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ABSTRACT

Bone is a dynamic tissue that is continuously undergoing cycles of resorption and 

formation throughout life. Factors known to effect this remodelling process include an 

individual's nutritional and hormonal status and physical activity and achievable bone 

density is dependent on the interaction between an individuals chosen lifestyle and genetic 

make-up. There is considerable evidence that physical activity may have a positive effect 

on bone mineral density through the effects of mechanical loading and local and systemic 

physiological mechanisms. Lack of a change in bone mineral density following exercise 

has also been found, and this discrepancy in the literature may reflect differences in the 

nature, intensity and duration of the exercise programs that have been used. The 

complexity of the interaction between lifestyle and genetic factors, age and site specific 

responses also makes interpretation of the literature difficult. It has been suggested that 

attainment of a high peak bone mass earlier in life may compensate for the normal loss of 

bone which occurs and accelerates with aging. Moderate intensity activity has been 

shown to have a positive effect in the development of skeletal mass in children. 

However, there is a paucity of prospective information on the effects of physical activity 

in early-adulthood. The aim of this study was to investigate whether a protocol of 

running training designed to increase cardiovascular fitness would effect changes in bone 

mineral density (BMD), bone mineral content (BMC) and bone metabolism of young 

sedentary males. This study was also designed to assess possible associations between 

cardiovascular fitness and anthropometric variables and BMD and BMC.

Twenty-six sedentary males with an average age of 22.2 years volunteered to participate 

in this study. Sixteen of those chosen to participate undertook a 16 week program of 

progressive running training and as the exercise program progressed the running distance 

became longer and the intensity of the runs was increased. Ten males acted as the control 

group and did not participate in any organised program of physical activity. Physical 

activity diaries were kept by all experimental and control subjects in order to assess daily 

training histories of both formal and informal activity. A maximal exercise treadmill test
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was conducted to assess the cardiovascular fitness of all subjects and establish the 

training intensities for the exercising subjects. Tests were conducted before 

commencement of the program, at 4 weekly intervals and immediately following the 

intervention period. Cumulative heart rates and time to exhaustion from the initial and 

final maximal treadmill test were used as indicators of a change in cardiovascular fitness 

over the 16 weeks. Bone mineral density and content was assessed at three sites on the 

proximal femur and in lumbar vertebrae 2 to 4 using dual energy x-ray absorptiometry 

(Norland XR-26). The biochemical markers of bone formation and resorption, namely 

serum osteocalcin and urinary hydroxyproline were used to evaluate the effects of the 

exercise program on bone metabolism.

No differences were found between the exercise and control group for bone mineral 

density and bone mineral content at the majority of skeletal sites measured. The exception 

to this finding was a significant decrease in BMD and BMC in the 4th lumbar vertebrae 

between exercise and control groups following the training program. Urinary 

hydroxyproline and serum osteocalcin, markers of resorption and formation respectively 

did not change following the training program and showed no relationship with BMD or 

BMC. The exercising subjects experienced a significant increase in cardiovascular fitness 

following the 16 week training program, however, no association was found between 

cardiovascular fitness and BMD or BMC. The anthropometric measures of weight and 

height were both found to correlate with BMD and content for sites on both the proximal 

femur and lumbar spine.

The results of this investigation have shown that a short-term exercise program of 

moderate intensity did not stimulate the acquisition of BMD or BMC of young males. 

There was no differences between the exercise and non-exercise groups, in spite of 

differences in the intensity and duration of their activity. This suggests that for normal 

maintenance of BMD a broad range of physical activity exists, before the threshold for 

acquisition of bone is reached. As such exercise program of longer duration with a



Ill

similar and/or greater intensity may be required to reach this threshold and effect increases 

in bone mineralisation of the proximal femur and lumbar spine at this age.
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CHAPTER 1 

INTROD UCTIO N

Bone is a dynamic tissue that is constantly adapting its composition and architectural 

structure to mechanical loading. This process of adaptation begins early in fetal 

development (Carter et al. 1987) by the actions of muscles and continues throughout life 

in response to the level of loading inherent in the individuals' activity profile. Genetic 

factors are estimated to contribute approximately 80 per cent of adult bone mass and 

density (Pocock et al. 1987), and contributions are also made by environmental and 

lifestyle influences, which may have a positive or negative effect on bone. The density of 

bone is considered an important indicator of skeletal health reflecting both positive and 

negative adaptation. Several important environmental factors that may effect bone density 

include dietary calcium, cigarette smoking and alcohol use, and physical activity may be 

the single most important lifestyle influence for an individual's continued bone health 

(Drinkwater, 1993).

There is considerable information which indicates that a bone's density is related to the 

type, intensity and duration of the physical activity or mechanical loading to which it is 

subjected. An early study by Nilsson and Westlin (1971) examined the bone density of 

different athletic groups. The degree of mineralisation was associated with the apparent 

level of loading induced by the sport, with the highest bone density found in weightlifters 

followed by throwers, runners, soccer players and swimmers. Although changes in bone 

density reflected the apparent intensity of the activity, the athlete s chronic involvement in 

weight-bearing activity over time may have been largely responsible. This is clearly seen 

in tennis players with over 25 years of playing experience, whereby greater radial 

hypertrophy and bone mineral content was found in their dominant compared to their 

non-dominant arm (Jones et al. 1977; Huddleston et al. 1980). Activities in which the 

influence of gravity has been reduced such as swimming have also elicited an increase in 

bone density (Orwoll et al. 1989). The positive influence of swimming on bone density
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demonstrates the importance of direct muscle force acting on the bone surface and its 

stimulatory effect on bone remodelling.

Although limited in number longitudinal training studies have provided information of the 

efficacy of different exercise intensities and the response of bone in a number of age 

categories. Several longitudinal studies have investigated the effects of moderate intensity 

running activity on middle-aged sedentary men and women (William et al. 1984; Dalsky 

et al. 1988; Nelson et al. 1991). The results of these studies indicate that this type of 

activity was associated with increased bone density following 9 months of training. 

When the duration was decreased to 3 months there was no change in the bone density of 

males aged 25-52 years (Dalen and Olsson, 1974). When the intensity of the exercise 

was increased a change in bone density was seen following a short 14 week intervention 

in young males aged 18-21 years (Leichter et al. 1989).

A majority of intervention studies have attempted to assess the effectivness of increased 

physical activity on the prevention or reduction of bone loss which occurs as a normal 

process of aging (Simkin et al. 1991; Talmage et al. 1986). They have shown physical 

activity to be effective at reducing the rate of bone loss with age and in some cases has 

increased bone density. These investigations relied on relatively long duration exercise 

programs of 12 months or longer to exert such an effect.

In contrast to the positive adaptation associated with exercise, reduced loading 

environments, for example bed rest or weightlessness, have a degenerative effect on bone 

mineral density. Substantial decreases in bone mass are evident when normal mechanical 

loading is withdrawn, as for example in the os calcis of astronauts following 14 days of 

spaceflight (Mack et al. 1967). Significant bone loss of approximately 45 per cent of the 

os calcis has been reported in men following up to 36 weeks of bed rest (Donaldson et al. 

1970). Fortunately reversal of loading patterns can restore bone mass to its original 

levels, which in the latter study occurred over a period of 36 weeks.
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The development of a high bone density early in life may provide a safety factor and 

compensate for the normal loss of bone associated with aging, which is accelerated 

around post menopause in women. During the adolescent growth period there is a large 

variation in growth rates and once skeletal maturity is reached the maximum amount of 

bone mineral in an individual bone at this time is termed peak bone mass. The age at 

which peak bone mass and density is attained is uncertain, although evidence generally 

supports the third decade of life (Geusens et al. 1986; Gotfredsen et al. 1989; Rico et al. 

1992). The importance of an active childhood on bone health has been shown through 

retrospective activity studies of adults (Kriska et al. 1988; Slemenda et al. 1991). Those 

adults that participated in extensive physical activity as children have a significantly 

greater bone density than those with an inactive childhood. There is little evidence of the 

response of bone to exercise in young adulthood and exercise studies that have been 

conducted on individuals in the 3rd decade of life have either utilised exercise intensities 

that have been responsible for an increase in both bone density and stress related injuries 

(Margulies et al. 1986; Leichter et al. 1989) or subject samples have included those over 

the 3rd decade (Dalen and Olsson, 1974). Few researchers have chosen to address the 

problem of age-related bone loss from a preventive perspective in this age group, and 

there is a particular lack of information on the effect of exercise of moderate intensity of 

shorter duration.

There is evidence from studies of mature adults and the elderly that physical activity has a 

positive influence on bone density. However, evidence from similar studies involving 

young adults, particularly post adolescents when peak bone mass is assumed to occur is 

limited. There is a need to extend our knowledge of the effect of exercise during this 

period of life. Therefore the purpose of this investigation was to evaluate the effects of a 

16 week running training program on bone composition and bone metabolism in young 

sedentary males aged 20-27 years. The 3rd decade of life is unique in that growth is 

completed (Bass, 1971), however there may still be a potential lag in mineralisation. 

Investigation of the skeletal response to moderate intensity exercise of relatively short
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duration during this time may show the appropriateness of the prescribed exercise at this 

age level. The specific aims were to investigate whether;

(1) bone mineral density and bone mineral content at sites on the lumbar 

vertebrae and proximal femur would change following the exercise program.

(2) biochemical estimates of bone metabolism would change following the 

exercise program.

(3) an association exists between bone mineral density and bone mineral content 

and cardiovascular fitness and anthropometric variables.
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CHAPTER 2

REVIEW OF RELATED LITERATURE

This review is introduced by details of the basic biology of bone including the organs 

internal and external structure and the process of bone mineralisation. The process of 

bone mineralisation is followed from the early years of bone growth up to maturity 

followed by the effects aging has on bone tissue. An understanding of the 

developmental phases of bone mineral apposition allows correct interpretation of the 

changes that may occur in a longitudinal investigation involving an exercise protocol. 

This includes comprehension of the principles governing the mechanical loading of bone 

examined through the early animal studies and the more recent principles on bone's 

response to loading stimuli. The effect of exercise as a stimulus to bone mineralisation 

and the mechanisms used to measure bone mineral content and density and to monitor 

bone turnover are also included in this review.

The human skeleton consists of cortical and trabecular bone. The former comprises the 

compact layer that forms the diaphyses of long bones, whereas trabecular bone forms the 

interior mesh of the bone and is found in the epiphyses and medullary cavity of long 

bones. Water accounts for about 20 per cent of the wet weight of mature cortical bone, 

bone salts about 45 per cent and the organic matrix the remaining 35 per cent. The 

principal chemical constituents of bone mineral are calcium phosphate and carbonate, 

with lesser quantities of sodium, magnesium and fluoride (Carter and Spengler, 1978). 

They are present as a mixture of hydroxyapatite crystals and amorphous calcium 

phosphate. The organic matrix of adult bone tissue is comprised of 90 per cent type I 

and III collagen and 10 per cent ground substance. The non-collagenous component is 

small in amount and apart from lipids and peptides it is largely composed of carbohydrate 

protein complexes (glycoproteins) and proteoglycans (glycosaminoglycans) (Vaughan,

1981).
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The surface of a bone is continually being remodelled throughout life with the process 

involving resorption of bone from one site and deposition of bone in another location. 

This remodelling leads to ultrastructural changes including the complete loss of trabecular 

struts and ties, enlargement of the medullary cavity, increased size of the vascular canals 

and trabeculation of cortical bone (Compston et al. 1989; Martin and Burr, 1989). The 

process is mediated by the activity of three specific bone cells; osteoblasts, osteocytes 

and osteoclasts (Rasmussen, 1974). Osteoblasts are responsible for the synthesis of the 

extracellular bone matrix components and for priming the matrix for mineralisation. 

Osteocytes are derived from osteoblasts and lie within the mineralised bone. They are 

usually arranged in concentric layers with osteons (Haversian systems) consisting of 

layers of tissue around a vascular canal. This arrangement provides a source of nutrition 

for the cells and for the mobilisation of minerals. Osteoclasts lie on the surface of the 

bone and are associated with the resorption of calcified bone or cartilage beneath the 

periosteal surface (Russell et al. 1983).

Changes in Bone Composition with Age

The mineralisation of bone tissue commences in the fetus at approximately 2 months of 

age (Carter et al. 1987) and continues throughout childhood until the time of epiphyseal 

plate closure. Glastre et al. (1990) examined early mineralisation patterns of LI to L4 in 

boys and girls between the ages of 1-15 years using dual energy x-ray absorptiometry. 

The BMD of the lumbar spine increased significantly with age in the children, with the 

steeper increase at the time of puberty. At the age of 12 years BMD was higher in girls, 

and at 15 years the normal mean BMD was 0.89 g.cnr2, about twice that at 2 years of 

age. A group of similar aged children was studied by Miller et al. (1991), and the 

analysis was extended to include the wrist and proximal femur. There were no 

differences between boys and girls in mineralisation at the radial site, but girls had a 

greater bone density in the spine and less in the Ward's triangle region on the proximal 

femur. This study also tested the relationship between anthropometric variables and 

BMD and found height to be the single best predictor of BMD for both male and females.
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Circumferences of the upper arm, abdomen, hip, and calf were also found to be 

significant predictors of BMD at the radius and femoral sites. The results of this study 

demonstrate that changes in bone mineralisation are associated with growth in children. 

It was argued however, that the taller children matured earlier, which may account for 

height being the single most important predictive factor for BMD.

In an investigation of the critical phases of bone growth Bonjour et al. (1991) assessed 

the change in mineralisation of the skeleton in 207 Caucasian boys and girls, aged 9-18 

years. Bone mineral density and content was determined in the lumbar spine, femoral 

neck and mid-femoral shaft, using dual energy x-ray absorptiometry. There was no 

difference in bone mineral density of boys and girls between the ages of 9-10 years. 

Girls aged 12-15 years had a higher mean BMD than males of the same age, at each 

skeletal site. This earlier development in girls was particularly pronounced at L2-L4 

whereas at 17-18 years of age there was no significant difference between sexes at this 

site. There was a trend for greater BMD in males than in females at the femoral neck and 

mid-femoral shaft at this age. Bonjour and co-workers added qualified support to the 

findings reported earlier (Miller et al. 1991) in showing a positive relationship between 

height and BMD/BMC. They also found this relationship was no longer evident at a 

height of approximately 155 cm in females and 160 cm in males, which corresponded to 

an average age of 13 years and 13.5 years in females and males respectively.

The same authors then contrasted the BMD of adults aged 20-35 years with the values 

attained in the 9-18 year age group. Bone mineral density and content of the 17-18 year 

male group was not significantly different from the 20-35 year group, whereas females 

aged 14-15 years had already achieved the BMD of their adult counterparts at the lumbar 

spine and femoral neck. This data is supported by Gilsanz et al. (1988) who found no 

significant differences between a group of 14-19 year old adolescent females compared 

to a group of young adults, aged 25-35 years. The results of these investigations 

indicate early bone mineral deposition in the adolescent years for both sexes, however,
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there was also an apparent site specificity in mineralisation of the developing adolescent 

bone.

Individual bones mature at different rates and the maximum amount of mineralisation 

reached in the skeleton of an individual bone around skeletal maturity is referred to as 

peak bone mass. A discrepancy exists in the literature concerning the age for the 

attainment of peak bone mass which reflects either gender differences or site specificity. 

Therefore when interpreting results one must take into account the age of the subject and 

the site of the density or content measure. A study of male and female subjects aged 

between 3 and 30 years (Gordon et al. 1991) found that in males, growth during puberty 

contributes little to peak bone mass in the lumbar spine as bone mineralisation at this site 

was still increasing at age 30 years. However in females, approximately half of peak 

bone mass at this site was accumulated at the time of puberty and was complete 

following longitudinal growth. Their results showed that in females, changes in 

mineralisation during puberty accounted for 39 per cent for BMD and 55 per cent for 

BMC. In contrast, for males the influence of puberty was smaller for both BMD (11 per 

cent) and BMC (21 per cent). The age of attainment of peak bone mass of women in the 

latter study is supported by Gilsanz et al. (1988) who concluded that peak bone mass in 

the lumbar spine is achieved by the age of 20 years in females, around the time of 

cessation of longitudinal growth. Gotfredsen et al. (1987) reported a decrease in total 

body peak bone mass in males after the age of 20 years, which is a direct contrast to the 

results of Gordon and co-workers. Geusens et al. (1986) reported that peak bone mass 

measured at the radius and lumbar spine is reached at the age of 25 years in men. In 

women, peak bone mass of the spine is reached at age 25 years, but peak bone mass at 

the radius occurs 10 years later, indicating a differential development pattern between 

sites and sex.

The attainment of high bone density during earlier growth periods may provide a reserve 

of bone mineral which acts as a safety margin to compensate for bone loss which occurs
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later in life (Bailey and McCulloch, 1992). Although it has been suggested that exercise 

may be a critical factor in attaining a high peak bone mass during growth, no evidence 

has been found to support this, or whether other factors such as heredity, race, gender 

(Boyd Eaton and Nelson, 1991) and diet have a greater influence. An adequate dietary 

intake of calcium is believed essential to satisfy extra skeletal needs during growth and 

for the attainment of a high peak bone mass (Matkovic, 1992). However it is not known 

how much of an effect environmental or lifestyle factors have on an individuals' genetic 

profile in order to develop their peak bone mass. A study of identical adult twins with 

differing lifestyles has shown that the genotype may influence up to 80 per cent of the 

variance in bone mineral density of the lumbar spine and femoral neck (Pocock et al. 

1987). If this figure is accurate then exercise may play an important role in the individual 

reaching their maximal potential. Additionally, gender differences in hormonal profiles 

influence bone size and density. Androgens increase and maintain bone mineral density 

in males during growth and adulthood, following which there becomes an age-related 

decline. Estrogen levels in females during the growing years supports the apposition of 

bone mineral until menopause, where a decrease in estrogen levels leads to a reduction in 

bone mineral density (Geusens et al. 1991). Therefore an exercise program operating at 

the correct intensity and duration may provide a valuable opportunity by which to 

increase bone mineralisation in young adults, and promote gains in peak bone mass as a 

protective mechanism, and compensate for the decline in BMD with age.

It has been well established that there is a net loss of cortical and trabecular bone with 

increasing age. The walls of trabecular bone become thinner and may even be 

reabsorbed leading to a decrease in cortical thickness and strength (Rudd et al. 1989). 

Examination of trabecular and cortical bone density in the radius was undertaken by 

Ruegsegger et al. (1991) using computed tomography in healthy females ages 20-70 

years. Trabecular density in young females with a mean age of 24 years was 

significantly greater compared to the older women with an average age of 67 years. 

Cortical bone density in the young females varied little from that in the older population,
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however it was significantly higher than trabecular bone density. The authors concluded 

that loss of trabecular bone density in aging females was caused by alterations in the size 

and number of trabeculae within the sample volume, compared with the unchanged 

microstructure of cortical bone. Similar age-related decline in trabecular density was 

reported by Riggs et al. (1982) who measured bone mineral density of the proximal 

femur and lumbar spine in women and men, aged 20-92 years. Age regression analysis 

on BMD in women showed the predicted mean BMD in the proximal femur at age 90 

years was reduced by 58 per cent compared to women aged 20 years and 42 per cent for 

the lumbar spine. In women, the proximal femur and lumbar spine had a lower BMD 

than that observed in men. It was suggested that this difference may explain why the 

female/male ratio for hip fractures is 2:1, whereas for vertebral fractures it is about 

8:l(Sinaki, 1989). The result of these studies suggest there is a large individual 

variation in the age at which significant bone loss becomes evident in both males and 

females, which may reflect the higher or lower BMD levels accumulated prior to skeletal 

maturity.

The disparity between trabecular and cortical bone loss was examined in healthy men 

aged from 30 to 92 years (Meier et al. 1984). Radial and vertebral bone mineral content 

was measured, as they contain areas of high cortical and trabecular bone respectively. 

Bone mineral content declined significantly at all sites as a function of age. At the 

proximal radius there was a decline of 2 per cent per decade, and the distal radius 

declined by 3.4 per cent per decade, as a result of its higher trabecular bone content. 

Vertebral bone mineral content declined more rapidly with age, at 12.2 per cent per 

decade. In contrast with earlier results, this investigation showed a marked decline in 

bone mineral content in healthy men, which is inconsistent with previous conceptions of 

bone loss in men (Riggs et al. 1981, 1982). A disparity between the sexes concerning 

bone loss reported by Parfitt (1988) has shown males experience an average cortical 

bone loss of approximately 0.3 per cent of acquired bone mass per year, with trabecular 

loss being slightly faster. Females lost approximately 1 per cent of acquired bone mass



per year for both cortical and trabecular bone, with acceleration for around five years 

following menopause due to the disruption of estrogen.

Mechanical Loading of Bone

Throughout life, bone is subjected to mechanical loading of varying magnitude and 

frequency. Loading provides a stimulus for bone growth, bone modelling and 

remodelling and there is a direct relationship between the structural and mechanical 

properties of a bone and its function. Longitudinal bone growth adds new primary 

spongiosa and new length to the cortices. Bone modelling sculptures the shape and size 

of the cortices during growth, and remodelling controls bone turnover and replacement 

through osteoblastic and osteoclastic activity (Frost, 1987). A solid object is deformed 

when loads are applied to its surface. The same occurs in bone tissue as it becomes 

responsive to the mechanical demands imposed upon its tissue surface which in turn 

create internal forces. The deformations created in bone tissue are referred to as strains 

and the internal force intensities are referred to as stresses (Hayes, 1991).

Evans (1953) first recorded bone strain in an animal limb during gait. A single strain 

gauge was applied to a canine tibia, which was left open to limit exposure to moisture. 

This study and other earlier research (Lanyon, 1971, 1972) were limited by the single 

strain gauges that could only provide strain measurements in the direction the gauge was 

aligned. To resolve this limitation Lanyon (1973) developed a strain gauge rosette 

composed of three single gauges which allowed strains to be recorded at different angles. 

The first trial was on the calcanei of sheep and was used to calculate the magnitude and 

direction of the principal strains during walking and trotting on a treadmill belt. In a later 

study (Lanyon et al. 1975) the technique was used to examine the deformation of the 

human tibia during running and demonstrated that the tibia was subjected to a number of 

discrete deformation cycles. During each cycle the bone was deformed in the direction of 

the stress, with the largest deformation occurring while the subject was running, 

possibly due to greater ground reaction forces. The strain values recorded in this



experiment were comparable to those previously recorded from the long bones of sheep. 

However, the experiment was limited by the placement of the strain gauges, as the strain 

histories were not measured at the location of highest stress, the antero-lateral surface. 

Strains were only measured in a small area of the tibia and therefore would not have 

provided a representation of deformation over the entire bone length.

The relationship between stress and the remodelling response of bone was investigated in 

the ulnae of adult dogs (Chamay and Tschantz, 1972). In one group of dogs a small 

section of the radius was resected causing the animals to walk on their weakened 

forepaws, with all the load being taken through the ulnae. This resulted in either a 

fatigue fracture or bone hypertrophy, depending on the activity of the dogs. Those with 

fatigue fractures were removed from the study, and the remainder were studied from a 

further 1 day to 9 months. Several hours after activity was resumed, oblique lesions 

were found on the concave or compressive side of the ulnae, and at 48 hours new 

periosteal bone was visible. After 9 weeks the cortical thickness was increased by 60

100 per cent. The remodelling process progressed over the 9 month period and resulted 

in a considerably enlarged diaphysis.

This relationship was again examined in young pigs following ulna ostectomy 

(Goodship et al. 1979). After three months there was a rapid and substantial remodelling 

response in the radius as its cross-sectional area became equal to the combined areas of 

the radius and ulnae in the opposite limb. The authors suggested that the marked 

adaptive response in the bone was due to the frequency and number of cycles, the 

amount of strain, its rate and the duration of the strain with each cycle. The results of 

these studies demonstrate the sensitivity of bone remodelling to strain distribution and 

magnitude.

