body size in the evaluation of climate change impacts on estuarine fishes. 

Intraspecific competition is dependent on abiotic (e.g. temperature, water level, pollutants 

etc) as well as biotic factors (e.g. individual body size or environmental resource availability) 

(Dunson and Travis 1991; Taniguchi and Nakano 2000; Thomas and Holway 2005; Scott & 

Sloman 2004). Here we provide further support for the role of abiotic and biotic factors in 

influencing competition and aggression, since salinity mediated by body size influenced 

aggression and competition in bass. So far, there is mixed evidence, with competition 

becoming either less or more intensified under stressful abiotic conditions (Lortie and 

Callaway 2006; Maestre et al. 2006; Alcaraz et al. 2008). For the endemic Australian bass, 
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we found that salinity but not temperature influenced levels of aggression. In other words, 

larger fish, which are typically more aggressive than smaller fish, became less aggressive 

under salinity conditions resembling those expected under future climate change. The 

consequences of such alterations are unclear, but one possibility could be that larger fish 

would become less capable of maintaining their dominance over smaller fish given they 

exhibit less aggression under higher salinities. Further experimental work is required to 

address this interesting possibility. 

In contrast to aggression, salinity had no effect on the growth rates of juvenile bass. This is a 

surprising result, given that salinity is considered an important determinant of performance in 

aquatic organisms (Boeuf and Payan 2001; Chen et al. 1996; Tsuzuki et al. 2003; Varsamos 

et al. 2005; Bachman and Rand 2008; Nordlie 2006). Salinity is expected to affect estuarine 

fish via an increased energy expenditure required for osmoregulation under hypo- and hyper-

osmotic conditions (Swanson 1998; Bachman and Rand 2008), in turn affecting higher level 

activities such as growth and activity (Boeuf and Payan 2001). For bass, juveniles remain in 

estuaries where costs of osmoregulation can be minimised, hence fluctuations in salinity, for 

example due to increases in tidal influx from sea level changes and storm surges, are 

expected to negatively impact fitness of non-resident estuarine fishes by elevating salinity 

levels in estuaries to that of sea water (Burke 1992). While support for the energetic burden 

of high salinity comes from the fact that larger fish were unable to maintain high levels of 

aggression under high salinity in the current study (i.e. they showed a reduced activity rate in 

the form of aggression), the lack of an effect on growth rate appears contradictory. However, 

it is possible that juvenile bass are more tolerant of an increase (compared to a decrease) in 

salinity levels, given that hatching and larval survival rates of bass increase with incubation 

salinities of up to 35 ppt (Van der Wal 1985). Therefore, increasing salinities may exert an 

impact on behavioural rather than growth rate changes in bass, although further work 
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investigating the influence of developmental stage of exposure (Bachman et al. 2008) and 

rate of salinity increases (Nordlie 2006) on growth rates would be important to confirm this 

suggestion.  

In contrast, elevated temperature resulted in a substantial reduction in the growth rates of bass 

although the effect was dependent on initial body size. The overall negative relationship 

however was expected given that high temperatures result in an elevation in resting metabolic 

rate (Munday et al. 2008; Pörtner and Knust 2007) and food availability was held constant so 

bass could not sustain the increased metabolic demands (Jobling 1997). Interestingly, body 

size mediated the effect of elevated temperatures on growth rates, with increasing 

temperatures having a greater negative effect on the growth rates of smaller compared to 

larger fish. This suggests that increased temperatures expected under climate change may 

differentially affect smaller and larger juveniles, with smaller individuals losing their growth 

rate advantage under high temperatures. This in turn could lead to greater size heterogeneity 

amongst juvenile and adult cohorts, in other words, a greater variation in body size between 

individuals from the same cohort, which in turn may result in differential adult growth rates, 

survival and reproductive output in response to climate change.  