To confirm the association between dynamic strains and remodelling activity Rubin and 

Lanyon (1984) developed an experimental avian model designed to isolate and control
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the application of strains of varying intensity, frequency and duration. Isolation of the 

rooster or turkey (Rubin and Lanyon, 1984; Lanyon and Rubin, 1984) ulna from normal 

muscular loading was achieved by osteotomy of the ulna at the epiphyseal-metaphyseal 

junction. The ends of the bone shaft were covered with stainless steel caps which were 

pierced by stainless steel pins. The pins were inserted parallel to one another and 

emerged on the dorsal and ventral surface of the wing. Application of controlled forces 

through these pins allowed for daily periods of intermittent loading while the contralateral 

bone served as a control. Bones that were loaded for 4 cycles per day remained 

essentially unchanged over the 6 week experimental period. When subjected to 36 cycles 

per day the ulna showed a rapid increase in bone mineral content following 2 and 3 

weeks of loading, with values peaking around 28 days and stabilising by 6 weeks. The 

increase in bone mineral content in bones subjected to 360 cycles followed the same 

pattern as those subjected to 36 cycles. The results illustrate the sensitivity of the 

remodelling response of bone to a small number of strain cycles. The same model was 

used to assess the effects of disuse, disuse with a superimposed continuous compressive 

load of 525 N and disuse interrupted by a short period of 100 cycles of intermittent 

compressive load of 528 N. After an 8 week period the non-loaded and statically loaded 

bones increased their cortical porosity and showed an overall decrease in cross-sectional 

area. In contrast, intermittently loaded bones showed a 24 per cent increase in cross

sectional area, and deposition of new bone in the periosteum. The results showed that 

bone responds positively to intermittent loading patterns and this illustrates that the most 

substantial benefit upon bone mineralisation will occur from specific activities such as 

those of walking, jogging and running. Static loads had a detrimental effect on the 

structural integrity of the bone examined.

To explain the mechanism of the bone remodelling response to mechanical loading Frost 

(1983) proposed that strain rather than stress imposed on a bone initiates a feedback 

mechanism which leads to either bone apposition or resorption. He suggested the 

minimum effective signal that invokes the feedback mechanism would be the minimum
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effective strain (MES) required for bone formation. The feedback mechanism is 

activated by a mechanical stimulus which is transduced into a biochemical signal. This in 

turn controls the cellular response to bone remodelling (Frost, 1983). Adaptations to the 

architecture of bone would occur for those strains larger than the MES. For example, 

weight bearing activity may generate the required loads or stress above the MES that will 

encourage increases in bone density and activate the processes to cause bone remodelling 

(Whalen et al. 1988). In a later article Frost (1993) suggests the control of threshold 

ranges may be due to genetically adopted "set points".
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Figure 2.1. Diagrammatic representation of the negative feedback system responsible 

for the control of the remodelling cycle in bone tissue (Adapted from Rubin, 1984).



Bone Mineral Density and Exercise

There is considerable evidence to support the hypothesis that physical activity provides a 

stimulus above the MES which can be responsible for the changes which occur in bone 

composition. An early study by Nilsson and Westlin (1971) examined the bone density 

of different athletic groups. The groups included top ranked athletes which were 

compared with control groups consisting of regularly active and inactive healthy men. 

Their results showed that individuals who trained regularly had a higher density of the 

distal femur than non-athletes. The degree of mineralisation was associated with the 

apparent level of loading induced by the sport, with the highest bone density found in 

weightlifters followed by throwers, runners, soccer players and swimmers. Bone 

density of the swimmers did not differ from the inactive control group. In the control 

group, individuals who regularly exercised had a significantly greater density than those 

who were inactive. Although changes in bone density reflected the apparent intensity of 

the activity, moderate activity was still a positive influence on bone density.

Exercise studies of young males have often been overlooked in preference to the more 

widely studied field of bone related disorders such as osteoporosis which predominantly 

effect women. Virvidakis et al. (1990) has provided evidence of increased mineralisation 

in the non-dominant forearm of competitive weight-lifters aged from 15-20 years. 

Forearm BMC of the athletes was more than two standard deviations above the mean of 

the controls. The most important single variable in explaining BMC variations was body 

weight, which could be expected to strongly relate to muscle mass in the weight-lifters. 

It was concluded that the vigorous training undertaken by young weight-lifters is 

sufficient to increase BMC, possibly due to the added tension generated by the active 

muscles on the surface of the bone, and as a result of an increased muscle mass.

The effect of different loading activities was studied in 41 young men, 28 of whom 

engaged in regular and vigorous exercise programs (Block et al. 1986). Trabecular bone 

mineral density and bone mineral content of the LI vertebrae in the exercise group was
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greater by 14 per cent and 11 per cent respectively, when compared to that of the control 

group. Analysis of activity questionnaires completed by each subject found those that 

engaged in a program involving both weight-bearing and aerobic forms of exercise had 

the greatest bone density followed by those engaged purely in weight-bearing exercise. 

They were followed by men who participated in aerobic exercise only, with the control 

group found to have the lowest bone density of all the groups.

Information concerning the adaptability of bone to very intense training programs has 

been derived from studies of military recruits (Margulies et al. 1986). The recruits were 

18-21 year old males and were required to participate in walking and jogging with and 

without weights, and callisthenics for at least 8 hours a day, 6 days a week, for a total of 

14 weeks. During the training period the average BMC of the left leg, measured in the 

distal third of the tibia increased 11.1 per cent and that of the right by 5.2 per cent. The 

authors noted that the high level of loading either resulted in a rapid increase in BMC or a 

stress fracture. The results of Block et al. (1989) and Margulies et al. (1986) suggest 

that a high intensity exercise (loading) is required in order to enhance peak bone mass 

acquired following longitudinal growth. However, the individual differences in potential 

for adaptation following exercise and the previous loading history of each individual are 

important considerations. Skeletons that have not experienced high functional loads may 

have an increased susceptibility to injury, more specifically stress fracture. An example 

of this process was shown in adolescent gymnasts where the distal wrist growth plate 

was unable to withstand rotational and compressive forces which resulted in the 

premature closure of the distal radial epiphysis (Carter and Aldridge, 1988; Albenese et 

al. 1989).

Several studies have failed to find a relationship between exercise and bone density 

which may be the result of an underestimation of the exercise type, intensity and 

duration. For example, Cavanaugh et al. (1988) studied a group of postmenopausal 

women aged 49-64 years who participated in an endurance walking program for 15-40
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min/day, 3 days/week, for 12 months. The rate of bone loss over the year was no 

different between control and exercise group. It was suggested that the intensity and 

frequency of this program may have been insufficient to stimulate the deposition of bone 

or maintain existing bone levels.

A 3 month program of exercise was devised by Dalen and Olsson (1974) in young 

sedentary male office workers. Two exercise groups were formed, those subjects that 

walked 3 kilometres 5 times a week, and those that were required to run 5 kilometres, 3 

times a week. Bone mineral content was unchanged at the distal end and shaft of the 

radius and ulna, head of the humerus, third lumbar vertebrae, shaft and neck of the 

femur and the calcaneus following both programs. However the exercise stimulus was 

sufficient to maintain BMC at these sites over the duration of the program. It remains to 

be seen whether the structural integrity of these sites changes with short duration 

exercise.

A recent cross-sectional study employed males aged 20-45 years with a weekly running 

mileage ranging from 5-10 miles/week up to 60-75 miles/week (MacDougall et al. 1992). 

Bone mineral density for the lower legs was significantly higher in the 15-20 mile/week 

group than in the control or 5-10 mile/week group. There was also a tendency for a 

lower bone density of the tibia and spine in the groups whose running mileage exceeded 

25 miles/week. When bone cross-sectional area was normalised for body weight there 

was a tendency for bone area to be larger with increasing mileage, with a significant 

increase in the 40-50 mile/week group compared to the controls. The authors found that 

bone cross-sectional area increases disproportionately to bone mineral density, and they 

suggest the running threshold for the promotion of optimum bone formation is relatively 

low (i.e., 15-20 miles/week). The reported larger bone widths may be a positive 

adaptation for mileage above 20 miles/week, and would tend to reduce compression 

forces on the long bones and provide a protective mechanism against bone injury such as 

stress fracture.
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Increases in cortical bone area have been reported in a group of young male professional 

tennis players (Jones et al. 1977) as a result of unilateral loading. All players showed a 

34.9 per cent increase in hypertrophy on the playing side, with the medullary cavity 

being commonly narrowed as a result of the thickened cortex. Tennis was also 

associated with an increase in bone mineral content of the radius in a group of active male 

players 70-84 years of age, with over 25 years of playing experience (Huddleston et al. 

1980). Bone mineral content was greater in the playing arm of tennis players compared 

to the dominant arm of the non-athletes, but no differences were reported in the non

dominant arms. These results support a specificity of loading concept and absence of 

transfer effect from dominant to non-dominant limb.

Most information concerning the effects of exercise intervention on bone in males has 

been derived from investigations of those after the fourth decade of life (Michel et al. 

1989). In general, the results from these studies have shown that participation in 

exercise provides a necessary protective mechanism against age-related bone loss. 

Michel et al. (1989) assessed bone mineral density of the first lumbar vertebrae using 

computed tomography, in males aged 50-72 years. Extensive questionnaire information 

was obtained to estimate the duration and type of exercise required to modify bone 

tissue. Weight-bearing exercise was defined as the sum of running, aerobic dancing and 

brisk walking, expressed in minutes per week averaged over the previous twelve 

months. High correlations were found between weight-bearing exercise and bone 

mineral density for exercise routines up to 400 minutes per week, in men younger than 

65 years of age. Three of the 11 men over the age of 65 years had a reduced BMD 

despite participating in vigorous exercise. It was concluded that moderate weight

bearing exercise increases lumbar vertebra bone density, however the authors raised the 

hypothesis that extremely vigorous weight-bearing exercise may be detrimental to bone 

density in individuals after the age of 65 years.



To lend support to the hypothesis that regular exercise may be an important factor in 

maintaining skeletal integrity with age, Williams et al. (1984) trained sedentary males 

(38-68 years) using a running protocol over a 9 month period. Subjects who ran more 

than 16 kilometres in each month throughout the 9 month period showed a significant 

increase in BMC of the calcaneus, while those who ran inconsistently, that is less than 

16 kilometres in at least one of the months, showed no change. The authors suggested 

that consistent running in which distance is increased gradually and maintained at a 

certain level is effective in increasing the BMC of trabecular bone, whereas running that 

is sporadic and variable has little influence.

Swimming is frequently prescribed as an appropriate activity for improving fitness, 

without the potential for injury often associated with weight-bearing activities such as 

running. To investigate the effect of swimming on bone mineralisation, Orwoll et al.

(1989) measured radial and vertebral BMD of swimmers who had been swimming for 3 

days per week for at least 3 years with non-exercising controls. Radial and vertebral 

bone density was 12 per cent higher in male swimmers compared to non-swimmers. In 

contrast to men, the bone density of female swimmers did not differ from the non

swimmers. The positive influence of swimming on bone density in males demonstrates 

the importance of direct muscle force acting on the bone surface and the associated 

of exercise and improved physical fitness as a possible factor in skeletal health. 

An explanation for the differences between males and females was not provided, 

however it may reflect differences in hormonal states, as female subjects were either 

approaching menopause or were postmenopausal.

The majority of the previous literature has indicated that exercise has a specific effect on 

bone usually in the form of an increase in bone mineral and bone volume. However in a 

steady state environment, the surface of the bone being remodelled may show a decrease 

in the balance of bone mineral. This is the basis of the remodelling space theory 

formulated by Jaworski (1976). The time taken to complete a remodelling cycle is
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known as a sigma and approximates 3-4 months for cortical bone and 2-3 months for 

trabecular bone (Parfitt, 1980). During a sigma period bone volume may have 

temporarily decreased as a result of the delay between resorption and formation in the 

normal sequence of bone remodelling. This is known as the resorption space and may 

account for a decrease of approximately 5 per cent in trabecular BMD and varies from 

site to site. However this hypothesis is as yet untested in an exercise environment.

Serum Testosterone and Exercise

The replacement of sex hormones such as estrogen has been shown to have a protective 

effect in reducing the rate of bone loss in postmenopausal women, but has also been 

shown to increase bone mass if started early enough (Aloia, 1982). Calcium 

supplementation also provides protection from the accelerated bone loss at menopause, 

but to a lesser extent than hormone replacement therapy. The valuable information 

obtained from the numerous studies (Fisher et al. 1986; Dalsky et al. 1988; Snead et al. 

1992) concerning sex hormones and calcium replacement therapies in women has 

stimulated research on the relationship between sex hormones and endurance exercise in 

males, although inclusion of the measurement of bone density has been neglected.

Early work by Wheeler et al. (1984) was undertaken to investigate whether endurance 

running in men produced similar hormonal changes to those found in women. The 

runners who were from local running clubs and ran at least 64 km each week had 

depressed serum testosterone and prolactin levels. The findings suggest that runners 

have reduced metabolic clearance and production rates of sex steroids, however the 

authors were unsure of the mechanisms responsible for these changes. These results are 

supported by both Hackney et al. (1988) and Griffith et al. (1990) whose findings 

indicate that endurance trained individuals have significantly lowered serum testosterone 

and free testosterone levels. As running has become an important recreational and health 

activity for both cardiovascular fitness and bone health, the results of the latter



investigations tend to suggest the presence of a paradox, as normal testosterone secretion 

is necessary for maintenance of bone mineralisation in males.

The importance of serum testosterone during growth was elucidated by Krabbe et al. 

(1979) who found that a sharp increase in serum testosterone production coincided with 

a growth spurt and an increased bone mineral content between the ages of 13-14 years. 

This suggests an important role for testosterone in the initiation of both processes and 

probably the maintenance of bone mineral levels. Krabbe et al. (1984) reported a similar 

association between the rise in plasma testosterone and the increase in bone mineral 

content in a longitudinal study of pre-pubertal males, within the age range of 10.7-12.7 

years.

The relationship between bone mineral content and serum testosterone was examined 

further to assess whether androgens can be used as an effective treatment for low bone 

mineral levels in 29-46 year old males (McElduff et al. 1988). Multiple regression 

analysis of the data suggested that dominant and non-dominant forearm mineral content 

was correlated with sex-hormone binding globulin (bound testosterone), although not 

with serum testosterone. This is supported by a previously described study (MacDougall 

et al. 1992) whereby serum testosterone concentration was normal for all groups, 

throughout all running volumes and thus did not appear to have affected bone density.

The Relationship between Bone Strength and Bone Density

The investigation of human cadaver material (Alho et al. 1988; Granhed et al. 1989) has 

revealed that the strength of bone tissue is highly correlated with bone mineral density, 

bone mineral content and bone architecture. Alho et al. (1988) determined trabecular 

BMD of the trochanter and neck of the proximal femur, and of the condyles in the distal 

femur. A significant relationship was found between the density of the measured sites 

and the femur's maximal bending strength when a vertical bending load was applied 

through the femur. The authors concluded that density and strength were evenly
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distributed longitudinally in the femur. A relationship between bone mineral content and 

bone strength has been shown in axial sites. Granhed et al. (1989) reported a significant 

correlation between the BMC of vertebrae T12 to SI and their compressive strength. 

Bone strength is not only a function of its composition but also its geometrical 

arrangement and the size of its internal architecture, and this is governed primarily by the 

full loading histories to which the bones are exposed during growth and throughout life 

(Carter, 1987).

In order to investigate the mechanical and geometrical properties of bone in living tissue, 

immature pigs were subjected to 12 months of treadmill running (Woo et al. 1981). 

Biomechanical and biochemical properties were assessed using the right and left femora 

of the young pigs. The mechanical properties of bone tissue, represented by stiffness 

and bending stress were similar for the control and experimental groups. Structural 

properties of the bone showed significant differences between the control and exercised 

groups. The exercised bone strips were able to absorb more energy before failure, 

which was due to an average increase of 17 per cent in bone cross-sectional area. 

Biochemical analysis showed the exercised animals had consistently higher calcium 

weights indicating an increase in bone volume, as there was no change in bone density of 

the exercised animals. The results of this investigation suggest that the increase in bone 

strength following exercise was the result of an increase in bone mass, rather than a 

change in the composition (density) or geometry of the femora.

The effect of exercise on bone architecture was examined in the rat humeral shaft (Simkin 

et al. 1989). Two groups of rats were trained to swim for 1 hour a day for 20 weeks, at 

either a light or moderate training level. The moderate training group had lead weights 

tied to the roots of their tails. Cross-sectional bone morphology was evaluated as was 

the ultimate compressive force and stress of the humerus. The results indicated that 

swimming resulted in higher total subperiosteal and medullary cross-sectional areas 

compared to the sedentary control rats. The cross-sectional area of the bone cortex was
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also significantly greater in the swimming rats resulting from a larger periosteal diameter. 

A significant increase was found in the ultimate compressive force of the distal humerus 

in both groups of swimming rats. The authors concluded that swimming increases bone 

strength as a result of an increase in the cross-sectional area of the bone tissue.

The Deleterious Effect of Exercise and Inactivity

The lack of direct quantitative information concerning the loads produced by physical 

activity make the prescription of exercise required to optimise the positive effect on bone 

tissue difficult. The ideal intensity required to stimulate bone mineralisation still remains 

unanswered, however the results of animal experiments and empirical evidence of young 

populations suggest caution when associated with high intensity exercise. Several 

animal studies (Kiiskinen, 1977; Matsuda et al. 1986; Forwood and Parker, 1987) have 

shown that high intensity training inhibits growth of bone in length and girth. Kiiskinen 

(1977) subjected young mice to an intensive training program which involved running on 

a 5 degree inclined treadmill at 30 centimetres per second for 180 minutes a day. 

Femoral bone volume and strength were significantly decreased after 7 weeks of 

exercise. However when training was reduced to 30 minutes a day (moderate training) 

an increase in femoral bone weights was reported. The adaptive responses of immature 

bones to increased loads was investigated by Matsuda et al. (1986). Young (3 week old) 

roosters were subjected to intense treadmill running for 5 or 9 weeks in order to observe 

changes in their tarsometatarsal bones. Reductions in bending stiffness, energy to yield 

and energy to fracture were observed in both exercise groups as compared to the 

controls. It was concluded that the high-intensity exercise decreased the material strength 

of the tarsometatarsal bones during the growth period, by altering the normal processes 

of calcification and remodelling which are known to influence the stiffness characteristics

of bone.

Forwood and Parker (1987) divided pubescent male rats into an exercise and control 

group to examine the effects of an intensive training program over 1 month on the



mechanical and physical properties of the tibia and femur. Although the mechanical 

properties of the femur were not affected by the program, the tibia showed a significant 

reduction in its ability to absorb energy prior to failure. Growth of both the femur and 

tibia were affected during the exercise program with the tibia showing a decrease in 

length and the femur a reduction in length and weight. It was suggested that the capacity 

of the tibia to withstand the intensive loading generated by the exercise program was 

impaired, due to the accumulation of micro-damage caused by the repeated cyclical 

loading. Forwood and Parker (1989) demonstrated that as few as 5000 cycles of 

repetitive loading in-vitro of the tibia and femora of 13 week old rats was enough to 

create a reduction in the mechanical properties of the bones which was related to diffuse 

structural damage or microcracking. When microdamage overwhelms the repair of bone, 

it may accumulate and cause fatigue failures resulting in stress fractures (Frost, 1993). 

This type of damage may largely result from intensive exercise pursuits (Margulies et al. 

1986). Participation in moderate intensity exercise may be below the damage threshold 

creating a positive remodelling environment and protect younger participants. The line of 

demarcation between low intensity exercise and moderate intensity exercise needs to be 

closely defined in order to eliminate the likelihood of providing exercise programs that 

are of no benefit to bone health. This may be accomplished by closely defining the 

method used to set the exercise intensity. The degeneration of bone mineral reserves can 

be observed in studies of reduced weight-bearing, for example spaceflight and 

immobilisation experimentation.

Spaceflight experimentation allows observation of bone tissue under the influence of a 

reduced strain environment. Patterson-Buckendahl et al. (1985) observed decreases in 

bone formation and bone strength in young rats following 7 days of spaceflight, 

indicating a specific effect on bone due to the weightless environment as body weight 

remained unaltered. Similar results were reported in an earlier study by Jee et al. (1983) 

in rats following 18.5 days of spaceflight. Spaceflight decreased the mass of mineralised 

tissue, and appeared to reduce the number of osteoblast populations but leave osteoclast
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numbers unchanged. The results of this study suggested that bone formation may have 

been inhibited during spaceflight, but resorption remained constant.

Mack et al. (1967) examined astronauts subjected to 4, 8 and 14 days of weightlessness 

during the Gemini flights. X-rays of the left foot in each astronaut were taken before and 

after the flights. Bone loss in the os calcis of the command pilot and pilot was between 

6-10 per cent during the 4 day and 8 day flight. With the addition of an isometric and 

isotonic exercise during the 14 day flight, bone loss was reduced in both the command 

pilot and pilot. Substantial decreases in bone mass are therefore evident when normal 

mechanical loading is withdrawn.

Several studies have used surgical techniques to investigate the effects of immobilisation 

on bone tissue (Li et al. 1990; Armstrong, 1946; Sevastikoglou and Larsson, 1977). 

For example, tenotomy at the knee joint or nerve section of the sciatic nerve in rats 

resulted in bone loss corresponding to 18 per cent of total femoral mineral content in 

tenotomized limbs and 12.4 per cent in neurectomized limbs following 10 days 

postsurgery (Weinreb et al. 1989).

Humans subjected to up to 36 weeks of bed rest had a significantly decreased bone mass 

in the os calcis by up to 45 per cent (Donaldson et al. 1970) and bed rest for a period of 

27 days caused a loss of approximately 0.9 per cent per week in lumbar bone mineral 

content (Krolner and Toft, 1983). The re-ambulation of subjects in the latter studies 

restored bone mass to original levels over 36 weeks and 16 weeks respectively. These 

studies indicate that the response of bones to their mechanical strain environment is a 

function of the duration, type and intensity of the loading stimulus. By carefully 

considering the magnitude of the imposed skeletal forces and loading cycles (Whalen et 

al. 1988), it may be possible to manipulate the loading parameters to stimulate a positive 

effect on bone mass.
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The Relationship between Muscle Strength and Bone Mineralisation

A relationship has been shown between muscle strength, bone density and bone 

structure. Although the mechanism of this response is poorly understood (Snow-Harter 

et al. 1990) the functional strain of a muscle tendon pulling at the surface of a bone is 

believed to be the stimulus required to activate an increase in osteoblastic activity. Men 

generally have a larger muscle mass than women and therefore muscle tendons in males 

may exert greater force at their insertion, increasing the size of the underlying structure. 

Mack et al. (1989) assessed the prominence of deltoid tuberosities using humeral 

radiographs and bone scans in men and women aged 20-65 years. There was little 

radiographic evidence to support a relationship between age and the size of the deltoid 

tuberosity. Deposition of new bone at the deltoid tuberosity region was only slightly 

correlated with age. When humeral radiographs were reviewed according to sex, 13 of 

the 14 cases with the most prominent deltoid tuberosities were male. Bone scans of the 

deltoid tuberosity were also strongly correlated with sex suggesting that a possible 

relationship between bone size and muscle mass may be found in prominent deltoid 

tuberosities.

Block et al. (1989) measured the cross-sectional area of the paraspinous muscles of the 

vertebral column from T12 to L3 in 3 groups of males aged 18-30 years. The groups 

were made up of weight trainers who trained for a minimum of 12 months, varsity water 

polo players with an equally vigorous schedule and non-athletes. Each group underwent 

spine and hip densitometry using computed tomography and dual photon 

absorptiometry. There were no significant differences between the two athletic groups 

for any of the bone density measures. The BMD of the two athletic groups was 

significantly different from the non-athletes, except at the hip in the weight-trainers 

group. Aerobic conditioning or muscle strength had little influence on the variation in 

bone density in the athletic groups. The cross-sectional area of the paraspinous muscle 

showed a moderate correlation with hip bone density in weight-trainers, and was 

consistently the most important predictor of bone density at the hip and spine, for sub
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groups or the entire population. It was concluded that the size of the vertebral 

musculature is closely related to the density of the spine.

The effects of a 1 year weight-training program was evaluated in 36-67 year old women 

who were already participating in an endurance dance program (Peterson et al. 1991). 

They were compared with other women in the program and with sedentary controls. The 

weight training-endurance dance group increased in all strength variables, whereas the 

endurance dance and control group had either smaller increases or decreases in strength. 

The only significant difference for bone mineralisation appeared in radial BMC, where 

the endurance dance group was significantly lower than the weight training-endurance 

dance group. Initial BMD values were correlated with overall strength, although the 

increased strength found in the weight training-endurance dance group had no effect on 

BMD. From these results there is evidence of a site specific response in the 

mineralisation of bone, as strength training of the shoulder and arm flexors and extensors 

was found to increase in BMD at the radius. No other response was evident, although 

the load-bearing exercise was sufficient to maintain BMD.

Pocock et al. (1989) assessed the relative importance of muscle strength, physical fitness 

and body mass index on the age-related decline in BMD. In this investigation healthy 

females aged 20-75 years participated in an assessment of BMD in the lumbar spine, 

proximal femur and forearm, and these measures were related to muscle strength of the 

quadriceps, bicep and grip strength. Muscle strength was found to be an independent 

predictor of BMD at all 3 sites in the proximal femur as well as in the lumbar spine and 

forearm. Age was not an independent predictor of bone density in the proximal femur of 

the entire group. The authors suggests that the reduction in femoral neck bone mass with 

increasing age may be due to age associated changes in mechanical loading of the 

skeleton and not a consequence of aging. Therefore this may be preventable with 

increased mechanical loading and physical activity programs.
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The Relationship between Cardiovascular Fitness and Bone Density

A commonly accepted outcome and requirement of organised physical activity programs 

is an increase in cardiovascular fitness, and there is evidence that improvement in skeletal 

health following exercise may be a function of improved cardiovascular fitness. For 

example, BMD of the lumbar spine and femoral neck in women aged 20-75 years was 

correlated with their level of physical fitness (Pocock et al. 1986). Predicted maximal 

oxygen uptake was measured from a submaximal stress test using a bicycle ergometer. 

Similarly, Chow et al. (1986) found that physical fitness measured through predicted 

maximal oxygen uptake (V0 2max) was significantly correlated with the calcium bone 

index measured in the lumbar vertebrae and proximal femur of postmenopausal women 

aged 55-75 years.

In contrast to the latter method, Bevier et al. (1989) measured oxygen consumption 

directly during maximal work in healthy men and women aged 61-84 years and failed to 

find any correlation between aerobic capacity and bone density measured at the lumbar 

spine and mid-radius. Similarly, Block et al. (1989) examined a group of young highly 

trained aerobic athletes and found no linear association between aerobic capacity 

(V02max) and bone density of the spine or hip. This discrepancy may be explained 

through important differences in experimental procedures used to predict oxygen uptake 

which may introduce errors of up to ±15 per cent (Davies, 1968).

An early investigation involving males (Dalen and Olsson, 1974) reported an 11 per cent 

increase in aerobic capacity following a 3 month exercise program. The exercise 

program maintained BMC of the exercise group, however there was no association 

between cardiorespiratory fitness and BMC. The mechanical stimulus provided by the 

weight-bearing exercise associated with the aerobic activity may not been sufficient to 

increase BMC or to create a physiological response at the local tissue level that would 

increase bone turnover.
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An investigation of postmenopausal women aged 55-70 engaged in a 9 month endurance 

training program (Dalsky et al. 1988) reported significant improvement in the BMD of 

the lumbar spine of the exercise group. However they failed to observe a significant 

relationship between the changes in bone mineral density at the lumbar spine and changes 

in aerobic capacity (VC>2max ). Chow et al. (1987) measured cardiorespiratory fitness 

and bone mass of postmenopausal women following a year long aerobic exercise 

program. Maximal oxygen uptake, a measure of aerobic capacity was not determined by 

gas analysis but predicted from the maximum workload. The exercise program resulted 

in an increased bone mass (calcium bone index) which showed a significant relationship 

with the improvement in aerobic capacity (predicted V02max). This may again suggest 

that the errors induced by a prediction of cardiorespiratory or cardiovascular fitness have 

considerable bearing on the results of these studies.

Biochemical Indices of Bone Turnover

Biochemical bone markers are used as indices of bone resorption and formation and the 

two most widely used are urinary hydroxyproline and serum osteocalcin (Brown et al. 

1984). Hydroxyproline is an amino acid found almost exclusively in collagen, and the 

peptides containing hydroxyproline originating from the degradation of collagen are 

found in urine (Sambrook, 1991). As such the measurement of urinary hydroxyproline 

is particularly useful in monitoring the treatment and progress of metabolic bone diseases 

such as osteoporosis in which bone resorption is a significant factor.

Osteocalcin (bone gla-protein = BGP)) is a single chain amino acid of low molecular 

weight, which has three residues of gamma carboxyglutamic acid (gla), a calcium 

binding amino acid in the presence of vitamin K. In contrast to gla, which is found in a 

variety of mineralised tissues, osteocalcin has only been found in bone and in small 

amounts in tooth dentin. Several experiments have shown that osteocalcin is synthesised 

by the osteoblasts in bone (Lian and Friedman, 1978; Nishimoto and Price, 1979), 

however the physiological role of osteocalcin is still unknown (Delmas, 1988). It has



been estimated that approximately 15 per cent of the osteocalcin synthesised is released 

into the circulation where it can be measured by radioimmunoassay, and the remaining 

85 per cent is incorporated into bone, where it will bind to the mineral (Price and 

Nishimoto, 1980). However these figures apply to bovine and not to human 

osteocalcin.

Most radioimmunoassays are developed with antisera raised against bovine osteocalcin, 

and this is used to cross react with human osteocalcin (Delmas et al. 1983). These 

assays provide a normal mean value of serum osteocalcin in adults ranging from 4.2 to 7 

ng/ml, with individuals ranging from 2-13 ng/ml. Cole et al. (1983) conducted an 

extensive study on serum osteocalcin concentrations in normal infants, children and 

adolescents. The mean osteocalcin in infant boys (16 ± 2.3 ng/ml) was not significantly 

different than in girls (14.5 ± 2.1 ng/ml). Osteocalcin in boys began to rise at about age 

12 years, and peaked 2 years later (mean 39 ng/ml), and then declined toward adult 

levels at age 18 to 20 years. Elevation of osteocalcin was evident in girls by age 10, and 

was less marked than in boys (mean 26 ng/ml), and declined toward the low adult range 

earlier. Catherwood et al. (1985) undertook a radioimmunoassay based on antiserum 

raised against a small fragment of human osteocalcin in healthy male and female subjects, 

aged 23-91 years. The use of this antiserum tended to provide much higher values, with 

a mean of 15 ng/ml and a wide individual range from 0-40 ng/ml.

The biochemical bone markers urinary hydroxyproline and serum osteocalcin have 

largely been used to assess the rate of change in bone turnover in aging women and men 

(Delmas et al. 1983; Epstein et al. 1984; Kelly et al. 1989; Resch et al. 1992). The 

results of these studies suggest that there is a gradual decline in skeletal mass with age in 

women as a result of a decline in bone formation rate, and an accompanying increase in 

bone resorption. Serum osteocalcin values were found to be higher in women compared 

to a small steady increase in men. The rise in serum osteocalcin in men was most
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pronounced between the eighth and ninth decades, when osteoporosis is most common 

in males which coincides with elevated urinary hydroxyproline.

Biochemical markers of bone metabolism have also been used to assess the effect of 

immobilisation and weightlessness on bone resorption (Donaldson et al. 1970; Patterson- 

Buckendahl et al. 1985; van der Wiel et al. 1991). In an early investigation (Donaldson 

et al. 1970) 3 healthy adult males (ages 21-22 years) were restricted to complete bed rest 

for periods of 30-36 weeks. At the end of this period there was a large decline in the 

bone mineral content in all 3 subjects, however urinary hydroxyproline was only mildly 

elevated. Upon re-ambulation bone mineral accumulated at a similar rate to the rate at 

which it was lost and urinary hydroxyproline levels fell to pre bed rest levels. A recent 

study by Van der Wiel et al. (1991) investigated the early onset of increased bone 

resorption in 9 women (mean 39.2 years) and 5 men (mean 45.6 years) for a period of 

10 days. The subjects had been hospitalised due to lumbar disc protrusion. Urinary 

hydroxyproline increased significantly after 4 days (30 per cent), reached a peak after 10 

days (70 per cent) and slowly returned to baseline values after 6 weeks of mobilisation. 

The results show that the onset of increased bone resorption occurs very early during 

immobilisation due to the decreased strain in bone, indicating the importance of 

remaining active.

Patterson-Buckendahl et al. (1985) measured the osteocalcin content of bone extracts 

from the vertebrae and humerus and from the serum in young rats following 7 days of 

spaceflight (F). Serum osteocalcin was decreased by comparison with ground 

simulation controls sacrificed after 9 days (S). It was concluded that the source of serum 

osteocalcin is new synthesis by bone cells, and that the decreased levels of osteocalcin 

may represent decreased osteoblastic activity associated with reduced skeletal growth 

during spaceflight.



There is a paucity of information on the use of biochemical parameters in assessing the 

response of bone to exercise. McCarthy and Jeffcott (1992) compared the effects of a 14 

week period of exercise on bone metabolism in young male and female horses aged 

between 13 and 14 months. The exercise program involved 9 weeks of trotting and 

cantering on a treadmill with a 3 degree incline. Over the final 5 weeks the horses were 

exercised at near maximal speeds with no incline. Bone mineral content was determined 

by single photon absorptiometry at the mid-metacarpus in both left and right limbs and 

serum osteocalcin was measured at weeks 8 and 14. BMC increased significantly in the 

exercising horses by the end of training and only increased slightly in the non-exercised 

animals over the same period. Serum osteocalcin increased significantly in the non

exercising horses between weeks 8 to 14, whereas the exercising group experienced no 

significant increase in this time. The osteocalcin level in the exercising group at week 14 

was lower than in the non-exercising controls, although it was not significant. The 

results of this study indicate that the increase in BMC was due to an adaptation to the 

loads applied by the training program. The approaching significance of serum 

osteocalcin in the exercising group may indicate that bone remodelling was occurring, 

while the non-exercisers continued the normal modelling processes associated with 

growth.

Kelly et al. (1990) examined women aged 19-83 years in order to find a relationship 

between somatomedin-C, physical fitness and bone density. A secondary purpose to the 

experiment, relevant to this investigation, was the use of urinary hydroxyproline and 

serum osteocalcin to assess biochemical indices of bone formation and resorption. Bone 

density was measured at the lumbar spine, femoral neck, greater trochanter, and Ward's 

triangle using dual photon absorptiometry. Single photon absorptiometry was used to 

measure the distal forearm. No correlation could be found between serum osteocalcin 

and any of the bone density measures, however negative correlations were found 

between hydroxyproline and the lumbar spine, femoral neck and the distal radius. The 

decline of bone density with age was associated with increased bone resorption which



may account for the negative correlation in this study. No information was provided on 

any possible relationship between bone resorption and formation parameters and physical 

fitness.

Measurement of Bone Density

The earliest available, accurate and precise methods of assessing bone mass were 

through the use of single-photon absorptiometry (SPA). This involves passing a highly 

collimated mono energetic beam of photons (using 125I as the source) across a limb, and 

monitoring the transmitted radiation with a sodium iodide scintillation detector (American 

College of Physicians, 1984). The technique allows the calculation of total bone mineral 

content in the path of the beam, measured as grams per centimetre. SPA is limited to 

peripheral sites and cannot measure bone density of the hip or spine or discriminate 

between cortical and trabecular bone (American College of Physicians, 1987). The 

technique exposes subjects to a relatively low radiation level (20-100 |iSv) with accuracy 

error being approximately 4-5 per cent and precision error 1-2 per cent in clinical settings 

(Melton et al. 1990). Many early exercise intervention studies used this method for 

observing changes in the BMD of the forearm (Sinaki et al. 1974; Krolner et al. 1980) 

and the method is still used as a valid measurement of BMD (Nelson et al. 1991; 

Virvidakis et al. 1991).

Techniques for the measurement of bone mineral density and content developed further 

with the use of dual-photon absorptiometry which emits photons at two different 

energies, using 153Gd as the source. Direct measurement of bone mineral density in 

g .cn r2, and scanning of the hip and spine is allowed, however the technique cannot 

distinguish between cortical and trabecular bone (Gotfredsen et al. 1984). Accuracy 

error is 3-6 per cent for the spine and 3-4 per cent for the hip. Precision error is 2-4 per 

cent and 4 per cent for the spine and hip respectively and radiation level is 50 jiSv for a 

regional scan (Melton et al. 1990). This procedure is still commonly used especially in 

studies designed to investigate the rate of change of BMD (Drinkwater et al. 1991; Harris
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and Dawson-Hughes, 1992). The method is limited as a useful screening device for use 

with large numbers of people due to the length of time taken to complete a scan. For 

example a scan of the L1-L4 region takes approximately 45 minutes and involves an 

extended period of radiation exposure (Kelly et al. 1988)

Dual energy x-ray absorptiometry (DEXA) replaces the radioactive 153Gd used in dual 

photon absorptiometry and reduces by 50 per cent the precision error of measurement in  

v iv o . In addition the time of the scans (Mazess et al. 1989) is significantly reduced. It 

must be recognised that precision results in v iv o  are not always directly reflected in  

v i tr o .  One DEXA scanner gives a 0.5 per cent precision on spine phantoms, yet on 

normal subjects it has a precision of 1.4 per cent on the spine and 2.3 per cent on the 

femur (Kelly et al. 1988) which is due to the presence of lean tissue over the site to be 

scanned. Patient re-positioning is a factor that is especially important in achieving good 

precision of measurement, considering the range of possible trunk, leg and foot 

orientations that may be encountered during scanning. Wilson (1991) found the 

predicted precision of bone mineral density measurements of the femoral neck and 

Ward's triangle was approximately 3 per cent if the re-positioning of the foot or leg was 

inconsistent. They concluded a measurement precision of 3-5 per cent is adequate to see 

if an individuals' BMD or BMC has deviated significantly from the mean of a normal 

population. Nuti et al. (1992) evaluated the BMD of 330 postmenopausal women, 

where 267 women in this sample were affected by postmenopausal osteoporosis. It was 

considered that in total body densitometry, DEXA was a reliable tool in determining 

conditions associated with bone loss, as it avoided the methodological problems of 

positioning that affect forearm and femoral measurements. This is in agreement with 

Laitinen et al. (1991) who used DEXA on a large population of Finnish women because 

of its reduced scanning time, less radiation exposure, better resolution and precision. 

DEXA has also been successfully used to measure BMD in athletic or exercising 

populations (Myburgh et al. 1990).



Summary

Studies of growth related changes in bone density now seem to agree that peak bone 

mass is achieved in the third decade of life, and it is becoming increasingly important to 

investigate whether it is possible to modify bone density above peak bone mass levels 

following skeletal maturity. At this age it may be easier to implement lifestyle 

adjustments such as a weight-bearing exercise program. Information gained from such 

studies may facilitate the use of exercise as an important intervention in those who are 

susceptible to bone loss disorders later in life. The studies that have been reviewed in 

this chapter have largely concentrated on physically active aging male and female 

subjects. The response of younger populations and especially young male subject's to 

physical activity have not been addressed. Two studies that have been reported 

extensively in this review have investigated the effects of an exercise intervention on a 

young male population but have utilised an intensive exercise regime. The importance of 

mechanical and physiological adaptation to a lifestyle stimulus such as moderate intensity 

exercise has yet to be investigated in a young male population. The research design to be 

used in this training intervention study is different to that previously used in a similar 

population. The chapter to follow will outline such an intervention in a young male 

population in order to extend current findings in the literature.
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CHAPTER 3 

METHODS

Subjects

Twenty-six sedentary male subjects aged 20-27 years (average 22.2 years) volunteered 

from the student body at the University of Wollongong for participation in this study. 

The subjects were recruited from responses to fliers posted around the campus. In order 

to participate in the study subjects must not have undertaken more than 1 hour of aerobic 

exercise per week. These subjects defined as sedentary were identified with the use of an 

activity questionnaire (Appendix HI). A medical questionnaire (Appendix II) was used to 

identify participants with conditions known to be associated with bone loss. Potential 

subjects with musculoskeletal or endocrine disorders or any person on medication or 

drugs that are known to effect bone metabolism were excluded from the study, as well as 

those with known cardiovascular disease. Cigarette smoking or excessive alcohol intake 

(>3 drinks per day) were also grounds for exclusion from the study. Sixteen subjects 

were assigned to the exercise program and the remaining ten were assigned to the control 

group. The greater number of subjects in the exercise group was to allow for subject 

attrition over the sixteen week intervention period.

Anthropometry

Anthropometric measures were taken to estimate the effectiveness of the exercise training 

program and to examine the relationship between height, weight, and bone mineral 

density and mass. A number of studies have found correlations between height, weight, 

BMD and BMC (Glastre et al. 1990; Kroger et al. 1992; Miller et al. 1991; Thomas et al. 

1991). Therefore it was considered important to determine if any possible decreases in 

weight brought about by the running program would show an association with BMD and 

BMC. Methods for obtaining anthropometric data were based on standard techniques 

described by the International Biological Programme (Weiner and Lourie, 1969). Height 

was measured to the nearest centimetre (Holtain Ltd. Crymych Stadiometer) and weight



recorded to the nearest 20 grams (AND Electronic scales-FW 150K), both measurements 

requiring shoes and socks to be removed.

Fitness Testing Procedure

To overcome anxiety on the day of testing, a day was set before the maximal exercise test 

for the participants to visit the human performance laboratory and become familiar with 

the treadmill and its operation. Testing was carried out in the morning, following a night 

of approximately eight hours sleep by the subject. A number of preparatory requirements 

to be followed prior to testing were issued to subjects. These included: avoidance of 

exhausting muscular work on the preceding day; a request to avoid participation in 

exercise three hours prior to the test; and to refrain from ingestion of any food, tobacco or 

alcohol for three hours prior to testing.

The Polar PE 3000 sportstester belt (Validation; Appendix VII) was placed in the middle 

of the sternum, running parallel with the fifth costal cartilage, and the receiver watch 

strapped to the treadmill in front of the subject. Participants were then required to take 

part in a 10 minute stretching routine of the muscles of the lower limbs in order to 

increase blood flow to the peripheries, and to reduce the possibility of muscular injury 

during the maximal exercise test. The subject was then asked to straddle the level 

treadmill belt (Quinton Instruments model 18-60-1) and once a heart rate signal from the 

sportstester was obtained, they were requested to begin running at the set speed of 7.5 

kilometres per hour. Following each minute of the maximal exercise test the inclination 

of the treadmill was increased by 2 per cent until the point of exhaustion, at which time 

the maximum heart rate was recorded and the test terminated. Exhaustion was defined as 

the time when the subject could not continue exercising and was required to assist himself 

with the support bars on the treadmill. Following completion of the test a cool down 

period was provided. This involved walking on the treadmill, set at a speed of 3 

kilometres per hour for 3 minutes, followed by light stretching exercises in order to 

prevent blood pooling in the lower extremities.
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Analysis of the recorded data involved downloading the stored heart rates into an ASCII 

file using the Polar PE3000 sportstester interface and computer analysis package. ASCII 

file data was then imported into the Sigma Plot graphics program (Jandel Scientific) to 

enable the area under the curve (sum of the heart rates) to be calculated. The summing of 

heart rates for each minute of the maximal treadmill test was termed cumulative heart rate. 

Cumulative heart rate was used as one measure of subjects' cardiovascular fitness, as 

submaximal heart rate is known to decrease with an increase in fitness (Saltin et al. 

1976). Heart rates from the initial and final maximal treadmill tests were matched minute 

for minute. This enabled a comparison of cumulative heart rates for the same absolute 

workload. For example, if subject A ran for 10 minutes in his initial maximal treadmill 

test and 12 minutes in his final test, then cumulative heart rate in the final test was 

matched up to the 10th minute.

As shown in previous training studies (Hardman et al. 1986; Boobis et al. 1984), an 

increase in time to exhaustion on the treadmill is an adaptation to endurance training. 

Therefore time to exhaustion during the treadmill test was used as the second measure of 

subjects' cardiovascular fitness.

Previous investigations have predicted cardiovascular fitness levels from submaximal 

exercise protocols (Pocock et al. 1986). However, the prediction of maximal oxygen 

uptake and maximal heart rate from the submaximal heart rate response has been 

repeatedly criticised for its lack of accuracy (Davies, 1968; Rowell et al. 1964; Taylor et 

al. 1963). Estimation of maximal heart rate may also be affected by the emotional state or 

degree of excitement of the subject, the degree of physical conditioning, the time after a 

previous meal, degree of hydration of the subject (Buskirk et al. 1958) and any alterations 

in ambient temperature (Brouha et al. 1961). To avoid these limitations a method was 

adopted in this study that required subjects to run to exhaustion on the treadmill and the 

investigator recorded and utilised their maximum heart rate, as a more direct measure of

fitness.



Exercise Training Program

The exercise program (Figure 1) required participants to run 3 days per week, for 16 

weeks (48 sessions), a period of time that has previously been shown to induce a change 

in bone density (Margulies et al. 1986) in sedentary populations. The exercise intensity 

was determined from a percentage of the maximum heart rate and participants were 

required to run within a 5 bpm range above or below this set percentage. For example, a 

subject with a maximal heart rate of 200 bpm running in week 5 of the program was 

required to run at 60 per cent of maximum heart rate. The training zone would then be set 

between 115-125 bpm. To remain within their individually set training zones, running 

speed was increased or decreased in relation to their heart rate. Therefore it was 

important that subjects could accurately monitor their heart rate over the course of the 

running program. Instruction on how to record and monitor the radial pulse during the 

supervised runs was provided. At predetermined points along the running track the 

subjects' counted their pulse over a six second period, and multiplied this score by ten, to 

obtain an estimate of their heart rate (bpm), and to stay within their training zones. 

Maximal treadmill tests were undertaken each month by the exercising group and the 

results used to adjust the training intensity. This procedure was implemented because it 

has been found that the most appropriate and feasible control of training occurs when 

work rates are adjusted regularly, in parallel with improvements in physical fitness 

(Nordesjo 1974; Saltin et al. 1976).

The link between exercise duration and modification of bone density is through repetitive 

loading of the skeletal system (Williams et al. 1984; Dalsky et al. 1988) and it was 

acknowledged that additional weight-bearing exercise undertaken by the experimental and 

control groups may confound the results of the running program in this investigation. 

Therefore during the course of the investigation both experimental and control groups 

were required to keep a diary of all activity undertaken, to quantify the amount of loading 

created by activity, apart from that of the running program itself. It was stipulated that the 

records must be as accurate and specific as possible and the diary must be carried at all
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Figure 3.1. The 16-week running intervention program for members of the exercise

group.



times. The information recorded in the diary was used to estimate the number of hours of 

additional activity over the duration of the investigation.