Temperature did not have any impact on levels of aggression. This was contrary to our 

prediction of reduced aggression under high temperatures, which was expected given the 

temperature increase was to an extreme level expected under a future climate change 

scenario. The fact that this elevated temperature did not reduce aggression therefore suggests 

that individual were able to maintain original levels of aggression despite the energetic 

demands of an increased resting metabolism. It is possible that aggressive interactions are not 

as costly as was initially expected, or because other behaviours that were not quantified, such 

as overall swimming speed or distance were reduced to compensate for maintaining 
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aggression. Our finding also contrasts with that of other studies reporting increased 

aggression with temperature in fishes (Ratnasabapathi et al1992; Sakakura and Tsukamoto 

1997; Biro et al. 2010). Under high temperatures, the acceleration of metabolism can only be 

translated into an acceleration in activity (including aggressive activity) if there is sufficient 

food to support this increased activity (Jobling 1997). Given that growth rates in the current 

study declined under high temperature, it is likely that food was limiting hence not surprising 

that aggression did not increase in response to elevated temperature. In support of this, the 

bass in our study finished the food provided to them within 1 minute, suggesting that they 

were not fully satiated. Further, Grigaltchik et al. (2012) reported that bass made fewer 

attacks on mosquitofish (Gambusia holbrooki) at temperatures of 30°C and without any 

increase in food availability, demonstrating that aggression (in the context of predation) did 

not increase towards heterospecifics at high temperatures. 

In conclusion, temperature and salinity are known to influence behaviour and life history of 

fishes as well as having complex interactions between each other. For example, the effect of 

salinity is often dependent on temperature (Boeuf and Payan 2001). Therefore, it is important 

to clearly separate out the effects of salinity and temperature when considering the impacts of 

climate change on aquatic organisms. Here we showed that although salinity and temperature 

did not interact to influence behaviour and growth of bass, their effects were distinctly and 

independently mediated by a third key factor, body size. Therefore, our study highlights the 

importance of considering not only the potential interactions between multiple abiotic factors 

but also between those and properties of the individuals themselves, such as their body size. 

Doing so will enable us to provide a more detailed picture of the likely impacts of climate 

change on estuarine fishes. Future work would also benefit from examining the prolonged 

consequences of environmental stressors on behavioural and growth rate differences, for 

example, whether the conditions experienced during the juvenile phase remain throughout 
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adulthood and even exerting an effect across generations (reviewed by Burton and Metcalfe, 

2014). 
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Table 1: Mean ± S.E. of aggression rate (number of acts per 10 minutes), growth rate (% growth 

rate), initial body size (mm SL) and final body size (mm SL), within each treatment.  

Treatment 
 

Aggression rate Growth rate Initial body size Final body size 

Baseline temperature  
Baseline salinity 

7.93 ± 2.5 18.82 ± 1.61 23.2 ± 0.3 27.5 ± 0.31 

Elevated temperature  
Baseline salinity 

9.96 ± 2.19 6.48 ± 0.72 24.83 ± 0.44 26.38 ± 0.39 

Baseline temperature  
Elevated salinity 

5.32 ± 1.63 17.16 ± 1.0 24.37 ± 0.29 28.5 ± 0.24 

Elevated temperature  
Elevated salinity 

7.33 ± 2.49 7.37 ± 0.8 26.0 ± 0.57 27.8 ± 0.53 
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FIGURES 

Fig. 1 a 

 

Fig. 1 b 

 

Fig 1 a) Relationship between final body size (mm SL) and summed aggression (y = 3.53x - 
89.11), expressed as total number of acts during 10-minute observation period; and b) 
relationship between final body size ratio (SL subordinate / SL immediate dominant) and 
summed aggression (y = 168.99x - 153.62).  
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Fig 2 Relationship between final body size (mm SL) and summed aggression, expressed as 
total number of acts during a 10-minute observation period, under conditions of high salinity 
(black circles) (y = -0.40x + 17.56) and low salinity (grey triangles) (y = 2.83x - 67.25).  

 

 

Fig 3 Relationship between initial body size (mm SL) and % growth rate (expressed as % 
increase relative to initial body size), under conditions of high temperature (black circles) (y 
= -0.71x + 25.07) and low temperature (grey triangles) (y = -2.71x + 82.37).  
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