When subjects were unable to attend the supervised runs, they were required to complete 

a make-up run. The participant was informed of the duration and intensity of the run they 

had missed. The make-up run was completed unsupervised and in the subjects' own 

time. The time of the run was recorded in the diary and used at the end of the 16 weeks 

to determine the total participation of each subject over the 16 weeks. Of the sixteen 

young males assigned to the exercise group, 12 (75 per cent) completed the 16 week 

running program. One left in the second week due to job commitments, two in the third 

and fifth week because of insufficient time and one in the fourth week as a result of knee 

pain. All the controls completed the follow-up tests following the 16 week exercise 

program.

Bone Composition Protocol

The measurement of bone mineral density and bone mineral content was undertaken by 

dual-energy x-ray absorptiometry using the Norland XR-26 bone densitometer. Prior to 

the measurement of subjects in the study a pilot project was conducted to assess the 

effects of variation in tissue thickness on bone mineral density and bone mineral content, 

using a cadaver section of the proximal femur. Two studies have shown that tissue 

thickness has a significant effect on bone mineral density and bone mineral content using 

dual energy x-ray absorptiometry (Mazess et al. 1989; Arai et al. 1990). The cadaver was 

supplied by the University of Wollongong Anatomy Laboratory. The proximal femur 

was used as it contained the three areas to be examined in this investigation, the femoral 

neck, greater trochanter and Ward's triangle. It was not possible to repeat this procedure 

using cadaveric material from the lumbar spine.

The sites to be examined on the femur were covered by muscle tissue, adipose tissue and 

skin. The anterior and posterior depths of muscle, adipose tissue and skin was 3cm and



6 cm respectively over the femoral neck. The cadaver section was placed in position on 

the Norland XR-26 Bone Densitometer and a series of five scans were taken of the area. 

A mark was placed on the skin to enable accurate positioning of the laser for each scan. 

Following the completion of these scans a pin was placed in the centre of the mark in 

order to retain this position once the tissue was removed. This procedure allowing the 

laser to be placed over the femoral neck in an identical position. The cadaver section was 

then taken back to the anatomy laboratory and all tissue around the femoral neck, greater 

trochanter and Ward's triangle was removed. This began with the subcutaneous fat on 

the anterior and posterior aspect of the cadaver followed by the anterior muscles rectus 

femoris, sartorius, iliopsoas, adductor magnus and pectineus. Posteriorly, the tensor 

facia latae, gluteus maximus, medius, minimus, and quadratus femoris were resected. At 

this point the femoral neck, greater trochanter and Ward's triangle were visible but 

covered by the ilio-femoral, ishio-femoral and pubo-femoral ligaments. The cadaver 

section was then rescanned five times using the same procedure.

Paired t-tests were completed on the measurements for BMD and BMC of the femoral 

neck, greater trochanter and Ward's triangle to assess differences following removal of 

the tissue. A significant difference was found in the BMD of the femoral neck (P <

0.05). Results of this procedure are presented in Figure 3.2.

Due to the longitudinal nature of this investigation it was necessary to examine the 

reliability of the Norland XR-26 bone densitometer using repeated scans, and to develop 

a reliable method for re-positioning subjects to improve the reliability of scans over the 16 

week period. It was also important to monitor the short term system precision of this 

instrument through repeated scans of the Norland Anthropometric Spine Phantom with a 

known BMD and BMC. This provided a coefficient of variation (CV) which was used to 

determine error (imprecision) of the BMD and BMC measurements.



As subject positioning was a potential source of error, repeat scans for bone mineral 

density and bone mineral content were taken of the lumbar spine and proximal femur on 5 

volunteers to develop a reliable method for the re-positioning of subjects. The scan of the 

lumbar spine required the subjects to have a cubed block placed under the lower legs, so 

that the lumbar spine was flat on the scanner table. To obtain the same position for the 

follow-up scan a goniometer was used to measure the angle at the hip. The anchored arm 

of the goniometer was positioned through the mid-axilla region and the movable arm 

positioned through the lateral femoral epicondyle with the axis of the goniometer on the 

greater trochanter. The scans taken at the three sites on the proximal femur required the 

subjects to remove their shoes and place their feet in the trapezoid foot block. This 

created a small amount of inward rotation at the hip. Measurement of the amount of 

inward rotation was not required as the feet were securely fastened into the foot block. 

Between scans the subject temporarily left their position on the scanner table, then 

returned to be repositioned by the operator for the second scan, which was used to check 

the repeatability of subject positioning. Correlation coefficients (r) for the reliability of 

repeat scan measurements at all sites are summarised in Table 1 and all raw data is 

presented in Appendix XXII.

Table 1. Correlation coefficients (r) for repeat scan reliability using the Norland XR-26 

bone densitometer for the sites on the proximal femur and lumbar spine (L2-L4).

4 3

Femoral Neck Trochanter Ward s Triangle

BMD BMC BMP BMC_________ BMP BMC

r 0.996 0.997 0.993 0.545 0.958 0.959

L2

BMP BMC

L3

BMP BMC BMP

L4

BMC

L2-L4

BMD BMC

r 0.816 0.966 0.966 0.953 0.906 0.944 0.932 0.939
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Figure 3.3. (a). The position of subjects for the anterior-posterior scan of the lumbar 

vertebrae using the Norland XR 26 bone densitometer .

(b). The position of subjects for the scan of the proximal femur using the Norland XR-26

bone densitometer.
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Instrument Calibration

The precision of the Norland XR-26 bone densitometer was tested using a modification 

of the standard procedure recommended by the manufacturer. Norland factory values of 

the calcium sulfate spine phantom for BMD was 0.855 g.cnr2 and for BMC was 33.64 

g .cn r1. In this investigation the spine phantom was scanned 10 times with the phantom 

repositioned on each occasion. The CV of these results was calculated using the equation 

in Appendix X, and the CV or precision error for BMD and BMC was 0.58 per cent and 

1.33 per cent respectively.

Prior to each measurement session an automatic calibration procedure was performed to 

assess and maintain measurement precision and accuracy of the Norland XR-26. Full 

explanation of the calibration procedure is found in Appendix IX.

Experimental Protocol

Scanning of the lumbar spine was conducted first, followed by the proximal femur, with 

scanning time being approximately 30 minutes. Measurement of the lumbar spine in the 

anterior/posterior direction included the bodies and spinous processes of the vertebrae, 

but excluded the transverse processes. All metals were removed from the subjects, 

metals are seen as high density areas, which can cause false readings. The subject lay 

supine with the right side of the body adjacent to the scanner backrest, and a cubed-block 

leg rest was placed under the subject's legs to reduce the lumbar lordosis. The angle at 

the hip was measured as described earlier (p.43). A low power Helium-neon laser, 

visible as a red dot was then projected onto the subject, to facilitate measurement of the 

start and end points of the scan area. The scan area was delineated between the start 

point, 3cm below the xiphiod process and the end point, 3cm below the iliac crest. 

During scanning, which lasted for an average of 6 minutes, the subject was instructed to 

remain as still as possible. When the scan was complete the investigator used the 

generated computer image of the lumbar vertebrae to define the area for which BMD and 

BMC were to be measured.



Measurement of BMD and BMC of the proximal femur was taken from the dominant leg 

of the subject. The subject lay supine on the scanner table with the right side of the body 

adjacent to the scanner backrest. A trapezoid shaped foot block was used to create a 

slight amount of inward rotation at the hip. The greater trochanter was palpated, and 

used to estimate the centre of the femoral neck, which was then marked by positioning 

the red dot from the laser over this area, to define the start point of the scan. The process 

began with a brief 2 minute s c o u t scan over the area of the femoral neck to generate a 

computer image of the region scanned. This image was then used to more accurately 

define the m e a su r e m e n t scan area on the proximal femur. Following the m e a su re m e n t  

scan, which lasted for an average of 4 minutes, the generated computer image was used 

to define the area on the proximal femur for measurement of BMD and BMC.

Following the 16 week exercise program measurement of BMD and BMC of the same 

sites were repeated using the procedures described earlier. When the scans were 

repeated, the Norland software provided a comparison image of the subjects' first scan 

This allowed the operator to define the area of measurement for the second scan from the 

comparison image of the first scan. The software also identified if the subject had a 

previous scan by recognition of the subject's name, and used this information to 

automatically define the area of measurement. This allowed for greater accuracy when 

the subjects were required to be re-scanned following the 16 week program.

Biochemical Analysis

Biochemical assays were conducted at Sugerman’s Pathology, Sydney by the 

investigator, under the supervision of the Pathologist on duty. In order to minimise 

sources of error it was necessary to visit the pathology laboratory and become familiar 

with techniques involving Radioimmunoassay and Photometric analysis. This required 

competence in the use of a gamma counter and spectrophotometer, and accuracy in the 

pipetting of reagents, as this is the main source of error during assay preparation.
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Urinary Hydroxyproline Procedure

A urine sample was collected from each subject using a set of instructions provided by 

Sugerman’s Pathology (Appendix XI) for the collection procedure known as a fasting 2 

hour procedure or "spot technique" (Nordin et al. 1976).

Urinary hydroxyproline was measured in umol/mmol creatinine with a reference range of 

0-28 umol/mmol creatinine for the normal population. Hydroxyproline, occurring in the 

urine is mainly peptide bound and this peptide bound form was bound to a strong acid 

cation exchange resin. By washing the resin with distilled water, several components 

which interfere with the determination were eliminated. The peptides bound onto the 

resin were then hydrolysed by elevating the temperature to 100°C for approximately 16 

hours. After the elution of the hydroxyproline from the resin, the amino acid was 

oxidised forming a pyrrole derivative. This was coloured by adding Ehrlich's reagent 

and quantitatively determined by photometric analysis (Varian DMS 80 UV-Vis 

Spectrophotometer). The Hypronosticon kit provided by Organo-Technika Catalogue 

No. 2768004 contained the working reagents (Hypronostican manual, 1989). All 

samples were analysed in the same batch, to exclude any batch to batch variation.

Serum Osteocalcin Procedure

The determination of osteocalcin required the collection of a 50uL serum sample to assay 

the specimen in duplicate. An area of at least one and a half inches in all directions from 

the intended site of venipuncture was prepared. The area was scrubbed with 15 per cent 

aqueous (non-alcoholic) soap or detergent solution to clean away fat, oils, dirt, skin cells 

and other debris. This was followed by a 70 per cent isopropyl alcohol sterile swab, 

moving from the venipuncture site outward. A sterile needle was used immediately and 

the blood drawn. Blood was then collected in a SST Vacutainer tube and the blood 

allowed to clot. The sample was then centrifuged (IEC Centra-3C, England) for 15 

minutes at 3000rpm to separate the serum from the cells. Samples were frozen at -20 C 

or below immediately following separation, while awaiting measurement.



Serum Osteocalcin was analysed through radioimmunoassay techniques (LKB Gamma 

Counter, 1260 Multigamma) utilising the Nichols Institute Diagnostics Human 

Osteocalcin Radioimmunoassay Kit Catalogue No.#40-2225, Item #36B-2225. The 

assay procedure required the concentration of unlabelled hormone (antigen) to be 

quantitated by its competition with a trace amount of radio-labelled antigen for specific 

antibody binding sites. With increasing concentration of unlabelled substance, decreasing 

concentration of the label were bound to the antisera. Thus, a dose-response relationship 

was drawn by measuring the concentration of bound radio-label resulting from 

competition with concentrations of known antibody for a limited number of antibody 

binding sites. Sera containing an unknown concentration of the antibody was quantitated 

by comparison with the dose response curve. The Diagnostic kit used purified human 

osteocalcin as standard and tracer. After a three hour incubation with a specific rabbit 

antiserum, a solid phase anti-rabbit (donkey) coated cellulose suspension was used to 

separate the bound from free osteocalcin (Nichols Institute Diagnostics, Directional Insert 

1992).

Nichols Institute Diagnostics reports precision and reproducability of the Human 

Osteocalcin RIA. The coefficient of variation from the intra-assay replicate 

determinations on quality control sera was 5.4 per cent at 4.7 ng/ml and 5.2 per cent at 

11.4 ng/ml. The inter-assay variation calculated over a three week period on 65 assays 

was 8.7 per cent for 4.4 ng/ml and 5.9 per cent for 10.2 ng/ml. In order to determine 

accuracy of the assay the Nichols Institute Diagnostics Human Osteocalcin RIA was 

compared to the Nichols Institute Reference Laboratory Osteocalcin assay. A sample (N 

= 131) was assayed by each method. Least squares regression analysis was performed 

on the comparative data. A correlation coefficient (r) = 0.92 was obtained.

Statistical Methods

The SPSS package was used to complete the analysis of the data. Following collection of 

the pre test data, student t-tests were used in order to assess whether there were any
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differences between the two groups with respect to anthropometry, bone mineral density, 

bone mineral content, cardiovascular fitness and bone metabolism, measured using the 

markers urinary hydroxyproline and serum osteocalcin. Once all data had been collected 

correlations were performed on the post test data between all variables. As there were 

poor relationships among the variables tested student t-tests were used to analyse each 

variable separately, and locate differences in the data. Stepwise multiple regression 

analysis was used to find which of the dependent variables of height, weight and the three 

cardiovascular fitness variables would best predict bone mineral density and bone mineral 

content at all sites measured.

In order to assess the relationship between cardiovascular fitness, and bone mineral 

density and content, the percentage difference in cumulative heart rate was used to divide 

the experimental group into two separate categories. Those above the mean change in 

cardiovascular fitness of 6.13 per cent and those below this mean. An ANOVA was 

performed with the control group as the third group.
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CHAPTER 4 

RESULTS

This section examines the pre and post test data of the subjects within the exercise and 

non-exercise groups following the 16 week exercise training program.

Pre test data

Examination of the pre test data for both control and experimental groups revealed no 

significant differences between the two experimental groups with respect to 

anthropometry (Table 4.1) and cardiovascular fitness (Table 4.III). Similarly, measures 

of bone composition (Table 4.IV) and bone metabolism (Table 4.VI) did not differ 

between the groups. Raw data for these results are presented in Appendix XV and tables 

containing student t-test for the pre test results are in Appendix XXm.

There were no significant differences between the pre and post anthropometric data for 

exercise and non-exercise groups. This result reflected a high degree of variability in the 

data relating to w eight. Following the exercise training program the exercise group lost 

an average of 2.21 per cent in weight (Figure 4.1.). In comparison, the non-exercise 

group gained an average 0.48 per cent in weight.

Table 4.1. Age and anthropometric data of the pre and post test results for exercise and 

non-exercise groups.

Group
Exercise

Age Height
Pre test

Weight
Post Test

Mean 22.6 178.4 74.59 72.94
SD 2.3 6.2 10.51 9.44
Control
Mean 21.8 178.9 77.99 78.37
SD 1.9 4.4 6.04 7.20
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Figure 4.1. Differences in weight following the 16 week running program in the exercise 

and non-exercise groups (Mean ± SD).



Training History

Table 4.II provides means for the information recovered from the subjects' training 

diaries. On average, subjects attended 22 from a total of 48 runs, although 2 supervised 

runs were cancelled due to inclement weather. This amounted to an average of 40 

minutes/week for each subject. To compensate for omissions in attendance, subjects 

were required to complete non-supervised make-up runs and maintain a record of the 

extent of these running sessions in an activity diary. Analysis of the diaries revealed that 

non-supervised runs amounted to an average of 28 minutes/week. By combining both 

supervised and unsupervised runs it was found that 1 hour and 8 minutes/week (71.8 per 

cent) of the running program was successfully completed by the exercise group. Total 

weekly running time throughout the 16 week program was on average just over 1.5 

hours/week. The length of the runs varied over the 16 weeks, from approximately 5 

kms/week in the first week to approximately 30 kms/week for the final 3 weeks of the 

running program. Raw data from the activity diaries is tabulated in Appendix XIII.

The experimental group was also asked to include in their diaries any additional activity 

undertaken over the 16 week intervention period. This amounted to a weekly average of 

4.5 hours/week of additional weight-bearing activity for each subject. Control subjects 

were similarly required to record their activity which was an average of just over 1 

hour/week, for the 16 week period. The additional activities were varied and included 

cycling, rollerblading, jogging, walking, soccer, gym, basketball and tennis. The 

amount of additional exercise varied considerably in the exercise group and ranged from 

zero to 10.5 hours/week. The range in the non-exercise group was from 18 

minutes/week to 3 hours and 18 minutes/week.
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Table 4.II. Mean scores from the information recovered from the participants activity 

diaries.

Group No. supervised Supervised Unsupervised Additional Ex.
runs /46 runs (min) runs (min) min/week

Exercise 22 649 461 272.4
Non-Ex. 74

Cardiovascular Fitness

The exercise group showed a significant (P < 0.05) improvement in cardiovascular 

fitness following the 16 week running program (Table 4.III). As can be seen in Figure 

4.2. the cumulative heart rate (beats) of the exercise group showed a significant mean 

decrease between the pre and post test results (P < 0.01). The results from the first and 

final maximal exercise test revealed that the values for time to exhaustion (minutes) were 

also significant (P < 0.001) between the exercise and non-exercise group. This 

represented a mean increase in time on the treadmill from 10.5 to 11.8 minutes for the 

exercise group, whereas the time for the non-exercise group was reduced from 10.2 to 

9.7 minutes.

Table 4.III. Mean and (SEM) values of pre and post test scores for measures of 

cardiovascular status.

Fitness Measure Exercise Group 
Pre test Post test

Non-exercise group 
Pre test Post test

t value

Cumulative Heart 1861.83 1754.83 1697.00 1698.40 2.94*
Rate (beats) (66.21) (82.58) (90.12) (85.56)

% change -6.13 0.16 2.70*

Time to 10.5 11.8 10.2 9.7 4.92*
Exhaustion (min) (0.5) (0.3) (0.5) (0.5)
*  =  significant (P  <  0.05)
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Figure 4.2. Pre and post exercise measures of cardiovascular fitness; cumulative heart 

rate (beats), time to exhaustion (min) and the difference between pre and post cumulative 

heart rates (%) (Mean + SEM).
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Bone Composition

Bone mineral density and bone mineral content were assessed at anatomical sites located 

on the proximal aspect of the femur and the lumbar vertebrae. Bone mineral density is a 

measure of the bone mineral mass divided by the bone area, whereas bone mineral 

content is the total mass of the bone mineral within the specified region of interest. The 

femoral measurements included the femoral neck, greater trochanter and Ward's triangle, 

while the lumbar vertebrae L2-L4 were measured individually and as an average of all 

three. No significant increase was found between exercise and non-exercise groups for 

BMD and BMC at any of the femoral sites, (Table 4.IY and Figure 4.3 and 4.4).

Similarly, no significant increase was found between the groups on these measures for 

BMD and BMC at L2, L3 and L2-L4. The pre and post test means (SEM) for BMD of 

the lumbar spine are presented in Figure 4.5 and for BMC in Figure 4.6 and the raw data 

in Appendix XV-XVIII. However as can be seen in Table 4.IV a significant decrease 

between the exercise and non-exercise groups was found for BMD (P < 0.05) and BMC 

(P < 0.05) at the 4th lumbar vertebrae.

There was individual variability in the bone mineral density of the exercising subjects 

following the intervention period, however variability was not significant. Measures 

ranged from 0.805 g.cnr2 to 1.359 g.cnr2 for the femoral neck and from 0.880 g.cnr2 to 

1.398 g.cnr2 for the 2nd to 4th lumbar vertebrae. One subject (R7) began the experiment 

with a bone mineral density of 0.700 g .cnr2 at the femoral neck. Following the 

intervention period bone mineral density at this site increased to 0.805 g.cm 2, an increase 

of 15 per cent. A graphic representation of this result versus the mean of the group for 

this site is presented in Figure 4.7.
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femoral neck, greater trochanter and Ward's triangle in the exercise and non-exercise 

groups (Mean ±  SEM).
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Figure 4.4. Pre and post exercise measures of bone mineral density (g.cm'2) from L2- 

L4, and the individual vertebrae L2, L3, L4 of the exercise and non-exercise groups 

(Mean + SEM).



Table 4.IV. Mean and (SEM) values for pre and post test bone mineral density (g.cnr2) 

and bone mineral content (g.cnr1) at all sites.

Site Measured 
BMD

Exercise Group 
Pre test Post test

Non-exercise group 
Pre test Post test

t value

Femoral neck 1.035 1.048 1.088 1.092 0.49
(0.051) (0.050) (0.040) (0.035)

Greater 0.941 0.929 0.882 0.898 1.33
Trochanter (0.043) (0.045) (0.025) (0.026)

Ward's Triangle 1.033 1.029 1.123 1.103 0.62
(0.050) (0.055) (0.055) 0.040)

L2-L4 1.114 1.108 1.033 1.043 1.12
(0.050) (0.047) (0.041) (0.040)

L2 1.135 1.121 1.030 1.046 1.12
(0.059) (0.047) (0.044) (0.042)

L3 1.125 1.125 1.052 1.057 0.20
(0.045) (0.049) (0.040) (0.041)

L4 1.089 1.074 1.020 1.059 2.41*
(0.051) (0.049) (0.040) (0.035)

BMC
Femoral neck 3.97 3.93 4.27 4.20 0.25

(0.26) (0.29) (0.15) (0.12)

Greater 13.40 12.20 12.59 11.76 0.27
Trochanter (0.90) (1.33) (0.52) (0.92)

Ward's Triangle 1.05 1.03 1.08 1.10 1.32
(0.06) (0.06) (0.05) (0.04)

L2-L4 50.00 49.15 48.19 48.41 1.30
(2.81) (2.43) (2.20) (2.07)

L2 16.04 15.75 14.87 14.91 0.86
(1.09) (0.89) (0.70) (0.65)

L3 16.52 16.67 16.37 16.35 0.39
(0.87) (0.90) (0.69) (0.65)

L4 17.44 16.80 16.95 17.26 2.34*
(0.90) (0.76) (0.88) (0.84)

*  =  significant (P  <  0.05).
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Post-test correlations revealed significant (P < 0.05) associations between the BMD and 

BMC measures at the different sites, with the exception of the L2-L4 BMD and L3 BMC 

which were not correlated with the Ward's triangle area. These correlation coefficients 

are presented in Appendix XXVI. As there were no differences in anthropometry 

between the exercise and non-exercise group their results were pooled, in order to assess 

associations with BMD/BMC. Table 4.V contains the correlation coefficients for height 

and weight. Height showed significant (P < 0.05) associations with BMD of the femoral 

neck (r = 0.5895), Ward's triangle (r = 0.6541) and the 3rd lumbar vertebra (r = 

0.4301), whereas weight was only correlated with BMD of the Ward's triangle region (r 

= 0.5229). In contrast, with the exception of the greater trochanter, all BMC sites were 

significantly (P < 0.05) associated with height. Weight was significantly (P < 0.05) 

correlated with BMC of the femoral neck (r = 0.5953), Ward's triangle (r = 0.5263), and 

L2-L4 (r = 0.4307).

Table 4.V. Correlation coefficients of the anthropometric variables and bone mineral 

density and bone mineral content.

BMD F e m o r a l
N e ck

G reater
T ro ch a n .

W ard's
T r ia n g le

L2-L4 L2 L3 L4

Weight 0.3225 0.0613 0.5229* 0.2229 0.1876 0.2642 0.1027

Height 0.5895* 0.3214 0.6541* 0.3695 0.3112 0.4301* 0.2917

* = significant correlation (P < 0.05)

BMC F e m o r a l
N e ck

G reater
T ro ch a n .

W ard's
T r ia n g le

L2-L4 L2 L3 L4

Weight 0.5953* 0.0892 0.5263* 0.4307* 0.4060 0.4177 0.3845

Height 0.7302* 0.4102 0.6546* 0.6274* 0.5650* 0.6290* 0.5711*

*  =  significant correlation (P  <  0.05)
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Figure 4.5. Pfe anc* post exercise measures of bone mineral content (g.cm-1) at the 

femoral neck, greater trochanter and Ward's triangle in the exercise and non-exercise 

groups (Mean + SEM).
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Biochemical Analysis

No significant increase was found in pre and post test scores between the exercise and 

non-exercise groups for the bone markers serum osteocalcin and urinary hydroxyproline, 

indicators of bone formation and resorption respectively, (Figure 4.7 and Appendix 

XIX). A trend toward a decrease was evident between the pre and post data for both the 

exercise and non-exercise groups in their levels of serum osteocalcin and urinary 

hydroxyproline (Table 4.VI). Over the 16 week exercise period serum osteocalcin 

concentration decreased by an average of 14.2 per cent and urinary hydroxyproline by 

17.9 per cent in the non-exercise group. By contrast, members of the exercise group 

increased serum osteocalcin and urinary hydroxyproline concentration by an average of 

2.5 per cent and 7.6 per cent respectively. Normal variability in the data was evident for 

both biochemical analyses, however the variability was not significant.

Table 4.VI. Mean (SEM) values of pre and post test scores for the biochemical bone 

markers urinary hydroxyproline (mol/mmol creatinine) and serum osteocalcin (ng.ml ~1).

Biochemical 
bone marker

Exercise group Non-exercise
group

t value

Pre test Post test Pre test Post test
Serum Osteocalcin 12.1

(1.6)
12.4
(1.1)

15.5
(2.6)

13.3
(1.4)

0.69

Urinary
Hydroxyproline

17.2
(2.5)

18.5
(1.9)

20.1
(1-9)

16.5
(1.3)

1.48

Post test correlation coefficients between bone mineral density and content and serum 

osteocalcin and urinary hydroxyproline are shown in Appendix XXVI. This analysis 

resulted in a significant (P < 0.05) negative association between serum osteocalcin and 

bone mineral content of the 3rd lumbar vertebrae (r = -0.5206). No other significant 

correlations were found between serum osteocalcin or urinary hydroxyproline and 

BMD/BMC at any of the sites measured.
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Figure 4.8. Pre and post exercise levels of serum osteocalcin (ng.ml'1) and urinary 

hydroxyproline (umol.mmol creatinine) in the exercise and non-exercise groups (Mean ± 

SEM).
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Fitness and Bone Density

As previous studies had demonstrated a relationship between fitness and bone mineral 

density the data was further analysed to test this relationship. As can be seen in Table 

4.IV no significant differences were found between exercise and non-exercise groups for 

BMD and BMC at the proximal femur and L2-L4, L2 and L3 following the running 

program. Therefore it was thought that a change in BMD and BMC may be present in 

those subjects that had the greatest change in fitness. The cardiovascular fitness data was 

used to categorise the exercise subjects into two separate groups according to those 

subjects that recorded a decrease in cumulative heart rate above the mean of -6.13 per cent 

and those below the mean. This procedure revealed no significant differences for those 

subjects who experienced the greatest change in cardiovascular fitness. Statistical reports 

for this procedure are presented in Appendix XXV.

All correlation coefficients for cardiovascular fitness are presented in Appendix XXVI. 

There was no association between the decrease in cumulative heart rate and BMD/BMC at 

any of the sites measured. This was also the case for the other indicator of cardiovascular 

fitness, time to exhaustion.

A stepwise multiple regression procedure was used to assess the independent 

contributions of the post-test fitness data, weight and height to BMD and BMC at all sites 

measured. Height was the single most predictive factor as the fitness data, weight failed 

to reach significance. Height accounted for 35 per cent of the variation in BMD of the 

femoral neck (P < 0.01), 43 per cent of the variation in BMD of Ward's triangle (P < 

0.001) and 18 per cent of the variation in the 3rd lumbar vertebrae (P < 0.05). Height 

was also the single most predictive factor, accounting for 53 per cent of the variation in 

BMC of the femoral neck (P < 0.001), 43 per cent in Ward's triangle (P < 0.001) and 39 

per cent in the average of the three lumbar vertebrae (P < 0.01). Each individual 

vertebrae was also significant with height predicting 32 per cent of the variation in the 2nd 

lumbar vertebrae (P < 0.01), 40 per cent in the 3rd lumbar vertebrae (P < 0.01) and 33
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per cent in the 4th lumbar vertebrae (P < 0.01). Statistical reports are presented in 

Appendix XXVII.
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CHAPTER 5 

DISCUSSION

Numerous cross-sectional studies (Nilsson and Westlin, 1971; Jones et al. 1977; Block et 

al. 1986; Block et al. 1989; Orwoll et al. 1989; Pocock et al. 1989; Bevier et al. 1989) 

have shown those engaging in an active lifestyle such as athletes, have a greater BMD and 

BMC than sedentary individuals. The amount of bone mineral attained at skeletal 

maturity is considered to be an individuals' peak bone mass, and exercise may be an 

important contributor to maximising this parameter. An elevated peak bone mass may 

have a protective function against the loss of bone and related consequences, which 

commonly occur with aging. Positive benefits with respect to exercise and bone density 

have been shown in children, and those with low bone density such as the elderly. 

Longitudinal training studies have been focused on the acquisition of bone mass and 

density in female populations and there is a dearth of information derived from 

longitudinal investigations of changes in the BMD of young adults, and especially a 

young male population.

The aim of the current investigation was to evaluate the effects of a 16 week running 

training program on bone composition and bone metabolism in young sedentary males 

with an average age of 22.6 years. It was hypothesised that bone mineral density and 

bone mineral content measured at sites on the proximal femur and vertebrae of the lumbar 

spine, together with biochemical estimates of bone metabolism would increase following 

the exercise program.

There were no differences between the exercise and control group for the values of BMD 

and BMC at the majority of skeletal sites following the exercise program. A decrease in 

BMD and BMC of the 4th lumbar vertebrae was the only change. The values obtained 

for BMD and BMC were within the range of data derived from other research (Rico et al. 

1992; Bonjour et al. 1991; Geusens et al. 1991) involving males of similar age.
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The lack of a change in BMD and BMC following the exercise program was consistent 

with earlier investigations (Dalen and Olsson, 1974; Cavanaugh et al. 1988; Nelson et al. 

1991). In these studies exercise intervention ranged from 3-12 months, and the 

populations consisted of either males that were on average 5 years older than subjects in 

this study, or premenopausal and postmenopausal women respectively. In contrast, 

MacDougall et al. (1992) found male runners aged 20-45 years had a higher BMD of the 

tibia compared to sedentary controls. Their subjects had a 2 year history of running at an 

intensity and mileage of 15-20 miles/week which was similar to that used in this 

investigation. Neither running volume or intensity in the latter study affected BMD of the 

lumbar spine which may suggest that running affects the density of each site 

independently.

The disparity in the results of the different exercise studies may reflect differences in the 

nature, duration and intensity of the exercise program. Earlier research has shown that 

changes in the structure and composition of bone may be specific to the intensity of the 

activity (Margulies et al. 1986; MacDougall et al. 1992). The program used in the present 

investigation averaged 1.5 hours of running per week and was of moderate intensity, as 

determined from a percentage of each subject's maximal heart rate. In contrast to the 

results of the present investigation, increases of up to 11 per cent in BMD and BMC have 

been shown in the tibia of young males following extremely intensive exercise (Margulies 

et al. 1986; Leichter et al. 1989). Intensity was characterised by activity lasting 8 hours a 

day, 6 days a week, for 14 weeks and with a load for some subjects which was sufficient 

to produce injury and stress fracture. These results suggest that bone is sensitive to a 

high intensity exercise stimulus reflecting structural adaptations in bone tissue. 

MacDougall and associates (1992) showed that as running mileage and intensity was 

increased above 64 miles/week, BMD of the tibia decreased with a corresponding 

increase in cross-sectional area at this site. Similar changes in geometry were found in 

the long bones of dogs subjected to high repetitive stress (Chamay and Tschantz, 1972). 

In contrast to the cortical bone of the tibia, the bone sites examined in this study contained



a majority of trabecular bone. Although not measured in this study, it is unlikely that the 

geometry of the proximal femur and lumbar spine were modified as they were not 

exposed to high intensity repetitive exercise.

The precise level of loading induced by physical activity which is required to optimise the 

genetic potential for bone density is poorly defined, however it is likely that threshold 

levels exist beyond which the acquisition or resorption of bone occurs. Frost (1993) 

proposed that strains above a certain threshold may initiate modelling and changes in the 

tissue's architecture, such as an increase in cross-sectional area which in turn may reduce 

strains. Conversely, strains below a certain threshold may initiate bone resorption. 

Rubin and Lanyon (1984) using an avian ulna model have shown the existence of a peak 

strain magnitude threshold. One hundred load cycles per day with peak strains of 500 

microstrain were insufficient to prevent a decrease in the cross-sectional area of the ulnae. 

However, when peak strain was increased to 1000 microstrain, bone area was maintained 

and strains above this level were associated with new bone formation. However, such 

experiments are not representative of an exercise stimulus and extrapolation to 

intervention studies involving human subjects is difficult. The results of the present 

investigation would suggest that the magnitude of the exercise program did not reach the 

threshold to stimulate new bone formation, but was sufficient to maintain BMD and 

content within normal levels.

The duration of an exercise program is an important consideration when designing 

exercise programs to initiate skeletal adaptation. Cross-sectional studies have shown that 

athletes particularly have a larger bone mass compared to sedentary populations, perhaps 

as a result of their involvement in physical activity for a number of years (Nilsson and 

Westlin, 1974; Block et al. 1986; Block et al. 1989; Orwoll et al. 1989). Longitudinal 

analyses have shown that 9 months of running training at a moderate intensity in older 

men (Williams et al. 1984) and postmenopausal populations (Dalsky et al. 1988; 

Rundgren et al. 1984) was successful in increasing BMD and content. The present study
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was concerned with assessing the benefits of a short-term exercise program of moderate 

intensity, as previous short-term training studies have only considered intensive activity 

(Margulies et al. 1986; Leichter et al. 1989).

In contrast to previous studies (Dalen and Olsson, 1974; Margulies et al. 1986; Leichter et 

al. 1989) an attempt was made to determine the total activity levels of exercise and control 

subjects over the 16 week period. Previous training studies have not included records of 

informal exercise, thereby limiting interpretation of the results of these studies as the total 

activity cannot be determined and may be underestimated. Therefore activity diaries in the 

present investigation provided a reliable means of assessing the daily training histories for 

both formal and informal activity of both exercising and control subjects. Informal 

activity undertaken by the exercise group approximated 4.5 hours/week and included 

walking, bushwalking, martial arts, and cycling, whereas the control group participated 

in approximately 1.2 hours/week of informal activity. Total activity for the exercise 

group was increased to approximately 6 hours/week when the running program and 

informal activity were combined. The strains produced by the additional aerobic activity 

may have been of insufficient magnitude to influence BMD and content at the local tissue 

level but the effect on the cardiovascular system was sufficient to show a positive 

adaptation. This reflects the response of different systems to exercise, whereby bone 

functional mass may be determined by the balance between systemic mechanical and 

physiological influences at the local tissue level.

The total activity for exercise and control subjects ranged from 6 hours/week to 1.2 

hours/week respectively. Within this activity range there was no difference in BMD and 

BMC between the exercise and control groups over the 16 week period. The control 

group in this study were not true controls as they participated in some activity. For a true 

control group subjects would need to be immobilised, which is obviously not possible. 

Thus there seems to be a broad range of mechanical loading between the threshold levels 

for apposition and resorption. Therefore maintenance of BMD and BMC may be
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achieved with a low level of activity in young male subjects. This result is in contrast to a 

detailed physical activity survey of pre and postmenopausal women (Cheng et al. 1990). 

They showed that women who participated in over 9 hours/week of activity had a greater 

BMD than those who participated in less than 3 hours/week of activity. Those women 

who took part in between 4-8 hours/week of activity also had a greater BMD than the 3 

hour/week group. The age of subjects and density measures prior to involvement in 

exercise may be a factor in determining whether physical activity will influence BMD as 

evidenced by the above study.

The finding of a decrease in BMD and BMC at the 4th lumbar vertebrae was surprising as 

it could not be supported by other longitudinal training studies. Lower vertebral bone 

density has been reported in male long distance runners compared to a non-running 

control group (Bilanin et al. 1989). The authors of this study could offer no explanation 

for this result.

One possible explanation for the decrease at the 4th lumbar vertebrae arises from the 

remodelling space theory formulated by Jaworski (1976). The remodelling space is the 

total volume of all bone which is temporarily missing as a result of the delay between 

resorption and formation in the normal steady state remodelling environment. This may 

account for a decrease of approximately 5 per cent of trabecular BMD. Following the 

formation phase the newly deposited primary mineralised bone has a low density. The 

period of time for one remodelling cycle is referred to as sigma, and in cortical bone takes 

approximately 3-4 months and in trabecular bone approximately 2-3 months (Parfitt, 

1980). Biochemical markers of bone resorption and formation in this investigation 

revealed that bone metabolism remained unaltered following the running program. One 

may only speculate at this point that the second density measurement following the 

running program may have coincided with primary mineralisation or the resorption phase 

of remodelling when bone was temporarily missing. However this does not explain why 

the effect was localised at the 4th lumbar vertebrae.



The difference in responses at the 4th lumbar vertebrae and proximal femur and other 

vertebrae studied suggests that the exercise effect may be site specific. Ormerod and 

associates (1990) showed that an increase in running mileage from 5 miles/week to 40 

miles/week had a positive effect on bone density of the lower leg and dominant thigh but 

did not effect changes in the lumbar vertebrae. The results of animal research has shown 

that geometric, composition and growth properties may vary in different bones 

presumably as a function of the different loading histories at a particular site. Li et al. 

(1991) examined the effect of strenuous exercise on the immature bone of rats. They 

found that the cross-sectional area of two sites differed, with an increase at the second 

metatarsus and a decrease in the tibia. Furthermore, Forwood and Parker (1991) showed 

significantly greater appositional growth at the endocortical surface of the mid-diaphysis 

of the rat femora compared to a significantly reduced appositional growth in the endosteal 

surface of the tibia, following approximately 20,000 loading cycles of treadmill running 

per day. Differing strain environments in bones may determine the site specific responses 

as a result of mechanical loading (Lanyon et al. 1975).

The exercise program was of sufficient intensity to effect an increase in cardiovascular 

fitness of the exercising subjects. This increase was evidenced by a decrease in 

cumulative heart rate and a 12 per cent improvement in their time to exhaustion on the 

treadmill, whereas the non-exercise group experienced a 5 per cent decrease in this 

measure following the 16 week program. This result is in accordance with previous 

studies (Norris et al. 1990; Swaine et al. 1992; Somers et al. 1991) that reported a change 

in fitness following 10, 16 and 24 weeks of exercise, using a frequency and intensity 

similar to that of the current experiment.

No association was found between the changes in cardiovascular fitness and bone mineral 

density or bone mineral content. This result was supported by previous studies that have 

also assessed fitness using a maximal exercise test to exhaustion (Bevier et al. 1989; 

Dalsky et al. 1988). In contrast, some earlier research (Chow et al. 1986, 1987; Pocock



et al. 1986, 1989) has shown an association between fitness and BMD and content. 

Several factors may account for this difference including the differences in age of the 

subjects and the methods of fitness assessment. These previously cited studies used 

indirect methods to assess fitness in postmenopausal women that involved steady-state 

observations during bicycle ergometry, while subjects in the present investigation 

exercised on a treadmill with progressive increments until exhaustion. Prediction of 

fitness is associated with a 10-15 per cent error (Davies, 1968; Roweel et al. 1964; Taylor 

et al. 1963) and this inaccuracy may have contributed to their favourable correlations. 

The authors concluded that the positive association between fitness and BMD may be due 

to both factors sharing a common physiological basis rather than being causally related.

The mechanical stimuli that aerobic activity itself provides the skeleton and the 

physiological response of body systems to physical activity may both contribute to the 

relationship between cardiovascular fitness and BMD and content. The lowering of 

normal circulating testosterone levels is one physiological response known to occur 

during intensive physical activity (Hackney et al. 1988; Wheeler et al. 1984). The 

lowering of testosterone has also been associated with low BMD (Bilanin et al. 1989; 

Ormerod et al. 1990). This may not be the case in this investigation as exercise was 

conducted at a moderate intensity. Acute and chronic moderate intensity exercise is 

known to increase secretion of both growth hormone and insulin-like growth factor-I 

(IGF-I) (Kraemer et al. 1992; Felsing et al. 1992). Insulin-like growth factor-I mediates 

the anabolic effect of growth hormone, and IGF-I has been shown to have a positive 

relationship with BMD of the femoral neck, lumbar spine and distal radius (Kelly et al. 

1990). The long term response of hormones to exercise may be determined by the 

intensity and duration of the training program (Felsing et al. 1992). As hormone levels 

were untested in this study one does not know whether the mechanical and physiological 

stimulus created by the exercise program was sufficient to influence hormone levels and 

BMD and content in exercising subjects.



The measurement of serum osteocalcin and urinary hydroxyproline provided an 

assessment of bone formation and bone resorption respectively. No alterations in either 

serum osteocalcin or urinary hydroxyproline levels were found following the exercise 

program. In addition there was no evidence of any association between the bone markers 

and BMD or BMC in the present study. The mean values for both groups were within 

clinical ranges (Hypronostican manual, 1989; Nichols Institute Diagnostics, 1992) and 

showed a close relationship with values reported in previous studies that did not involve 

an exercise intervention (Kelly et al. 1989; Cole et al. 1985). No human studies were 

found concerning the effect of longitudinal training programs on osteocalcin and 

hydroxyproline by which to provide a direct comparison with the results found in this 

investigation. Only one cross-sectional study that examined women of differing ages 

found no association between osteocalcin concentration and BMD of the femoral neck and 

lumbar spine (Kelly et al. 1990). The authors offered no explanation for this result, 

however the considerable variation in BMD over the ages investigated (19-83 years) may 

have led to the non-significant result. The mean levels of both urinary hydroxyproline 

and serum osteocalcin in the exercise group remained stable over the 16 week period, 

with normal biological variation between subjects.

There was a trend towards a decrease for both urinary hydroxyproline and serum 

osteocalcin in the non-exercise group. This was interesting as it may represent less 

metabolic activity of the skeletal sites studied, and is indicative of the relative inactivity of 

the subjects in this group over the 16 week period. Evaluation of the activity diaries 

revealed that control subjects participated in as little as 1.2 hours of exercise per week, an 

amount that did not rise above the entry criteria for participation in this study.

When data for the exercising and control subjects were pooled, a relationship was found 

between weight and BMD/BMC and between height and BMD/BMC (Table 4.V). A 

stepwise multiple regression procedure using the post test data found height had the 

strongest predictive capacity, accounting for 18-43 per cent of the variability in bone



mineral density and 32-53 per cent of the variability in bone mineral content. Correlations 

have been previously reported between height, weight and BMD in children and 

adolescent subjects (Kroger et al. 1992; Miller et al. 1991; Picard et al. 1988) but not in 

subjects over 20 years of age. The age of epiphyseal plate closure is considered to be the 

threshold for correlations of anthropometric variables, as bone growth has stabilised and 

peak bone mass has generally been reached. Individual variation for the attainment of 

peak bone mass may vary within the third decade of life, therefore within this decade 

correlations between height, weight and BMD and BMC may need to be considered.

The age of subjects in the current investigation may have been an important factor in the 

lack of a change in BMD and BMC following the running program. During the period 

from conception to maturity bone mineral is acquired at a rapid rate and may reach a peak 

in the third decade of life (Geusens et al. 1986; Gotfredsen et al. 1987; Rico et al. 1992). 

Growth studies (Bonjour et al. 1991; Gilsanz et al. 1988) have provided evidence of the 

acceleration in skeletal growth during adolescence through to approximately 18 years of 

age when skeletal maturity is reached. The amount of bone mineral acquired during this 

time represents an interaction between the genotype, and environmental and lifestyle 

factors, in particular diet and physical activity. There is the possibility that members of 

the exercise group in the current investigation may have reached their peak bone mass 

(average age 22.6 years) prior to the exercise program. This may have limited their 

potential for an increase in BMD. Increases in bone density reported in previous 

investigations (Margulies et al. 1986; Leichter et al. 1989) were said to be associated with 

possible continued growth, as subjects were of relatively young age (18-21 years). The 

previous studies were limited as they did not include a control group to ascertain the 

possibility of increased mineralisation due to growth. As young bones still have the 

capacity to grow and peak bone mass has not yet been attained there may be an increased 

sensitivity to exercise and a greater capacity to increase bone mass and density.
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In this investigation there was considerable individual variation in BMD and BMC which 

was expected as it reflects individual patterns of skeletal maturation. For example, 

density of the femoral neck ranged from a low 0.805 g.cnr2 to a high of 1.359 g.cnr2 

following the exercise program. Closer examination of individual density patterns 

revealed an interesting case study that required closer investigation. One subject (R7) 

who began this study with a clinically low (Norland Western European standard) BMD of 

0.700 g .cnr2 in the femoral neck, increased BMD at this site by 15 per cent to 0.805 

g.cnr2 following the 16 week running program. In comparison, the mean change in the 

femoral neck for all subjects was 1.2 per cent (Figure 4.9). Increases were also evident 

in this subject at the greater trochanter and Ward's triangle, with both sites below 0.800 

g .c n r2 prior to the running program. A level of 0.700 g.cnr2 is equivalent to the 

physiological level of a child 10-12 years of age (Bonjour et al. 1991). Individuals with a 

BMD between 0.850 g.cnr2 and 1.000 g.cnr2 are considered to be at an intermediate 

risk of bone injury (Riggs et al. 1982) and those with a BMD below 0.850 g.cnr2 are at 

greater risk (Melton et al. 1986). Subject R7 was the oldest (27.1 years) member of the 

exercising group and he would have completed longitudinal growth at this age. He was 

10 cm shorter than the average height measure, 2 kg lighter than the mean weight for the 

group pre test, and obtained the average weight measure post-test. This subject did not 

participate in any additional exercise that would influence this result. Bone mineral 

density of the remaining subjects was above 0.800 g.cnr2, and showed no increase 

which may indicate the existence of a density threshold which when reached, could not be 

modified by short term moderate intensity exercise. This subject was also found to have 

a parallel increase in the markers of bone formation and resorption. Serum osteocalcin 

increased from 8.5 ng/ml to 10.6 ng/ml (24 per cent) and urinary hydroxyproline 

increased from 8.6 mmol/mol creatinine to 12.1 mmol/mol creatinine (40 per cent). This 

represents an increase in the metabolic activity of this subject's bone tissue as a result of 

the exercise program, which supports an effective increase in bone density.



The tenuous result found in the one subject may relate to the variability one may expect in 

young adults. Genotype may determine the limit of an individuals' skeletal response to 

environmental and lifestyle influences such as diet and physical activity which are 

important to the attainment of peak bone mass. Adolescence is characterised by 

accelerated mineralisation of the skeleton although the patterns of mineralisation vary 

according to an individual's genetic timetable and the manipulation of extrinsic factors 

such as diet and physical activity. Growth studies (Miller et al. 1991; Geusens et al. 

1986, 1991) have shown density levels from age 5-12 years approximate 0.721 g.cm'2 

for the lumbar spine and 0.755 g.cm-2 for the femoral neck, increasing to 0.910 g.cm'2 

and 1.171 g.cm-2 respectively at maturity. Although there was no difference in the mean 

values between groups at the beginning of the current experiment this one individual was 

found to have an immature density for his age and the introduction of the exercise 

intervention elevated his low density close to a normal density value for his age at this 

site. It is possible that density levels on entry to the exercise program may be a critical 

factor in the adaptation or response of bone to an exercise stimulus. Identification of 

individuals with a lowered bone density prior to an exercise program may characterise 

subjects with the greatest potential for increasing bone mineral and also with the greatest 

risk of injury.

The individual case study result must be treated with caution as it was not a majority 

finding, however other evidence suggests that exercise intervention in skeletally immature 

subjects may increase bone mass and density. A hypothesis recently advanced by Eisman 

et al. (1993) suggests that exercise may have its greatest effect on bone density during 

skeletal development, when bone density is low. This hypothesis was based on studies 

which examined retrospectively the historical involvement in physical activity of children 

(Slemenda et al. 1991) and adults during their growth years (Kriska et al. 1988). Further 

support is provided by a study that reported BMD of osteoporotic women was equivalent 

to adolescent levels, and was successfully increased upon using an exercise intervention 

(Simkin et al. 1987). From this evidence and that of the case study it may be possible to
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speculate that exercise during the adolescent growth period may advance bone mass 

above normal adolescent levels, allowing a substantial increase in bone mass before 

maturity is reached. The intensity and duration required to increase bone density in 

adolescents has not been thoroughly examined. It is known that intensive activity in 

young children caused the premature closure of distal radial growth plates as evidenced in 

studies of young gymnasts (Carter and Aldridge, 1988; Albenese et al. 1989). Therefore 

the introduction of low to moderate intensity exercise may be a safe level of activity 

necessary to increase the density of an adolescent population.

This study contributes to the knowledge of the effects of physical activity on the BMD 

and BMC of young males. Previously, information has been limited to that obtained 

from cross-sectional studies and these studies provide no measure of density prior to 

participation in their exercise program or sport. This training study has provided 

evidence that exercise of a moderate intensity may contribute to the maintenance of normal 

levels of bone mineral density and content. As bone mineral density did not change in 

those with a normal bone density following the 16 week running program, it would be 

interesting to investigate the effects of an extended running program of moderate intensity 

in this same population. Exercise is one contributing lifestyle stimulus that is responsible 

for changing an individual of low bone density and mass and the effect of other 

environmental factors such as diet, smoking and alcohol consumption requires further 

investigation. The moderate intensity running stimulus over the 4 month intervention 

period did not change BMD or BMC at the sites studied, although the exercise program 

contributed to the maintenance of these sites and increased cardiovascular fitness.
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CHAPTER 6

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

Summary

The mineralisation of the skeleton begins early in life (Carter, 1987) and develops 

throughout adolescence until skeletal maturity is reached. In order to attain the greatest 

bone density and mass at maturity termed peak bone mass, it is suggested that increased 

physical activity may have a positive effect on the skeleton. In one investigation, male 

and female long-distance runners were found to have approximatley 40 per cent more 

bone mineral in the lumbar spine than matched sedentary controls (Lane et al. 1986). 

Investigations of tennis players have also found bone density to be greater in the 

dominant compared to their non-dominant arm (Huddleston et al. 1980). Other 

investigations have shown those involved in activities such as weight-training and 

swimming have greater density than sedentary individuals (Block et al. 1986; Orwoll et 

al. 1989). These studies are however limited in their capacity to provide knowledge of 

subjects' bone mass prior to starting their physical activity. Longitudinal intervention 

programs have generally focused on postmenopausal women, in light of the common 

bone loss disorders that affect this population. Few researchers have utilised longitudinal 

training programs on males. Positive changes in bone density have been reported in 

middle aged males that participated in a moderate intensity exercise program of 9 months 

duration (Williams et al. 1984). A program using similar aged subjects and exercise 

intensity reported a maintenance effect on bone mineral content levels following a 3 

month exercise period (Dalen and Olsson, 1974). An intensive exercise regime was 

associated with changes in bone density of a young adult population following 14 weeks 

of activity (Leichter et al. 1989). However, the intensive activity was not only 

responsible for increasing bone density but also the occurrence of stress related injury. 

The effect of exercise on BMD and BMC is specific to the type, intensity and duration of 

the activity undertaken. Recently attention has been focused on the importance of peak 

bone mass, and the interaction of environmental and lifestyle factors such as diet and
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exercise, in optimising a young adult's genetic potential to achieve a high bone mass. 

Participation in exercise may be one stimulus that can be utilised to increase the amount of 

bone mineral accumulated at maturity and provide a safety margin against age-related 

bone loss. In this study, an exercise program of moderate intensity was designed on 

progressive increases in heart rate to increase cardiovascular fitness and examine the 

effects on bone metabolism, bone mineral density and content and association between 

bone composition and anthropometric variables. The sites chosen for measurement were 

the proximal femur and lumbar spine due to their high trabecular content and 

susceptibility to injury. Therefore the purpose of this investigation was to evaluate the 

effects of a 16 week running training program on bone composition and bone metabolism 

in young sedentary males.

Sixteen sedentary males, with an average age of 22.6 years undertook a 16 week program 

of progressive running training. As the exercise program progressed the running distance 

became longer and the intensity of the runs was increased. Ten males matched for age, 

weight and height acted as the control group and were asked to refrain from organised 

physical activity. Informal activity was recorded by the control group in their activity 

diary. Members of the exercise group kept a diary of any activity undertaken, including 

both prescribed and informal activity. Diaries were used to quantify the physical activity 

histories for each subject over the 16 week period. A maximal exercise treadmill test was 

conducted to assess the cardiovascular fitness of all subjects and establish the training 

intensities for the exercising subjects, before commencement of the program. This test 

was repeated at 4 weekly intervals with the final assessment in week 16. Cumulative 

heart rates from the maximal exercise tests and time to exhaustion on the treadmill were 

used as indicators of a change in cardiovascular fitness over the 16 weeks. Bone mineral 

density and content was assessed at three sites on the proximal femur and in the 2nd to 

4th lumbar vertebrae using dual energy x-ray absorptiometry (Norland XR-26). The 

biochemical markers of bone formation and resorption, namely serum osteocalcin and 

urinary hydroxyproline were used to evaluate the effects of the exercise program on bone
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metabolism. Correlation coefficients were obtained to assess any relationship between 

cardiovascular fitness and BMD or BMC. Associations between anthropometric variables 

and BMD or BMC were also investigated.

Analysis of the pre test scores for all measures revealed there were no significant 

differences between the exercise and non-exercise group. When the mean difference 

between the pre and post test scores were examined BMD and BMC did not change at the 

majority of skeletal sites in the exercise group following the 16 week exercise program. 

The one exception to this result occurred at the 4th lumbar vertebrae where a significant 

decrease in BMD and BMC was shown in the exercise group following the running 

program. An increase in BMD of 15 per cent was recorded at the femoral neck by one 

subject who was identified as having the lowest density of the group at all sites prior to 

the exercise program. This subject was also found to have elevated levels of both bone 

markers, urinary hydroxyproline and serum osteocalcin. No significant difference was 

found for levels of urinary hydroxyproline and serum osteocalcin following the exercise 

program between the exercise and non-exercise group. There was normal individual 

variation in the exercising subjects' values for both osteocalcin and hydroxyproline and 

all subjects were within clinical ranges. A trend towards a decrease was evident in both 

bone markers for the non-exercise group. Bone mineral density and content were not 

correlated with either urinary hydroxyproline or serum osteocalcin.

The running program had a significant effect on the cardiovascular fitness of the 

experimental group, with a significant decrease in cumulative heart rate and a 12% 

increase in time to exhaustion on the treadmill. Cardiovascular fitness was not 

significantly correlated with either BMD or BMC following the intervention period. 

Significant correlations were observed between weight and BMD/BMC, height and 

BMD/BMC post exercise, although this did occur not for all skeletal sites. Height was 

found to be the best predictor of BMD and BMC in a stepwise multiple regression 

procedure.
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The lack of a change in BMD and BMC was consistent with earlier investigations that 

utilised moderate intensity intervention which ranged from 3-12 months (Dalen and 

Olsson, 1974; Cavanaugh et al. 1988; Nelson et al. 1991). The running program did not 

increase or decrease bone composition in either exercise or control subjects in the majority 

of skeletal sites investigated. The exception was L4 which showed a decrease in both 

BMD and BMC. The control subjects were in fact not truly sedentary as they participated 

in an average of approximately 1.2 hours/week of informal activity. The exercise group 

participated in approximately 6 hours/week of both formal and informal activity. This 

result is an indication of the broad range of mechanical loading that satisfies the 

maintenance rather than the acquisition of bone mineral density and content.

Summary Interpretation

The results from this thesis indicate the existence of threshold ranges of mechanical 

usage. The activity undertaken by both the exercise and control groups during the 

intervention period may be below the threshold ranges that cause bone mineral 

acquisition. This may be due to genetically adopted "set points" that control threshold 

ranges (Frost, 1993). The running program did however increase mechanical usage 

sufficiently so as subsequent strains were not at the bottom of the threshold range, 

thereby maintaining bone mineral density and content.

Conclusions

On the basis of the findings from this study the following conclusions may be drawn:

(i) There was no change in bone mineral density or bone mineral content at the

majority of skeletal sites following the 16 week running program. The 

exception was a decrease in bone mineral density and bone mineral content 

at the 4th lumbar vertebrae.
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(ii) The exercise intervention increased bone mineral density at the femoral neck 

by 15 per cent in one subject who began the experiment with the lowest 

density measures at all sites.

(iii) There was no change in serum osteocalcin or urinary hydroxyproline in the 

exercising subjects following the 16 week running program.

(iv) Height was found to be the most significant predictor of bone mineral 

density and bone mineral content in young males.

(v) There was a significant increase in cardiovascular fitness following the 16 

week running program in exercising subjects and no association between 

cardiovascular fitness and bone mineral density or bone mineral content.

Recommendations

The findings of this study have opened several avenues that require investigation in future

studies concerning the effects of exercise on bone tissue.

(1) Investigation of the influence of moderate intensity exercise on subjects in the 

same age group with a below normal bone mineral density, to test the 

hypothesis that elevation of bone mineral density to normal levels may occur 

in those with a low bone mineral density prior to exercise.

(2) Repeat the study manipulating the frequency, intensity and duration of the 

running program using the same population.

(3) Investigate the possibility of changes in the structural geometry of the 

trabecular network following moderate intensity exercise in young and old 

populations.
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APPENDIX II
UNIVERSITY OF WOLLONGONG 

HUMAN MOVEMENT DEPARTMENT 
MEDICAL QUESTIONNAIRE

This information will be treated as confidential and will not be released or revealed 
without your written consent. The data may be used however for statistical or scientific 
purposes anonymously.
PERSONAL INFORMATION:
N am e............................................................................  A ge...............
Birth date......./ ....... / .......  Sex M / F
A d d ress .....................................................................................
P hone..........................(H ).......................... (W)
Emergency Contact:
N am e..........................................................................  Phone............................................
MEDICAL/HEALTH INFORMATION:
Your D octor............................................................................
Date of Last Medical Check......./ ....... / ........
HAVE YOU EVER OR DO YOU HAVE? Circle the correct
response

1. Heart trouble..........................................................................................................Yes/No
2. Frequent pains in your heart and chest....................................................... Yes/No
3. Felt faint or have spells of severe dizziness.....................................................Yes/No
4. High blood pressure....................................................................................... Yes/No
5. A bone or joint problem which may be made worse with exercise.....................Yes/No
6. Is there a good physical reason not mentioned here why you should not follow an

activity program even if you wanted to?.............................................................Yes/No
DO YOU EXPERIENCE OR HAVE YOU EXPERIENCED?

1. A family history of heart disease or stroke of relatives under 65 years of age ....Yes/No
2. Breathing difficulties or asthma................................................................... Yes/No
3. Arthritis................................................................................................................... Yes/No
4. A Hernia..................................................................................................................Yes/No
5. E p ilep sy .................................................................................................................Yes/No
6. D iabe tes ................................................................................................................ Yes/No
7. Back P a in ........................................................................................................... Yes/No
8. Muscular Pain / Cramps........................................................................................Yes/No
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9.Do you smoke cigs / pipe / cigar ........................................................................... Yes/No
If so, how many per day / per week?

10. Do you drink alcohol?.................................................................................. Yes/No
If so, how much per day / per week?

11. Have you been hospitalised recently?...................................................................Yes/No
D e ta ils .................................................................................................................................

12. Do you have or have you recently had any infections or infectious disease?.....Yes/No
D e ta ils .................................................................................................................................

13. Are there any other conditions that may limit your participation in this study....Yes/No
D e ta ils .................................................................................................................................

A P P E N D IX  E  (cont)
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APPENDIX III
ACTIVITY QUESTIONNAIRE

1. Have you participated in an organised or self program of exercise (> 3 times/week @ 
> 30 min) within the last five years

2. If yes, what specific activity type did you participate in (e.g.swimming,basketball,
tennis).......................................................................................................................................

3. Are you currently participating in an organised or self program of exercise; if yes what
type of program.......................................................................................................................

4. Do you participate in any weight-bearing exercise (Eg. running, walking, cycling)
If yes, how many hours per week in to ta l.......................................................................

USE THIS SPACE TO INCLUDE ANY RELEVENT INFORMATION THAT WE 
HAVE NOT AS YET GAINED FROM YOU 

Medication, Injuries, Problems etc.
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SUBJECT INFORMATION PACKAGE

THE RESPONSE OF TRABECULAR BONE TO PHYSICAL 
ACTIVITY IN YOUNG SEDENTARY MALES

ITEM 1: PROJECT OBJECTIVES
The objective of this study is to investigate whether a program of exercise of sufficient 
time to increase cardiorespiratory fitness will increase the bone mineral density of young 
sedentary males.

ITEM 2: RATIONALE
Bone loss and bone loss disorders are of major concern and effect all individuals during 
part of their life. Factors contributing to bone loss and bone disorders include diet, 
physiological changes in hormone secretion, lack of physical activity and aging. Exercise 

' or physical activity in particular is known to have a positive effect on bone density. The 
mechanical stress or loads produced by activity promotes the deposition of new bone. 
However the difficulty arises, as the older the individual becomes the more difficult it is 
to begin an exercise program that will provide benefit and elevate bone mass. The 
amount of load bearing exercise needed to induce a change in bone mass is still uncertain. 
Therefore by assessing a program of exercise with a known duration in a young 
population it may be possible evaluate the required time to induce changes in bone mass.

ITEM 3: TEST PROCEDURES
As subjects you will undertake a program of running training for a period of 16 weeks. 
The training program is a graduated program beginning with 20 minute runs and for the 
last 4 weeks increasing to 40-45 minutes. Runs will be undertaken 3 times per week.

APPENDIX IV

Subject Information Package

Department o f Human Movement Science



A P P E N D IX  IV  (cont)

Before the beginning of the training program you will undergo a maximal fitness test on a 
treadmill. Three maximal exercise tests will occur during the training period and another 
following the end of the 16 weeks training in order to measure the benefits of the training 

program undertaken.

Three additional measures will be taken during this experiment. These tests will be 
undertaken before the training program is to begin, and repeated post-training .

The first is a bone density scan of the lumbar spine and proximal femur, using dual 
energy x-ray absorptiometry. This will take approximately 30 minutes. The following 
two tests are biochemical tests to measure changes in bone metabolism. They are urinary 
hydroxyproline which requires you to provide a urine sample and serum osteocalcin 
which requires a small blood sample. These two tests only require you to show up at the 

laboratory to provide the sample.

ITEM 4: RISKS AND DISCOMFORTS
Exercise represents a stress to the body, and as such is not without risk, no matter how 
light the exercise. The major risk factor associated with exercise is cardiovascular 
dysfunction, which in the worst case may result in coronary arrest. The risks during this 
experiment are greatest during training as you reach your maximum intensity, and during 
the sequela maximal exercise tests (performed each month during the protocol). However 
the probability of a cardiovascular incident is minimal in normal healthy, physically active 

subjects under 40 years of age.

Subject Information Package

Department o f Human Movement Science

All subjects will be screened using the Par-Q questionnaire to identify and eliminate 
subjects likely to be at risk of cardiovascular disorders during exercise. This 
questionnaire has been medically validated on more than 1200 subjects within the ages of 

20-65 years.

The bone density scan to be undertaken by the subjects is a non-invasive procedure. The 
radiation dose of the scan is much less than that of a normal chest x-ray. In any protocol 
that requires the donation of serum there is the discomfort of injections, however this will 
be kept to a minimum and carried out by trained personnel under medical supervision.
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A P P E N D IX  IV  (cont)

Subject Information Package

Department o f Human Movement Science

ITEM 5: INQUIRES
Questions concerning the procedures and/or rationale used in this investigation are 
welcome at any time. Please ask for clarification of any point which you feel is not 
explained to your satisfaction. Your initial contact person is the investigator conducting 
this project. Subsequent inquiries may be directed to Dr Peter Milburn (Head of 
Department of Human Movement Science: phone 213881).

ITEM 6: FREEDOM OF CONSENT
Participation in this project is entirely voluntary. You are free to deny consent before or 
during the experiment. In the latter case such withdrawal of consent should be performed 
at the time you specify, and not at the end of a particular trial. Your participation and/or 
withdrawal of consent will not influence your present and/or future involvement with the 
University of Wollongong. In the case of student involvement , it will not influence 
grades awarded by the University. You have the right to withdraw from any experiment, 
and the right shall be preserved over and above the goals of this experiment.

ITEM 7: CONFIDENTIALITY
All questions, answers and results of this study will be treated with absolute 
confidentiality. Subjects will be identified in the resultant manuscripts, reports or 

publications by the use of subject codes only.
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SUBJECT INFORMATION PACKAGE

THE RESPONSE OF TRABECULAR BONE TO PHYSICAL 
ACTIVITY IN YOUNG SEDENTARY MALES

ITEM 1: PROJECT OBJECTIVES
The objective of this study is to investigate whether a program of exercise of sufficient 
time to increase cardiorespiratory fitness will increase the bone mineral density of young 
sedentary males.

ITEM 2: RATIONALE
Bone loss and bone loss disorders are of major concern and effect all individuals during 
part of their life. Factors contributing to bone loss and bone disorders include diet, 
physiological changes in hormone secretion, lack of physical activity and aging. Exercise 
or physical activity in particular is known to have a positive effect on bone density. The 
mechanical stress or loads produced by activity promotes the deposition of new bone. 
However the difficulty arises, as the older the individual becomes the more difficult it is 
to begin an exercise program that will provide benefit and elevate bone mass. The 
amount of load bearing exercise needed to induce a change in bone mass is still uncertain. 
Therefore by assessing a program of exercise with a known duration in a young 
population it may be possible evaluate the required time to induce changes in bone mass.

ITEM 3: TEST PROCEDURES
As subjects three tests will be undertaken during this experiment. These tests will be 

repeated in 16 weeks time following the first series of tests.

The first is a bone density scan of the lumbar spine and proximal femur, using dual 
energy x-ray absorptiometry. This will take approximately 30 minutes. The second tests 
are biochemical tests to measure changes in bone metabolism. They are urinary 
hydroxyproline which requires you to provide a urine sample and serum osteocalcin 
which requires a 10 ml blood sample. These two tests only require you to show up at the 
laboratory to provide the sample. The third test involves a maximal exercise test on the

APPENDIX V (cont)

APPENDIX V

Subject Information Package

Department o f Human Movement Science
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treadmill where the subject will run at a set speed while the incline on the treadmill rises. 
Associated with this test is a measure of height and weight. These fitness tests will take 
approximately 15 minutes.

ITEM 4: RISKS AND DISCOMFORTS
Exercise represents a stress to the body, and as such is not without risk, no matter how 
light the exercise. The major risk factor associated with exercise is cardiovascular 
dysfunction, which in the worst case may result in coronary arrest. The risks during this 
experiment are greatest during training as you reach your maximum intensity. However 
the probability of a cardiovascular incident is minimal in normal healthy, physically active 
subjects under 40 years of age.

All subjects will be screened using the Par-Q questionnaire to identify and eliminate 
subjects likely to be at risk of cardiovascular disorders during exercise. This 
questionnaire has been medically validated on more than 1200 subjects within the ages of 

20-65 years.

The bone density scan to be undertaken by the subjects is a non-invasive procedure. The 
radiation dose of the scan is much less than that of a normal chest x-ray. In any protocol 
that requires the donation of serum there is the discomfort of injections, however this will 
be kept to a minimum and carried out by trained personnel under medical supervision.

ITEM 5: INQUIRES
Questions concerning the procedures and/or rationale used in this investigation are 
welcome at any time. Please ask for clarification of any point which you feel is not 
explained to your satisfaction. Your initial contact person is the investigator conducting 
this project. Subsequent inquiries may be directed to Dr Peter Milburn (Head of 

Department of Human Movement Science: phone 213881).

ITEM 6: FREEDOM OF CONSENT
Participation in this project is entirely voluntary. You are free to deny consent before or 
during the experiment. In the latter case such withdrawal of consent should be performed 
at the time you specify, and not at the end of a particular trial. Your participation and/or

Subject Information Package

Department o f Human Movement Science
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Subject Information Package 
Department of Human Movement Science

withdrawal of consent will not influence your present and/or future involvement with the 
University of Wollongong. In the case of student involvement , it will not influence 
grades awarded by the University. You have the right to withdraw from any experiment, 
and the right shall be preserved over and above the goals of this experiment.

ITEM 7: CONFIDENTIALITY
All questions, answers and results of this study will be treated with absolute 
confidentiality. Subjects will be identified in the resultant manuscripts, reports or 

publications by the use of subject codes only.

A P P E N D IX  V  (cont)
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APPENDIX VI
Informed Consent

The researcher conducting this project supports the principles governing the ethical 
conduct of research, and the protection at all times of the interests, comfort and safety of 
subjects.

This form and the accompanying Subject Information Package are given to you for your 
own protection. They contain a detailed outline of the experimental procedures, and 
possible risks. Your signature below indicates six things:

(1) you have received the Subject Information Package;
(2) you have read its contents;
(3) you have been given the opportunity to discuss its contents with one of the 
researchers prior to commencing the experiment;
(4) you clearly understand these procedures and possible risks;
(5) you voluntarily agree to participate in this project; and
(6) your participation may be terminated at any point in time without jeopardising 
your involvement with the University of Wollongong, or your course assessment 

through the University.

Any enquires or further questions may be initially directed to the researcher Mr Jarrod 
Meerkin on 213881, Dr Nigel Taylor (Supervisor; 042 214094) or to the Head of 
Department of Human Movement Science: phone 21-3881. Any complaints regarding the 
conduct of the research may be directed to the Secretary of the University of Wollongong 
Human Experimentation Ethics Committee on (042) 213079.

I agree to participate in experimental procedures set out in the Subject Information 

Package.

Last Name:______________________________ _G iven Name:------------------------------

Date of Birth:
Address:_____________________ _______________ — ------------ ---------------------------

Name and number of contact person in case of an emergency:
Name:____________________________________ Phone:-------------
Family Doctor:____________________________ _ Phone:______
Signature:________________________________ _ Date:-/— /.
Witness: Name_____________________________  Signature:___



Accurate monitoring of heart rate was essential in fitness training and testing. The validity 

and stability of heart rate measurements from the PE 3000 sportstester was compared with 

those obtained from ECG recordings of the Quinton Qplex 5000 at various heart rate 

levels. An electronically braked cycle ergometer was used as the exercise stimulus in the 

validation of the sportstester. The heart rates of two subjects were recorded for four 

minutes at rest, and again during a PWC 170 cycle ergometer test at three differing 

workloads. The workloads were 100 Watts, 150 Watts and 200 Watts. Finally heart rate 

was recorded for four minutes during recovery following the completion of the PWC 170. 

The collection of beats recorded from both devices over this period were plotted in order 

to obtain correlation coefficients.

1 17

A P P E N D I X  V I I

Validation o f  the Polar PE3000 SportsTester
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Calibration of the Quinton Treadmill

Elevation Calibration

The incline of the treadmill is expressed in units called "per-cent grade", which is defined 

as the amount of vertical rise per 100 units of belt travel. Grades of 0%, 5%, 10%, 20%, 

30% and 40% were calibrated while loaded and unloaded. Grade was also converted to 

angle in degrees using the formula (degrees = 1/percent grade INV tangent). A carpenters 

level was first used to check the zero grade on the meter. The treadmill was then elevated 

through each of the aforementioned grades and the carpenters tool used to measure grade 

at each level unloaded and loaded with a weight of approximately 75 kilograms. The 

resulting values were then graphed.

Speed Calibration

The length of the treadmill belt was measured at 439.2cm following which a small piece 

of tape was placed on the belt surface near the edge. The treadmill was then turned on to 

a given speed. The speeds measured were 5kph, 7.5kph, lOkph, 15kph, 20kph and 

24kph. These speeds were calibrated through each of the previously mentioned grades. 

The time in seconds was recorded as the belt passed through 15 revolutions. The number 

of revolutions was converted to revolutions per minute. This was then multiplied by belt 

length to obtain metres/minute, then divided by 26.8 to convert to miles/hour and finally 

multiplied by 1.6 to kilometres/hour. The procedure was repeated while a subject with a 

weight of approximately 75 kilograms ran on the belt. The results were then graphed.

APPENDIX VIII
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Calibration o f  treadmill grade at all speeds (Loaded).
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To begin the calibration process S c a n n e r  command is selected and click on B e g in  

C a lib ra t io n  command. You are then asked to place the calibration standard in its position 

on the scanner table. The bracket on the calibration standard incorporates keyhole-shaped 

openings to allow the standard to be locked in position. The scanner arm should be 

positioned near the foot of the table. The laser spot is moved as close as possible to spot 

"A" marked on the top of the standard and then marked. The same is done for spot "B" 

which is marked on top of the standard. When point "B" is marked the XR-26 turns the 

laser off and completes the calibration. It completes a series of instrument diagnostics 

indicating pass or fail status for reference beam, shutter, high, medium and low 

attenuation filter tests. If an error is detected, a message explaining the that the calibration 

is not able to be completed appears on screen. After the quality control diagnostics have 

been successfully completed the calibration standard is scanned. The scanner arm moves 

to pre-programmed positions and measurements are made following which calibration 

results are displayed and printed when the process is complete. The results are saved in 

disk memory.

APPENDIX IX

Automatic Calibration o f the Norland XR-26 Bone Densitometer
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APPENDIX X

Equation used to calculate the coefficient of variation of the Norland XR-26 bone 

densitometer.

CV = (standard deviation x 100) 
mean

BMD = CV = (0.005 x 100) 
0.857 

= 0.58%

BMC = CV = (0.454 x 100) 
34.19 

= 1.33%
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Instructions to subjects for the fasting 2 hour urine for hydroxyproline

1. 6pm: The night before the test - Nothing more to eat or drink until 

instructed.

2. 7.30-8am: Morning of the test - Drink 2 large glasses of water - 

approximately 180 ml each. Nothing else to eat or drink.

3 . 8am: - Pass urine into toilet to completely empty bladder. This is the beginning 

of the test. Write down the exact time on the bottle label. From this time 

onwards, all urine is passed into the container provided.

4. 8.30am: - Drink 2 more 180ml glasses of water.

5 . 10am: - Pass urine into container for the last time. This completes the test. 

Write down the exact time on the bottle label.

6. Keep in the refrigerator (NOT freezer) until collected.

APPENDIX XI
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DEXA scan of the lumbar spine.
LLAWARRA NUCLEAR IMAGING BGNE DENSITY ASSESSMENT

A P P E N D IX  X I I

T e l . :  Mal e  Menoage:
H e i g h t :  We i g h t :
Ann Sp a n :  E t h n i c :
Bone Hi  s t o r y :

T r ea t ment :

O t h e r  M e d i c a t i o n s :

Comments:

T e c h n i c i a n :
P h y s i c i a n :

6 0 . O m m / o e e  1 . 5 s l , S r a r a  1 0 . 0 5 e m  NORLAND R  e v  : 2 . 2 . 2 / 1 . 1 , 5  C  a I: 2 5 / 0 9 / 9 1

Image oot f or  diagnostic purposes.

AP

m D
g / c m2

L2 0 . 7 0 1
(2.0)

L3 0 . 7 4 2
(2.0)

L4 0 . 7 5 7
(2.0)

L2- L4 0 . 7 3 5
(1.0)

S p i n e 1 2 5 / 0 9 / 9 1

BMC AREA LENGTH
g cm2 cm

1 0 . 93 1 5 .6 0 3 . 6 0
(2. 0) ( i . 0) (ref)

13 . 02 1 7 . 54 3 . 6 0
(2, 0) ( i •0) (ref)

14. 31 1 $ . 91 3 . 6 0
(2, 0) (i . 0) (ref)

L2 - L4 CAUCASIAN 
WE S T E R N  E U R OP E

3 $ . 2 6  5 2 . 0 4  1 0 . 3 0
( 1 . 5 )  ( 1 . 0 )  ( r e f )

( C V d o b s w a  i □ p e r c e n t )



APPENDIX XII (cont) 
DEXA scan of the proximal femur.

1LAWARRA NUQUSAR IMAGING ¡BONE DENSITY ASSESSMENT

T e l . :  Male  Menoage;
H e i g h t :  We i g h t :  Age :
Arm S p a n :  E t h n i c :
Bone H i s t o r y :

T r e a t m e n t :

O t h e r  M e d i c a t i o n s :

Comment s :

T e c h n i c i a n :
P h y s i c i a n :

4 5 .  O s  r a/oee 1.  O s i  . Or ai » S . OOe r a  NORLAND R  e v :  2 . 2 . 2 / 1  , 1 . 5  C  a I: 2 5 / 0 9 / 9 1

R i g h t  Hi p  2 2 5 / 0 9 / 9 1

iBMD BMC AREA LENGTH
g / c m2 S cm2 cm

NEQS 0 . <5 4 0 2 . 7 4 4 . 2 0 1 . 0 0
( 2 . 5 ) ( 2 , 0 ) (1.3) (ret)

TROCH. 0 . 6 5 1 1 0 . 5 7 1 6 . 2 5
( 2 , 0 ) ( 4 . 5 ) ( 4 . 5 )

WARD'S 0 . 4 5 $ 0 . 4 6 1 . 0 0
( 4 . 5 ) ( 4 . 5 ) ( r e t )
( C V o  ü b e w o  i a p e r e e r a È )

Fera Fleets CAUCASIAN
C O M B I N E D

•¿» Young R e f .  5 $ . $ 
% Age  Mafceben 7 6 . 5  
Z  - Se o r © - 1 . 5
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The exercise and non-exercise groups training diaries

APPENDIX XIII

Subject No. supervised 
runs /46(%)

No. supervised 
runs (min)

Unsupervised 
runs(min)

Additional
exercise

R1 27 (58.7) 870 365 1065
R2 16 (34.8) 435 440 550
R3 15 (32.6) 425 430 8287
R4 18 (39.1) 495 480 4890

R5 39 (84.7) 1210 0 510
R6 38 (82.6) 1140 295 4490
R7 26 (56.5) 765 0 0
R8 23 (50.0) 675 570 5070
R9 10 (21.7) 210 885 7210

RIO 15 (32.6) 395 1035 6500

R II 23 (50.0) 680 560 3680

R12 19 (41.3) 495 480 10050

Mean 22 (47.8) 649 461 4358.5

Subject Additional 
exercise (min)

Type of activity

C l 645 rollerblading

C2 300 walking

C3 480 walking

C4 3330 soccer, gym, netball, jogging, 
swimming, badminton

C5 1030 cycling, jogging, bushwalking, 
tennis, basketball

C6 360 cycling

C7 1380 jogging, swimming

C8 1200 ] volleyball, basketball

C9 2100 gym, jogging

CIO 1080 walking

MEAN 1188 =
74 min/week
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Raw data (Pre and Post test)- means and SD for anthropometric data of both the exercise 

(R) and non-exercise (C) groups.

APPENDIX XIV

Subject
Number

Age Height Weight

Pre test Post test
R1 23.0 178.8 81.52 70.60
R2 20.8 180.3 69.10 68.08
R3 20.4 176.2 62.10 62.03
R4 22.5 190.6 91.32 89.94
R5 25.9 185.3 84.10 83.06
R6 20.0 177.9 74.00 71.98
R7 27.1 168.6 72.00 72.12
RS 22.4 175.9 87.00 81.78
R9 20.0 173.0 63.54 63.10
RIO 21.2 179.1 72.44 75.43
R l l 24.9 170.6 58.12 58.10
R12 22.8 183.9 80.82 79.00
Mean 22.6 178.4 74.59 72.94
SD 2.3 6.2 10.51 9.44

Subject
Number

Age Height Weight

Pre test Post test
C l 20.3 178.2 76.12 77.21
C2 20.9 182.1 84.79 88.38
C3 20.4 177.6 84.26 84.06
C4 23.8 181.3 83.34 86.20
C5 23.5 189.4 79.84 81.50
C6 23.4 174.8 72.92 71.84
C7 20.0 178.5 80.40 77.78
C8 20.2 172.5 66.62 67.78
C9 24.8 178.2 80.12 80.66
CIO 20.3 176.6 71.52 68.30
Mean 21.8 178.9 77.99 78.37
SD 1.9 4.4 6.04 7.20
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APPENDIX XV

R aw  data (pre test)- means, S D  and S E M  o f the exercise group (R ) and non-exercise

group (C ) for bone mineral density at all sites.

S u b je c t
N o .

F e m o r a l
N e c k

T ro ch . W ard's
T r i.

L 2 -L 4 L 2 L 3 L 4

R1 1.035 0.974 1.032 1.197 1.173 1.233 1.184
R2 1.161 1.159 1.210 1.297 1.322 1.288 1.282
R3 0.888 0.847 0.824 0.921 0.926 0.956 0.884
R4 1.358 1.142 1.360 1.211 1.270 1.232 1.136
R5 1.137 0.942 1.146 1.393 1.488 1.294 1.406
R6 1.084 0.914 1.147 0.946 0.926 0.984 0.929
R7 0.700 0.703 0.710 0.845 0.808 0.873 0.847
R8 0.846 0.833 0.964 1.072 1.085 1.098 1.037
R9 0.903 0.761 0.836 0.989 1.011 0.953 0.999
RIO 1.062 0.870 1.020 1.116 1.111 1.131 1.105
R l l 1.180 1.069 0.940 1.325 1.381 1.331 1.298
R12 1.171 1.072 1.202 1.058 1.112 1.127 0.957
Mean 1.035 0.941 1.033 1.114 1.135 1.125 1.089
SD 0.176 0.147 0.189 0.173 0.203 0.155 0.178
SEM 0.051 0.043 0.055 0.050 0.059 0.045 0.051

S u b je c t
N o .

F e m o r a l
N e c k

T ro ch . W ard's
T r i.

L 2 -L 4 L 2 L 3 L 4

C l 1.070 0.894 1.310 1.014 1.011 1.016 1.015
C2 0.950 0.815 1.121 0.919 0.906 0.958 0.902
C3 1.182 0.901 1.179 1.274 1.294 1.285 1.249
C4 1.357 1.067 1.451 1.243 1.249 1.262 1.223
C5 1.042 0.806 0.915 1.045 1.003 1.079 1.051
C6 1.090 0.854 1.096 0.965 0.966 0.989 0.943
C7 0.889 0.813 0.857 0.946 0.923 0.965 0.949
C8 1.076 0.909 1.176 0.925 0.905 0.940 0.928
C9 1.073 0.923 1.012 1.068 1.092 1.068 1.048
CIO 1.150 0.839 1.110 0.932 0.953 0.953 0.891
Mean 1.088 0.882 1.123 1.033 1.030 1 1.052 1.020
SD 0.128 0.078 0.175 0.130 0.140 0.126 0.127
SEM 0.040 0.025 0.055 0.041 0.044 0.040 0.040
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APPENDIX XVI

R aw  data (post test)- means, SD , and S E M  o f the exercise group (R ) and non-exercise

group (C ) for bone mineral density at all sites.

S u b je c t
N o .

F e m o r a l
N e c k

T ro ch . W ard's
T r i.

L 2 -L 4 L 2 L 3 L 4

R1 1.030 0.966 1.028 1.130 1.105 1.183 1.101
R2 1.165 1.098 1.164 1.271 1.248 1.295 1.270
R3 0.883 0.804 0.800 0.933 0.917 0.980 0.903
R4 1.359 1.151 1.352 1.189 1.265 1.210 1.097
R5 1.130 0.918 1.137 1.398 1.390 1.447 1.353
R6 1.082 0.937 1.154 0.969 0.968 0.973 0.966
R7 0.805 0.755 0.750 0.880 0.922 0.881 0.844
R8 0.812 0.786 0.968 1.033 1.089 1.080 0.936
R9 0.902 0.768 0.819 0.982 0.998 0.966 0.983
RIO 1.041 0.770 0.904 1.124 1.046 1.157 1.167
R l l 1.126 1.181 1.001 1.320 1.355 1.320 1.306
R12 1.244 1.008 1.266 1.071 1.147 1.126 0.966
MEAN 1.048 0.929 1.029 1.108 1.121 1.125 1.074
SD 0.172 0.156 0.191 0.162 0.163 0.168 0.169
SEM 0.050 0.045 0.055 0.047 0.047 0.049 0.049

S u b je c t
N o .

F em o ra l
N e ck

T ro ch . W ard's
T r i.

L 2 -L 4 L 2 L 3 L 4

C l 1.152 0.889 1.171 1.047 1.019 1.035 1.083
C2 0.981 0.817 1.136 0.929 0.912 0.958 0.915
C3 1.132 1.007 1.150 1.251 1.275 1.241 1.239
C4 1.313 1.052 1.345 1.232 1.227 1.243 1.226
C5 1.040 0.832 1.013 1.056 0.996 1.123 1.047
C6 1.084 0.854 1.082 0.935 0.905 0.969 0.931
C7 0.902 0.809 0.861 1.035 0.994 1.064 1.043
C8 1.090 0.932 1.172 0.938 0.910 0.949 0.951
C9 1.096 0.939 1.050 1.110 1.091 1.139 1.101
CIO 1.134 0.846 1.052 0.898 1.134 0.846 1.052
Mean 1.092 0.898 1.103 1.043 1.046 1.057 1.059
SD 0.109 0.083 0.126 0.125 0.132 0.131 0.112
SEM 0.035 0.026 0.040 0.040 0.042 1 0.041 0.035
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APPENDIX XVII

R aw  data (pre test)- means, SD  and S E M  o f the exercise (R ) and non-exercise (C ) groups

for bone mineral content at all sites.

S u b je c t
N o .

F em o ra l
N eck

T ro ch . W ard's
T r i.

L 2 -L 4 L 2 L 3 L 4

R1 3.04 14.17 1.03 58.85 16.46 17.95 18.43
R2 4.26 15.71 1.21 57.98 19.38 18.40 20.20
R3 3.23 10.42 0.82 45.41 13.80 15.71 15.91
R4 5.36 19.51 1.36 66.30 22.69 21.93 21.69
R5 4.96 14.80 1.15 60.38 19.58 19.14 21.65
R6 3.74 13.40 1.15 39.94 12.35 13.35 14.24
R7 2.83 8.43 0.72 34.50 9.72 12.71 12.06
R8 3.45 13.66 0.96 46.73 15.06 15.18 16.49
R9 3.11 10.03 0.84 38.25 12.23 11.92 14.11
RIO 4.45 12.12 1.03 48.93 15.06 16.48 17.39
R ll 3.94 11.59 0.94 59.29 19.58 19.51 20.19
R12 5.26 16.96 1.36 49.47 16.62 15.92 16.93
Mean 3.97 13.40 1.05 50.00 16.04 16.52 17.44
SD 0.89 3.13 0.21 9.74 3.77 3.00 3.10
SEM 0.26 0.90 0.06 2.81 1.09 0.87 0.90

S u b je c t
N o .

F em o ra l
N e ck

T ro ch . W ard's
T r i.

L 2 -L 4 L 2 L 3 L 4

C l 4.46 13.19 0.96 41.71 13.12 13.55 15.05
C2 4.11 9.87 1.12 46.71 14.05 16.70 15.95
C3 4.29 14.39 1.18 57.22 1.70 19.75 20.40
C4 5.29 14.59 1.45 57.57 18.55 18.16 20.86
C5 4.57 9.91 0.92 55.56 16.76 19.16 19.58
C6 4.31 11.58 1.10 45.47 14.05 15.34 16.08
C7 3.81 12.49 0.86 38.65 11.94 13.71 13.00
C8 3.71 13.32 1.10 41.82 12.19 14.66 14.98
C9 4.29 13.38 1.01 52.42 16.43 16.94 19.04
CIO 3.84 13.13 1.11 44.81 14.53 15.73 14.55
Mean 4.27 12.59 1.08 48.19 14.87 16.37 16.95
SD n 0.46 1.66 0.16 6.96 2.23 2.17 2.77
SEM 0.15 0.52 0.05 2.20 0.70 0.69 0.88
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APPENDIX XVIII

R aw  data (Post test)- means, SD , and S E M  o f the exercise (R ) and non-exercise (C )

groups for bone mineral content at all sites.

S u b je c t
N o .

F e m o r a l
N e c k

T ro ch . W ard's
T r i.

L 2 -L 4 L 2 L 3 L 4

R1 3.76 15.40 1.03 49.77 15.10 17.48 17.20
R2 4.41 15.04 1.16 54.72 17.56 17.61 19.55
R3 3.13 16.77 0.80 46.31 13.67 16.28 16.36
R4 5.35 19.07 1.35 63.20 22.02 21.04 20.13
R5 4.72 11.80 1.14 58.91 17.50 22.09 19.32
R6 3.78 6.92 1.15 41.16 12.97 13.22 14.97
R7 2.96 4.02 0.75 36.67 11.47 13.07 12.14
R8 3.44 13.64 0.97 44.86 15.85 14.96 14.05
R9 3.21 6.66 0.82 37.69 11.94 12.07 18.68
RIO 4.33 9.05 0.90 49.84 15.28 16.61 17.95
R ll 4.03 12.94 1.00 57.77 11.89 19.45 19.43
R12 4.07 15.05 1.27 48.93 16.13 16.03 16.77
M ean 3.93 12.20 1.03 49.15 15.75 16.67 16.80
SD 0.70 4.60 0.19 8.40 3.09 3.12 2.63
SEM 0.20 1.33 0.06 2.43 0.89 0.90 0.76

S u b je c t
N o .

F em o ra l
N e ck

T ro ch . W ard's
T r i.

L 2 -L 4 L 2 L 3 L 4

C l 4.45 4.68 1.17 43.46 13.30 13.86 16.40
C2 4.07 10.00 1.14 47.56 14.35 16.93 16.29
C3 4.30 12.17 1.15 56.16 17.43 18.68 20.04
C4 4.97 11.77 1.34 56.58 17.86 17.68 21.04
C5 4.33 12.26 1.01 56.51 16.81 19.84 19.85
C6 4.40 11.33 1.08 42.94 13.07 14.04 15.83
C l 3.71 13.08 0.86 43.28 13.03 15.60 14.64
C8 3.69 15.46 1.17 42.71 12.64 14.92 15.15
C9 4.18 14.40 1.05 53.78 16.73 17.27 19.78
CIO 3.86 12.40 1.03 42.09 13.85 14.67 13.57
M ean 4.20 11.76 1.10 48.41 14.9l1 16.35 17.26
SD 0.39 2.91 0.13 6.55 2.06 2.04 2.66
SEM 0.12 0.92 0.04 2.07 0.65 0.65 0.84
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APPENDIX XIX

R aw  data (P re  and Post test)- means, SD , and S E M  for the exercise and non-exercise

groups for the bone markers serum osteocalcin and urinary hydroxy proline.

S u b jec t
N um ber

Serum  Osteocalcin U rinary  H ydroxyproline

P re  test Post test Pre test Post test
R1 6.9 7.5 14.6 22.1
R2 22.0 14.8 35.2 20.0
R3 22.3 10.9 20.0 30.8
R4 11.4 12.8 13.3 17.4
R5 8.3 * 9.5 12.9
R6 13.1 16.1 30.0 25.1
R7 8.5 10.6 8.6 12.1
R8 10.3 11.3 11.9 18.4
R9 4.9 17.7 14.3 16.7
RIO 17.1 8.0 24.6 14.7
R l l 8.8 9.0 8.3 7.1
R12 12.0 17.4 16.4 25.1
M ean 12.1 12.4 17.2 18.5
SD 5.6 5.6 8.6 6.6
SEM 1.6 1.1 2.5 1.9

S u b jec t
N um ber

Serum  Osteocalcin U rinary  H ydroxyproline

P re  test Post test Pre test Post test
C l 28.6 21.4 19.7 14.0
C2 13.7 12.3 15.1 16.8
C3 7.9 13.3 16.8 20.1
C4 22.7 11.7 17.9 16.5
C5 4.0 8.6 15.0 22.8
C6 22.3 19.6 14.5 11.9
C l 9.0 14.2 24.2 12.9
C8 12.3 12.4 34.0 16.5
C9 23.1 6.1 20.9 12.0
CIO 11.7 13.1 22.8 21.9
M ean 15.5 13.3 20.1 16.5
SD 8.1 4.5 5.9 4.0
SEM 2.6 1.4 1.9 1.3
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Raw data (Pre and Post test)- means, SD, and SEM for cardiovascular fitness of the 

exercise (R) and non-exercise (C) groups.

APPENDIX XX

S ubject
N um ber

Cumulative heart rate 
(beats)

% change Time to Exhaustion 
(m in)

Pre test Post test Pre test Post test
R1 1682 1354 -19.5 8 10
R2 1875 1753 -6.5 11 12
R3 1928 1857 -3.7 11 12
R4 1621 1553 -4.2 10 11
R5 1899 1904 0.3 11 12
R6 2093 2050 -2.1 12 13
R7 1429 1287 -9.9 7 11
R8 1593 1426 -10.5 9 11
R9 2089 2056 -1.6 12 13
RIO 2126 2124 - 0.1 12 12
R I I 1941 1784 -8.1 11 12
R 12 2066 1910 -7.6 12 13
M ean 1861.83 1754.83 -6.13 10.5 11.8
SD 229.36 286.06 5.58 1.7 0.9
SEM 66.21 82.58 1.61 0.5 0.3

Sub ject
N um ber

Cumulative heart rate 
(beats)

% change Time to Exhaustion 
(m in)

Pre test Post test Pre test Post test
C l 1998 1944 -2.7 12 12
C2 1905 1888 -0.9 11 11
C3 1293 1444 11.7 7 7
C4 1411 1505 6.7 10 9
C5 1937 1977 2.1 11 11
C6 1931 1875 -2.9 10 10
C7 1297 1189 -8.3 8 7
C8 1558 1552 -0.4 11 9
C9 1697 1650 -2.8 10 10
CIO 1943 1960 -0.9 12 11
M ean 1697.00 1698.40 0.16 10.2 9.7
SD 285.01 270.57 5.58 1.6 1.7
SEM 90.12 85.56 1.76 0.5 0.5
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Maximal heart rates achieved from the maximal exercise treadmill test for both exercise 

and control subjects.

APPENDIX XXI

Maximal Heart Rates
Exercise Group 

R1-R12
Control Group 

C1-C10
Pre Test 1 Test 2 Test 3 Test 4 Post test 5 Pre Test 1 Post test 2

209 203 196 198 196 181 177
192 199 201 * 196 200 199
185 180 188 195 194 190 205
186 185 179 180 190 191 198
191 195 197 186 196 204 209
191 198 190 193 196 197 194
207 198 * 207 214 188 161
184 186 180 * 187 187 181
194 189 197 * 199 196 189
200 196 203 * 201 192 199
186 186 182 188 187
189 186 189 * 189

* Denotes absent from Maximal exercise test.
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Correlations between subjects following re-positioning for bone mineral density and bone 

mineral content at all sites.

APPENDIX XXII

B M D (g/cm 2)
Subjects

Femoral Neck Greater Trochanter Ward's Triangle

Scan 1 Scan 2 Scan 1 Scan 2 Scan 1 Scan 2
1 1.182 1.195 0.981 1.006 1.179 1.215
2 1.184 1.181 0.914 0.931 1.147 1.209
3 0.903 0.940 0.761 0.755 0.836 0.837
4 1.150 1.164 0.839 0.842 1.110 1.221
5 1.090 1.115 0.854 0.877 1.096 1.129

r 0.996 0.993 0.958

B M C (g/cm 2)
Subjects

Femoral Neck Greater Trochanter Ward's Triangle

Scan 1 Scan 2 Scan 1 Scan 2 Scan 1 Scan 2
1 4.29 4.32 14.39 14.85 1.18 1.22
2 3.74 3.77 13.40 12.23 1.15 1.21
3 3.11 3.20 10.03 11.37 0.84 0.84
4 3.84 3.94 13.13 12.44 1.11 1.22
5 4.31 4.36 11.58 12.93 1.10 1.13

r 0.997 0.545 0.959

BM D (g/cm 2)
Subjects

L2 L3 L4 L2-L4

Scan 1 Scan 2 Scan 1 Scan 2 Scan 1 Scan 2 Scan 1 Scan 2
1 1.286 1.199 1.209 1.195 1.208 1.170 1.231 1.187
2 1.043 1.106 1.089 1.085 1.219 1.180 1.125 1.128
3 1.325 1.263 1.303 1.317 1.273 1.241 1.298 1.272
4 1.066 1.040 1.146 1.101 1.053 1.056 1.089 1.067
5 1.318 1.339 1.359 1.434 1.302 1.334 1.325 1.363

r 0.816 0.966 0.906 0.932

B M D (g/cm 2)
Subjects

L2 L3 L4 L2- L4

Scan 1 Scan 2 Scan 1 Scan 2 Scan 1 Scan 2 Scan 1 Scan 2
1 18.18 16.66 19.40 18.98 21.37 20.51 58.95 56.14
2 12.87 13.28 15.46 14.82 19.82 18.67 48.15 46.78
3 15.42 14.95 17.58 17.48 19.76 19.60 52.76 52.03
4 12.68 12.41 16.50 15.79 16.33 16.13 45.51 47.33
5 22.64 22.95 20.06 21.39 23.14 23.75 65.84 68.09

r 0.966 0.953 0.944 0.939



Student t-tests tables for all pre-test data.

Appendix XXIII
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Variable: BMC Femoral neck
Variances t-value df 2-tail sig

Equal 0.96 20 0.311

Variable: BMC Greater Trochanter
Variances t-value df 2-tail sig

Equal 0.74 20 0.468

Variable: BMC Ward’s triangle
Variances t-value df 2-tail sig

Equal 0.42 20 0.081

Variable: BMC L2-L4
Variances t-value df 2-tail sig

Equal 0.49 20 0.629

Variable: BMC L2
Variances t-value df 2-tail sig

Equal 0.87 20 0.396

Variable: BMC L3
Variances t-value df 2-tail sig

Equal 0.13 20 0.899

Variable: BMC L4
2-tail sigVariances t-value df

Equal 0.39 20 0.702

Variable: BMD Femoral neck
2-tail sigVariances t-value df

Equal 1 0.78 20 0.442

Variable: BMD Greater Trochanter
2-tail sigVariances t-value df

Equal | 1.13 20 0.273
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Variable: BMD Ward's triangle
Variances t-value

APPENDIX XXm (cont) 

df 2-tail sig
Equal 1.15 20 0.263

Variable: BMD L2-L4
Variances t-value df 2-tail sig

Equal 1.22 20 0.237

Variable: BMD L2
Variances t-value df 2-tail sig

Equal 1.38 20 0.076

Variable: BMD L3
Variances t-value df 2-tail sig

Equal 1.20 20 0.243

Variable: BMD L4
Variances t-value df 2-tail sig

Equal 1.02 20 0.318

Variable: Serum Osteocalcin
Variances t-value df 2-tail sig

Equal 1.16 20 0.260

Variable: Urinary Hydroxyproline
2-tail sigVariances t-value df

Equal I 0.89______ 1 20 0.386

Variable: Area under curve (cumulative heart rate)
2-tail sigVariances t-value df

Equal 1.50 20 0.148

Variable: Time to exhaustion
2-tail sigVariances t-value df

Equal 0.42 20 0.707

Variable: Weight
2-tail sigVariances t-value df

Equal 1 0.91 20 0.376
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APPENDIX XXm (cont)

Variable: Height
Variances 

Equal "~f
t-value
0.56

df
20

2-tail sig 
0.584

Variable: Age
Variances 

______Equal
t-value

1.00
df
20

2-tail sig 
0.331
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Student t-test tables for the difference between the means of all the data.

APPENDIX XXIV

Variable: BMD Femoral neck
No. of cases mean SD SEM

exercise 12 0.0128 0.041 0.012
control 10 0.0045 0.038 0.012

Variances t-value
Pooled 0.49

df
20

2-tail sig 
0.628

Variable: BMD Greater Trochanter
No. of cases mean SD SEM

exercise 12 -0.0120 0.058 0.017
control 10 0.0156 0.034 0.011

Variance t-value
Pooled 1.33

df
20

2-tail sig 
0.200

Variable: BMD Ward's triangle
No. of cases mean SD SEM

exercise 12 -0.0040 0.049 0.014
control 10 -0.0195 0.069 0.022

Variance t-value
Pooled 0.62

df
20

2-tail sig 
0.543

Variable: BMD L2-L4
No. of cases mean SD SEM

exercise 12 -0.0058 0.029 0.008
control 10 0.0100 0.038 0.012

Variance t-value
Pooled 1.12

df
20

2-tail sig 
0.277

Variable: BMD L2
No. of cases mean _____  SD_________ SEM

exercise 12 0.0139 0.059 0.017
control 10 0.0161 0.067 0.021

Variance
Pooled

t-value
1.12

df
20

2-tail sig 
0.277



1 4 0

A P P E N D IX  X X IV  (coni)
V ariable: BM D L3

No. of cases mean SD SEM
exercise 12 0.0098 0.050 0.014
control 10 0.0052 0.059 0.019

Variance t-value
Pooled 0.20

df
20

2-tail sig 
0.843

Variable: BMD L4
No. of cases mean SD SEM

exercise 12 -0.0143 0.048 0.014
control 10 0.0389 0.056 0.018

Variance t-value
Pooled 2.41

df
20

2-tail sig 
-0.026

Variable: BMC Femoral neck
No. of cases mean SD SEM

exercise 12 -0.0367 0.433 0.125
control 10 -0.0720 0.125 0.040

Variance t-value
Pooled 0.25

df
20

2-tail sig 
0.806

Variable: BMC Greater Trochanter
No. of cases mean SD SEM

exercise 12 -1.2033 3.327 0.961
control 10 -0.8300 3.171 1.003

Variance t-value
Pooled 0.27

df
20

2-tail sig 
0.792

Variable: BMC Ward's Triangle
No. of cases mean _____SD___________SEM

exercise 12 -0.0192 0.051 0.015
control 10 0.0210 0.089 0.028

Variance
Pooled

t-value
1.32

df
20

2-tail sig 
0.200
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A P P E N D IX  X X IV  (cont)

Variable: BMC L2-L4
No. of cases mean SD SEM

exercise 12 -0.8500 1.845 0.533
control 10 0.2130 1.999 0.632

Variance t-value
Pooled 1.30

df
20

2-tail sig 
0.210

Variable: BMC L2
No. of cases mean SD SEM

exercise 12 -.2992 1.101 0.318
control 10 0.0380 0.634 0.201

Variance t-value
Pooled 0.86

df
20

2-tail sig 
0.403

Variable: BMC L3
No. of cases mean SD SEM

exercise 12 0.1425 0.985 0.284
control 10 0.3100 0.782 0.247

Variance t-value
Pooled 0.39

df
20

2-tail sig 
0.701

Variable: BMC L4
No. of cases mean SD SEM

exercise 12 -0.6450 1.070 0.309
control 10 0.3100 0.782 0.247

Variance t-value
Pooled 2.34

df
20

2-tail sig 
0.029

V ariable: Serum  Osteocalcin
No. of cases mean SD SEM

exercise 12 -0.1091 6.887 2.076
control 10 -2.2600 7.449 2.355

Variance
Pooled

t-value
0.69

df
20

2-tail sig 
0.500
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A P P E N D IX  X X IV  (cont)

Variable: Urinary Hydroxyproline
No. of cases mean SD SEM

exercise 12 1.3083 7.811 2.255
control 10 -3.5500 7.482 2.366

Variance t-value
Pooled 1.48

df
20

2-tail sig 
0.154

Variable: Area under curve (cumulative heart rate)
No. of cases mean SD SEM

exercise 12 -107.00 92.810 26.792
control 10 1.40 77.285 24.440

Variance t-value
Pooled 2.94

df
20

2-tail sig 
0.008

Variable: Time to exhaustion
No. of cases mean SD SEM

exercise 12 1.33 0.985 0.284
control 10 -0.50 0.707 0.224

Variance t-value
Pooled 4.92

df
20

2-tail sig 
0.000

Variable: % difference in cumulative heart rate
No. of cases m ean__________SD___________SEM

exercise 12 0.938 0.056 0.016
control 10 1.003 0.056 0.018

Variance t-value
Pooled 2.70

df
20

2-tail sig 
0.014

Variable: Weight
No. of cases mean SD SEM

exercise 12 -1.653 3.480 1.005
control 10 0.378 2.202 0.696

Variance _____t-value
Pooled 1 1.60^

df 2-tail sig 
0.12620
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A P P E N D I X  X X V

Analysis of variance tables for the all data. The experimental group has been divided into 

two groups above and below the mean found for the percentage difference of cumulative 

heart rate, while the third group is that of the controls.

Group 1 = > 6.13% change in fitness (n = 6)

Group 2 = < 6.13% change in fitness (n = 6)

Group 3 = control (n = 10)

Variable: BMD Fem oral neck

Source df SS MS F P
Groups 2 0.0046 0.0023 1.5963 0.2287
Within 19 0.0271 0.0014
Total 21 0.0317

Variable: BMD G reater Trochanter

Source df SS MS F P
Groups 2 0.0052 0.0026 1.0686 0.3632
Within 19 0.0462 0.0024
Total 21 0.0514

Variable: BMD W ard 's triangle

Source df SS MS F P
Groups 2 
Within 19 
Total 21

0.0081
0.0615
0.0697

0.0041
0.0032

1.2547 0.3077

V ariable: BMD L2-L4

Source df SS MS F P
Groups 2 0.0023 0.0012 1.0639 0.3648
Within 19 0.0209 0.0011
Total 21 0.0232
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A P P E N D IX  X X V  (cont)

V a r ia b le :  B M D  L 2

Source df SS MS F P
Groups 2 0.0065 0.0032 0.7987 0.4645
Within 19 0.0771 0.0041
Total 21 0.0835

Variable: BMD L3

Source df SS MS F P
Groups 2 
Within 19 
Total 21

0.0052
0.0533
0.0585

0.0026
0.0028

0.9343 0.4102

Variable: BMD L4

Source df SS MS F P
Groups 2 
Within 19 
Total 21

0.0185
0.027
0.032

0.0093
0.001

3.5180 0.0501

Variable: BMC Femoral neck

Source df SS MS F P
Groups 2 
Within 19 
Total 21

0.0108
2.1966
2.2074

0.0054
0.1156

0.0469 0.9543

Variable: BMC G reater Trochanter

Source df SS MS F P
Groups 2 
Within 19 
Total 21

3.3549
209.7132
213.0681

I. 6775
I I . 0375

0.1520 0.8600

V ariable: BMC W ard 's triangle

Source df SS MS F P
Groups 2 
Within 19 
Total 21

0.0107
0.0985
0.1092

0.0053
0.0052

1.0295 0.3763
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A P P E N D IX  X X V  (coni)

V a r ia b le :  B M C  L 2 -L 4

Source df SS MS F P
Groups 2 9.1635 4.5817 1.2362 0.3128
Within 19 70.4182 3.7062
Total 21 79.5817

Variable: BMC L2

Source df SS MS F P
Groups 2 0.7155 0.3577 0.4030 0.6739
Within 19 16.8648 0.8876
Total 21 17.5803

Variable: BMC L3

Source df SS MS F P
Groups 2 1.3810 0.6905 0.7297 0.4951
Within 19 17.9801 0.9453
Total 21 19.3611

Variable: BMC L4

Source df SS MS F P
Groups 2 5.5294 2.7647 2.9933 0.0741
Within 19 0.027 0.001
Total 21 0.032

Variable: Serum  Osteocalcin

Source df SS MS F P
Groups 2 27.0157 13.5078 0.2505 0.7811
Within 19 970.8110 53.9339
Total 21 997.8267

V ariable: U rinary  Hydroxyproline

Source df SS MS F P

Groups 2 130.0133 65.0067 1.0524 0.3686
Within 19 1173.6667 61.7719
Total 21 1303.6800
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APPENDIX XXV (cont)

V ariable: W eight

Source df SS MS F
Groups 2 43.6277 21.8139 2.6608
Within 19 155.7637 8.1981
Total 21 199.3914

P
0.0958
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Correlation coefficients for all variables vs BMC at all skeletal sites.

A P P E N D I X  X X V I

BMC FN T WT L2-L4 L2 L3 L4

FN 0.2726
P=0.220

0.7855
P = 0 .0 0 0

0.7653
P = 0 .0 0 0

0.7294
P = 0 .0 0 0

0.6559
P = 0 .0 0 1

0.7799
P = 0 .0 0 0

T 0.3225
P=0.143

0.5512
P = 0 .0 0 8

0.5742
P = 0 .0 0 5

0.5583
P = 0 .0 0 7

0.4356
P = 0 .0 4 3

WT 0.5387
P = 0 .0 1 0

0.5556
P = 0 .0 0 7

0.4002
P=0.065

0.5501
P = 0 .0 0 8

L2-L4 0.9495
P = 0 .0 0 0

0.9451
P = 0 .0 0 0

0.9411
P = 0 .0 0 0

L2 0.8567
P = 0 .0 0 0

0.8374
P = 0 .0 0 0

L3 0.8307
P = 0 .0 0 0

L4

SOC 0.0778
P=0.738

-0.3389
P=0.133

0.2576
P=0.260

-0.4080
P=0.066

-0.3353
P=0.137

-0.5206
P = 0 .0 1 6

-0.3221 
P=0.154

UHPR -0.2087
P=0.351

0.2958
P=0.181

0.0704
P=0.756

-0.0701
P=0.757

-0.0932
P=0.680

-0.0733
P=0.746

-0.0688
P=0.761

Area 0.1284
P=0.569

-0.2710
P=0.223

0.0580
P=0.798

-0.0322
P=0.887

-0.0848
P=0.707

-0.0807
P=0.721

0.0432
P=0.849

Time 0.0161
P=0.943

-0.2893
P=0.192

-0.0067
P=0.977

-0.0787
P=0.728

-0.0010
P=0.996

-0.1426
P=0.527

-0.0959
P=0.671

%Area 0.3925
P=0.071

-0.1465
P=0.515

0.3171
P=0.150

0.2410
P=0.280

0.1335
P=0.554

0.1718
P=0.445

0.3589
P=0.101

Weight 0.5953
P = 0 .0 0 3

0.0892
P=0.693

0.5263
P = 0 .0 1 2

0.4307
P = 0 .0 4 5

0.4060
P=0.061

0.4177
P=0.053

0.3845
P=0.077

Height 0.7302
P = 0 .0 0 0

0.4102
P=0.058

0.6546
P = 0 .0 0 1

0.6274
P = 0 .0 0 2

0.5650
P = 0 .0 0 6

0.6290
P = 0 .0 0 2

0.5711
P = 0 .0 0 5
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Correlation coefficients for all variables vs BMD at all skeletal sites.

A P P E N D IX  X X V I  (cont)

BMD FN T WT L2-L4 L2 L3 L4

FN 0.7842
P = 0 .0 0 0

0.8853
P = 0 .0 0 0

0.5268
P = 0 .0 1 2

0.5864
P = 0 .0 0 4

0.4793
P = 0 .0 2 4

0.5463
P = 0 .0 0 9

T 0.6925
P = 0 .0 0 0

0.6848
P = 0 .0 0 0

0.7236
P = 0 .0 0 0

0.6403
P = 0 .0 0 1

0.6149
P = 0 .0 0 2

WT 0.4029
P=0.063

0.4468
P = 0 .0 3 7

0.3821 
P= 0.079

0.3545
P=0.106

L2-L4 0.9051
P = 0 .0 0 0

0.9833
P = 0 .0 0 0

0.9332
P = 0 .0 0 0

L2 0.8492
P = 0 .0 0 0

0.8679
P = 0 .0 0 0

L3 0.8767
P = 0 .0 0 0

L4

SOC 0.1683
P=0.466

-0.0351
P=0.880

0.2566
P=0.262

-0.2409
P=0.293

-0.1754
P=0.447

-0.2977
P=0.190

-0.2202
P=0.338

UHPR -0.0084
P=0.971

-0.0851
P=0.707

0.0698
P=0.758

-0.2680
P=0.228

-0.1891
P=0.399

-0.2175
P=0.331

-0.3041
P=0.169

Area 0.1748
P=0.437

-0.1353
P=0.548

0.0594
P=0.793

-0.0813
P=0.719

-0.0840
P=0.710

-0.0909
P=0.687

0.0315
P=0.889

Time 0.0444
P=0.845

-0.0889
P=0.694

-0.0051
P=0.982

-0.0904
P=0.689

-0.0186
P=0.934

-0.1150
P=0.610

-0.0976
P=0.666

%Area 0.3517
P=0.108

0.0231
P=0.919

0.3217
P=0.144

0.1347
P=0.550

0.1303
P=0.563

0.0666
P=0.768

0.2625
P=0.238

Weight 0.3225
P=0.143

0.0613
P=0.786

0.5229
P = 0 .0 1 3

0.2229
P=0.319

0.1876
P=0.403

0.2642
P=0.235

0.1027
P=0.649

Height 0.5895
0 .0 0 4

0.3214
P=0.145

0.6541
P = 0 .0 0 1

0.3695
P=0.091

0.3112
P=0.159

0.4301
P = 0 .0 4 6

0.2917
P=0.188
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APPENDIX XXVII

Stepwise multiple regression of all post-test BMD and BMC sites using the independent 

variables of fitness, weight and height.

Dependent variable: BMD Femoral neck

Variable: Height
Multiple R 0.58952
R Square 0.34754
Adjusted R Square 0.31491
Standard Error 0.12036

Analysis of Variance
df__________ Sum of Squares______Mean Square

Regression
Residual

1
20

0.15434
0.28975

0.15434
0.01449

F = 10.65313 Signif F = 0.0039
Variables in the Equation

Variable B SEB Beta T SigT
Height 0.015730 0.004819 0.589524 3.264 0.0039
(constant) -1.744254 0.862100 -2.023 0.0566

Dependent variable: BMD Ward’s triangle

Variable: Height
Multiple R 0.65407
R Square 0.42781
Adjusted R Square 0.39920
Standard Error 0.12822

Analysis of Variance
df__________ Sum of Squares______Mean Square

Regression
Residual

1 0.24584 
20 0.32881

0.24584
0.01644

F = 14.95331 Signif F = 

Variable B

0.0010 B 
Variables in the Equation

SE B Beta T SigT
Height
(constant)

0.019853
-2.487213

0.005134 0.654070 
0.918369

3.867
-2.708

0.0010
0.0135
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APPENDIX X X V n (cont)

Dependent variable: BMD L3

Variable: Height
Multiple R 0.43005
R Square 0.18494
Adjusted R Square 0.14419
Standard Error 0.14262

Analysis of Variance
df__________ Sum of Squares______Mean Square

Regression
Residual

1
20

0.09231
0.40682

0.09231
0.02034

F = 4.53819 Signif F = 0.0458
Variables in the Equation

Variable B SEB Beta T Sig T
Height 0.012165 0.005711 0.430051 2.130 0.0458
(constant) -1.075842 1.021509 -1.053 0.3048

Dependent variable: BMC Femoral neck

Variable: Height
Multiple R 0.73019
R Square 0.53318
Adjusted R Square 0.50984
Standard Error 0.40952

Analysis of Variance
df__________ Sum of Squares______Mean Square

Regression 1 3.83100 3.83100
Residual 20 3.35419 0.16771
F = 22.84309 Signif F = 0.0001

Variables in the Equation
Variable B SEB Beta T SigT
Height
(constant)

0.078371
-9.960426

0.016397
2.933167

0.730192 4.779
-3.396

0.0001
0.0029

Dependent variable: BMC Ward's triangle

Variable: Height
Multiple R 0.65460
R Square 0.42850
Adjusted R Square 0.39993
Standard Error 0.12788

Analysis of Variance
df__________ Sum of Squares______Mean Square

Regression
Residual

1
20

0.24524
0.32708

0.24524
0.01635

F = 14.99563 Signif F = 0.0009
Variables in the Equation

Variable B SEB Beta T SigT
Height 0.019829 0.005121 0.654599 3.872 0.0009
(constant) -2.483567 0.915954 -2.711 0.0134
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A P P E N D IX  X X V I I  (coni)

Dependent variable: BMC L2-L4

Variable: Height
Multiple R 0.62735
R Square 0.39357
Adjusted R Square 0.36325
Standard Error 5.94532

Analysis of Variance
df__________ Sum of Squares______Mean Square

Regression
Residual

1
20

458.79763
706.93726

458.79763
35.34686

E =  12.97987 Signif F = 0.0018
Variables in

Variable B SE B
the Equation

Beta T SigT
Height 0.857647 0.238053 0.627351 3.603 0.0018
(constant) -104.53372 42.582745 -2.455 0.0234

Dependent variable: BMC L2

Variable: Height
Multiple R 0.56504
R Square 0.31927
Adjusted R Square 0.28523
Standard Error 2.23633

Analysis of Variance
df__________ Sum of Squares______Mean Square

Regression
Residual

1
20

57.49168
100.02367

57.49168
5.00118

F = 9.38027 Signif F = 0.0061
Variables in the Equation

Variable B SEB Beta T SigT
Height 0.274247 0.89544 0.565041 3.063 0.0061
(constant) -33.671323 16.017495 -2.102 0.0484

Dependent variable: BMC L3

Variable: Height
Multiple R 0.62902
R Square 0.39567
Adjusted R Square 0.36545
Standard Error -2.09537

Analysis of Variance
df__________ Sum of Squares______Mean Square

Regression
Residual

1
20

57.49168
87.81165

57.49168
4.39058

F = 13.09432 Signif F = 0.0017
Variables in the Equation

Variable B SEB Beta T SigT
Height 0.303599 0.083899 0.629020 3.619 0.0017
(constant) -37.765365 15.007877 -2.516 0.0205

APPENDIX XXVII (cont)
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Dependent variable: BMD Fem oral neck

V ariable: Height
Multiple R 0.57114
R Square 0.32620
Adjusted R Square 0.29251
Standard Error 2.17843

Analysis of Variance
df__________ Sum of Squares______Mean Square

Regression
Residual

1
20

45.94882
94.91148

45.94882
4.74557

F = 9.68246 Signif F = 0.0055
Variables in the Equation

Variable B SEB Beta T SigT
Height 0.271416 0.087225 0.571140 3.112 0.0055
(constant) -31.522813 15.602802 -2.020 0.0569


	The response of trabecular bone to physical activity in young sedentary males
	Recommended Citation

	tmp.1450411200.pdf.nJKhV

